
SPG: Structure-Private Graph Database via SqueezePIR
Ling Liang*

UC Santa Barbara
Santa Barbara, California,

USA
lingliang@ucsb.edu

Jilan Lin*
UC Santa Barbara

Santa Barbara, California,
USA

jilan@ucsb.edu

Zheng Qu
UC Santa Barbara

Santa Barbara, California,
USA

zhengqu@ucsb.edu

Ishtiyaque Ahmad
UC Santa Barbara

Santa Barbara, California,
USA

ishtiyaque@ucsb.edu

Fengbin Tu
UC Santa Barbara

Santa Barbara, California,
USA

fengbintu@ucsb.edu

Trinabh Gupta
UC Santa Barbara

Santa Barbara, California,
USA

trinabh@ucsb.edu

Yufei Ding
UC Santa Barbara

Santa Barbara, California,
USA

yufeiding@ucsb.edu

Yuan Xie
Alibaba Group

Sunnyvale, California, USA
yuanxie@gmail.com

ABSTRACT
Many relational data in our daily life are represented as graphs, mak-
ing graph application an important workload. Because of the large
scale of graph datasets, moving graph data to the cloud becomes a
popular option. To keep the confidential and private graph secure
from an untrusted cloud server, many cryptographic techniques
are leveraged to hide the content of the data. However, protecting
only the data content is not enough for a graph database. Because
the structural information of the graph can be revealed through
the database accessing track.

In this work, we study the graph neural network (GNN), an im-
portant graph workload to mine information from a graph database.
We find that the server is able to infer which node is processing
during the edge retrieving phase and also learn its neighbor indices
during GNN’s aggregation phase. This leads to the leakage of the
information of graph structure data. In this work, we present SPG,
a structure-private graph database with SqueezePIR. Our SPG is
built on top of Private Information Retrieval (PIR), which securely
hides which nodes/neighbors are accessed. In addition, we propose
SqueezePIR, a compression technique to overcome the computation
overhead of PIR. Based on our evaluation, our SqueezePIR achieves
11.85× speedup on average with less than 2% accuracy loss when
compared to the state-of-the-art FastPIR protocol.

PVLDB Reference Format:
Ling Liang, Jilan Lin, Zheng Qu, Ishtiyaque Ahmad, Fengbin Tu, Trinabh
Gupta, Yufei Ding, and Yuan Xie. SPG: Structure-Private Graph Database
via SqueezePIR. PVLDB, 16(7): 1615 - 1628, 2023.
doi:10.14778/3587136.3587138

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/liangling76/SqueezePIR.

∗Both authors contributed equally to this research.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 7 ISSN 2150-8097.
doi:10.14778/3587136.3587138

1 INTRODUCTION
Graph is a common data structure to represent relational data, such
as social networks [39, 56, 59], financial transactions [23, 30, 38],
and histories [48]. To help us better understand these data, graph
algorithms are wildly used to mine information from graphs. With
the success of deep learning, Graph Neural Network (GNN) [36,
41, 58, 71, 72] becomes one of the most important graph mining
algorithms. Previous studies have demonstrated the effectiveness of
GNN models in many applications, such as recommendations [66,
67], fraud detections [29, 46], and so on.

As the data in real-world graphs are explosively increasing, keep-
ing the graph database locally can be extremely expensive. For ex-
ample, the industry-level graphs are reported to be TB-level [42, 76].
Meanwhile, for graph datasets used in GNN workloads, each node
usually has a node feature that is represented by a vector. These
node feature vectors construct a feature table or embedding table,
which can also be quite large with a size of TB-level [65, 75]. There-
fore, cloud storage and retrieving then become an intriguing role
to handle these large-scale graph databases.

However, privacy is the biggest concern when moving the graph
to the cloud, as the data can be stolen by a curious server. One
important way to protect the data is to apply cryptographic tech-
niques [2, 17, 68], where the client can encrypt the data and upload
it to the cloud. When the client wants to fetch a particular edge
list or node feature, he/she can retrieve them back and decrypt
them locally. Although encryption algorithms can help hide the
data content, there is still critical information that can be learned by
the server: the graph structure data. Most graph algorithms (includ-
ing GNN) exhibit an aggregation procedure, meaning to process
one vertex requires gathering the information from its neighbors.
When the client retrieves the edge list and node features (even in an
encrypted format), the server learns which node is processing and
its neighbors’ ID through the retrieving indices. Thus, the graph
structure can be exposed to the server due to the processing nature
of GNN models.

The leakage of structured information is vital [10, 24, 60] since
it contains personal information in a social network or sensitive
data in financial transactions. To avoid this leakage, we propose a
structure-private database system for graph applications, namely
SPG. Our SPG is built on top of Private Information Retrieval (PIR)

1615

https://doi.org/10.14778/3587136.3587138
https://github.com/liangling76/SqueezePIR
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3587136.3587138
https://www.acm.org/publications/policies/artifact-review-and-badging-current

[9, 26, 28, 49], a cryptographic primitive that aims to access a data-
base server obliviously. In other words, PIR allows retrieving an
item from the server without revealing which item is retrieved. In
SPG, when a graph algorithm tries to fetch the edge list of a node
or its neighbors’ node features, we apply PIR to hide the indices
of the node and its neighbors in the database and thus ensure the
privacy of the connectivity information in a graph.

The main challenge of building an SPG system is the expensive
execution process of PIR. PIR has been known to have an "all-for-
one" nature [44]. This means in order to hide the index of an item,
we need to touch the entire database (i.e., all items). Otherwise, the
server can still learn that the untouched items do not belong to the
client’s interest. Therefore, applying PIR for edge/node retrieving
can be extremely slow. In our experiment, for Reddit [36] database,
we observe that under the naive retrieving method, the processing
time for one node can take up to 13.5 hours, where 99% of the time
is spent on retrieving the node features.

In this work, we present SqueezePIR to accelerate the PIR process-
ing of node feature retrieving. The key insight of SqueezePIR is that
GNN algorithms usually demonstrate a certain level of robustness
[19, 73], and some noises in the node features are tolerable. There-
fore, our SqueezePIR compresses the node feature using low-rank
approximation, which allows us to perform much less computation
and greatly reduces the execution time.

However, additional homomorphic matrix multiplication is in-
troduced during PIR for a decomposed dataset. We cannot directly
apply prior PIR solutions such as FastPIR to the decomposed data-
base. The naive solution to perform the homomorphic matrix mul-
tiplication [34, 35] may cause performance degradation even when
compared to the original database without compression. Thus, our
SqueezePIR protocol minimizes the overhead of reconstructing the
retrieved data from approximations, we design a vectorized dataflow
that only requires element-wise operations and avoids executing
sophisticated matrix multiplications directly. On the other hand, a
homomorphic encryption scheme has a limited range for computa-
tion, direct decompositionmay cause the intermediate data to be out
of the boundary during the data recovery. We proposed normalized
decomposition to restrict the range of every computation. Based on
our evaluation the proposed SqueezePIR achieves 11.85× speedup
when compared to the state-of-the-art FastPIR protocol [3].

We summarized our contribution as follows:

• We propose SPG, which leverages PIR to protect the struc-
ture information of a graph database.

• We propose SqueezePIR, which accelerates the PIR process-
ing on the server through approximation.

• We implement SPG and SqueezePIR with SEAL library[57]
and evaluate them with various GNN workloads. The re-
sults show 11.85× speedup on average with less than 2%
accuracy loss when compared to the FastPIR.

2 BACKGROUND
In this section, we introduce the basis of graph neural networks,
fully homomorphic encryption, and private information retrieval.

2.1 Graph Neural Network
Graph Neural Network (GNN) applies deep-learning-based algo-
rithms to extract information from graph-structured data, which
has demonstrated its effectiveness in different areas such as recom-
mendations system [66, 67] and fraud detections [29, 46]. The input
of GNN is a graph. Figure 1(a) shows an example of an undirected
graph, which consists of 5 nodes and 5 edges. To store this graph,
we use the Compressed Sparse Row (CSR) format, as shown in
Figure 1(b). In CSR format, there is a neighbor array and an offset
array. The neighbor array keeps the neighbor indices of each node
sequential, and the offset array records the starting/ending position
of these neighbors accordingly. Moreover, each node in the graph
often has a feature vector. The feature vector contains additional
information about the node, as shown in Figure 1(c). The length of
the feature vector for each node is identical.

3

0 1

2

Node 0
Node 1
Node 2
Node 3
Node 4

Feature 0
Feature 1
Feature 2
Feature 3
Feature 4

4

(a) (c)

Node 0
Node 1
Node 2
Node 3
Node 4

3 4
2
3 4
0 2
0 2

(b)

Feature 0
Feature 3
Feature 4

Node 0

Neighbor
Nodes

One GNN Layer

(d) Feature 0

Updated Feature of
Node 0

0
2
3
5
7

Start idx

Figure 1: Graph Neural Network Inference: (a) topology of a
graph; (b) edge lists of each node; (c) features of each node;
(d) inference of one GNN layer.

GNN is an iterative algorithm that learns node/edge information
through the connectivity between nodes as shown in Figure 1(d).
A GNN model is usually composed of 𝐾 layers, and each layer
contains an aggregation function and a combination function. For
each node, the aggregation function takes inputs of the feature
vectors from its neighbors, and then the result is used to update its
own feature vector in the combination function.

Equation 1 expresses the operations of aggregation function,
where 𝑎𝑣 is the aggregated result of node 𝑣 , 𝑘 is the 𝑘-th layer of
the GNN model, ℎ𝑢 is the feature vector of node 𝑢, andN(𝑣) is the
neighbor set of node 𝑣 . Meanwhile, Equation 2 shows the operations
of combination function, which combines the aggregation result
in layer 𝑘 with the feature vector in layer 𝑘 − 1 and generates an
updated feature vector.

𝑎𝑘𝑣 = aggregate (ℎ𝑘−1𝑢 |𝑢 ∈ N (𝑣)) (1)

ℎ𝑘𝑣 = combine (𝑎𝑘𝑣 , ℎ𝑘−1𝑣) (2)
As the graph data keeps scaling in the real world, the graph

structure and feature vectors increase quickly. Moving the data to
the cloud for more extensive storage can be a good option.

2.2 Fully Homomorphic Encryption (FHE)
Fully Homomorphic Encryption (FHE) is a type of encryption
scheme that allows generic operations over encrypted data. Modern
FHE schemes include BFV [11, 31], BGV [12] and CKKS [20]. These

1616

FHE schemes usually encrypt a vector of raw data into a ciphertext.
Thus, the supported operations for these schemes are element-wise
computation between vectors and elements rotation for a vector.

Algorithm 1: FHE Encryption/Decryption
1 Function Encrypt(𝑉 , 𝑝𝑘):

/* Encrypt a vector 𝑉 = [𝑣1, 𝑣2, 𝑣3] into ciphertext 𝐶 with

public key 𝑝𝑘. */

2 return C

3 Function Decrypt(𝐶 , 𝑠𝑘):
/* Decrypt a ciphertext 𝐶 into a plain vector

𝑉 = [𝑣1, 𝑣2, 𝑣3] using the secret key 𝑠𝑘. */

4 return V

Algorithm 1 shows the encryption and decryption functions in
FHE. The Encrypt function encrypts a raw vector 𝑉 into a cipher-
text 𝐶 . During encryption, the vector 𝑉 is termed as message.
The message is first encoded into a polynomial, called a plaintext.
Then, the plaintext is encrypted to the ciphertext. Usually, the
ciphertext 𝐶 is composed of two vectors that store the coefficients
of two polynomials. The degree of polynomials in the ciphertext
decides the maximum amount of elements in the original message
vector. The encryption phase needs the public key 𝑝𝑘 . The Decrypt
function decrypts a ciphertext to the original message vector. The
decryption requires a secret key 𝑠𝑘 that is only known by the client.

For FHE computations, three types of operations are usually sup-
ported: Hom_Mul, Hom_Add, and Hom_Rot. The Hom_Add and Hom_Mul
take two ciphertexts as input and return the encryption of element-
wise addition/multiplication. Note that these two functions can also
take a plaintext𝑊 as input.Hom_Rot operates on a single ciphertext.
It rotates the elements in the original message vector according to
𝑠𝑡𝑒𝑝 . The sign of 𝑠𝑡𝑒𝑝 denotes the direction of rotation. For example,
with𝑉 = [𝑣1, 𝑣2, 𝑣3], rotating𝑉 one step to the left (𝑠𝑡𝑒𝑝 = −1) will
result in an encryption of [𝑣2, 𝑣3, 𝑣1]. For different values of steps,
FHE requires different rotation keys 𝑟𝑘 ; these keys are generated
by the client.

As a remark, for the graph stored on the server, we need to
encrypt the content of graph data, i.e. the edge list and feature
data for each node. Therefore, in this work, most operations are
performed between ciphertexts.

2.3 Private Information Retrieval
Private Information Retrieval (PIR) is a protocol in which a client ac-
cesses a database server anonymously, i.e., when the client retrieves
a record from the database, PIR protocol ensures that the server
does not know which record is retrieved. PIR is widely applied to
private keyword search [53, 70], content distribution [33, 49], and
anonymous communications [3, 5].

The design of a PIR protocol falls into two lines: information
theoretic PIR (IT-PIR) [9, 22, 26, 27] and computational PIR (CPIR) [3,
4, 15, 28, 49]. The IT-PIR replicates the database across multiple
non-colluding servers. The client can send different queries to these
servers and derive the answer by combining the responses from
servers. It has been proven that such schemes are information-
theoretic secure against adversarial attacks [22]. On the other hand,
CPIR puts the database in a single server and provides the other

way around against computationally-bounded adversaries (i.e., the
attacker performs limited computations). In this work, we focus on
the single-server CPIR because it is more practical than deploying
non-colluding servers.

Database
(Server)

N=4

M
=8

0
0
1
0

0
0
0
0
Q1

Q0

Query
(Client)

a0
a1
a2
a3

e0
e1
e2
e3

a b

b0
b1
b2
b3

f0
f1
f2
f3

c0
c1
c2
c3

g0
g1
g2
g3

d0
d1
d2
d3

h0
h1
h2
h3

0
0
a2
0

0
0
b2
0

0
0
c2
0

0
0
d2
0

Q0

Q1

⊙
⊙

a

e
+

Q0

Q1

⊙
⊙

b

f
+

Q0

Q1

⊙
⊙

c

g
+

Q0

Q1

⊙
⊙

d

h
+

0
b2
a2
0

0
d2
c2
0

c2
b2
a2
d2

Query Mapping (Server)

Answer Reduction (Server)

1

2

Rot
-1+Rot

-1+

Rot
-2+

(a) (b)

c d

e f g h

L=
4

Enc Enc Enc Enc

Enc Enc

Enc

Enc

Enc

Figure 2: FastPIR: (a) The encrypted query generated by the
client and the database stored on the server (b) data retrieving
on the server.

FastPIR (Query and Database Settings): Currently, one of
the most efficient CPIR protocol that based on FHE is FastPIR[3],
which is shown in Figure 2. In this example, the database is an 8× 4
matrix, and the client wants to retrieve the third record from the
server. Assuming the degree of ciphertext is 𝐿 = 4, which means
the maximum number of elements in the original message vector is
4. Thus, FastPIR splits the database into two tiles along the column
direction, and elements along the column direction are considered
to form a vector. Now, the query sent by client is composed of two
ciphertexts that correspond to the two tiles in the database. In this
example, the third slot in the first ciphertext is set to 1 and other
slots are set to 0. The second ciphertext is an all-zero vector. During
the retrieving phase, the queries are encrypted by the client and
sent to the untrusted database server. The query and the database
settings are shown in Figure2(a).

FastPIR (Data Retrieving): Figure 2(b) shows the procedures
of how to retrieve a record from the database through FastPIR. In
general, data retrieval can be divided into two steps:

1○ Query Mapping: In this step, the encrypted query first per-
forms Hom_Mulwith each column of the database. Then, the interme-
diate results are aggregated together through Hom_Add. For example,
the result of the first column after query mapping is𝑄0 ⊙𝑎 +𝑄1 ⊙ 𝑒 .
We use ⊙ and + to represnet the Hom_Mul and Hom_Add.

2○ Answer Reduction: After the query mapping, each column
contains one ciphertext and each of them only has one valid slot,
which wastes too much storage space. Thus, FastPIR designs a tree-
based reduction method to combine results from different columns
into one ciphertext. Specifically, the leaves of the tree are the results
of each column after step 1○ ([0, 0, 𝑎2, 0], [0, 0, 𝑏2, 0], [0, 0, 𝑐2, 0], [0,
0, 𝑑2, 0]). In each level, two nodes that share the same parent will

1617

be combined together with Hom_Rot and Hom_Add. For example, in
the first level, the first two leaves ([0, 0, 𝑎2, 0], [0, 0, 𝑏2, 0]) share
the same parent node. The ciphertext [0, 0, 𝑏2, 0] is rotated by one
position left to get [0, 𝑏2, 0, 0], and then added with ciphertext
[0, 0, 𝑎2, 0] to get [0, 𝑏2, 𝑎2, 0]. The rotation step for each level
𝑙 equals 2𝑙−1. In this example, FastPIR follows the recursive tree-
based rotation to generate the compact answer [𝑐2, 𝑏2, 𝑎2, 𝑑2].

Finally, the reduced answer generated on the server will be sent
back to the client, and the client can decrypt the result to recover
the desired record. Note that the server does not know the content
of ciphertexts in the whole process. Also, the server does not know
which record is retrieved by the client.

3 STRUCTURE-PRIVATE GRAPH DATABASE
In this section, we present SPG. First, we discuss the database
accessing framework for GNN applications. Then, we present the
threat model of graph data access when facing an untrusted third-
party server. Finally, we introduce our SPG system, built on top of
the PIR protocol that enables secure graph data retrieval.

3.1 Accessing Graph Database
As the size of the graph in the real world increased explosively [42,
76], storing the graph data in the cloud is necessary. In this work,
we focus on the scenario where both the graph structure data
(CSR formatted) and the feature table are stored in the database.
Based on Equation 1 and 2, when executing GNN models for graph
applications, we need to first retrieve the neighbor indices of a
node. Then, the feature vectors of neighbor nodes are retrieved
accordingly and aggregated together to complete the aggregation
phase. Next, we combine the aggregated result with the feature
vector of the target node to complete the combination phase.

Table 1: The size of Graph Neural Networks and academic
graph databases

GNN
Models

Parameter
Size (MB)

Graph
Database

Edge List
Size (MB)

Node Feature
Size (MB)

GraphSaint [71] 1.27 Reddit [36] 534.99 617.98
SAGN [58] 8.52 Products [21] 934.23 324.68

DeeperGCN [41] 0.97 Mag [62] 59.20 198.07
GraphSAGE [36] 0.79 Collab [37] 115.17 5.52

SEAL [72] 0.99 Citation2 [62] 1429.67 160.30

Compared with the entire graph, the GNN model used for graph
applications is much smaller. As shown in Table1, the size of graphs
ranges from hundreds of MB to 1 GB. The industry graph databases
[76] can reach TB-level. However, the size of GNN models ranges
from 1 MB to 10 MB, which is far less than the graph size. Thus,
we assume both the device (local) and server sides can run a given
GNN model. In particular, the graph database is accessible by mul-
tiple trusted devices. These devices may collect the graph data for
different GNN tasks.

3.2 Threat Model
In the graph database system, we assume that every device has
the copyright of the database. Also, the devices share an identical
secret key that can be used to decrypt a ciphertext. The attacker in
the system is the curious-but-honest database server, who wants to
steal the content of graph data (raw edge lists and node features) and

the structure of a graph (the connection between nodes), however,
the server will not modify the content of the retrieved data.

In our threat model, the graph structure can be revealed by
accessing history on the server. During the data retrieving, although
the server would follow the retrieving requests from the devices
and return the correct results, the server also actively logs the
retrieving tracks of each device and tries to recover the graph
structure. Specifically, the server can identify which node the device
is processing by tracking the index of retrieved data in the edge
list database. After that, it can infer a node’s neighbors by tracking
the index of the retrieved data in the node feature database. With
multiple rounds of retrieving, the server can potentially reconstruct
the graph topology.

The connection information should be kept private for most
applications such as finance, health care, and even recommendation
systems. An attacker may infringe the copyright of the graph owned
by the client. Also, the attacker may further infer user information
based on the graph structure information.

3.3 SPG via PIR
Overview: The framework of our structure-private graph database
(SPG) is shown in Figure 3. The graph data (edge lists and node
features) are kept in the untrusted database server. The client can
be a company, or an institute, that owns the graph data. Also, the
client can own multiple trusted devices, where these devices are
able to access the database individually. To perform GNN for one
particular node, the device will first retrieve the edge list of the node.
Then, according to the neighbor indices in the edge list, the device
further retrieves the feature vectors needed for GNN execution. In
our SPG system, the retrieving procedures for both the edge list and
node features are protected through the PIR protocol. Therefore,
the server will not know which nodes or edges are fetched. Finally,
after running a GNN model, the device may update the client for
necessary edge and node feature updates. The client will keep
receiving updated data from devices and inserting or substituting
the new encrypted data on the untrusted server. Since the data
stored on the server are encrypted, the server cannot learn graph
information during updating.

Data Organization: To facilitate the PIR process, the database
should be organized as a "matrix", where one record is a row in the
matrix and each record has the same length. This setting ensures
that the returned answers are always the same size, and thus the
server cannot identify the record based on the answer size. For the
feature table in Figure 1(c), it is naturally a matrix since all feature
vectors have the same length. However, the edge lists’ lengths are
different between nodes, since each node has a specific node degree.
One naive solution to build the edge list matrix is padding the edge
lists for the nodes that have low degrees. However, padding can
introduce significant overhead because the edge list for every node
needs to be expanded to the maximum degree.

To enable PIR protocol on edge lists, we adopt the CSR format and
combine all edge lists together. The edge list array is then reshaped
into a matrix. Each row in the edge list matrix may contain edges
for multiple nodes, or one node’s edge list could span over multiple
rows in the edge list matrix. To retrieve an edge list, the device
will derive the row ID(s) of edge lists in the database and perform

1618

。。。

Client
Company/Bank/Government …

Device 0

feature of Node 0

GNNmodel

GNNmodel

feature of Node 1

Encrypted node feature

Encrypted edge list

Device 1

!

!

Server

Queries

edge list /
node featu

res
!

!

Queries

edge list / node features

!

!

PIR

PIR3 4
2
3 4
0 2
0 2

3 4 2
3 4 0
2 0 2

Feature 0
Feature 1
Feature 2
Feature 3
Feature 4

Node Feature Table

Edge List Table

Reshaping

Device (Trust):
• Send new node feature to Client
• Retrieve edge list from Server through FastPIR
• Retrieve node features from Server through

SqueezePIR Alg2
• Use retrieved node features to run GNN

inference

Server (Untrust):
• Receive encrypted node features and edge lists

from the Client
• Generate encrypted edge list to Client through

FastPIR
• Generate encrypted node features to Client

through SquezzePIR Alg3

Client (Trust):
• Gather updated node features from Devices
• Apply low-rank decomposition on node features

Alg4
• Send Encrypted edge list and node features to

Sever

Figure 3: The framework of a structure-private graph database.

one or multiple PIR queries to fetch them anonymously. The device
will keep a copy of the offset in the original array and compute the
corresponding row ID(s) based on the edge list. In our experiments,
we adopt the average edges per node to evaluate the edge list and
feature vectors retrieving time .

1

10

10 0

10 00

10 000

10 0000

reddit products collab citation2

Re
tr

ie
vi

ng
Ti

m
e

(s
)

Graph Databases

Edge Lists

Node Features455.14x

62.68x

10.51x

78.47x

Figure 4: Retrieving time comparison between edge list and
neighbor nodes’ feature vectors for one node on different
graph databases.

Accelerating Feature Retrieving: Performing PIR queries can
be extremely expensive. Figure 4 shows the PIR processing time
for the two PIR procedures: retrieving edge list and retrieving node
features. We adopt FastPIR [3] during the evaluation. From the
result, we can find that the node feature retrieving time is 10.51× to
455.14× longer than the edge list retrieving time. The main reason
is that for a node, the feature vector size of its neighbor nodes is
far larger than the index size of its neighbor nodes. Thus, feature
retrieving can be a huge bottleneck in the system. In this work, we
mainly focus on how to accelerate the PIR process for node feature

retrieving. The key insight is that deep learning-based models are
known as tolerable to noises. This means it is not necessary to keep
the node features extremely precise. Thus, instead of retrieving
the original node features, we trade off GNN accuracy for better
performance.

In SPG, we apply different PIR protocols for edge list and node
feature retrieving. The FastPIR protocol is used for edge list retriev-
ing, due to the best efficiency in precise data retrieving. For node
features, we propose SqueezePIR, which is an approximation-based
PIR protocol that performs data retrieving on a decomposed data-
base. SqueezePIR generates answers with controllable errors, and
the device can make a trade-off between accuracy and performance.

4 SQUEEZEPIR PROTOCOL
In this section, we present the design of SqueezePIR. We approxi-
mate the database with low-rank decomposition, and SqueezePIR
greatly reduces the required storage and computation cost after
decomposition. The key challenge during the data retrieving is
the online data reconstruction from decomposed matrices, which
involves additional matrix multiplications compared with FastPIR.
However, matrix multiplications with ciphertexts are not efficient.

Our key insight is that the query used for reconstruction is
one-hot encoded, meaning only one slot in the query is non-zero.
Therefore, we propose a new query mapping scheme through in-
place matrix multiplication. In the rest of this section, we first
introduce the protocol of SqueezePIR. Then, we discussed the in-
place matrix-matrix multiplication scheme in detail, followed by
the complexity analysis of our design.

1619

U00(0)
U00(1)
U00(2)
U00(3)

Org Data

×

Low-Rank Decomposition

U"
" U"

#

U#
" U#

#

r=2

V"
"

V"
#

V1
1

V00(0) V00(1) V00(2) V00(3)U01(0)
U01(1)
U01(2)
U01(3)

V01(0) V01(1) V01(2) V01(3)

U10(0)
U10(1)
U10(2)
U10(3)

V10(0) V10(1) V10(2) V10(3)U11(0)
U11(1)
U11(2)
U11(3)

V11(0) V11(1) V11(2) V11(3)

V#
"

V#
#

×

Query Expanding
(Server)

1

N=4

Rec 0
Rec 1
Rec 2
Rec 3

Rec 4
Rec 5
Rec 6
Rec 7

M
=8

0
0
1
0

0
0
0
0

Q1

Q0

Query
(Device)

db0

db1

1
1
1
1

0
0
0
0

Exp-Q1

Exp-Q0

Expand Q

0
0

U01(2)
0

0
0

U00(2)
0

Q0

Q1

⊙
⊙

U00

U10
+

V00(0) V00(1) V00(2) V00(3)

Exp-Q0⊙ V00 + Exp-Q1⊙ V10

V01(0) V01(1) V01(2) V01(3)

MA-U

Q0

Q1

⊙
⊙

U01

U11
+

Exp-Q0⊙ V01 + Exp-Q1⊙ V11
U01(2)
U01(2)
U01(2)
U01(2)

U00(2)
U00(2)
U00(2)
U00(2)

U00(2)⊙ V00(0) +U01(2)⊙ V01(0)
U00(2)⊙ V00(1) +U01(2)⊙ V01(1)
U00(2)⊙ V00(2) +U01(2)⊙ V01(2)
U00(2)⊙ V00(3) +U01(2)⊙ V01(3)

Re
c 2

Expand MA-U

MA-U Expanding
(Server)

3

ans

Answer Reduction
(Server)

4

Exp-U⊙MA-V

=

Exp-U

Query Mapping
(Server)

2

MA-V

L=
4

Figure 5: The overview of SqueezePIR’s dataflow. The database is splited into tiles, each tile is decomposed into the low-rank
form of𝑈𝑖 ×𝑉𝑖 . During the data retrieving, the ciphertexts in the queriy firstly performs in-place expansion. Then, the original
query 𝑄 and the expended query 𝐸𝑥𝑝-𝑄 are mapped to matrix𝑈 and 𝑉 to acquire𝑀𝐴-𝑈 and𝑀𝐴-𝑉 , respectively. Next, we apply
in-place expansion on𝑀𝐴-𝑈 . Finally, the expanded result 𝐸𝑥𝑝-𝑈 is mapped to the matrix𝑀𝐴-𝑉 and aggregated as the answer.

4.1 Protocol Design
The SqueezePIR consists of three interfaces: client API, device API,
and server API. The client API performs database decomposition
and encryption. The device API generates the encrypted queries
for data retrieving. The server API executes the PIR protocol to
compute the encrypted answers.

Database Decomposition: For a database matrix 𝑑𝑏, the client
first partitions the database into tiles along the column direction
and applies low-rank approximation (SVD decomposition) for each
tile. The advantage of such partitioning is that for a growing graph
with increasing nodes and edges, the client can attach new node
features together as a new tile. Then, the decomposition is only
performed for the new tiles without changing existing data in the
database. The partitioned database tile 𝑑𝑏𝑖 can be in any shape, but
preferably with the same size of ciphertext length, i.e. 𝐿 × 𝐿.

We decompose each tile 𝑑𝑏𝑖 into two singular matrices 𝑈𝑖 and
𝑉𝑖 , where 𝑑𝑏𝑖 = 𝑈𝑖 × 𝑉𝑖 . Then, we decrease the rank of matrices
𝑈𝑖 and 𝑉𝑖 to a predefined value. Figure 5 shows an example of
database decomposition. Given an database with 8 records and each
record with length 4, we split the 8× 4 database into two 4× 4 tiles:

𝑑𝑏0 and 𝑑𝑏1. After low-rank decomposition, each block 𝑑𝑏𝑖 can
be recovered by the matrix multiplication between 𝑈𝑖 and 𝑉𝑖 . By
choosing a specific rank, we can approximate the original database
𝑑𝑏𝑖 with columns from 𝑈𝑖 and rows from 𝑉𝑖 . Figure 5 shows an
example of rank=2, where only the first two columns/rows in𝑈𝑖 /𝑉𝑖
are used to reconstruct the data.

The client then encrypts the two matrices𝑈𝑖 and𝑉𝑖 with the FHE
primitive provided in Algorithm 1. To facilitate the computation,
𝑈𝑖 is encrypted column-wise and 𝑉𝑖 is encrypted row-wise. These
ciphertexts are then stored in the server.

Query Generation: When accessing a record in the database,
the device generates a query with multiple ciphertexts, and each
ciphertext in the query will map to the corresponding tile in the
database. By assigning 0 and 1 in the ciphertext slots, the query
𝑄 specifies the location of the retrieved record in the database. As
shown in Figure 5, to retrieve the third record in the first database
tile, the query is composed of two ciphertexts that correspond to
the two tiles in the database. The first ciphertext encrypts a one-hot
vector that sets the 3𝑟𝑑 slot to 1, and the second ciphertext encrypts

1620

Algorithm 2: SqueezePIR Protocol − Device
/* Generate query to fetch 𝑡-th record from 𝑀 items */

1 Function QueryGen(𝑡 ,𝑀 , 𝐿):
// 𝐿 − degree of ciphertext

2 𝑄=[𝑄0, 𝑄1, 𝑄2, ..., 𝑄𝑀/𝐿−1];

3 for 𝑖 = 0; 𝑖 < 𝑀/𝐿; ++𝑖 do
4 𝑞 = vector(𝐿, 0); // an all-zero vector with length 𝐿

5 if 𝑡/𝐿 == 𝑖 then
6 𝑞[𝑡%𝐿] = 1;
7 end
8 𝑄𝑖 = Encrypt(𝑞);
9 end

10 return Q

/* Decrypt the length-𝑁 record from server’s answer */

11 Function AnswerDec(𝑎𝑛𝑠 , 𝑁 , 𝐿):

12 𝑟𝑒𝑐𝑜𝑟𝑑 = [𝑟𝑒𝑐0, 𝑟𝑒𝑐1, 𝑟𝑒𝑐2, ..., 𝑟𝑒𝑐𝑁 /𝐿−1];
13 for 𝑗 = 0; 𝑗 < 𝑁 /𝐿; ++ 𝑗 do
14 𝑟𝑒𝑐 𝑗 = Decrypt(𝑎𝑛𝑠 𝑗);
15 end
16 return record

an all-zero vector. The detailed query generation in SqueezePIR is
shown in Algorithm 2.

Naive Answer Generation: For the data retrieving on the server,
we first introduce a naive solution that follows the nature computa-
tion flow on the decomposed database: After receiving a query 𝑄 ,
the server will map the ciphertexts in the query to every database
tile. The answer is produced through Equation 3, where r is the
rank used for approximation.

𝑎𝑛𝑠𝑤𝑒𝑟 =
∑︂
𝑖

𝑄𝑖 ⊙ 𝑈 0:𝑟
𝑖 ×𝑉 0:𝑟

𝑖 (3)

If we follow the computation flow in Equation 3, the answer
generation can be concluded in the following steps: Firstly, the
ciphertext𝑄𝑖 is mapped to𝑈 0:𝑟

𝑖
to get (𝑄𝑖 ⊙𝑈 0:𝑟

𝑖
) through element-

wise multiplication. This step sets the unwanted records to zeros.
Secondly, the resulting (𝑄𝑖⊙𝑈 0:𝑟

𝑖
) is multiplied with𝑉 0:𝑟

𝑖
to generate

the answer of a tile. Finally, by adding all tile answers from different
tiles we can derive the final answer.

However, in this naive solution, the answer generation process
is not efficient due to two reasons: First, the computation in Equa-
tion 3 involves matrix multiplications with non-square matrices.
Since matrices are represented in ciphertexts and only vectorized
operations are supported, matrix multiplication with FHE requires
complicated data reshaping and extra ciphertexts for intermediate
data. Second, the generated answer after the computation has the
size of 4 × 4, where only the third row contains the desired record
and the other three rows are zeros. Therefore, the answer is very
sparse, which causes communication inefficiency if we directly send
this answer back to the device. To address these issues, we introduce
our in-place query mapping scheme in the next sub-section.

4.2 In-place Query Mapping Scheme
We propose an in-place query mapping scheme that performs the
answer generation directly using ciphertexts in 𝑄 , 𝑈 , and 𝑉 , with-
out introducing additional ciphertexts for intermediate data. The
detailed workflow is shown in Figure 5. The key idea of the scheme
is to leverage the "all-in-one" nature for PIR protocols, where only
one slot in 𝑄 and 𝑄 ⊙ 𝑈 is non-zero. Thus, we can utilize the re-
maining slots to store the intermediate result. We summarize the
in-place query mapping scheme into four steps:

1○ Query Expanding: After the low-rank decomposition, we can
use ciphertexts in query 𝑄𝑖 to locate the valid slots in matrix 𝑈𝑖 .
However, in SqueezePIR we also need to select the corresponding
matrix 𝑉𝑖 among different tiles. Thus, in the first step, we expand
the ciphertexts in the original query 𝑄𝑖 to 𝐸𝑥𝑝-𝑄𝑖 , such that the
valid tile 𝑉𝑖 corresponds to an all-one vector. For other tiles, the
corresponding ciphertexts 𝐸𝑥𝑝-𝑄 𝑗 (𝑗 ≠ 𝑖) are all-zero vectors. In our
example, after the query expanding, the first expanded ciphertext
𝐸𝑥𝑝-𝑄0 is the encryption of an all-one vector that corresponds to
the first tile in the database. The detailed expanding method will
be explained later.

2○ Query Mapping: In the second step, we will select the desired
record from the database. In SqueezePIR, the encrypted query 𝑄
first performs Hom_Mul with each column in matrix 𝑈 . Next, for
each column, the intermediate results for different tiles (i.e.,𝑄0⊙𝑈 0

0
and𝑄1 ⊙𝑈 0

1 for the first column) are accumulated with Hom_Add to
get𝑀𝐴-𝑈 . Next, SqueezePIR will select the corresponding matrix𝑉𝑖
among different tiles. In this example, we want to select the matrix
in the first tile. For eachmatrix𝑉𝑖 , every row first performs Hom_Mul
with the identical ciphertext in the expanded query 𝐸𝑥𝑝-𝑄𝑖 . Then,
the intermediate results for the same row but different tiles (i.e.,
Exp-𝑄0 ⊙ 𝑉 0

0 and Exp-𝑄1 ⊙ 𝑉 0
1 for the first row) are accumulated

together through Hom_Add to get𝑀𝐴-𝑉 . Since only 𝐸𝑥𝑝-𝑄0 in this
example is an all-one vector, 𝑉0 will be selected.

3○𝑀𝐴-𝑈 Expanding: The third step is a preparation for the final
answer accumulation. Because of the “all-for-one” character of PIR,
each column in𝑀𝐴-𝑈 only has one valid slot. The valid slots in𝑀𝐴-
𝑈 can be seen as a vector that needs to perform vector-matrix mul-
tiplication with𝑀𝐴-𝑉 to compute the original record. Specifically,
for each row in matrix 𝑀𝐴-𝑉 , every element will multiply with
the same valid slot in the corresponding column of𝑀𝐴 −𝑈 . Thus,
for each column in𝑀𝐴-𝑈 , we fill other slots with the valid slot to
expand𝑀𝐴-𝑈 to 𝐸𝑥𝑝-𝑈 . In our example, for each column in𝑀𝐴-𝑈 ,
every slot is filled with the value in the third slot after the expan-
sion. With such expansion, each column in the 𝐸𝑥𝑝-𝑈 corresponds
to a specific row in𝑀𝐴-𝑉 that makes the following vector-matrix
multiplication fit the homomorphic encryption scheme perfectly.

4○ Answer Reduction: In the last step, the intermediate results
are combined together to recover the original record. In SqueezePIR,
the results after Hom_Mul between columns in 𝐸𝑥𝑝-𝑈 and rows in
𝑀𝐴-𝑉 will be added through Hom_Add to get the final answer.

Recursive Vector Expanding: For step 1○ and 3○ in our query
mapping scheme, we want to achieve expanding operation on a one-
hot encrypted vector. Specifically, for a one-hot encrypted vector,
we want to fill all zero slots in the vector with the same valid value.
Thus, the valid slot expanding becomes an overhead, and an efficient
algorithm is required. We adopt recursive rotations and additions

1621

Rotate 1

Add

Rotate 2

Add

0
0

U00(2)
0

0
U00(2)
0
0

0
U00(2)
U00(2)
0

U00(2)
0
0

U00(2)

U00(2)
U00(2)
U00(2)
U00(2)

Figure 6: The expanding process for an one-hot ciphertext,
where we use recursive rotations and additions.

to limit the expanding overhead. An example is shown in Figure
6. For a one-hot vector with length 𝐿, only one slot is valid at the
beginning, 𝑙𝑜𝑔2𝐿 times Hom_Rot and Hom_Add are required to finish
the slot expansion. Combined with the expanding function, the
detailed algorithm of how to retrieve an entry from the database
through SqueezePIR is shown in Algorithm 3. After the 𝑎𝑛𝑠𝑤𝑒𝑟 is
retrieved from the server side, the device can use the AnswerDec
function in Algorithm 2 to decode the desired record.

Table 2: Storage and computation comparison between Fast-
PIR and SqueezePIR.

Storage Hom_Mul Hom_Rot

FastPIR MN MN N

SqueezePIR 2rMN/L 2rMN/L+rN (M/L + rN/L)𝑙𝑜𝑔2L

4.3 Complexity Analysis
In this subsection, we analyze the storage consumption and com-
putation complexity of our SqueezePIR. Assume the database has
been already tiled into 𝐿 × 𝐿 squares, i.e., 𝑑𝑏 = {𝑑𝑏𝑖, 𝑗 }. By tak-
ing advantage of low-rank decomposition, SqueezePIR reduces the
storage cost from 𝑀𝑁 to 2𝑟𝑀𝑁 /𝐿 as shown in Figure 5. Here,
𝑀 and 𝑁 are the rows and columns of the original database, 𝑟
is the pre-defined rank after the low-rank decomposition. From
the computation perspective, Hom_Mul and Hom_Rot occupies most
of the computation resources. Since low-rank decomposition can
reduce the database size dramatically, the amount of Hom_Mul in
SqueezePIR is 2𝑟𝑀𝑁 /𝐿+𝑟𝑁 (step 2○ and 4○). In SqueezePIR, the vec-
tor expanding requires recursive rotations in step 1○ and 3○, which
takes (𝑀/𝐿 + 𝑟𝑁 /𝐿)𝑙𝑜𝑔2𝐿 times Hom_Rot. A detailed comparison
of storage and computation cost between FastPIR and SqueezePIR
is shown in Table 2.

5 DATABASE DECOMPOSITION
Currently, most homomorphic encryption schemes have a limited
range of computations. Once the result exceeds the limit, the re-
sulting ciphertext cannot be decrypted correctly. We need to guar-
antee that every intermediate data during computation is inside
the boundary. However, analyzing the boundary during the answer
computation for the entire graph database is inefficient. Thus, we
first determine that the computation overflow can occur during the
database reconstruction. Then, we propose a normalized decompo-
sition framework to restrict the range of every computation. As a
result, we only need to set the homomorphic encryption security
parameters once for arbitrary databases.

Algorithm 3: SqueezePIR Protocol − Server

/* Expand the one-hot ciphertext 𝑐 in-place */

1 Function CipherExpand(𝑐):
2 𝐿 = 𝑐 .length;
3 for 𝑖 = 1; 𝑖 < 𝐿; 𝑖 ∗= 2 do
4 𝑐 += HomRot(𝑐, 𝑖); // Recursive expanding

5 end
6 return 𝑐

/* Generate answer from the 𝑀 × 𝑁 database */

7 Function AnswerGen(𝑈 , 𝑉 , 𝑄 ,𝑀 , 𝑁 , 𝑟 , 𝐿):
// 𝑟 − number of ranks, 𝐿 − Length of ciphertext

// database is tiled into 𝐿 × 𝐿 squares: 𝑑𝑏 = {𝑑𝑏𝑖,𝑗 }
// 𝑈𝑖,𝑗 , 𝑉𝑖,𝑗 correspond to 𝑑𝑏𝑖,𝑗

// 𝑈𝑖,𝑗 = [𝑈 0
𝑖,𝑗
,𝑈 1

𝑖,𝑗 , ...,𝑈
𝑟−1
𝑖,𝑗

], 𝑉𝑖,𝑗 = [𝑉 0
𝑖,𝑗
,𝑉 1

𝑖,𝑗 , ...,𝑉
𝑟−1
𝑖,𝑗

]𝑇

8 𝑎𝑛𝑠 = [𝑎𝑛𝑠0, 𝑎𝑛𝑠1, ..., 𝑎𝑛𝑠𝑁 /𝐿−1];

9 for i = 0; i < M/L; ++i do
10 𝐸𝑥𝑝-𝑄𝑖 = CipherExpand(𝑄𝑖); // Step 1

11 end

12 for 𝑗 = 0; 𝑗 < 𝑁 /𝐿; ++ 𝑗 do
13 𝑎𝑛𝑠 𝑗 = Encode(vector(𝐿, 0));
14 for 𝑘 = 0; 𝑘 < 𝑟 ; ++𝑘 do

15 𝑀𝐴-𝑈 = Encode(vector(𝐿, 0));

16 𝑀𝐴-𝑉 = Encode(vector(𝐿, 0));

17 for 𝑖 = 0; 𝑖 < 𝑀/𝐿; ++𝑖 do
18 𝑀𝐴-𝑈 += 𝑄𝑖 ⊙ 𝑈 𝑘

𝑖,𝑗
; // Step 2

19 𝑀𝐴-𝑉 += 𝐸𝑥𝑝-𝑄𝑖 ⊙ 𝑉𝑘
𝑖,𝑗

; // Step 2

20 end

21 𝐸𝑥𝑝-𝑈 = CipherExpand(𝑀𝐴-𝑈) ; // Step 3

22 𝑎𝑛𝑠 𝑗 += 𝐸𝑥𝑝-𝑈⊙ 𝑀𝐴-𝑈 ; // Step 4

23 end
24 end
25 return 𝑎𝑛𝑠

5.1 Operation Analysis in SqueezePIR
First, we analyze the computations in SqueezePIR to determine
which operations can cause the result exceeding the limit.

According to the dataflow in Figure 5, step 1○ and 3○ apply
recursive vector expanding on a one-hot encrypted vector. The
range of intermediate results will not change during the expansion.
In step 2○, the server computes

∑︁
𝑖 𝑄𝑖 ⊙ 𝑈 𝑘

𝑖,𝑗
and

∑︁
𝑖 𝐸𝑥𝑝-𝑄𝑖 ⊙ 𝑉𝑘

𝑖,𝑗
.

Because there is only one one-hot ciphertext in the original query
𝑄 and one all-one ciphertext in the expanded query 𝐸𝑥𝑝-𝑄 , all
results produced in step 2○ will not exceed the boundary of the
data in matrices𝑈 and 𝑉 .

However, after the step 4○, the result may exceed the original
data range. Because each element in the 𝑎𝑛𝑠𝑖 is computed by vector-
matrix multiplication between the non-zero row in 𝑀𝐴-𝑈 and
matrix𝑀𝐴-𝑉 . Since we do not have constraints on𝑀𝐴-𝑈 and𝑀𝐴-
𝑉 , the intermediate results may exceed the original boundary of
data in 𝑈 and 𝑉 . In order to overcome the boundary exceeding

1622

problem, we need to make sure that the intermediate results are
bounded during the low-rank approximation.

5.2 Data Range in SVD
We adopt singular value decomposition (SVD) for the low-rank
decomposition. Since the reconstruction can cause overflow issues
based on our analysis, we propose a method to bound the norm of
intermediate results to [0,1].

Ordinary SVD: In SqueezePIR, each database tile, namely a
𝐿 × 𝐿 square matrix 𝑋 is first decomposed to 𝑋 = 𝐴Λ𝐵 through
SVD, where 𝐴 and 𝐵∗ are unitary matrices. Λ is a diagonal matrix
that stores the singular values of 𝑋 . Usually, the elements in Λ
are arranged in descending order, and we can reformulate 𝑋 as
𝑋 = 𝐴′𝐵′ where 𝐴′ = 𝐴

√
Λ and 𝐵′ =

√
Λ𝐵. For each element in the

original matrix, its value can be computed with
𝑥𝛼,𝛽 =

∑︁𝐿
𝛾=0 𝑎

′
𝛼,𝛾 ∗ 𝑏 ′

𝛾,𝛽
(4)

where 𝑎′𝛼,𝛾 = 𝑎𝛼,𝛾
√︁
_𝛾 and 𝑏 ′

𝛾,𝛽
=
√︁
_𝛾𝑏𝛾,𝛽 . We want to bound the

intermediate results during the computation of arbitrary elements
in 𝑋 . We use 𝑥𝛼,𝛽 [: 𝑘] to represent the intermediate result, which
can be formulated as

𝑥𝛼,𝛽 [: 𝑘] =
∑︁𝑘
𝛾=0 𝑎

′
𝛼,𝛾 ∗ 𝑏 ′

𝛾,𝛽

=
∑︁𝑘
𝛾=0 _𝛾 ∗ 𝑎𝛼,𝛾 ∗ 𝑏𝛾,𝛽

(5)

Algorithm 4: Database Processing − Client
/* SVD-based low-rank decomposition on the 𝑀 × 𝑁 database */

1 Function low-rank decomposition(𝑑𝑏,𝑀 , 𝑁 , 𝑟 , 𝐿):
// 𝑟 − number of ranks, 𝐿 − Length of ciphertext

// database is tiled into 𝐿 × 𝐿 squares: 𝑑𝑏 = {𝑑𝑏𝑖,𝑗 }
2 𝑈 = {𝑈𝑖, 𝑗 }, 𝑉 = {𝑉𝑖, 𝑗 }, _̂ = {_̂𝑖, 𝑗 }; // initialization

3 for i = 0; i < M/L; ++i do
4 for j = 0; j < N/L; ++j do

5 𝐴, Λ, 𝐵 = SVD(𝑑𝑏𝑖, 𝑗 , 𝑟); // apply SVD on 𝑑𝑏𝑖,𝑗

6 _̂𝑖, 𝑗 = |_0 | ; // maximum eigenvalue-norm in Λ

7 𝐴′′ = 𝐴
√︁
Λ/|_0 |; 𝐵′′ =

√︁
Λ/|_0 |𝐵;

8 𝐴′′ = 𝐴′′[:, :r]; 𝐵′′ = 𝐵′′[:r, :] ; // set rank to r

9 for k = 0; k < r; ++k do
10 𝑈 𝑘

𝑖,𝑗
= BatchEncrypt(𝐴′′[:, 𝑘]);

11 𝑉𝑘
𝑖,𝑗

= BatchEncrypt(𝐵′′[𝑘, :]);
12 end
13 end
14 end
15 return𝑈 , 𝑉 , _̂

Bound intermediate results by Diving |_0 |: We use 𝑎𝛼 and
𝑏𝛽 to represent the 𝛼𝑡ℎ row and 𝛽𝑡ℎ column in matrix 𝐴 and 𝐵,
respectively. We further use 𝑎𝛼 [: 𝑘] and 𝑏𝛽 [: 𝑘] to represent the
first 𝑘 elements in vector 𝑎𝛼 and 𝑏𝛽 . Since 𝐴 and 𝐵 are unitary
matrices, we have

|𝑎𝛼 [: 𝑘] | =
√︂∑︁𝑘

𝛾=0 𝑎
2
𝛼,𝛾 ≤

√︂∑︁𝐿
𝛾=0 𝑎

2
𝛼,𝛾 = |𝑎𝛼 | = 1,

|𝑏𝛽 [: 𝑘] | =
√︂∑︁𝑘

𝛾=0 𝑏
2
𝛾,𝛽

≤
√︂∑︁𝐿

𝛾=0 𝑏
2
𝛾,𝛽

= |𝑏𝛽 | = 1,
(6)

when 𝑘 ≤ 𝐿. Since singular values in Λ are arranged in descending
order, we have |_0 | =𝑚𝑎𝑥𝑖 |_𝑖 |. For the intermediate result 𝑥𝛼,𝛽 [: 𝑘],
the boundary of its norm can be formulated as

|𝑥𝛼,𝛽 [: 𝑘] | = |∑︁𝑘
𝛾=0 _𝛾 ∗ 𝑎𝛼,𝛾 ∗ 𝑏𝛾,𝛽 |

< |_0 | ∗
∑︁𝑘
𝛾=0 𝑎𝛼,𝛾 ∗ 𝑏𝛾,𝛽

= |_0 | ∗ |𝑎𝛼 [: 𝑘] | ∗ |𝑏𝛽 [: 𝑘] | ∗ 𝑐𝑜𝑠\
≤ |_0 |

(7)

Here, \ is the angle between vectors 𝑎𝛼 [: 𝑘] and 𝑏𝛽 [: 𝑘]. We divide
the original matrix 𝑋 with |_0 |, and we formulate 𝑋

|_0 | = 𝐴′′𝐵′′,

where 𝐴′′ = 𝐴

√︂
Λ
|_0 | and 𝐵

′′ =

√︂
Λ
|_0 |𝐵. Now, the norm of all

intermediate results during the matrix multiplication between 𝐴′′

and 𝐵′′ are limited to [0,1]. Finally, we retrieve matrix 𝑋
|_0 | from

the server. The benefit of this design is that we can use the same
secure parameters for arbitrary 𝐿 × 𝐿 square matrix.

5.3 Database Pre-Processing
Our SPG system requires the client to process the low-rank decom-
position offline. After the database is decomposed tile by tile, the
client needs to send the encrypted database to the server. After
the device has retrived data from the server through SqueezePIR,
the client also need to send the desired eigenvalue to the device to
finish the answer recovering. Specifically, each 𝑑𝑏𝑖, 𝑗 in the database
is divided by its _̂𝑖, 𝑗 (we use _̂𝑖, 𝑗 to denote |_0 | for𝑑𝑏𝑖, 𝑗), the original
answer will be recovered by _̂𝑡/𝐿,𝑗 ∗𝑎𝑛𝑠 𝑗 on the device side. Here, 𝑡
is the ID of the desired record in the database and 𝐿 is the degree of
ciphertext. We summarize our database processing in Algorithm 4.

6 EVALUATION
In this section, we first evaluate our SqueezePIR with different
database settings. Then, we analyze the performance of SqueezePIR
and the accuracy of GNN models on real graph databases.

6.1 Experiment Setup
Homomorphic Encryption Setup: We adopt two homomorphic
encryption schemes: BFV [11, 31] and CKKS [20]. BFV encrypts
integers and performs homomorphic computation on integers. For
the security parameters in BFV, we follow the settings in FastPIR
[3]. Specifically, the coefficient bits for plaintext and ciphertext are
16 bits and 109 bits, respectively. We use BFV during the edge list
retrieving and the baseline of FastPIR.

CKKS is another encryption scheme that can encrypt complex
floating-point numbers. Since the graph node features are in floating-
point format, we adopt CKKS for the node feature retrieving. For
CKKS, we set the polynomial degree for the ciphertext to 8192,
and the valid slots 𝐿 per ciphertext equals half of the polynomial
degree. Thus, there are 4096 slots per ciphertext. The number of
bits for coefficients in the ciphertext is {60, 49, 49, 60}. The scaling
factor is 249. The degree size is the most critical factor that affects
SqueezePIR’s performance. We analyze the impact of the degree
size in Table 3. For a smaller degree, a lower rank is required for an
equal amount of storage and computation in plaintext. The compu-
tation time increases with a larger degree size, however, the noise

1623

for PIR is large when we set the degree to 4096. Thus, we pick 8192
as the degree size in our evaluation.

Software Implementation: We implement our SqueezePIR and
SPG system in C++, with homomorphic encryption algorithms
from Microsoft SEAL library [57]. The CPU platform is Intel Xeon
Platinum 8200 CPU @ 2.7GHz. The main memory size is 1 TB.

Table 3: SqueezePIR & SVD performance with different ci-
phertext degree settings on Citation2 dataset

rank
ciph
degree

MSE nosie
(SqueezePIR)

time
(SqueezePIR)

MSE noise
(SVD)

time
(SVD)

64 4096 4.91 × 10−3 6.88s 5.58 × 10−8 104.57s
128 8192 9.97 × 10−18 9.20s 1.47 × 10−8 134.13s
256 16384 1.32 × 10−18 21.36s 3.80 × 10−9 359.38s

6.2 Analysis of SqueezePIR

0

100

200

300

400

500

600

2^15 2^16 2^17 2^15 2^16 2^17 2^15 2^16 2^17

1024 2048 4096

R
et

ri
ev

in
g

Ti
m

e
(s

) FastPirBfv FastPirCkks

SealP IR naïve FHE Mul

SqueezePir-5 12

#record

#col

Figure 7: Retrieving time comparison between different PIR
protocols: FastPIR [3] under BFV and CKKS, SealPIR [4],
SqueezePIR with rank 512, and naive FHE matrix multiplica-
tion [34, 35].

Comparison between SqueezePIR and Other PIR Protocols:
We first analyze SqueezePIR with self-defined parameter settings.
Figure 7 shows the comparison between SqueezePIR and other
PIR protocols. Here, we also adopt a naive solution to handle all
homomorphic multiplication on the decomposed dataset. Usually,
the FastPIR-based solution and our SqueezePIR are outperforms
SealPIR and the naive method. Specifically, our SqueezePIR provides
5.54× and 4.53× speedup against SealPIR and the naive method on
average. By comparing our SqueezePIR with the FastPIR-based
solution, we made the following observations: Firstly, for FastPIR,
the performance under BFV encryption is worse when compared to
CKKS encryption. Since we need to encrypt the original database,
all homomorphic operations are performed between ciphertexts,
whichmay not be friendly for the BFV encryption scheme. Secondly,
the performance of SqueezePIR does not change as the number of
columns in the database increasing. The reason is that when the
number of columns of the database is smaller than the number of
slots of the ciphertext, the retrieving time for SqueezePIR is only
influenced by the rank of the decomposed database if the number
of records is fixed. Thirdly, when #𝑐𝑜𝑙 ≤ 2×#𝑟𝑎𝑛𝑘 , the performance
of SqueezePIR is worse than FastPIR under CKKS encryption. The
reason is that in this circumstance, the size of the database after
decomposition is equal to or even larger than the original database.
Thus, when the number of columns in the original database is

small, we will split the database along the column direction and
concatenate them along the row direction, i.e. reshape an𝑀 × 𝑁
database to a𝑚1 ×𝑚2𝑁 database, where𝑚2𝑁 ≈ #𝑠𝑙𝑜𝑡 .

0

30

60

90

120

2^15 2^16 2^17 2^18 2^19 2^15 2^16 2^17 2^18 2^19 2^15 2^16 2^17 2^18 2^19

128 256 512

Re
tr
ie
vi
ng

Ti
m
e
(s
)

#record

#rank

0 20 40 60 80 100 120

2^15
2^16
2^17
2^18
2^19
2^20

Retrieving Time (s)

#R
ec
or
d

query expanding query mapping

MA- U ex panding ans reduction

215 216 217 218 219 215 216 217 218 219 215 216 217 218 219

220
219
218
217
216
215

(a)

(b)

0 10 20 30 40 50 60 70

32

64

128

256

512

Retrieving Time (s)

#R
an
k

query expanding query mapping

MA- U ex panding ans reduction

(c)

Figure 8: Retrieving time analysis of SqueezePIR: (a) retriev-
ing time breakdown under various #rank with fixed #record
(218) and (b) various #record with fixed #rank (256); (c) overall
retrieving time comparisonwith different #record and #rank.

Breakdown of SqueezePIR: Next, we analyze the time consump-
tion for each step in SqueezePIR. We first fix the number of records
to 218 and seek how the rank size affects the performance. The
results are shown in Figure 8(a). From the results, we can easily find
that the query expanding time is fixed since the query expanding is
only influenced by the number of records in the database. All other
steps in SqueezePIR grow linearly as the rank size increases. Also,
we can observe that the query mapping (step 2○) takes the most
portion of retrieving time.

Then, we analyze the impact of record size by fixing the rank
size to 256. The results are shown in Figure 8(b). We can observe
that the time consumption for 𝑀𝐴-𝑈 expanding (step 3○) and an-
swer reduction (step 4○) are fixed since these two steps are only
affected by the rank size. Other steps grow linearly as the record
size increases. Like the results in Figure 8(a), the query mapping
(step 2○) takes the majority of retrieving time.

Figure 8(c) shows the retrieving time on the server with various
record and rank sizes for SqueezePIR. Previously we find that the
query mapping occupies most of retrieving time, and its execution
time is proportional to the rank and record sizes. Thus, the overall
retrieving time for SqueezePIR is increasing linearly as the rank
and record size increase.

1624

Table 4: Settings for various graph databases.

Reddit [36] Products [21] Collab [37] Citation2 [62] Syn1 Syn2

original
settings

#node 232965 2449024 23568 2927963 - -
#feature 602 100 128 128 - -

#edge/node (avg) 619 26 6 11 - -
edge

database
#record 49152 24576 4096 12288 - -
#column 4096 4096 4096 4096 - -

node feature
database

#record 40960 61440 8192 94208 131072 262144
#column 3612 4000 4096 4096 4096 4096

Table 5: Performance of SqueezePIR for one node’s edges and features retrieving on real-word graph databases. F and S represent
FastPIR and SqueezePIR respectively. The retrieving time is in seconds.

selected
rank

GNN
model

original
acc

low-rank
acc

edge
retrieving time

node feature
retrieving time (F)

node feature
retrieving time (S)

speedup for
SqueezePIR

Reddit 128 GraphSaint [71] 96.69% 94.96% 106.16 25043.19 3578.25 6.83
Products 32 SAGN [58] 84.45% 82.90% 53.61 1657.37 53.27 16.01
Collab 32 PLNLP [64] 63.05% 61.94% 10.50 89.07 6.41 5.89

Citation2 32 SEAL [72] 86.76% 86.65% 28.38 1059.39 29.84 18.68

6.3 SqueezePIR on Secure Graph System
Graph Neural Network Setup: In this work, we adopt four real-
world graph databases and two synthetic databases to evaluate the
performance of SqueezePIR. The graph database settings are shown
in Table 4. Since the average edge list and feature size for each node
are always smaller than the number of slots (4096) per ciphertext,
we reshape the database and make the number of columns close to
4096 for more efficient processing. In this work, we adopt commonly
used one-hop sampling for GNN inference. Thus, one edge list and
the corresponding neighbor nodes’ features need to be retrieved
during PIR.

1

10

100

1000

reddit products collab citation2 syn1 syn2 avg

Re
tri
ev
in
g
Ti
m
e
(s
)

Graph Databases

FastPI R CKKS SqueezePIR-512 SqueezePIR-128 SqueezePIR-32

2.7x

10.1x

32.5x

Figure 9: Retrieving time comparison between FastPIR and
SqueezePIR for one node feature on different databases.

Node Feature Retrievingwith SqueezePIR:Weapply SqueezePIR
on the databases provided in Table 4 and compare the performance
with the FastPIR under CKKS encryption. The results are shown
in Figure 9. Here, we set the ranks for SqueezePIR to 512, 128, and
32. From the results, we can find that the SqueezePIR achieves con-
siderable speedup when compared to the FastPIR. Specifically, the
performance improvement is more obvious for the databases with a
larger number of records. The reason is that with more records, the
query mapping occupies more portion of retrieving time as Figure
8(b), and SqeezePIR enjoys more speedup. On average, compared to

FastPIR encrypted with CKKS, our SqueezePIR achieves 2.7×, 10.1×,
and 32.5× speedup when the ranks are 512, 128, and 32, respectively.

87
90
93
96

99

32 64 128 256 512 Full

Ac
cu
ra
cy

(%
)

Rank

Reddit
82

83

84

85

32 64 128 256 512 Full

Ac
cu
ra
cy

(%
)

Rank

Products

61.5

62
62.5
63

63.5

32 64 128 256 512 Full

Ac
cu
ra
cy

(%
)

Rank

Collab

85.5

86

86.5

87

32 64 128 256 512 Full
Ac
cu
ra
cy

(%
)

Rank

Citation2

Figure 10: Accuracy of GNNs on various graph databases after
low-rank decomposition.

GNNAccuracy under Low-rankDecomposition: The accuracy
of GNNs after low-rank decomposition is shown in Figure 10. In
most cases, GNNs can tolerate a small rank. We also find that
the accuracy does not continuously decrease as the rank becomes
smaller. The main reason is that the node features of a graph may
have some redundant information. Low-rank decomposition helps
to remove the redundancy that can help to improve the accuracy of
the model. This phenomenon also appears in GNN pruning [18, 45].
Usually, the accuracy drop of pruning algorithms on GNN is larger
than 2% [19, 54]. Thus, assuming we can tolerate 2% accuracy loss,
we set the rank for Reddit to 128 and 32 for other databases. The
overall performance comparison between SqueezePIR and FastPIR
(CKKS) on real-world databases is shown in Table 5. During our
evaluation, each node will first retrieve its edge list through FastPIR
(BFV). Then, the node retrieves its neighbor nodes’ feature vectors
through FastPIR (CKKS) or SqueezePIR. Here, we adopt average
edges as the number of neighbors for each node. From the result,
our SqueezePIR achieves 5.89× to 18.68× speedup when compared
to FastPIR (CKKS). On average, the SqueezePIR achieves 11.85×

1625

speedup, which makes the node feature retrieving time close to the
edge retrieving time.

0.1

1

10

100

1000

10000

F
S-
51
2

S-
12
8

S-
32 F

S-
51
2

S-
12
8

S-
32 F

S-
51
2

S-
12
8

S-
32 F

S-
51
2

S-
12
8

S-
32 F

S-
51
2

S-
12
8

S-
32 F

S-
51
2

S-
12
8

S-
32

reddit products collab citation2 syn1 syn2

Pr
ep

ro
ce
ss
in
g
Ti
m
e(
s)

databases

SVD Encryption

Figure 11: Database pre-processing time for FastPIR and
SqueezePIR. (F and S represent FastPIR and SqueezePIR)

Database Encryption andDecomposition for SqueezePIR:We
analyze the database pre-processing time in Figure 11. Compared to
FastPIR, an additional low-rank decomposition should be applied
to the original database before the encryption in SqueezeIPR. Since
the SVD is performed for each 𝐿 × 𝐿 block, the pre-processing time
of SVD for a larger graph database grows linearly. Compared to the
results in Figure 9, the database pre-processing time is acceptable.
For example, for database ‘Syn2’, the database pre-processing time
is 25.2× compared to one node feature retrieving time when we set
the rank to 512 under SqueezePIR. The reason that we can afford
this overhead for database pre-processing is we only need to pre-
process the entire database once, however, each node will retrieve
tens to hundreds of neighbor node features for each inference.

Table 6: Execution time breakdown in the real deployment,
where PIR protocols are executed under multi-thread mode.

Reddit Product Collab Citation2
edge retrieving 15.72 9.43 2.27 4.96

node feature retrieving 103.21 0.51 0.51 1.49
GNN inference 1.13×10−4 1.79×10−5 6.67×10−5 4.64×10−5

Discussion on Real-world Deployment: In real-world deploy-
ment, PIR protocols can be easily accelerated with parallelism exe-
cution. Specifically, FastPIR can parallel along the column direction,
and SqueezePIR can parallel along the rank and batch direction.
We use OpenMP dynamic parallelism [14] to accelerate PIR proto-
cols. From the results in 6, the data retrieving still occupies most
of the execution time, which needs to speed up. Also, we find that
SqueezePIR shows a higher speedup since execution PIR in batch
can enjoy more data reuse on the database.

7 RELATEDWORK
Private Deep Learning and Graph Applications: For deep learn-
ing applications, the dataset can contain sensitive information and
the parameters in the trained model are often confidential. Thus,
privacy-preserving deep learning becomes an important topic. Prior
work has leveraged various approaches to protect the deep learning
process, including fully homomorphic encryption [6, 25], federated
learning [43, 69], and much more.

For graph-formatted data, there are also various private systems
to process graph algorithms. In order to hide personal information
(important features) during the processing on the server, structural
anonymization or differential privacy [8, 13, 16, 52] try to build a
substitute graph bymodifying the graph structure and node features
to hide information. These approaches can prevent personal data
leakage theoretically without degrading performance. However,
these techniques are still vulnerable if the attacker has background
knowledge [47, 55]. Also, the attacker can still train a GNN model
based on the substitute graph. Some approaches focus on some
specific graph applications such as shortest distance[32, 51, 63],
nearest search[61], and graph neural networks[1, 74]. Compared to
previous work, our SPG framework can encrypt the node feature
and edge lists, which can guarantee the server learns nothing about
the feature and structure information of a graph. Meanwhile, our
framework can potentially let the server performs GNN workloads
with homomorphic encryption [25, 40]. In this case, the GNN needs
to be encrypted with FHE schemes, and thus the computation on
the server will not leak any information.

Software Optimization for PIR: Extensive work has been done
to improve the performance of PIR. Some work alleviates the over-
head in PIR through new cryptographic techniques [49], while some
work optimizes the query or answer with reduced size [3, 4]. There
are also studies leveraging data pipelining and parallelism to accel-
erate answer generation [7]. Our SqueezePIR is the first to apply
the compression method and directly reduce the data required for
the PIR process.

Hardware Acceleration for PIR: Researchers also discussed
the opportunity of accelerating PIR with emerging hardware. For
example, some work leverages the extreme parallelism and com-
putation capacity provided by GPUs [50] to reduce the execution
time. There is also limited work designing customized accelerator
architectures [44]. Our SqueezePIR does not put constraints on the
computation platforms. Therefore, these acceleration schemes can
also be applied to further boost the performance of SqueezePIR.

8 CONCLUSION
In this work, we explore how to build a GNN system to avoid the
information of a graph being exposed to an untrusted third-party
server. We first design an SPG framework which is built on top of
PIR to prevent the server from learning the graph structure through
the retrieving tracks. Then, we design SqueezePIR that can acceler-
ate data retrieving by approximating the database with low-rank
decomposition. Our evaluation shows an average of 11.85× speedup
with less than 2% accuracy loss when comparing our SqueezePIR
with the state-of-the-art FastPIR protocol.

9 ACKNOWLEDGEMENT
This work is supported by the National Science Foundation under
Grant No. 2126327. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation

1626

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 308–318.

[2] Nahla Aburawi, Alexei Lisitsa, and Frans Coenen. 2018. Querying encrypted
graph databases. In Proceedings of the 4th International Conference on Information
Systems Security and Privacy. SCITEPRESS-Science and Technology Publications.

[3] Ishtiyaque Ahmad, Yuntian Yang, Divyakant Agrawal, Amr El Abbadi, and Trin-
abh Gupta. 2021. Addra: Metadata-private voice communication over fully
untrusted infrastructure. In USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

[4] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with com-
pressed queries and amortized query processing. In 2018 IEEE symposium on
security and privacy (SP). IEEE, 962–979.

[5] Sebastian Angel and Srinath Setty. 2016. Unobservable communication over fully
untrusted infrastructure. In 12th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 16). 551–569.

[6] Yoshinori Aono, Takuya Hayashi, Lihua Wang, Shiho Moriai, et al. 2017. Privacy-
preserving deep learning via additively homomorphic encryption. IEEE Transac-
tions on Information Forensics and Security 13, 5 (2017), 1333–1345.

[7] Karim Banawan and Sennur Ulukus. 2018. Multi-message private information
retrieval: Capacity results and near-optimal schemes. IEEE Transactions on
Information Theory 64, 10 (2018), 6842–6862.

[8] Aaron Beach, Mike Gartrell, and Richard Han. 2010. Social-k: Real-time k-
anonymity guarantees for social network applications. In 2010 8th IEEE Inter-
national Conference on Pervasive Computing and Communications Workshops
(PERCOM Workshops). IEEE, 600–606.

[9] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and J-F Raymond. 2002. Breaking the
O (n/sup 1/(2k-1)/) barrier for information-theoretic private information retrieval.
In The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002.
Proceedings. IEEE, 261–270.

[10] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial attacks on
node embeddings via graph poisoning. In International Conference on Machine
Learning. PMLR, 695–704.

[11] Zvika Brakerski. 2012. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Annual Cryptology Conference. Springer, 868–886.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2014. (Leveled)
fully homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT) 6, 3 (2014), 1–36.

[13] Alina Campan, Yasmeen Alufaisan, Traian Marius Truta, and T Richardson. 2015.
Preserving Communities in Anonymized Social Networks. Trans. Data Priv. 8, 1
(2015), 55–87.

[14] Rohit Chandra, Leo Dagum, David Kohr, Ramesh Menon, Dror Maydan, and Jeff
McDonald. 2001. Parallel programming in OpenMP. Morgan kaufmann.

[15] Yan-Cheng Chang. 2004. Single database private information retrieval with
logarithmic communication. In Australasian Conference on Information Security
and Privacy. Springer, 50–61.

[16] Zhao Chang, Lei Zou, and Feifei Li. 2016. Privacy preserving subgraph matching
on large graphs in cloud. In Proceedings of the 2016 International Conference on
Management of Data. 199–213.

[17] Melissa Chase and Seny Kamara. 2010. Structured encryption and controlled
disclosure. In International conference on the theory and application of cryptology
and information security. Springer, 577–594.

[18] Cen Chen, Kenli Li, Xiaofeng Zou, and Yangfan Li. 2021. DyGNN: Algorithm
and Architecture Support of Dynamic Pruning for Graph Neural Networks. In
2021 58th ACM/IEEE Design Automation Conference (DAC). IEEE, 1201–1206.

[19] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang.
2021. A unified lottery ticket hypothesis for graph neural networks. In Interna-
tional Conference on Machine Learning. PMLR, 1695–1706.

[20] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-
morphic encryption for arithmetic of approximate numbers. In International
Conference on the Theory and Application of Cryptology and Information Security.
Springer, 409–437.

[21] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 257–266.

[22] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan. 1995. Private
information retrieval. In Proceedings of IEEE 36th Annual Foundations of Computer
Science. IEEE, 41–50.

[23] Andrea Fronzetti Colladon and Elisa Remondi. 2017. Using social network anal-
ysis to prevent money laundering. Expert Systems with Applications 67 (2017),
49–58.

[24] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song.
2018. Adversarial attack on graph structured data. In International conference on
machine learning. PMLR, 1115–1124.

[25] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing
compiler for fully-homomorphic neural-network inferencing. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 142–156.

[26] Daniel Demmler, Amir Herzberg, and Thomas Schneider. 2014. Raid-pir: Practical
multi-server pir. In Proceedings of the 6th Edition of the ACM Workshop on Cloud
Computing Security. 45–56.

[27] Casey Devet, Ian Goldberg, and Nadia Heninger. 2012. Optimally robust private
information retrieval. In 21st {USENIX} Security Symposium ({USENIX} Security
12). 269–283.

[28] Changyu Dong and Liqun Chen. 2014. A fast single server private information
retrieval protocol with low communication cost. In European symposium on
research in computer security. Springer, 380–399.

[29] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. 2020.
Enhancing graph neural network-based fraud detectors against camouflaged
fraudsters. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management. 315–324.

[30] Rafał Dreżewski, Jan Sepielak, and Wojciech Filipkowski. 2015. The application
of social network analysis algorithms in a system supporting money laundering
detection. Information Sciences 295 (2015), 18–32.

[31] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat practical fully homo-
morphic encryption. IACR Cryptol. ePrint Arch. 2012 (2012), 144.

[32] Esha Ghosh, Seny Kamara, and Roberto Tamassia. 2021. Efficient Graph En-
cryption Scheme for Shortest Path Queries. In Proceedings of the 2021 ACM Asia
Conference on Computer and Communications Security. 516–525.

[33] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi,
andMichaelWalfish. 2016. Scalable and privatemedia consumptionwith Popcorn.
In 13th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 16). 91–107.

[34] Shai Halevi and Victor Shoup. 2014. Algorithms in helib. In Annual Cryptology
Conference. Springer, 554–571.

[35] Shai Halevi and Victor Shoup. 2018. Faster homomorphic linear transformations
in HElib. In Annual International Cryptology Conference. Springer, 93–120.

[36] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[37] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[38] Anish Khazane, Jonathan Rider, Max Serpe, Antonia Gogoglou, Keegan Hines,
C Bayan Bruss, and Richard Serpe. 2019. Deeptrax: Embedding graphs of finan-
cial transactions. In 2019 18th IEEE International Conference On Machine Learning
And Applications (ICMLA). IEEE, 126–133.

[39] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[40] Joon-Woo Lee, HyungChul Kang, Yongwoo Lee, Woosuk Choi, Jieun Eom, Maxim
Deryabin, Eunsang Lee, Junghyun Lee, Donghoon Yoo, Young-Sik Kim, et al.
2022. Privacy-preserving machine learning with fully homomorphic encryption
for deep neural network. IEEE Access 10 (2022), 30039–30054.

[41] Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. 2020. Deepergcn:
All you need to train deeper gcns. arXiv preprint arXiv:2006.07739 (2020).

[42] Shuangchen Li, Dimin Niu, Yuhao Wang, Wei Han, Zhe Zhang, Tianchan Guan,
Yijin Guan, Heng Liu, Linyong Huang, Zhaoyang Du, et al. 2022. Hyperscale
FPGA-as-a-service architecture for large-scale distributed graph neural network.
In Proceedings of the 49th Annual International Symposium on Computer Architec-
ture. 946–961.

[43] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50–60.

[44] Jilan Lin, Ling Liang, Zheng Qu, Ishtiyaque Ahmad, Liu Liu, Fengbin Tu, Trinabh
Gupta, Yufei Ding, and Yuan Xie. 2022. INSPIRE: in-storage private informa-
tion retrieval via protocol and architecture co-design. In Proceedings of the 49th
Annual International Symposium on Computer Architecture. 102–115.

[45] Chuang Liu, Xueqi Ma, Yinbing Zhan, Liang Ding, Dapeng Tao, Bo Du, Wenbin
Hu, and Danilo Mandic. 2022. Comprehensive Graph Gradual Pruning for Sparse
Training in Graph Neural Networks. arXiv preprint arXiv:2207.08629 (2022).

[46] Zhiwei Liu, Yingtong Dou, Philip S Yu, Yutong Deng, and Hao Peng. 2020. Alle-
viating the inconsistency problem of applying graph neural network to fraud
detection. In Proceedings of the 43rd international ACM SIGIR conference on re-
search and development in information retrieval. 1569–1572.

[47] Nidhi Maheshwarkar, Kshitij Pathak, and Vivekanand Chourey. 2011. Privacy
issues for k-anonymity model. International Journal of Engineering Research and
Application 1, 4 (2011), 1857–1861.

[48] CMawdesley, R Trueman, andWJWhiten. 2001. Extending the Mathews stability
graph for open–stope design. Mining Technology 110, 1 (2001), 27–39.

1627

[49] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
2016. XPIR: Private information retrieval for everyone. Proceedings on Privacy
Enhancing Technologies 2016 (2016), 155–174.

[50] Carlos Aguilar Melchor, Benoit Crespin, Philippe Gaborit, Vincent Jolivet, and
Pierre Rousseau. 2008. High-speed private information retrieval computation on
gpu. In 2008 Second International Conference on Emerging Security Information,
Systems and Technologies. IEEE, 263–272.

[51] Xianrui Meng, Seny Kamara, Kobbi Nissim, and George Kollios. 2015. Grecs:
Graph encryption for approximate shortest distance queries. In Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
504–517.

[52] Tamara T Mueller, Dmitrii Usynin, Johannes C Paetzold, Daniel Rueckert, and
Georgios Kaissis. 2022. SoK: Differential Privacy on Graph-Structured Data.
arXiv preprint arXiv:2203.09205 (2022).

[53] Rafail Ostrovsky and William E Skeith. 2005. Private searching on streaming
data. In Annual International Cryptology Conference. Springer, 223–240.

[54] Hongwu Peng, Deniz Gurevin, Shaoyi Huang, Tong Geng, Weiwen Jiang, Omer
Khan, and Caiwen Ding. 2022. Towards sparsification of graph neural networks.
arXiv preprint arXiv:2209.04766 (2022).

[55] Keerthana Rajendran, Manoj Jayabalan, and Muhammad Ehsan Rana. 2017. A
study on k-anonymity, l-diversity, and t-closeness techniques. IJCSNS 17, 12
(2017), 172.

[56] John Scott. 1988. Social network analysis. Sociology 22, 1 (1988), 109–127.
[57] SEAL 2020. Microsoft SEAL (release 3.6). https://github.com/Microsoft/SEAL.

Microsoft Research, Redmond, WA.
[58] Chuxiong Sun, Hongming Gu, and Jie Hu. 2021. Scalable and adaptive graph neu-

ral networks with self-label-enhanced training. arXiv preprint arXiv:2104.09376
(2021).

[59] Lei Tang and Huan Liu. 2010. Graph mining applications to social network
analysis. In Managing and mining graph data. Springer, 487–513.

[60] Binghui Wang and Neil Zhenqiang Gong. 2019. Attacking graph-based classi-
fication via manipulating the graph structure. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. 2023–2040.

[61] Boyang Wang, Yantian Hou, and Ming Li. 2016. Practical and secure nearest
neighbor search on encrypted large-scale data. In IEEE INFOCOM 2016-The 35th
Annual IEEE International Conference on Computer Communications. IEEE, 1–9.

[62] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong,
and Anshul Kanakia. 2020. Microsoft academic graph: When experts are not
enough. Quantitative Science Studies 1, 1 (2020), 396–413.

[63] Qian Wang, Kui Ren, Minxin Du, Qi Li, and Aziz Mohaisen. 2017. SecGDB:
Graph encryption for exact shortest distance queries with efficient updates. In
International Conference on Financial Cryptography and Data Security. Springer,

79–97.
[64] Zhitao Wang, Yong Zhou, Litao Hong, Yuanhang Zou, and Hanjing Su. 2021.

Pairwise Learning for Neural Link Prediction. arXiv preprint arXiv:2112.02936
(2021).

[65] Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-Jean Wu,
David Brooks, and Gu-Yeon Wei. 2021. RecSSD: near data processing for solid
state drive based recommendation inference. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems. 717–729.

[66] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2020. Graph neural
networks in recommender systems: a survey. ACM Computing Surveys (CSUR)
(2020).

[67] ShuWu, Yuyuan Tang, Yanqiao Zhu, LiangWang, Xing Xie, and Tieniu Tan. 2019.
Session-based recommendation with graph neural networks. In Proceedings of
the AAAI conference on artificial intelligence, Vol. 33. 346–353.

[68] Pengtao Xie and Eric Xing. 2014. Cryptgraph: Privacy preserving graph analytics
on encrypted graph. arXiv preprint arXiv:1409.5021 (2014).

[69] Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. 2019.
Federated learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 13, 3 (2019), 1–207.

[70] Rei Yoshida, Yang Cui, Rie Shigetomi, and Hideki Imai. 2008. The practicality of
the keyword search using pir. In 2008 International Symposium on Information
Theory and Its Applications. IEEE, 1–6.

[71] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv preprint arXiv:1907.04931 (2019).

[72] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling
Trick: A Theory of Using Graph Neural Networks for Multi-Node Representation
Learning. Advances in Neural Information Processing Systems 34 (2021).

[73] Yuhao Zhang, Peng Qi, and Christopher D Manning. 2018. Graph convolution
over pruned dependency trees improves relation extraction. arXiv preprint
arXiv:1809.10185 (2018).

[74] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chengqiang Lu, Chuanren Liu,
and Enhong Chen. 2021. Graphmi: Extracting private graph data from graph
neural networks. arXiv preprint arXiv:2106.02820 (2021).

[75] Weijie Zhao, Deping Xie, Ronglai Jia, Yulei Qian, Ruiquan Ding, Mingming Sun,
and Ping Li. 2020. Distributed hierarchical gpu parameter server for massive
scale deep learning ads systems. Proceedings of Machine Learning and Systems 2
(2020), 412–428.

[76] Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong
Li, and Jingren Zhou. 2019. Aligraph: a comprehensive graph neural network
platform. arXiv preprint arXiv:1902.08730 (2019).

1628

https://github.com/Microsoft/SEAL

	Abstract
	1 Introduction
	2 Background
	2.1 Graph Neural Network
	2.2 Fully Homomorphic Encryption (FHE)
	2.3 Private Information Retrieval

	3 Structure-Private Graph Database
	3.1 Accessing Graph Database
	3.2 Threat Model
	3.3 SPG via PIR

	4 SqueezePIR Protocol
	4.1 Protocol Design
	4.2 In-place Query Mapping Scheme
	4.3 Complexity Analysis

	5 Database Decomposition
	5.1 Operation Analysis in SqueezePIR
	5.2 Data Range in SVD
	5.3 Database Pre-Processing

	6 Evaluation
	6.1 Experiment Setup
	6.2 Analysis of SqueezePIR
	6.3 SqueezePIR on Secure Graph System

	7 Related Work
	8 Conclusion
	9 Acknowledgement
	References

