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ABSTRACT
Graph embedding maps graph nodes to low-dimensional vectors,
and is widely adopted in machine learning tasks. The increasing
availability of billion-edge graphs underscores the importance of
learning efficient and effective embeddings on large graphs, such
as link prediction on Twitter with over one billion edges. Most ex-
isting graph embedding methods fall short of reaching high data
scalability. In this paper, we present a general-purpose, distributed,
information-centric random walk-based graph embedding frame-
work, DistGER, which can scale to embed billion-edge graphs. Dist-
GER incrementally computes information-centric random walks. It
further leverages a multi-proximity-aware, streaming, parallel graph
partitioning strategy, simultaneously achieving high local partition
quality and excellent workload balancing across machines. DistGER
also improves the distributed Skip-Gram learning model to generate
node embeddings by optimizing the access locality, CPU throughput,
and synchronization efficiency. Experiments on real-world graphs
demonstrate that compared to state-of-the-art distributed graph em-
bedding frameworks, including KnightKing, DistDGL, and Pytorch-
BigGraph, DistGER exhibits 2.33×–129× acceleration, 45% reduc-
tion in cross-machines communication, and >10% effectiveness
improvement in downstream tasks.
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1 INTRODUCTION
Graph embedding is a widely adopted operation that embeds a node
in a graph to a low-dimensional vector. The embedding results are
used in downstream machine learning tasks such as link prediction
[60], node classification [5], clustering [34], and recommendation
[45]. In these applications, graphs can be huge with millions of nodes
and billions of edges. For instance, the Twitter graph includes over
41 million user nodes and over one billion edges, and it has extensive
requirements for link prediction and classification tasks [19]. The
graph of users and products at Alibaba also consists of more than two
billion user-product edges, which forms a giant bipartite graph for its
recommendation tasks [56]. A plethora of random walk-based graph
embedding solutions [17, 18, 39, 47, 49] are proposed. A random
walk is a graph traversal that starts from a source node, jumps to a
neighboring node at each step, and stops after a few steps. Random-
walk-based embeddings are inspired by the well-known natural
language processing model, word2vec [32]. By conducting sufficient
random walks on graphs, substantial graph structural information is
collected and fed into the word2vec (Skip-Gram) to generate node
embeddings. Compared with other graph embedding solutions such
as graph neural networks [20, 51, 53–55] and matrix factorization
techniques [40, 41, 58, 64, 66], random walk-based methods are
more flexible, parallel-friendly, and scale to larger graphs [62].

While graph embedding is crucial, the increasing availability of
billion-edge graphs underscores the importance of scaling graph em-
bedding. The inherent challenge is that the number of random walks
required increases with the graph size. For example, one representa-
tive work, node2vec [18] needs to sample many node pairs to ensure
the embedding quality, it takes months to learn node embeddings for
a graph with 100 million nodes and 500 million edges by 20 threads
on a modern server [66]. Some very recent work, e.g., HuGE [17]
attempts to improve the quality of random walks according to the
importance of nodes. Though this method can remove redundant
random walks to a great extent, the inherent complexity remains
similar. It still requires more than one week to learn embeddings
for a billion-edge Twitter graph on a modern server, hindering its
adoption to real-world applications. Another line of work turns to
use GPUs for efficient graph embedding. For example, some re-
cent graph embedding frameworks (e.g., [59, 70]) simultaneously
perform graph random walks on CPUs and embedding training on
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GPUs. However, as the computing power between GPUs and CPUs
differ widely, it is typically hard for the random walk procedure
performed on CPUs to catch up with the embedding computation
performed on GPUs, causing bottlenecks [44, 67]. Furthermore, this
process is heavily related to GPUs’ computing and memory capacity,
which can be drastically different across different servers.

Recently, distributed graph embedding, or computing graph em-
beddings with multiple machines, has attracted significant research
interest to address the scalability issue. Examples include KnightK-
ing [63], Pytorch-BigGraph [26], and DistDGL [68]. KnightKing
[63] optimizes the walk-forwarding process for node2vec and brings
up several orders of magnitude improvement compared to a single-
server solution. However, it may suffer from redundant or insufficient
random walks that are attributed to a routine random walk setting,
resulting in low-quality training information for the downstream task
[17]. Moreover, the workload-balancing graph partitioning scheme
that it leverages fails to consider the randomness inherent in random
walks, introducing higher communication costs across machines and
degrading its performance. Facebook proposes Pytorch-BigGraph
[26] that leverages graph partitioning technique and parameter server
to learn large graph embedding on multiple CPUs based on PyTorch.
However, the parameter server used in this framework needs to syn-
chronize embeddings with clients, which puts more load on the com-
munication network and limits its scalability. Amazon has recently
released DistDGL [68], a distributed graph embedding framework
for graph neural network model. However, its efficiency is bogged
down by the graph sampling operation, e.g., more than 80% of the
overhead is for sampling in the GraphSAGE model [20], and the
mini-batch sampling used may trigger delays in gradient updates
causing inefficient synchronization. In conclusion, although the dis-
tributed computation frameworks have shown better performance
than the single-server and CPU-GPU-based solutions, significant
rooms exist for further improvement.

Our DistGER system. We present a newly designed distributed
graph embedding system, DistGER, which incorporates more ef-
fective information-centric random walks such as HuGE [17] and
achieves super-fast graph embedding compared to state-of-the-arts.
As a preview, compared to KnightKing, Pytorch-BigGraph, and
DistDGL, our DistGER achieves 9.3×, 26.2×, and 51.9× faster em-
bedding on average, and easily scales to billion-edge graphs (§6).
Due to information-centric random walks, DistGER embedding also
shows higher effectiveness when applied to downstream tasks.

Three novel contributions of DistGER are as follows. First and
foremost, since the information-centric random walk requires mea-
suring the effectiveness of the generated walk on-the-fly during the
walking procedure, it inevitably introduces higher computation and
communication costs in a distributed setting. DistGER resolves this
by showing that the effectiveness of a walking path can be measured
through incremental information, avoiding the need for full-path
information. DistGER invents incremental information-centric com-
puting (InCoM), ensuring O(1) time for on-the-fly measurement and
maintains constant-size messages across computing machines. Sec-
ond, considering the randomness inherent in random walks and the
workload balancing requirement, DistGER proposes multi-proximity-
aware, streaming, parallel graph partitioning (MPGP) that is adap-
tive to random walk characteristics, increasing the local partition
utilization. Meanwhile, it uses a dynamic workload constraint for

the partitioning strategy to ensure load-balancing. Finally, differ-
ent from the existing random walk-based embedding techniques,
DistGER designs a distributed Skip-Gram learning model (DSGL) to
generate node embeddings and implements an end-to-end distributed
graph embedding system. Precisely, DSGL leverages global-matrices
and two local-buffers for node vectors to improve the access locality,
thus reducing cache lines ping-ponging across multiple cores dur-
ing model updates; then develops multi-windows shared-negative
samples computation to fully exploit the CPU throughput. Moreover,
a hotness block-based synchronization mechanism is proposed to
synchronize node vectors efficiently in a distributed setting.

Our contributions and roadmap. We propose an efficient, scal-
able, end-to-end distributed graph embedding system, DistGER,
which, to our best knowledge, is the first general-purpose, information-
centric random walk-based distributed graph embedding framework.

• We introduce incremental information-centric computing (In-
CoM) to address computation and communication overheads due to
on-the-fly effectiveness measurements during information-oriented
random walks in a distributed setting (§3.1).

• We propose multi-proximity-aware, streaming, parallel graph
partitioning (MPGP) that achieves both higher local partition utiliza-
tion and load-balancing (§3.2).

• We develop a distributed Skip-Gram learning model (DSGL) to
generate node embeddings by improving the access locality, CPU
throughput, and synchronization efficiency (§4).

• We conduct extensive experiments on five large, real-world
graphs to demonstrate that DistGER achieves much better efficiency,
scalability, and effectiveness over existing popular distributed frame-
works, e.g., KnightKing [63], DistDGL [68], and Pytorch-BigGraph
[26]. In addition, DistGER generalizes well to other random walk-
based graph embedding methods (§6).

We discuss preliminaries and a baseline approach in §2, related
work in §5, and conclude in §7. Additional related work and empiri-
cal results, proof of theorems are given in our full version [15].

2 PRELIMINARIES AND BASELINE
We design an end-to-end distributed system for effective and scal-
able embedding of large graphs via random walks. To this end, we
first discuss relevant works on random walk-based sequential graph
embedding (§2.1) and distributed systems for random walks on
graphs (§2.2). Then, we propose a baseline distributed system for
random walk-based graph embedding by combining the above two
methods (§2.3), discuss its limitations and scopes of improvements,
which leads to introducing our ultimate system, DistGER in §3 and
§4. Table 1 explains the most important notations. DistGER han-
dles undirected and unweighted graphs by default, but can support
directed and weighted graphs (higher edge weights imply stronger
connectivity) [15]. DitsGER uses the Compressed Sparse Row (CSR)
[38] format to store graph data, where directed edges are stored with
their source nodes and undirected edges are stored twice for both
directions. For each weighted edge, CSR stores a tuple containing
its destination node and edge weight.

2.1 Random-walks Based Graph Embedding
These graph embedding algorithms are inspired by the well-known
natural language processing model, word2vec [32]: They transform

1644



Table 1: Frequently used notations

Notation Meaning

𝐺 = (𝑉 , 𝐸 ) 𝐺 : undirected, unweighted graph;𝑉 : set of nodes; 𝐸: set of edges
𝜑 (𝑢 ) embedding or vector representation of node 𝑢, having dimension 𝑑
𝑤 window size of context in the Skip-Gram

𝑁 (𝑢 ) neighbors of node 𝑢
𝐿 random walk length starting from a node
𝑟 number of random walks per node
𝐻 (𝑋 ) entropy of random variable 𝑋 with possible values 𝑥1, 𝑥2, . . . , 𝑥𝑛

a graph into a set of random walks through sampling methods, treat
each random walk as a sentence, and then adopt word2vec (Skip-
Gram) to generate node embeddings from the sampled walks.
Node2vec. A most representative algorithm in the aforementioned
category is node2vec [18], as given below.

Random walk method. Given a graph 𝐺 = (𝑉 , 𝐸), two nodes
𝑢, 𝑣 ∈ 𝑉 , and we suppose a walker is currently at node 𝑢. Node2vec
defines the transition probability from 𝑢 to 𝑣 as 𝑃 (𝑢, 𝑣) = 𝜋𝑢𝑣

𝑍
, where

𝜋𝑢𝑣 is the unnormalized transition probability from 𝑢 to 𝑣 , and 𝑍
is the normalization constant defined as

∑
𝑣∈𝑁 (𝑢 ) 𝜋𝑢𝑣 . Node2vec

defines a second-order random walk. Assume that a walker just
traversed node 𝑡 and now resides at node 𝑢 (𝑢 is a neighbor of 𝑡).
Next, it will select a node 𝑣 from 𝑢’s neighbors. The un-normalized
transition probability 𝜋𝑢𝑣 is defined by 𝑑𝑡𝑣 , which is the shortest
path distance between nodes 𝑡 and 𝑣: If 𝑑𝑡𝑣 is 0, 1, 2, respectively,
then the corresponding 𝜋𝑢𝑣 is 1/𝑝, 1, 1/𝑞. Hyperparameters 𝑝 and 𝑞
are called return and in-out parameters, respectively. 𝑑𝑡𝑣 = 0 means
that 𝑡 and 𝑣 are the same node, i.e., the walker goes back to 𝑡 , which
is a BFS-like exploration, thus setting a small 𝑝 obtains a “local
view" in the graph with respect to the start node. 𝑑𝑡𝑣 = 1 means that
𝑣 is a neighbor of 𝑡 , and 𝑑𝑡𝑣 = 2 denotes a DFS-like exploration to
get a “global view" in the graph, which can be attained by a small 𝑞.

Features learning for graph embedding. Features learning maps

𝜑 : 𝑉 → 𝑅𝑑 from nodes to feature representations (node embed-
dings). Since node2vec captures node representations based on the
Skip-Gram model [32] that maximizes the co-occurrence probability
between words within a window𝑤 in a sentence, the objective is:

argmax
𝜑

1
|𝑉 |

|𝑉 |∑︁
𝑗=1

∑︁
−𝑤≤𝑖≤𝑤

log𝑝 (𝑢 𝑗+𝑖 |𝑢 𝑗 ) (1)

The generated walks are used as a corpus with vocabulary 𝑉 , where
𝑢 𝑗+𝑖 denotes a context node in a window𝑤 , and 𝑝 (𝑢 𝑗+𝑖 |𝑢 𝑗 ) indicates
the probability to predict the context node. The basic Skip-Gram
formulates 𝑝 (𝑢 𝑗 |𝑢 𝑗+𝑖 ) as the softmax function. Existing methods
generally speed-up training with negative sampling [31].

log𝑝 (𝑢 𝑗 |𝑢 𝑗+𝑖 ) ≈ log𝜎 (𝜑𝑖𝑛 (𝑢 𝑗+𝑖 ) · 𝜑𝑜𝑢𝑡 (𝑢 𝑗 ) )

+
𝐾∑︁
𝑘=1
E𝑢𝑘∼𝑃𝑛 (𝑢) [log𝜎 (−𝜑𝑖𝑛 (𝑢 𝑗+𝑖 ) · 𝜑𝑜𝑢𝑡 (𝑢𝑘 ) ) ]

(2)

Here, 𝜎 (𝑥) = 1
1+𝑒𝑥𝑝 (−𝑥 ) is the sigmoid function, and the expec-

tations are computed by drawing random nodes from a sampling
distribution 𝑃𝑛(𝑢), ∀𝑢 ∈ 𝑉 . Typically, the number of negative sam-
ples 𝐾 is much smaller than |𝑉 | (e.g., 𝐾 ∈ [5, 20]).

Complexity analysis. Assume that the number of walks per node
is 𝑟 , walk length 𝐿, embedding dimensions 𝑑, window size 𝑤 , and

the number of negative samples 𝐾 . The time complexity of node2vec
random-walk procedure is O(𝑟 · 𝐿 · |𝑉 |). For feature learning, the
corpus size 𝐶 = 𝑟 · 𝐿. Let us denote the complexity of the unit
operation of predicting and updating one node’s embedding as 𝑜.
The Skip-Gram with the negative sampling only needs 𝐾 + 1 words
to obtain a probability distribution (Eq. 2), thus the time complexity
of node2vec feature learning is O(𝐶 ·𝑤 · (𝐾 +1) ·𝑜). Since each node
in the Skip-Gram model needs to maintain two embeddings 𝜑𝑖𝑛 and
𝜑𝑜𝑢𝑡 for the parameter updates, the space complexity of node2vec,
which refers to the parameter sizes, is 𝑂 ( |𝑉 |𝑑).

Drawbacks. Despite the flexibility in exploring node representa-
tions (local-view vs. global-view), node2vec incurs high time over-
head. It leverages a routine random walk configuration (usually,
𝐿=80 and 𝑟=10) to generate walks, similar to most existing random
walk-based graph embedding methods, which limits the efficiency
and scalability on large-scale graphs. Indeed, this one-size-fits-all
strategy cannot meet the specific requirements of different real-world
graphs. For instance, the high-degree nodes are usually located in
dense areas of a graph, they might require longer and more random
walks to capture more comprehensive features; while for the low-
degree nodes, if treated equally, it may introduce redundancy into
generated walks, thus limiting the scalability.

HuGE. The recent work, HuGE [17] attempts to resolve the routine
random walk issue of node2vec and proposes a novel information-
oriented random walk mechanism to achieve a concise and compre-
hensive representation in the sampling procedure.

Random walk method. First, HuGE leverages a hybrid random
walk strategy, which considers both node degree and the number
of common neighbors in each walking step. Common neighbors
represent potential information between nodes, e.g., node similarity
[47]. For random walks, high-degree nodes are revisited more, and
walks starting from them can obtain richer information by traveling
around their local neighbors [27]. The un-normalized transition
probability from node 𝑢 to the next-hop node 𝑣 is:

𝛼 (𝑢, 𝑣) = 1
𝑑𝑒𝑔 (𝑢 ) − 𝐶𝑚 (𝑢, 𝑣) × max

{
𝑑𝑒𝑔 (𝑢 )
𝑑𝑒𝑔 (𝑣) ,

𝑑𝑒𝑔 (𝑣)
𝑑𝑒𝑔 (𝑢 )

}
(3)

where 𝑑𝑒𝑔(𝑢) is the degree of 𝑢, and 𝐶𝑚(𝑢, 𝑣) denotes the number
of their common neighbors. Thus, 1

𝑑𝑒𝑔 (𝑢 )−𝐶𝑚 (𝑢,𝑣) indicates the
similarity between the current node 𝑢 and the next-hop node 𝑣 , the
ratio grows with higher 𝐶𝑚(𝑢, 𝑣), since 𝑑𝑒𝑔(𝑢) is fixed. The max
function assigns a weight to the transition probability from 𝑢 to 𝑣 ,
indicating the influence of a high degree node on its neighbors.

At the current node 𝑢, HuGE randomly chooses 𝑣 from 𝑁 (𝑢) as
a candidate node, the acceptance probability for 𝑣 as the next-hop
node is 𝑃 (𝑢, 𝑣), and if 𝑣 is rejected, which happens with probability
1−𝑃 (𝑢, 𝑣), the walker backtracks to𝑢 and repeats a random selection
again from 𝑁 (𝑢), known as the walking-backtracking strategy [27].
𝑃 (𝑢, 𝑣) is defined as 𝑍 (𝛼 (𝑢, 𝑣)), where HuGE normalizes 𝛼 (𝑢, 𝑣) via
𝑍 (𝑥) = 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥 , which is widely-applied in machine learning. For
edge weight𝑤 (𝑢, 𝑣), we define 𝑃 (𝑢, 𝑣) = 𝑍 (𝛼 (𝑢, 𝑣) ·𝑤 (𝑢, 𝑣)).

Second, in contrast to a one-size-fits-all strategy, HuGE proposes
a heuristic walk length strategy to measure the effectiveness of
information during walk based on entropy (𝐻 ). Mathematically,
let us denote the random walk starting at the source node 𝑢 as
𝑊 𝐿
𝑢 = {𝑣1𝑢 , 𝑣2𝑢 , 𝑣3𝑢 , . . . , 𝑣𝐿𝑢 }, where 𝑣𝑘𝑢 denotes the 𝑘-th node on the

walk. The probability of the occurrence of a specific node 𝑣 on the
walk is 𝑛 (𝑣)

𝐿
, where 𝑛(𝑣) is the number of occurrences of 𝑣 on the
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generated walk. The information entropy of the generated walk is:

𝐻

(
𝑊 𝐿
𝑢

)
= −

∑︁
𝑣∈𝑊 𝐿

𝑢

𝑛 (𝑣)
𝐿

log
𝑛 (𝑣)
𝐿

(4)

With increasing 𝐿, as the occurrence probability for a specific node
in a generated walk gradually stabilizes,𝐻

(
𝑊 𝐿
𝑢

)
initially grows with

𝐿 until it converges. HuGE characterizes the correlation between
𝐻

(
𝑊 𝐿
𝑢

)
and 𝐿 by linear regression and calculates the coefficient of

determination (𝑅2) to determine the termination of a random walk.

𝑅

(
𝐻 (𝑊 𝐿

𝑢 ), 𝐿
)
=

∑𝐿∗
𝑖=1

(
𝐻

(
𝑊
𝐿 (𝑖 )
𝑢

)
− 𝐻 (𝑊 𝐿

𝑢 )
) (
𝐿 (𝑖 ) − 𝐿

)
√︂∑𝐿∗

𝑖=1

(
𝐻

(
𝑊
𝐿 (𝑖 )
𝑢

)
− 𝐻 (𝑊 𝐿

𝑢 )
)2√︂∑𝐿∗

𝑖=1

(
𝐿 (𝑖 ) − 𝐿

)2 (5)

𝐻

(
𝑊 𝐿
𝑢

)
and 𝐿 are the mean of the respective series for 1 ≤ 𝑖 ≤ 𝐿∗,

and 𝐿∗ is the optimal walk length for the current walk. As 𝐿 grows
and 𝐻 (𝑊 𝐿

𝑢 ) stabilizes, 𝑅2 (𝐻, 𝐿) also decreases and converges to 0,
since their linear correlation diminishes. HuGE sets 𝑅2 (𝐻, 𝐿) < 𝜇 as
the walk termination condition. Setting a smaller 𝜇 generates longer
walks, introducing redundant information; while too large 𝜇 may not
ensure good coverage of graph properties during sampling, since too
short walks are generated. Based on our experimental results, good
quality walk lengths are attained with 𝜇 = 0.995.

Third, HuGE also proposes a heuristic number of walks strategy.
The corpus is generated by multiple (𝑟 ) random walks from each
node. Following [39], if the degree distribution of a connected graph
follows power-law, the frequency in which nodes appear in short
random walks will also follow a power-law distribution. Inspired by
this observation, HuGE empirically analyzes the similarity between
the two distributions via relative entropy. Formally, the node degree
distribution is expressed as 𝑝 (𝑣) =

𝑑𝑒𝑔 (𝑣)∑
𝑣∈𝑉 𝑑𝑒𝑔 (𝑣)

. We denote the
number of occurrences of 𝑣 in the generated corpus as 𝑜𝑐𝑛(𝑣). The
probability distribution for such appearances in the corpus is 𝑞(𝑣) =
𝑜𝑐𝑛(𝑣)/∑𝑣∈𝑉 𝑜𝑐𝑛(𝑣). The relative entropy from 𝑝 to 𝑞 is:

𝐷 (𝑞 ∥𝑝 ) =
𝑟 ∗∑︁
𝑖=1

𝑑𝑒𝑔 (𝑣)∑
𝑑𝑒𝑔 (𝑣) log

𝑑𝑒𝑔 (𝑣)∑𝑜𝑐𝑛 (𝑣)
𝑜𝑐𝑛 (𝑣)∑𝑑𝑒𝑔 (𝑣) (6)

Here, 𝑟∗ is the optimal number of walks from a source node. With
increasing 𝑟 , the difference 𝐷𝑟 (𝑞∥𝑝) gradually converges, which
means that the probability distribution of nodes’ occurrences in the
generated corpus has stabilized.

Δ𝐷𝑟 (𝑞 ∥𝑝 ) = |𝐷𝑟 (𝑞 ∥𝑝 ) − 𝐷𝑟−1 (𝑞 ∥𝑝 ) | (7)

HuGE leverages Δ𝐷𝑟 (𝑞∥𝑝) ≤ 𝛿 as the termination condition. Based
on our experimental results, 𝛿 = 0.001 usually produces a good
number of random walks per source node.

Features learning for graph embedding. The features learning uses
the Skip-Gram model, and similar to node2vec, follows Eq. 1 and 2.

Complexity analysis. The time complexity of HuGE random-
walk procedure is O(𝑟 ′ · 𝐿′ · |𝑉 |), where the optimal number of
walks per node is 𝑟 ′ (decided by Δ𝐷𝑟 (𝑞∥𝑝) ≤ 𝛿) and the average
walk length is 𝐿′ (decided by 𝑅2 (𝐻, 𝐿) < 𝜇 for each walk). However,
the complexity of measuring 𝐻 (𝑊 ) and 𝑅 (𝐻 (𝑊 ), 𝐿) at each step
of a walk is O(𝐿), where 𝐿 is the current walk length. Thus, the
overall computational workload of HuGE becomes quadratic in the
walk length, though the average walk length can be smaller than
that in Node2Vec. The time complexity of the feature learning phase

Algorithm 1 HuGE-D walking procedure

Input: current node 𝑢, candidate node 𝑣, Walker𝑊 , HuGE parameter 𝜇
Output: walker state updates

sendStateQuery(𝑢, 𝑣,𝑊 )
1: 𝑃 (𝑢, 𝑣) = 𝑍

(
1

𝑑𝑒𝑔 (𝑢)−𝐶𝑚 (𝑢,𝑣) · max
{
𝑑𝑒𝑔 (𝑢)
𝑑𝑒𝑔 (𝑣) ,

𝑑𝑒𝑔 (𝑣)
𝑑𝑒𝑔 (𝑢)

})
// Eq. 3

getStateQueryResult(𝑊,𝑃 (𝑢, 𝑣))
2: generate a random number 𝜂 ∈ [0, 1]
3: if 𝑃 (𝑢, 𝑣) > 𝜂 then
4: 𝑊 .𝑝𝑎𝑡ℎ.append(𝑣),𝑊 .𝑐𝑢𝑟 = 𝑣,𝑊 .𝑠𝑡𝑒𝑝𝑠 ++
5: 𝐿 =𝑊 .𝑠𝑡𝑒𝑝𝑠

6: compute 𝐻 (𝑊 ) and 𝑅 (𝐻 (𝑊 ), 𝐿) // Eq. 4, 5
7: if 𝑅2 (𝐻 (𝑊 ), 𝐿) < 𝜇 then
8: terminate the walk
9: else

10: generate another candidate node 𝑡 of 𝑣
11: sendStateQuery(𝑣, 𝑡 ,𝑊 )
12: else
13: backtrack to 𝑢 and generate another candidate node 𝑣′ of 𝑢
14: sendStateQuery(𝑢, 𝑣′ ,𝑊 )

remains O(𝐶′ ·𝑤 · (𝐾 +1) ·𝑜), but the average corpus size𝐶′ = 𝑟 ′ ·𝐿′
is smaller, since generally 𝑟 ′ < 𝑟 and 𝐿′ < 𝐿.

Drawbacks. The workload of HuGE is quadratic in the walk
length. Moreover, HuGE [17] embedding method is sequential, and
there is yet no end-to-end distributed system to support graph em-
bedding via information-oriented random walks. Being sequential,
HuGE requires more than one week to learn embeddings for a billion-
edge Twitter graph on a modern server.

2.2 Distributed Random Walks on Graphs
KnightKing [63] is a recent general-purpose, distributed graph ran-
dom walk engine. Its key components are introduced below.

Walker-centric programming model. For higher-order walks (e.g.,
second-order random walks in node2vec), KnightKing assumes a
walker-centric view. KnightKing implements each step of walks by
two rounds of message passing, one round for walkers to submit the
walker-to-node query messages to check the distance between the
previous node𝑊 .𝑝𝑟𝑒𝑣 and the candidate node 𝑣 and to generate the
un-normalized transition probability 𝜋𝑢𝑣 ; another round of message
passing returns results to walkers about their states, and then the
walkers decide the next steps based on the sampling outcome.

KnightKing coordinates many walkers simultaneously based on
the Bulk Synchronous Parallel (BSP) model [52]. Walkers are as-
signed to some computing machine/thread. KnightKing leverages
rejection sampling to eliminate the need of scanning all out-edges
at the walker’s current node. Suppose a walker is currently at node
𝑢, the sampling method generates a candidate node 𝑣 (a neighbor
of 𝑢) with a transition probability 𝑝 (𝑢, 𝑣). The key idea of rejection
sampling is to find an envelop 𝑄 (𝑢) = 𝑚𝑎𝑥 ( 1𝑝 , 1,

1
𝑞 ): Within the

rectangular area covered by the lines 𝑦 = 𝑄 (𝑢) and 𝑥 = |𝑁 (𝑢) |, it
randomly samples a location (𝑥,𝑦) from this area, if 𝑝 (𝑢, 𝑣) ≥ 𝑦, 𝑣
is accepted as a successfully sampled node, otherwise, 𝑣 is rejected,
and the method conducts more sampling trials until success.

Workload-balancing graph partition. KnightKing adopts a node-
partitioning scheme – each node (together with its edges) is assigned
to one computing machine in a distributed setting. It roughly es-
timates the workload as the sum of the number of edges in each
computing machine, and ensures a balance of workloads across
computing machines by appropriately distributing the nodes.
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Figure 1: The workflow of our proposed system: DistGER

Complexity analysis. For walk forwarding, each trial of rejection
sampling needs O(1) time. With a reasonable 𝑄 (𝑢), there is a good
chance for the sampling to succeed within a few trials, thus the
walk forwarding computation for one step can be achieved in near
O(1) complexity. For communication, each message consists of
[𝑤𝑎𝑙𝑘_𝑖𝑑 , 𝑠𝑡𝑒𝑝𝑠, 𝑛𝑜𝑑𝑒_𝑖𝑑 , 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑛𝑜𝑑𝑒_𝑖𝑑] for node2vec. When a
walk crosses a computing machine, it sends 𝑀 (1), i.e., one constant-
length message to another machine. In a distributed environment,
assuming 𝑃 processors and the network bandwidth 𝐵, as analyzed in
node2vec, the total workload for KnightKing is O(𝑟 ·𝐿·|𝑉 |), with near
O(1) computation complexity for each step. Thus, the average time
spent in each processor is O(𝑟 · 𝐿 · |𝑉 |/𝑃). The communication cost
is O(𝑁 ·𝑀 (1)/𝐵), where 𝑁 is the count of cross-machine messages.
Thus, the time spent for KnightKing is: O(𝑟 ·𝐿 · |𝑉 |/𝑃 +𝑁 ·𝑀 (1)/𝐵).

Drawbacks. KnightKing provides distributed system support for
traditional random walks, e.g., the one in node2vec. For information-
oriented random walks in HuGE, the walkers need to additionally
maintain the generated walking path at each step, and thus the mes-
sage requires to carry the path information. The message length
increases with the length of the walks, thus the efficiency of KnightK-
ing reduces due to extra overheads of computation and communica-
tion (elaborated in §2.3). The purely load-balancing partition scheme
in KnightKing also introduces high communication cost.

2.3 Baseline: HuGE-D
Our distributed baseline approach, HuGE-D replaces the traditional
random walking method in KnightKing with the information-oriented
scheme of HuGE, and leverages a full-path computation mechanism.

Full-path computation mechanism. As previously stated, to meet
the information measurement requirements, HuGE-D stores the full-
path in the message, in addition to the necessary fields such as
𝑤𝑎𝑙𝑘_𝑖𝑑 , 𝑠𝑡𝑒𝑝𝑠, and 𝑛𝑜𝑑𝑒_𝑖𝑑 . Algorithm 1 shows the walking proce-
dure, where we retain the walking-backtracking strategy of HuGE,
which is similar to rejection sampling in KnightKing.

Complexity analysis. HuGE-D measures the information effec-
tiveness of generated walks at each step. The complexity of mea-
suring 𝐻 (𝑊 ) and 𝑅 (𝐻 (𝑊 ), 𝐿) at each step is O(𝐿), where 𝐿 is the
current walk length. For the communication cost due to messages,
HuGE-D additionally requires carrying the generated walking path
information in contrast to KnightKing, so the message cost is also
linear in the walk length 𝐿, which we denote as 𝑀 (𝐿). Similar to
KnightKing, since the total workload is related to the average walk
length 𝐿′ and the optimal number of walks per node 𝑟 ′, the time
spent for HuGE-D in distributed setting is: O(𝑟 ′ · (𝐿′)2 · |𝑉 |/𝑃 +𝑁 ·

𝑀 (𝐿′)/𝐵), where 𝑃 , 𝐵, and 𝑁 are the number of processors, network
bandwidth, and the count of cross-machine messages, respectively.

Drawbacks. (1) Computation: HuGE-D measures the effective-
ness of generated walks at each step, which has O(𝐿) complexity,
where 𝐿 is the current walk length. Thus, unlike KnightKing, the
computational workload of HuGE-D is quadratic in walk length.
(2) Communication: KnightKing only sends constant-length mes-
sages, e.g., for node2vec each message has [𝑤𝑎𝑙𝑘_𝑖𝑑 , 𝑠𝑡𝑒𝑝𝑠, 𝑛𝑜𝑑𝑒_𝑖𝑑 ,
𝑝𝑟𝑒𝑣_𝑛𝑜𝑑𝑒_𝑖𝑑], but the messages in HuGE-D carry the full-path in-
formation (i.e., [𝑤𝑎𝑙𝑘_𝑖𝑑 , 𝑠𝑡𝑒𝑝𝑠, 𝑛𝑜𝑑𝑒_𝑖𝑑 , 𝑝𝑎𝑡ℎ_𝑖𝑛𝑓 𝑜]) for informa-
tion measurements, thus the message cost is linear in the walk length.
(3) Partitioning: The workload-balancing partition in KnightKing
fails to consider the large amount of cross-machine communications
introduced by the randomness inherent in random walks.

3 THE PROPOSED SYSTEM: DistGER
To address the aforementioned computing and communication chal-
lenges of the baseline HuGE-D (§2.3), we ultimately design an
efficient and scalable distributed information-centric random walks
engine, DistGER, aiming to provide an end-to-end support for dis-
tributed random walks-based graph embedding (Figure 1). We dis-
cuss our distributed information-centric random walk component
(sampler) in §3.1 and multi-proximity-aware, streaming, parallel
graph partitioning scheme (MPGP) in §3.2, while our novel dis-
tributed graph embedding (learner) is given in §4. Besides provid-
ing systemic support for the information-oriented method HuGE,
DistGER can also extend its information-centric measurements to
traditional random walk-based approaches via the general API to get
rid of their routine configurations (§6.6).

3.1 Incremental Information-centric Computing
DistGER introduces incremental information-centric computing (In-
CoM) to reduce redundant computations and the costs of messages.
Recall that the baseline HuGE-D computes 𝐻 (𝑊 ) and 𝑅(𝐻 (𝑊 ), 𝐿)
via the full-path computation mechanism to measure the information
effectiveness of a walk𝑊 at each step, requiring O(𝐿) time at every
step of the walk. We show that instead it is possible to update 𝐻 (𝑊 )
and 𝑅(𝐻 (𝑊 ), 𝐿) incrementally with O(1) time cost at every step of
the walk. We store local information about ongoing walks at the
respective machines, which reduces cross-machine message sizes.

Incremental computing of walk information. Each computing ma-
chine stores a partition of nodes from the input graph. For every
ongoing walk𝑊 , each machine additionally maintains in its local
frequency list the set of nodes 𝑣 present in the walk which are also
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Figure 2: Incremental computing for information-centric random walk

local to that machine, together with their number of occurrences
𝑛(𝑣) on the walk. When𝑊 terminates, the local frequency list for
𝑊 is no longer required and is deleted. Theorem 1 summarizes our
incremental computing of walk information. The proof is given in
our full version [15] due to lack of space.

THEOREM 1. Consider an ongoing walk𝑊 𝐿 with the current
length 𝐿 ≥ 0, the next accepted node to be added in𝑊 𝐿 is 𝑣 , and
𝑛(𝑣) ≥ 0 is the number of occurrences of 𝑣 in the walk. In addition to
𝑣 , both 𝐿 and 𝑛(𝑣) would increase by 1. For clarity, we denote 𝑛(𝑣) in
𝑊 𝐿 and𝑊 𝐿+1 as 𝑛𝐿 (𝑣) and 𝑛𝐿+1 (𝑣), respectively. The information
entropy 𝐻

(
𝑊 𝐿+1

)
is related to 𝐻

(
𝑊 𝐿

)
as follows.

𝐻

(
𝑊 𝐿+1

)
=

𝐻
(
𝑊 𝐿

)
× 𝐿 − log𝑇
𝐿 + 1

where 𝑇 =


𝐿𝐿

(𝐿 + 1)𝐿+1
·
(
𝑛𝐿+1 (𝑣)

)𝑛𝐿+1 (𝑣)(
𝑛𝐿 (𝑣)

)𝑛𝐿 (𝑣) , 𝑖 𝑓 𝑣 ∈𝑊 𝐿

𝐿𝐿

(𝐿 + 1)𝐿+1
, 𝑖 𝑓 𝑣 ∉𝑊 𝐿

(8)

Incremental computing for walk termination. To terminate a ran-
dom walk, HuGE computes and verifies the linear relation between
information entropy 𝐻 and walk length 𝐿 at every step of the walk.
From Eq. 5, 𝑅(𝐻, 𝐿) can be expressed as:

𝑅 (𝐻, 𝐿) = 𝐸 (𝐻𝐿) − 𝐸 (𝐻 )𝐸 (𝐿)√︁
(𝐸 (𝐻 2 ) − 𝐸 (𝐻 )2 ) (𝐸 (𝐿2 ) − (𝐸 (𝐿)2 )

(9)

The mean function 𝐸 ( ) can be computed incrementally.

𝐸𝑝 (𝑋 ) = 1
𝑝

𝑝∑︁
𝑖=1

𝑋𝑖 =

(
𝑝 − 1
𝑝

)
𝐸𝑝−1 (𝑋 ) +

𝑋𝑝

𝑝
(10)

𝐸𝑝 (𝑋𝑌 ) =
(𝑝 − 1)2𝐸𝑝−1 (𝑋𝑌 ) + (𝑝 − 1) [𝑋𝑝𝐸𝑝−1 (𝑌 ) +𝑌𝑝𝐸𝑝−1 (𝑋 ) ] +𝑋𝑝𝑌𝑝

𝑝2

Message size reduction. Due to incremental computation, instead
of full-path information, only constant-length messages need to be
sent across computing machines: [𝑤𝑎𝑙𝑘𝑒𝑟_𝑖𝑑 , 𝑠𝑡𝑒𝑝𝑠, 𝑛𝑜𝑑𝑒_𝑖𝑑 , 𝐻 , 𝐿,
𝐸 (𝐻 ), 𝐸 (𝐿), 𝐸 (𝐻𝐿), 𝐸 (𝐻2), 𝐸 (𝐿2)].

EXAMPLE 1. Figure 2 exhibits incremental information-centric
computing (InCoM). The graph is partitioned into two machines:
{𝑣1, 𝑣2, 𝑣3, 𝑣4} in 𝑀1 and {𝑣5, 𝑣6, 𝑣7, 𝑣8} in 𝑀2. A local frequency list
is maintained for each ongoing walk at every machine, having # oc-
currences information only about nodes that are local to a machine.
When a local node is added to the walk, # occurrences for this node
is updated in this local list. Using the local frequency list, DistGER
incrementally computes information entropy 𝐻 , as well as the linear

relation 𝑅 between 𝐻 and the current path length 𝐿 to decide on
walk termination. If the next accepted node is not at the current
machine, the walker only needs to carry the necessary incremental
(constant-length) information as a message including 𝑤𝑎𝑙𝑘𝑒𝑟_𝑖𝑑,
𝑠𝑡𝑒𝑝𝑠, 𝑛𝑜𝑑𝑒_𝑖𝑑, 𝐻 , 𝐿, 𝐸 (𝐻 ), 𝐸 (𝐿), 𝐸 (𝐻𝐿), 𝐸 (𝐻2), and 𝐸 (𝐿2) to the
other machine, and then generate 𝐻 and 𝑅 in that machine. Given
an 8 bytes space to store a variable, since the messages in base-
line HuGE-D carry the full-path information (i.e., [𝑤𝑎𝑙𝑘_𝑖𝑑 , 𝑠𝑡𝑒𝑝𝑠,
𝑛𝑜𝑑𝑒_𝑖𝑑, 𝑝𝑎𝑡ℎ_𝑖𝑛𝑓 𝑜]), HuGE-D needs 24 + 8𝐿 bytes per message,
where 𝐿 is the walk length, while DistGER only requires the constant
size of 80 bytes. If the maximum path length is 80 (commonly used),
one message in DistGER is up to 8.3× smaller than that in HuGE-D.

Complexity analysis. The pseudocode of InCoM remains similar
to that in Algorithm 1, except that 𝐻 and 𝑅 are computed incre-
mentally in Line 6, via Eq. 8 and 10, and we require only O(1)
time at each step of the walk. Furthermore, when a walk crosses
a machine, it sends a constant-length message to another machine.
Following similar analysis as HuGE-D, the time spent for InCoM is:
O(𝑟 ′ · 𝐿′ · |𝑉 |/𝑃 +𝑁 ·𝑀 (1)/𝐵), where 𝑃 , 𝐵, and 𝑁 are # processors,
network bandwidth, and # cross-machine messages, respectively.

3.2 Multi-Proximity-aware Streaming Partitioning
Graph partitioning aims at balancing workloads across machines in
a distributed setting, while also reducing cross-machine communica-
tions. Balanced graph partitioning with the minimum edge-cut is an
NP-hard problem [8]. Instead, our system, DistGER develops multi-
proximity-aware, streaming, parallel graph partitioning (MPGP): By
leveraging first and second-order proximity measures, we select a
good-quality partitioning to ensure that each walker stays in a local
computing machine as much as possible, thereby reducing the num-
ber of cross-machine communications. The partitioning is conducted
in a node streaming manner, hence it scales to larger graphs [1, 36].
We also ensure workload balancing among the computing servers.

Partitioning method. Given a set of partially computed partitions,
𝑃1, 𝑃2, ..., 𝑃𝑚 , where𝑚 denotes # machines, an un-partitioned node 𝑣
is placed in one of these partitions based on the following objective:

argmax
𝑖∈{1...𝑚}

(𝑃𝑆1 (𝑣, 𝑃𝑖 ) + 𝑃𝑆2 (𝑣, 𝑃𝑖 ) ) × 𝜏 (𝑃𝑖 ) (11)

where 𝜏 (𝑃𝑖 ) = 1 − |𝑃𝑖 |

𝛾 × (
𝑚∑
𝑖=1

|𝑃𝑖 | )/𝑚
(12)

𝑃𝑆1 (𝑣, 𝑃𝑖 ) = |{𝑢 ∈ 𝑁 (𝑣) ∩ 𝑃𝑖 }| and 𝑃𝑆2 (𝑣, 𝑃𝑖 ) =
∑
𝑢∈𝑃𝑖 |{𝑁 (𝑣) ∩

𝑁 (𝑢)}| represent the first- and second-order proximity scores, respec-
tively. For edge weight 𝑤 (𝑣,𝑢), 𝑃𝑆1 (𝑣, 𝑃𝑖 ) =

∑
𝑢∈𝑁 (𝑣)∩𝑃𝑖 𝑤 (𝑣,𝑢)

and 𝑃𝑆2 (𝑣, 𝑃𝑖 ) =
∑
𝑢∈𝑃𝑖 |{𝑁 (𝑣) ∩ 𝑁 (𝑢)}| ·𝑤 (𝑣,𝑢). Intuitively, 𝑃𝑆1

denotes # neighbors of an unpartitioned node in the target partition,
thus a higher value of 𝑃𝑆1 implies that the unpartitioned node should
have a higher chance to be assigned to the target partition. Since 𝑃𝑆2
is defined by # common neighbors, which are widely used to measure
the similarity of node-pairs during the random walk, a higher value
of 𝑃𝑆2 is also in line with the characteristics of random walk. Higher
first- and second-order proximity scores increase the chance that a
random walker stays in a local computing machine, thereby reducing
cross-machine communication. MPGP also introduces a dynamic
load-balancing term 𝜏 (𝑃𝑖 ), where |𝑃𝑖 | denotes the current number
of nodes in 𝑃𝑖 , hence it is updated after every un-partitioned node’s
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assignment; and 𝛾 is a slack parameter that allows deviation from
the exact load balancing. Setting 𝛾 = 1 ensures strict load balancing
but hampers partition quality. Meanwhile, setting a larger 𝛾 relaxes
the load-balancing constraint, and creates a skewed partitioning.

MPGP differs from some of the existing node streaming-based
graph partition schemes, e.g., LDG [46] and FENNEL [50] in several
ways. First, LDG and FENNEL set a maximum size for each partition
in advance based on the total number of nodes and tend to assign
nodes to a partition until the maximum possible size is reached for
that partition. In contrast, we ensure good load balancing across
partitions at all times during the partitioning phase. Second, we find
that LDG and FENNEL cannot partition larger graphs in a reasonable
time, for example, they consume more than one day to partition
the Youtube [48] graph with 1M nodes and 3M edges, while our
proposed MPGP requires only a few tens of seconds (§6), which is
due to our optimization methods discussed below.

Optimizations and parallelization. First, to measure first-order
proximity scores, we apply the Galloping algorithm [12] that can
speed-up intersection computation between two unequal-size sets.
During our streaming graph partitioning, the partition size grad-
ually increases, hence the Galloping algorithm is quite effective.
Second, during a second-order proximity score computation, i.e.,
𝑃𝑆2 (𝑣, 𝑃𝑖 ) =

∑
𝑢∈𝑃𝑖 |{𝑁 (𝑣) ∩ 𝑁 (𝑢) |, we only consider those nodes

𝑢 ∈ 𝑃𝑖 whose contributions to first-order proximity score are non-
zero, i.e., 𝑢 ∈ 𝑁 (𝑣). This is because if 𝑢 is not a neighbor of 𝑣 ,
the random walk cannot reach 𝑢. Third, nodes streaming order
could impact the partitioning time and effectiveness. We compare
a number of streaming orders [46, 50], e.g., random, BFS, DFS,
and their variations. Based on empirical results (§6), we recom-
mend DFS+degree-based streaming for sequential MPGP: Among
the un-explored neighbors of a node during DFS, we select the one
having the highest degree. This strategy improves the efficiency of
the Galloping algorithm. Fourth, with large-scale graphs (e.g., Twit-
ter), sequential MPGP, still requires considerable time to partition.
Thus, we implement a simple parallelization scheme parallel MPGP
(MPGP-P), as follows: We divide the stream into several segments
and independently partition the nodes of each segment in parallel via
MPGP; finally, we combine the partitioning results of all segments.
Based on our empirical results (§6), we recommend BFS+Degree for
MPGP-P since it reduces the partition time greatly and the random
walk time on a partitioned graph is comparable to that obtained from
the sequential version of MPGP.

Complexity analysis. The running time of MPGP is dominated by
first- and second-order proximity scores computation for each node,
which are computed in parallel for all𝑚 partitions. For a first-order
proximity score computation via the Galloping algorithm, let the
smaller set size be 𝑆1. In the early stages of partitioning, the larger set
constitutes the neighbors of an un-partitioned node 𝑣 , then the time
complexity is O (𝑆1 · log |𝑁 (𝑣) |); while at later stages, the larger
set is the partition, thus it takes O (𝑆1 · log( |𝑉 |/𝑚)) time. For the
second-order proximity score computing of 𝑣 , let 𝑆2 be the intersec-
tion set size generated by the first-order proximity scores computing
of 𝑣 . As the number of common neighbors for each edge (𝑢, 𝑣) is pro-
cessed in parallel by the Galloping algorithm, the second-order prox-
imity score computing requires O

(
𝑆2
𝑇

· |𝑁 (𝑣) | · log𝑁 𝑣𝑚𝑎𝑥
)

time,
with 𝑇 threads, where 𝑁 𝑣𝑚𝑎𝑥 = max𝑢∈𝑁 (𝑣) |𝑁 (𝑢) |.

4 DISTRIBUTED EMBEDDING LEARNING
Our learner in DistGER supports distributed learning of node embed-
dings using the random walks generated by the sampler (Figure 1).
We first discuss the shortcomings of state-of-the-art methods on dis-
tributed Skip-Gram with negative sampling and provide an overview
of our solution (§4.1), then elaborate our three novel improvements
(§4.2), and finally summarize our overall approach (§4.3).

4.1 Challenges and Overview of Our Solution
Skip-Gram uses the stochastic gradient descent (SGD) [43]. Parame-
ters update from one iteration and gradient computation in the next
iteration may touch the same node embedding, making it inherently
sequential. The original word2vec leverages Hogwild [35] for par-
allelizing SGD. It asynchronously processes different node pairs in
parallel and ignores any conflicts between model updates on dif-
ferent threads. However, there are shortcomings in this approach
[21, 42]. (1) Since multiple threads can update the same cache lines,
updated data needs to be communicated between threads to ensure
cache-coherency, introducing cache lines ping-ponging across multi-
ple cores, which results in high access latency. (2) Skip-Gram with
negative sampling randomly selects a set of nodes as negative sam-
ples for each context node in a context window. Thus, there is a
certain locality in model updates for the same target node, but this
feature has not been exploited in the original scheme. The randomly
generated set of negative samples also introduces random access for
parameter updates in each iteration, degrading performance.

As shown in Figure 3(a), a walk denoted as 𝑊1 is assigned
to a thread, and there is a sliding window 𝑤1 containing context
nodes {𝑣1, 𝑣2, 𝑣4, 𝑣5} and the target node 𝑣3. The Skip-Gram com-
putes the dot-products of word vectors 𝜑𝑖𝑛 (𝑣𝑖 ) for a given word
𝑣𝑖 ∈ {𝑣1, 𝑣2, 𝑣4, 𝑣5} and 𝜑𝑜𝑢𝑡 (𝑣3), as well as for a set of 𝐾 negative
samples, 𝜑𝑜𝑢𝑡 (𝑣𝑘 ) (𝑣𝑘 ∈ 𝑉 ). Notice that 𝜑𝑜𝑢𝑡 (𝑣3) will be computed
four times with four different context words and sets of negative sam-
ples, and these dot-products are level-1 BLAS operations [6], which
are limited by memory bandwidth. Some state-of-the-art work, e.g.,
Pword2vec [21] shares negative samples with all other context nodes
in each window (Figure 3(b)), and thus converts level-1 BLAS vector-
based computations into level-3 BLAS matrix-based computations
to efficiently utilize computational resources. However, such matrix
sizes are relatively small and still have a gap to reach the peak CPU
throughput. Besides, this way of sharing negative samples cannot
significantly reduce the ping-ponging of cache lines across multi-
ple cores. To improve CPU throughput, pSGNScc [42] combines
context nodes of the negative sample from another window into the
current window; and together with the current context nodes, it gen-
erates larger matrix batches (Figure 3(c)). Nevertheless, pSGNScc
needs to maintain a pre-generated inverted index table to find related
windows, resulting in additional space and lookup overheads.

To address the above limitations, we propose a distributed Skip-
Gram learning model, named DSGL (Figure 3(d)). DSGL leverages
global-matrices and local-buffers for the vectors of context nodes and
target/negative sample nodes during model updates to improve the
locality and reduce the ping-ponging of cache lines across multiple
cores. We then propose a multi-windows shared-negative samples
computation mechanism to fully exploit the CPU throughput. Last
but not least, DSGL uses a hotness-block based synchronization
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Figure 3: Schematic diagram of (a) Skip-Gram with negative samples
(SGNS), (b) Pword2vec [21], (c) pSGNScc [42], and (d) DSGL (our method)

mechanism to synchronize the node vectors in a distributed setting.
While we design them considering information-oriented random
walks, they are generic and have the potential to improve any random
walk and distributed Skip-Gram based graph embedding model (§6).

4.2 Proposed Improvements: DSGL
Improvement-I: Global-matrix and local-buffer. As reasoned above,
the parallel Skip-Gram with negative sampling suffers from poor
locality and ping-ponging of cache lines across multiple cores. Since
the model maintains two matrices to update the parameters through
forward and backward propagations during training, where the input
matrix 𝜑𝑖𝑛 and output matrix 𝜑𝑜𝑢𝑡 store the vectors of context nodes
and target/negative sample nodes, respectively – how to construct
these two matrices are critical to the locality of data access.

Since most of the real-world graphs follow a power-law degree
distribution [2, 3], we find that the generated corpus sampled from
those graphs also has this feature – a few nodes occupy most of
the corpus, which are updated frequently during training. In light
of this observation, we construct 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 as global matrices in
descending order of node frequencies from the generated corpus. It
ensures that the vectors of high-frequency nodes stay in the cache
lines as much as possible. Recall that node frequencies in the corpus
were already computed in the random walk phase (§2.1).

In addition, to avoid cache lines ping-ponging, DSGL uses local
buffers to update the context and negative sample nodes for each
thread, thus the node vectors are first updated in the local buffers
within a lifetime (i.e., when a thread processes a walk during training)
and are then synchronized to the global matrix. Precisely, since a
sliding window𝑤 always shifts the boundary and the target node by
one node (Eq. 1), each node in a walk will appear as a context node
in up to 2𝑤 sliding windows and as a target node once, thus a context
node can be reused up to 2𝑤 + 1 times in the lifetime. It is necessary
to consider this temporal locality and build a local context buffer
for each node vector in a walk. Meanwhile, on-chip caches where
randomly-generated negative sample nodes are located, have a higher
chance to be updated by multiple threads, and updating their vectors
to the global 𝜑𝑜𝑢𝑡 requires low-level memory accesses. To alleviate
this, DSGL also constructs a local negative buffer for vectors of
negative samples during one lifetime. It randomly selects𝐾 (negative
sample set size) × 𝐿 (walk length, i.e., total steps) negative samples
into the negative buffer from 𝜑𝑜𝑢𝑡 . Thus, DSGL can use a different
negative sample set with the same size (𝐾) at each step. For the
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Figure 4: Workflow of our DSGL: distributed Skip-Gram learning

target node, due to its lower re-usability compared to context nodes,
it is only updated once in global 𝜑𝑜𝑢𝑡 in the lifetime; hence, we do
not create a buffer for it. The constructed local buffers require small
space, since the sizes of buffers are related to the walk length. The
length of the information-centric random walk is much smaller than
that of traditional random walks (§2.1).

Improvement-II: Multi-windows shared-negative samples. CPU
throughput of Skip-Gram model can be significantly improved by
converting vector-based computations into matrix-based computa-
tions [10]; however, the batch matrix sizes are relatively small for
existing methods [21, 42] and cannot fully utilize CPU resources.
Based on this consideration, we design a multi-windows shared-
negative samples mechanism: To increase the batch matrix sizes, we
batch process the vector updates of context windows from multiple
(≥ 2) walks allocated to the same thread.

Consider Figure 3(d), two walks𝑊1 and𝑊2 are assigned to the
same thread, where𝑤1 and𝑤2 are two context windows in𝑊1 and
𝑊2; 𝑣3 and 𝑣8 are target nodes in𝑤1 and𝑤2, respectively. DSGL si-
multaneously batch updates the node vectors in two context windows
𝑤1 and 𝑤2 based on level-3 BLAS matrix-based computations, the
set of negative samples is shared across the batch context nodes, 𝑣3
and 𝑣8 are used as additional negative samples for𝑤2 and𝑤1, respec-
tively. After the lifetime of𝑊1 and𝑊2, the updated parameters of all
context nodes and target/negative samples are written back to𝜑𝑖𝑛 and
𝜑𝑜𝑢𝑡 , respectively. Assuming the set of negative samples 𝐾 = 5, the
batch matrix sizes of one iteration for Pword2vec [21] (Figure 3(b))
is 4× 6, while that of DSGL is extended to 8× 7. This utilizes higher
CPU throughput and accelerates training without sacrificing accu-
racy(§ 6). In practice, the number (≥ 2) of multi-windows can be
flexibly set according to available hardware resources.

Improvement-III: Hotness-block based synchronization. In a dis-
tributed setting, the updated node vectors need to be synchronized
with each computing machine. Assuming that the generated corpus is
partitioned into𝑚 machines, each machine independently processes
the local corpus and periodically synchronizes the local parameters
with other𝑚 − 1 machines. For a full model synchronization across
computing machines, the communication cost is O(|𝑉 | ·𝑑 ·𝑚), where
|𝑉 | is the total number of nodes and 𝑑 denotes the dimension of vec-
tors, e.g., for 100 million nodes with 128 dimensions, the full model
synchronization needs ≈ 102.4 billion messages across 4 machines –
it will be difficult to meet the efficiency requirement.

Notice that the node occurrence counts in generated corpus also
follows a power-law distribution, implying that high-frequency nodes
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have a higher probability of being accessed and updated during
training. Following this, we propose a hotness-block based syn-
chronization mechanism in DSGL. Instead of full synchronization,
we only conduct more synchronization for hot nodes than that for
low-frequency nodes. Since our global matrices are constructed
based on the descending order of node frequencies in the gener-
ated corpus (Improvement-I), it provides a favorable condition to
achieve hotness-block based synchronization. The global matrices
are partitioned into several blocks (i.e., hotness-blocks) based on
the same frequency of nodes in the corpus, and are denoted as 𝐵(𝑖),
0 < 𝑖 ≤ 𝑜𝑐𝑛𝑚𝑎𝑥 , where 𝑜𝑐𝑛𝑚𝑎𝑥 is the largest number of occurrences
of any node in the corpus. We randomly sample one node from each
hotness-block; for all these sampled nodes, we synchronize their
vectors across all computing machines during one synchronization
period. Due to the node frequency skewness in the corpus, for each
node in 𝐵(𝑖), the probability of it being sampled for synchronization
is inversely proportional to |𝐵(𝑖) |. Thus, we ensure that the hot nodes
are synchronized more during the entire training procedure, while
the low-frequency nodes would have relatively less synchroniza-
tion. Compared to the full model synchronization mechanism, our
synchronization cost is O(𝑜𝑐𝑛𝑚𝑎𝑥 · 𝑑 ·𝑚), where 𝑜𝑐𝑛𝑚𝑎𝑥 << |𝑉 |,
indicating that it can significantly reduce the load on network, while
keeping the parameters on each computing machine updated aptly.

4.3 Putting Everything Together
First, DSGL constructs two global matrices 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 in descend-
ing order of node frequencies from the generated corpus. It leverages
a pipelining construction during the random walk phase, one thread
is responsible for counting the frequency of each node on its local
walk; at the end of all random walks, these counts from computing
machines are aggregated to construct global 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 . Next,
DSGL uses a multi-windows shared-negative samples computation
for each thread. As shown in Figure 4, two walks𝑊1 and𝑊2 are
assigned to𝑇ℎ𝑟𝑒𝑎𝑑1, suppose # multi-windows = 2 and negative sam-
ple set size𝐾 = 5. For maintaining access locality and reducing cache
lines ping-ponging, two local buffers per thread are constructed for
the context (blue and green blocks) and negative sample (orange
blocks) nodes. The target nodes are denoted as red blocks. Initially,
the two buffers will respectively load the vectors associated with
nodes from 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 , then 𝑇ℎ𝑟𝑒𝑎𝑑1 proceeds over𝑊1 and𝑊2
with matrix-matrix multiplications, and the updated vectors are writ-
ten to the buffers at each step. After the lifetime of𝑊1 and𝑊2, the
latest node vectors in buffers are written back to global 𝜑𝑖𝑛 and 𝜑𝑜𝑢𝑡 .
DSGL periodically synchronizes the updated vectors across multiple
computing machines by hotness-block based synchronization.

5 RELATED WORK
Graph embedding algorithms. Sequential graph embedding tech-
niques [9] fall into three categories. Matrix factorization-based algo-
rithms [40, 41, 58, 64, 66] construct feature representations based on
the adjacency or Laplacian matrix, and involve spectral techniques
[4]. Graph neural networks (GNNs)-based approaches [20, 51, 53–
55] focus on generalizing graph spectra into semi-supervised or
supervised graph learning. Both techniques incur high computa-
tional overhead and DRAM dependencies, limiting their scalability
to large graphs. Random-walk methods [16–18, 39, 47] transform a

graph into a set of random walks through sampling and then adopt
Skip-Gram to generate embeddings. They are more flexible, parallel-
friendly, and scale to larger graphs [62]. HuGE+ [16] is a recent
extension of HuGE [17], which considers the information content
of a node during the next-hop node selection to improve the down-
stream task accuracy. It uses the same HuGE information-oriented
method to determine the walk length and number of walks per node
(§2.1), and hence the efficiency is similar to that of HuGE.

Graph embedding systems and distributed embedding. To ad-
dress efficiency challenges with large graphs, recently proposed
GraphVite [70] and Tencent’s graph embedding system [59] fol-
lows sampling-based techniques on a CPU-GPU hybrid architecture,
simultaneously performing graph random walks on CPUs and em-
bedding training on GPUs. Marius [33] optimizes data movements
between CPU and GPU on a single machine for large-scale knowl-
edge graphs embedding. Seastar [61] develops a novel GNN training
framework on GPUs with a vertex-centric [30] programming model.
We deployed DistGER on GPU, but it does not provide a significant
improvement, especially for large-scale graphs. Similar to the above
works, computing gaps between CPUs and GPUs and the limited
memory of GPUs still plague the efficiency of graph embedding.

Other approaches attempt to scale graph embeddings from a
distributed perspective. HET-KG [13] is a distributed system for
knowledge graph embedding. It introduces a cache embedding table
to reduce communication overheads among machines. AliGraph
[69] optimizes sampling operators for distributed GNN training
and reduces network communication by caching nodes on local
machines. Amazon has released DistDGL [68], a distributed graph
embedding framework for GNN model with mini-batch training
based on the Deep Graph Library [57]. Pytorch-Biggraph [26] lever-
ages graph partitioning and parameter servers to learn large graph
embeddings on multiple CPUs in a distributed environment based
on PyTorch. However, the efficiency and scalability of DistDGL
and Pytorch-BigGraph are affected by parameter synchronization
(as demonstrated in §6). ByteGNN [67] is a recently proposed dis-
tributed system for GNNs, with mini-batch training and two-level
scheduling to improve parallelism and resource utilization, and tai-
lored graph partitioning for GNN workloads. Since ByteGNN is
not publicly available yet, we cannot compare it in our experiments.
There are also approaches attempting to address computational effi-
ciency challenges with new hardware [25, 29, 37]. Although these
approaches open up opportunities for training larger datasets or
providing more accelerations, their programming compatibility and
prohibitive expensive still pose challenges.

6 EXPERIMENTAL RESULTS
We evaluate the efficiency (§6.2) and scalability (§6.3) of our pro-
posed method, DistGER by comparing with HuGE-D (baseline),
KnightKing [63], PyTorch-BigGraph (PBG) [26], and Distributed
DGL (DistDGL) [68]. We also compare the effectiveness (§6.4) of
generated embeddings on link prediction. Finally, we analyze effi-
ciency due to individual parts of DistGER (§6.5) and the generality
of DistGER for other random walk-based embeddings (§6.6). Our
codes and datasets are at [14].
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Table 2: Datasets statistics
(𝐾 = 103, 𝑀 = 106, 𝐵 = 109)

Graph #nodes #edges
FL 80.51 K 5.90 M

YT 1.14 M 2.99 M

LJ 2.24 M 14.61 M

OR 3.07 M 117.19 M

TW 41.65 M 1.47 B

Table 3: Avg. memory footprint (GB) of
DistGER and KnightKing on each machine

Sampling Training
Graph KnightKing DistGER KnightKing DistGER

FL 0.66 0.41 1.31 0.86
YT 4.11 1.36 4.73 4.26
LJ 7.65 1.95 6.38 5.49
CO 10.98 3.27 8.52 6.86
TW out-of-memory 20.18 out-of-memory 67.16
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Figure 5: Efficiency (a) and Scalability (b): PBG [26], DistDGL [68],
KnightKing [63], HuGE-D (baseline), DistGER (ours)

6.1 Experimental Setup

Environment. We conduct experiments on a cluster of 8 machines
with 2.60GHz Intel ® Xeon ® Gold 6240 CPU with 72 cores (hyper-
threading) in a dual-socket system, and each machine is equipped
with 192GB DDR4 memory and connected by a 100Gbps network.
The machines run Ubuntu 16.04 with Linux kernel 4.15.0. We use
GCC v9.4.0 for compiling DistGER, KnightKing, and HuGE-D, and
use Python v3.6.15 and torch v1.10.2 as the backend deep learning
framework for Pytorch-BigGraph and DistDGL.

Datasets. We employ five widely-used, real-world graphs (Table 2):
Flickr (FL) [48], Youtube (YT) [48], LiveJournal (LJ) [65], Com-
Orkut (OR) [24], and Twitter (TW) [23]. The first two graphs are
selected for multi-label node classification (empirical results given
in [15]) with distinct number of node labels 195 and 47, respec-
tively, where labels in Flickr represent interest groups of users, and
Youtube’s labels represent groups of viewers that enjoy common
video genres. The last four graphs are used in link prediction. We
also use synthetic graphs [11] (up to 1 billion nodes, 10 billion
edges) and a real-world UK graph [7] (100M nodes, 3.7B edges) to
assess the scalability of DistGER. Considering the default settings
of popular random walk-based methods (e.g., Deepwalk, node2vec,
HuGE), we use their undirected version.

Competitors. We compare DistGER against three state-of-the-art
distributed graph embedding frameworks: the distributed random
walk engine, KnightKing https://github.com/KnightKingWalk/KnightKing [63]; the
distributed multi-relations based graph embedding system, PyTorch-
BigGraph (PBG) https://github.com/facebookresearch/PyTorch-BigGraph [26] – de-
signed by Facebook; and the distributed graph neural networks-
based system, DistDGL https://github.com/dmlc/dgl [68] – recently proposed
by Amazon. We also implement HuGE-D, a distributed version of
information-centric random walk-based graph embedding (HuGE
[17]), on top of KnightKing, served as our baseline. Since KnightK-
ing and HuGE-D provide distributed support only for random walk
without that for embedding learning, we generate their node embed-
dings using Pword2vec https://github.com/IntelLabs/pWord2Vec [21], the most
popular distributed Skip-Gram system released by Intel.

Parameters. For DistGER and HuGE-D random walks, we set pa-
rameters 𝜇=0.995, 𝛿=0.001 based on information measurements
(§2), while KnightKing uses 𝐿=80 and 𝑟=10 that are routine con-
figurations in the traditional random walk-based graph embedding
[18, 39, 63]. For DistGER, KnightKing, and HuGE-D training, we
set the sliding window size𝑤=10, number of negative samples 𝐾=5,

and synchronization period=0.1 sec [21], and additionally, multi-
windows number=2, 𝛾=2 for DisrGER. For fair comparison across
all systems, we set the embedding dimension 𝑑=128 that is com-
monly used [17, 18, 39, 47, 49, 66], and report the average running
time for each epoch. For task effectiveness evaluations, we find the
best results from a grid search over learning rates from 0.001-0.1, #
epochs from 1-30, and # dimensions from 128-512.

6.2 Efficiency and Memory Use w.r.t. Competitors
We report the end-to-end running times of PBG, DistDGL, KnightK-
ing, HuGE-D, and DistGER on five real-world graphs with the cluster
of 8 machines in Figure 5 (a). The reported end-to-end time includes
the running time of partitioning, random walks (for random walk-
based frameworks), and training procedures. DistGER significantly
outperforms the competitors on all these graphs, achieving a speedup
ranging from 2.33× to 129×. Recall that DistGER is a similar type of
system as KnightKing and HuGE-D, and our key improvements are
discussed in §3 and in §4. Analogously, Figure 5 (a) exhibits that our
system, DistGER achieves an average speedup of 9.25× and 6.56×
compared with KnightKing and HuGE-D. Notice that we fail to run
KnightKing on the largest Twitter dataset because its routine random
walk strategy requires more main memory space. The advantage of
information-centric random walk in HuGE is almost wiped out in
HuGE-D due to on-the-fly information measurements and the higher
communication costs in a distributed setting. The multi-relation-
based PBG leverages a parameter server to synchronize embeddings
between clients, resulting in more load on the communication net-
work. As a result, PBG is on average 26.22× slower than DistGER.
For graph neural network-based system DistDGL, due to the long
running time of graph sampling (e.g., taking 80% of the overhead
for the GraphSAGE), it is highly inefficient than other systems. For
the billion-edge Twitter graph, it does not terminate in 1 day. Table 3
shows DistGER’s average memory footprint on each machine of the
8-machine cluster. Compared to same type of system KnightKing,
DistGER requires less memory for sampling and training.

6.3 Scalability w.r.t. Competitors
Figure 5 (b) shows end-to-end running times of all competing sys-
tems on the LiveJournal graph, as we increase # machines from 1 to
8 to evaluate scalability. DistGER achieves better scalability than the
other four distributed systems. PBG leverages a parameter server and
a shared network filesystem to synchronize the parameters in the dis-
tributed model. When the number of machines increases, PBG puts
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more load on the communications network, resulting in poor scalabil-
ity. Likewise, DistDGL is bounded by the synchronization overhead
for gradient updates, limiting its scalability. Both KnightKing and
HuGE-D suffer from higher communication costs during random
walks, due to their only workload-balancing partitioning scheme
(§2.2, §6.5). Since HuGE-D is implemented on top of KnigtKing, it
exhibits worse scalability due to high communication costs and on-
the-fly information measurements in a distributed setting (§2.3). In
comparison, DistGER incorporates multi-proximity-aware streaming
graph partitioning and incremental computations to reduce both com-
munication and computation costs, it also employs hotness-block
based parameters synchronization during training to dramatically re-
duce the pressure on network bandwidth. Hence, DistGER achieves
better scalability than other systems. Due to space limitations, we
omit DistGER’s scalability results on other graphs, which exhibit
similar trends. On Twitter, the end-to-end running times DistGER on
1, 2, 4, and 8 machines are 3090s, 1739s, 1197s, and 746s, respec-
tively, while on Com-Orkut, the results are 304s, 204s, 149s, and
89s, respectively. The results show a good linear relationship.

To further assess the scalability of DistGER, we generate synthetic
graphs [11] with a fixed node degree of 10 and the number of nodes
from 105 to 109. Figure 6 presents the running times for random
walks and training on these synthetic graphs using a cluster of 8
machines, suggesting that the running time increases linearly with
the size of a graph, and DistGER has the capability to handle even
billion-node graphs. Moreover, the running times for six real-world
graphs (including the UK graph with |𝐸 | = 3.7𝐵, |𝑉 | = 100𝑀 , for
which the competing systems do not terminate in 1 day or crash due
to hardware and memory limitation) are inserted into the plot, which
is consistent with the trend on synthetic data.

6.4 Effectiveness w.r.t. Competitors
Link prediction. To perform link prediction on a given graph 𝐺 ,
following [17, 18, 49, 64], we first uniformly at random remove
50% edges as positive test edges, and the rest are used as positive
training edges. We also provide negative training and test edges
by considering those node pairs between which no edge exists in
𝐺 . We ensure that the positive and negative set sizes are similar.
The link prediction is conducted as a classification task based on
the similarity of 𝑢 and 𝑣 , i.e., 𝜑 (𝑢) · 𝜑 (𝑣). The effectiveness of link
prediction is measured via the 𝐴𝑈𝐶 (Area Under Curve) score [28] –
the higher the better. We repeat this procedure 50 times to offset the
randomness of edge removal and report the average 𝐴𝑈𝐶 in Table 4.
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Figure 8: (a) Random walk efficiency, (b) training efficiency, (c) # cross-
machine messages, (d) random walk efficiency for MPGP (ours) and
workload-balancing scheme (KnightKing)

DistGER outperforms all competitors on these graphs, except for
PBG on Com-Orkut, where DistGER ranks second. On average,
DistGER has an 11.7% higher 𝐴𝑈𝐶 score compared with the other
three systems, thanks to our information-centric random walks. PBG
is the best on Com-Orkut because this graph is much denser and
is friendly to the multi-relationship-based model in PBG. Figure 7
exhibits accuracy-efficiency tradeoffs of DistGER and competitors,
i.e., their 𝐴𝑈𝐶 convergence curves w.r.t. increasing running times of
random walks and training, over LiveJournal, further indicating that
DistGER has better efficiency and effectiveness than the competitors.

Table 4: 𝐴𝑈𝐶 scores of DistGER and competitors for link prediction

Method Youtube LiveJournal Com-Orkut Twitter

PBG 0.753 0.882 0.955 0.912
DistDGL 0.894 0.718 0.815 running time > 1 day

KnightKing 0.904 0.963 0.918 out-of-memory
DistGER 0.966 0.976 0.921 0.919

6.5 Efficiency due to Individual Parts of DistGER
Random walk and training efficiency. To evaluate the system
design of DistGER (§3, §4), we first compare the efficiency of ran-
dom walks and training with those of KnighKing and HuGE-D.
For random walks (Figure 8(a)), DistGER significantly outperforms
KnightKing and HuGE-D on all our graph datasets, achieving an av-
erage speedup of 3.32× and 3.88×, respectively. Although HuGE-D
implements information-oriented random walks on KnightKing, due
to additional computation and communication overheads during on-
the-fly information measurements (§2.3), its efficiency can be lower
than that of KnightKing. We also notice that the random walk lengths
(𝐿) and the number of random walks (𝑟 ) reduce (on average) 63.2%
and 18%, respectively, in our information-oriented random walks,
compared to KnightKing’s routine random walk configuration.

Another benefit of information-centric random walks is that it
generates concise and effective corpus to improve training efficiency.
Compared to KnightKing, DistGER achieves 17.37×-27.95× accel-
eration in training over all our graphs. Next, considering the same
corpus size, we compare the training efficiency of Pword2vec and
DSGL (trainer in DistGER). Figure 8(b) shows that DSGL achieves
4.31× average speedup compared to Pword2vec. We also notice that

1653



Table 5: Performance evaluation of par-
titioning for DistGER and Competitors

(a) Partitioning time for DistGER and competitors
graph PBG DistDGL DistGER

(METIS) (MPGP)
FL 383.28 s 127.72 s 15.96 s
YT 349.15 s 116.30 s 13.56 s
LJ 458.52 s 425.19 s 36.42 s
OR 2662.62 s 2761.25 s 294.68 s
TW 22 hour s > 1 day 9 hours

(b) Evaluation of Parallel MPGP

graph Streaming Partitioning Walking

LJ
DFS+deg 21.86 s 23.78 s
BFS+deg 21.25 s 24.79 s

OR
DFS+deg 151.29 s 77.12 s
BFS+deg 156.37 s 46.55 s

TW
DFS+deg 1940.65 s 683.81 s
BFS+deg 2034.21 s 590.36 s
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the average throughput (number of nodes processed per second) for
DSGL is up to 49.5 million/s, while that of Pword2vec is only up to
16.1 million/s. These results indicate that our distributed Skip-Gram
learning model (§4) is more efficient than Pword2vec.

Partitioning efficiency. Considering the randomness inherent in ran-
dom walks, the partitioning scheme is critical to overall efficiency.
For DistGER, Figure 8(c) exhibits that our multi-proximity-aware
streaming graph partitioning (MPGP) significantly reduces (avg.
reduction 45%) the number of cross-machine messages than the
workload-balancing partition of KnightKing on five graphs. More-
over, it improves the efficiency by 38.9% for the random walking
procedure (Figure 8(d)) over the same set of walks. We report in
Table 5(a) the time required for graph partitioning in competing
systems, where DistDGL uses the METIS algorithm [22] for parti-
tioning. The results show that MPGP performs partitioning with very
little overhead in most cases, and the partitioning efficiency is on
average 25.1× faster than competitors. In Figure 9, we exhibit the
distribution of local computations and cross-machine communica-
tions on four machines for different streaming orders, and the top
table reports their running times for partitioning and random walks.
For sequential MPGP, we find that the DFS+degree-based streaming
order (§3.2) is more efficient than other streaming orders, and it also
strikes the best balance between cross-machine communications
reduction and workload balancing. Table 5(b) exhibits the perfor-
mance evaluation of parallel MPGP on the small- (LiveJournal),
medium- (Com-Orkut) and large-scale (Twitter) graphs. The results
show that DFS+Degree in parallel MPGP is still the best or compara-
ble in terms of partition time, due to the same reason as stated in our
third optimization scheme (§3.2). On the other hand, BFS+Degree in
parallel MPGP works the best in terms of random walk time due to
preserving the locality of the graph structure (our fourth optimization
scheme in §3.2). We ultimately recommend BFS+Degree for parallel
MPGP, since it reduces the partition time greatly, while the random
walk time is comparable to that obtained from sequential MPGP.

6.6 Generality of DistGER
To demonstrate the generality of DistGER, we deploy Deepwalk
[39], node2vec [18] and HuGE+ [16] on DistGER. While the orig-
inal Deepwalk and node2vec follow traditional random walks, in

DistGER the walk length and the number of walks are decided
via information-centric measurements. Next, we also deploy both
Deepwalk and node2vec on KnightKing which supports the rou-
tine configuration random walk. Figure 10 illustrates that DistGER
reduces the random walks time by 41.1% and 51.6% on average
for Deepwalk and node2vec, respectively. For training, DistGER is
on average 17.7× and 21.3× faster than KnightKing+Pword2vec for
Deepwalk and node2vec, respectively. Moreover, we also show the
AUC ratio of DistGER and KnightKing, considering Deepwalk and
node2vec, for link prediction. Our results depict that DistGER has
comparable (in most cases, higher) AUC scores, while it improves
the efficiency significantly even for traditional random walk-based
graph embedding methods. HuGE+ is an extension of HuGE, and it
uses the same HuGE information-centric method to determine the
walk length and the number of walks per node. Figure 10 exhibits
the compatibility of HuGE+ on DistGER via its general API.

7 CONCLUSIONS
We proposed DistGER, a novel, general-purpose, distributed graph
embedding framework with improved effectiveness, efficiency, and
scalability. DistGER incrementally computes information-centric
random walks and leverages multi-proximity-aware, streaming, par-
allel graph partitioning to achieve high local partition quality and
excellent workload balancing. DistGER also designs distributed Skip-
Gram learning, which provides efficient, end-to-end distributed sup-
port for node embedding learning. Our experimental results demon-
strated that DistGER achieves much better efficiency and effective-
ness than state-of-the-art distributed systems KnightKing, DistDGL,
and Pytorch-BigGraph, and scales easily to billion-edge graphs,
while it is also generic to support traditional random walk-based
graph embeddings.
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