
Explaining Dataset Changes for Semantic Data Versioning with
Explain-Da-V

Roee Shraga
Northeastern University

Boston, MA, USA
r.shraga@northeastern.edu

Renée J. Miller
Northeastern University

Boston, MA, USA
miller@northeastern.edu

ABSTRACT

In multi-user environments in which data science and analysis
is collaborative, multiple versions of the same datasets are gen-
erated. While managing and storing data versions has received
some attention in the research literature, the semantic nature of
such changes has remained under-explored. In this work, we in-
troduce Explain-Da-V, a framework aiming to explain changes
between two given dataset versions. Explain-Da-V generates ex-
planations that use data transformations to explain changes. We
further introduce a set of measures that evaluate the validity, gener-
alizability, and explainability of these explanations. We empirically
show, using an adapted existing benchmark and a newly created
benchmark, that Explain-Da-V generates better explanations than
existing data transformation synthesis methods.

PVLDB Reference Format:

Roee Shraga and Renée J. Miller. Explaining Dataset Changes for Semantic
Data Versioning with Explain-Da-V. PVLDB, 16(6): 1587 - 1600, 2023.
doi:10.14778/3583140.3583169

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/northeastern-datalab/Explain-Da-V.

1 INTRODUCTION

Data is one of the most important ingredients in any decision mak-
ing process. The amount and size of data is growing and datasets
are being reused for multiple analyses. Data may be stored in dif-
ferent systems (e.g., data lakes [72]), vary in their formats, and may
or may not contain metadata. Data projects often involve multiple
users that work on datasets conjointly or independently, creating
different data versions. Accordingly, data versioning becomes an
important ingredient in data management [19]. Nevertheless, even
if versions are well managed [20], the documentation may be super-
ficial, e.g., embedded in filenames, which can be very inadequate. In
addition, the collaboration itself may not be structured or properly
managed and each user may perform different, often undocumented

processing steps on data [52, 57–59, 99]. For example, some users
may clean the data by removing rows or columns if they have
duplicated or missing information. Other users extract features,
transforming the current data to create new columns.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583169

Current tools have limited data versioning support [57]. Gen-
erally speaking, data, as opposed to code, may be less docu-
mented [58, 99] and data changes, even if documented, are rarely
accompanied by useful descriptions, making it difficult to under-
stand them [52]. Within a close collaboration group, a notebook
containing transformation code may be shared, but between organi-
zations this is rarely done. Consider, for example, the many versions
of important datasets shared on open data portals [37, 38, 53] where
transformations are generally not shared. The lack of sufficient ver-
sion documentation results in reduced reproducibility and trust
among users using the data [59, 99]. While managing and storing
data versions has received attention in literature [19, 20, 54, 81, 98],
the semantic nature of such changes has remained under-explored.
We motivate our work using the following example.

Running example

a0 a1 a2 a3 a4

m1 The Godfather (A) 175 9.2 Drama

m2 Hamilton (PG-13) 160 8.6 Drama

m3 The Avengers (UA) 143 8.0 Action

m4 Inception (UA) NaN 8.8 Action

m5 Moana (U) 107 7.6 Animation

a0 a1 a2 a3 a4 a5 a6 a7 a8

m1 The Godfather (A) 175 9.2 Drama A 2.91 4 17

m2 Hamilton (PG-13) 160 8.6 Drama PG-13 2.67 3 16

m3 The Avengers (UA) 143 8.0 Action UA 2.38 3 17

m5 Moana (U) 107 7.6 Animation U 1.78 2 9

(a) Dataset version created by UserA

Running example

a0 a1 a2 a3 a4

m1 The Godfather (A) 175 9.2 Drama

m2 Hamilton (PG-13) 160 8.6 Drama

m3 The Avengers (UA) 143 8.0 Action

m4 Inception (UA) NaN 8.8 Action

m5 Moana (U) 107 7.6 Animation

a0 a1 a2 a3 a4 a5 a6 a7 a8

m1 The Godfather (A) 175 9.2 Drama A 2.91 4 17

m2 Hamilton (PG-13) 160 8.6 Drama PG-13 2.67 3 16

m3 The Avengers (UA) 143 8.0 Action UA 2.38 3 17

m5 Moana (U) 107 7.6 Animation U 1.78 2 9

(b) Dataset version created by UserB

Figure 1: Example dataset versions about movies created by

two users. Attribute names are provided in Example 1.

Example 1. Figure 1 presents two dataset versions about movies.

We discard the column names from the figure to illustrate a realistic

(data lake) scenario. For readability, a0 is a tuple id, a1 represents
the movie title, a2 measures the movie runtime in minutes, a3 as-
signs a rating to the movie, and a4 provides the genre of the movie.

For convenience of presentation, lets assume that the table on the

bottom (Figure 1b) was created by UserB as a derivation of the table

on the top (Figure 1a) that was created by UserA. Even properly

naming the tables, e.g., Table 1a as data1_v1.csv and Table 1b

as data1_v2.csv, or knowing that Table 1b is derived from Ta-

ble 1a [19], does not help UserA to get a semantic understanding of
what UserB changed in the table or, more importantly, what data

processing steps UserB has performed.

Example 1 illustrates the need for a semantic understanding of a
new dataset version. Aiming to fill this gap, this work provides the

1587

https://doi.org/10.14778/3583140.3583169
https://github.com/northeastern-datalab/Explain-Da-V
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583169
https://www.acm.org/publications/policies/artifact-review-and-badging-current

setup and new solution to explain the semantic changes between
two dataset versions. Specifically, our goal is to automatically ex-
plain (in a simple user friendly way) the steps leading from one
version of dataset to the other. For example, how was column a6 in

Figure 1b created? or why was the fourth row in Figure 1a deleted?

Note that the changer’s intent, which is subjective, cannot be truly
reverse engineered. Our objective is to provide the other user an
accurate explanation, e.g., a set of functions, that describes the
changes. Following this goal, we return to our motivating example.

Example 1 (cont.). Figure 2 illustrates an annotated version

of Figure 1b, that explains the changes. In other words, Figure 2

reverse engineers the changes made by UserB in a way that a user

can understand. Specifically, UserB cleaned the rows that contain

NaN values (in this case m4) and extracted numerical features. The

certification of the movie, given in parenthesis in a1, was extracted
to create a5 and the column a6 converts the units of a2, the runtime

of the movie, from minutes to hours. Since the range of movie ratings

(a3) is limited, UserB also discretized the values to create four rating

classes in column a7. Aiming to examine the effect of title length (an

effect found for paper citations [39]) within the domain of movies,

UserB added column a8 that provides the length of titles from a1.

Running example
a0 a1 a2 a3 a4 a5 a6 a7 a8

m1 The Godfather (A) 175 9.2 Drama A 2.91 4 17

m2 Hamilton (PG-13) 160 8.6 Biography PG-
13

2.67 3 16

m3 The Avengers (UA) 143 8.0 Action UA 2.38 3 17

m4 Inception (UA) NaN 8.8 Action U - - -

m5 Moana (U) 107 7.6 Animation U 1.78 2 9

÷60

↑9→4, 8-9→3,
7-8→2, ↓7→1

Len()

Contains
NaN

extract(‘\(.*?\)’)

Figure 2: An interpretation of the changes between the

dataset versions given in Figure 1. The columns are colored

based on their origin (e.g., a5 is blue because it originates

from the blue a1) and annotated column transformations are

given at the bottom. The annotated row transformation is

given on the right, in this case removing a row, which is also

illustrated by diagonal stripes over the row.

As illustrated in Example 1, there are a variety of possible trans-
formations (e.g., multiplying/dividing the values of a numeric col-
umn, e.g., a3, by a constant), potentially creating an infinite possi-
ble number of changes to a dataset. These changes can be vertical
(changing columns) or horizontal (changing rows), they can add
information (adding columns/rows) or remove information (remov-
ing columns/rows) and they can involve different data types, e.g.,
textual to numeric (a1 to a8) or numeric to categorical (a3 to a7).
In addition, a user may also change a cell in the table, e.g., replacing
the NaN value in row m4 by 146.25 (the mean value of the other
values in the column), or perform a full-table operation, e.g., trans-
posing the table. Transformation discovery methods are used for
multiple data management tasks including fuzzy joins [102], data
wrangling [23], entity consolidation [40] and more [16, 49, 51, 55]

mainly focusing on textual (text-to-text) transformations and con-
sider the transformed values (rather than the transformation itself).
Our method mainly focuses on data versioning, for which, the trans-
formations themselves, as a means of explaining changes among
different dataset versions, is the main interest. Our resolved trans-
formations also cover transformations that involve, among others,
numeric transformations. The term “explanation” became quite
common recently and may be associated with multiple meanings.
For example, both El Gebaly et al. [42] and Kim et al. [61] use data
summaries as explanations. Explain3D [94], which shares a simi-
lar context to ours, explains dataset disagreements with syntactic
provenance-based and value-based modification mappings. In this
work the main component of an explanation is a transformation
that explains change. This paper makes the following contributions.
(1) Semantic Data Versioning Definition: we define and solve
a novel problem of semantic data versioning by explaining the
changes between two dataset versions.
(2) Vertical and Horizontal Data Transformation Resolution

Across Different Data Types: we present a solution to the
problem of semantic data versioning that examines both vertical
(adding/removing columns) and horizontal (adding/removing
rows) transformations that involve multiple data types.
(3) Semantic Data Versioning Metrics: we provide a set of
evaluation measures to examine the quality of explanations in
terms of validity, generalizablity, and explainability.
(4) Semantic Data Versioning Benchmark: we introduce a new
data versioning benchmark composed of 5 version-sets including
342 different dataset versions representing a total of 1702 changes.1
(5) Empirical Evaluation: our experiments show that
Explain-Da-V performs better than multiple baselines on
both our new version benchmark and on an existing data science
pipeline benchmark [1]. We analyze the impact of different
components of our solution on performance.

In this paper, we assume two tables are given where one is known
to have been derived from the other (i.e., is a version it) and we know
a match between the attributes and tuples the two tables share. This
work focuses on “internal” additions, deletions, or modifications
(modeled as deletions followed by additions). External additions,
e.g., finding joinable tables [101] and joining them with a table to
create a new version, are reserved for future work.

2 RELATEDWORK

We are, to the best of our knowledge, the first to address the seman-
tic aspect of data versioning. Yet, related research exists ranging
from synthesizing data transformations to exploring data change.

2.1 Data Versioning

Data versioning research mainly focus on developing version man-
agers to decrease the need for storing many versions of large
datasets [72]. For example, DataHub provides a git-like interface
to manage, store, recreate, and retrieve versions using a directed
version graph [19]. Follow-up research further studied the trade-off
between recreation and storage in a principled way analyzing six dif-
ferent settings [20]. Recently, Schüle et al. presented TardisDB [81],
an SQL extension to support version management. TardisDB uses

1Code and benchmark are publicly available [14].

1588

named branches over tables, to monitor table versions and track
their modification history. In contrast, we focus on the semantic
aspects of data versioning, zooming in on explaining the semantic
differences between dataset versions. Schema versioning has also
been studied [79]. Although schemata may change over time [87],
which provides semantic hints to data change, we assume metadata
is not always complete and may be ambiguous [72]. Hence, we
focus only on the versioning of the data itself.

2.2 Data Change, Difference, and Integration

We assume that some match between the attributes and tuples of
the versions is given. This assumption is rooted in many years of
data integration research, exploring attribute matching (schema
matching) [45, 78, 83], tuple matching (entity resolution) [43, 47, 66],
and others [18, 60, 68]. Earlier works looked into change and copy
detection in structured data [31, 32], which was later extended also
to semi-structured documents such as XML [34, 73, 95].

Acknowledging data change, Bleifuß et al. [21] envision systems
that can interactively explore such change. They present a model
of what changed, where, when and how, using what they call a
change-cube to monitor the history of changes over time using
methodologies such as time-series clustering [24]. DBChEx [22] is
a tool to explore data and schema change using a set of exploration
primitives. While similar in nature, this line of work focuses mainly
on how to explore change aiming to answer questions such as “How
many changes have there been in recent minutes?" and “How old
are the entities in table Y? When were they last updated?" [21, 22].
Our work focuses on local changes between versions and how the
changes were performed (which transformations were applied?),
e.g., how did UserB create the table in Figure 1b from Figure 1a.

2.3 Data Transformation By Example

The final related line of research we cover aims to automatically
transform data. Largely, given input and output tables (datasets) or
their subsets (examples), the goal of such approaches is to find a
transformation (program) such that if it is applied over the input we
get the output. It is worth noting that earlier work has referred to
this problem as query reverse engineering [74, 91], which is roughly
the same idea, i.e., finding a query that generates the output using
the input. This line of work can be divided into two main groups.

The first group is rooted in a paradigm called programming-by-
example (PBE) [23, 46, 49, 55, 56, 85, 86, 102], where the goal is to
synthesize a program that manipulates a given input to get a given
output. To do so, methods design different search spaces (operators
to be applied over the input) and apply different search algorithms.
For example, Foofah [55] creates a search space using operators
such as drop (delete a column) and split (separate a column by some
delimiter) and search the space using A* heuristic search. Clx [56]
also introduces string patterns such as regular expressions to the
search space and tokenizations. Data Diff [88] applies a search
approach to “patch” transformations, summarizing distribution
changes, including one numeric patch (operator) supporting linear
transformations with pre-defined (randomly selected) parameters.
Muller et al. describes differences between relational databases
with what they call “update distance” [70] using a similar searching

approach. Finally, Bogatu et al. introduced functional dependencies
to navigate the search space [23], which we also use in our work.

The second group focuses on creating transformation repos-
itories from external sources such as Web Forms, Knowledge
Bases [16, 75], GitHub and Stackoverflow [50, 51]. Transform Data
by Example (TDE) [50], instead of searching through a space of pre-
defined possible operations, creates a search engine where trans-
formation functions are crawled from GitHub and Stackoverflow.
Instead of applying heuristic search such as A*, TDE ranks candi-
date functions to find relevant functions. TDE was later extended
to allow transformation search based on patterns [51]. DataX-
Former [16] and Proteus [75] create a repository of tables from
which desired output values can be extracted.

A similar line of research revolves around resolving data prepa-
ration and analysis transformations [17, 96, 97]. AutoPandas [17]
focuses on Pandas library [13] and aims to synthesize a program us-
ing pandas functions. Auto-pipeline [97] extends the “by-example"
paradigm to “by-target", meaning that the output the user provides
is not necessarily aligned with the input and can require table-
reshaping operations (e.g., group by). Auto-pipeline comes in two
variations, namely, search (which is equivalent, yet extended to
what is described above) and deep reinforcement learning. The for-
mer can be a candidate baseline for our approach. The latter requires
training data which we assume does not exist in our setting.

In contrast to PBE and query reverse engineering, we do not
focus on matching input to output. Rather than looking only at
success rates (is the transformation valid), our search is guided
by the principle of creating valid, generalizable, and explainable
transformations. In our approach, these transformations can be
multi-dimensional (adding/removing attributes/tuples) and address
multiple data-types (e.g., numeric, categorial, and text transforma-
tions). While our string-based transformation resolution is based
on an extended Foofah, we also support numeric transformations
using explainable machine-learning algorithms to fit the appropriate

transformation rather than searching a very large space of possible
transformations. We go beyond Foofah to support text-to-numeric
transformations (e.g., measuring the length of a string) and text
cleaning operations (e.g., stopword removal and lemmatization).

3 SEMANTIC DATA VERSIONING

A dataset is denoted by a table 𝑇 , composed of a set of attributes
𝑇𝐴 = {𝐴1, . . . , 𝐴𝑛} and tuples 𝑇𝑟 = {𝑟1, . . . , 𝑟𝑚}. Each tuple is de-
fined as 𝑟𝑖 = ⟨𝑟𝑖0, 𝑟𝑖1, . . . , 𝑟𝑖𝑛⟩, such that 𝑟𝑖0 is the tuple identifier
and 𝑟𝑖 𝑗 (𝑗 ≠ 0) is a value assigned to the attribute 𝐴 𝑗 in the tuple 𝑟𝑖 .
Often we may have two datasets and know one was derived from
the other but the actual transformation code or documentation has
been lost [52, 57–59, 99]. In what follows, we address the problem
of explaining the changes between two dataset versions.

Given two dataset versions,𝑇 and𝑇 ′, we assume the latter, wlog,
is a derived table, i.e., a user changed the table 𝑇 and as a result
obtained the table 𝑇 ′ with 𝑇 ′

𝐴
= {𝐴′

1, . . . , 𝐴
′
𝑛} and tuples 𝑇 ′

𝑟 =

{𝑟 ′1, . . . , 𝑟
′
𝑚}. We assume that an alignment between 𝑇𝐴 and 𝑇 ′

𝐴
(attribute-match, denoted Σ𝐴) is given and that tuples in 𝑇 and
𝑇 ′ with the same identifier (𝑟0𝑖 and 𝑟 ′0𝑖) are assumed to represent
the same real world entity. An attribute 𝐴𝑖 ∈ 𝑇 (or 𝐴′

𝑗
∈ 𝑇 ′) is

considered unmatched if it does not appear in Σ𝐴 . A record 𝑟𝑖 ∈ 𝑇

1589

(or 𝑟 ′
𝑗
∈ 𝑇 ′) is considered unmatched if there is no record in 𝑇 ′

(respectively, 𝑇) with the same identifier.
Given an attribute-match Σ𝐴 , we define the changes between the

two dataset versions to be explained using a three symbols notation.
The first refers to whether the dataset is the left-hand one (L) or
the right-hand (revised) one (R), the second to whether it is the
matched (∇) or unmatched (unmatched is also called delta (Δ)), and
the third refers to attributes (A) or tuples (r). Specifically, 𝐿Δ𝐴(left-
hand delta attributes) and 𝐿∇𝐴(left-hand matched attributes) are
the set of unmatched (delta) and matched (consistent) attributes
in 𝑇 , respectively. Similarly, 𝑅Δ𝐴 and 𝑅∇𝐴 are the unmatched and
matched attributes in𝑇 ′. Using these sets, we create projected tuples.
Let 𝑟 𝑗 be a tuple of table𝑇 , the projected tuple is given by 𝜋𝐿∇𝐴

[𝑟 𝑗],
projecting out non-matching attributes. Given such projected tu-
ples, we can define similar sets for tuples, namely 𝐿Δ𝑟 (left-hand
delta tuples), 𝑅Δ𝑟 (right-hand delta tuples), 𝐿∇𝑟 (left-hand consistent
tuples) and 𝑅∇𝑟 (right-hand consistent tuples). We summarize this
notation in Table 1. Intuitively, we are interested in explaining the
deltas between the datasets, i.e., 𝐿Δ𝐴 , 𝑅Δ𝐴 , 𝐿Δ𝑟 , and 𝑅Δ𝑟 .

Example 2. Given the dataset versions in Figures 1a (𝑇) and 1b

(𝑇 ′
), the attribute-match is simply given by aligning the columns

headers (e.g., a2 ↔ a2). The tuple ids are given under a0 (e.g., m1
↔ m1). The following are the change sets: 𝐿Δ𝐴= ∅ (no removed

columns), 𝑅Δ𝐴= {a5, a6, a7, a8} (four added attributes), 𝐿Δ𝑟= {m4}
(one removed tuple), and 𝑅Δ𝑟= ∅ (no added tuples).

3.1 Change Explanations

We use the term explanation to refer to a user friendly way to
interpret a change between two relations. Intuitively, an explanation
is a transformation P from an origin O to a goal G. Formally, an
explanation E is defined with respect to a goal G with a name
G𝑛𝑎𝑚𝑒 and an associated relation G𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 it represents. As the
goal, the origin is also associated with a name (O𝑛𝑎𝑚𝑒) and a relation
(O𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛). A transformation P is an expression that transforms
the origin relation O𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 into the goal relation G𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 . The
origin relation may also be empty. A formal definition is as follows

Definition 3 (Explanation (E)). Let G be a goal. An explana-
tion EG = (O,P) of G is composed of an origin O and a transfor-

mation P, such that G𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = P(O𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛).

3.2 Explaining Dataset Changes

We focus on two orientations of explanations, namely, vertical ex-
planations and horizontal explanations. We further distinguish be-
tween removal and addition explanations. Modifications can be
modeled as a removal followed by an addition. Explanation types
differ in the type of relations that the origin and the goal represent.

The goal (G𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) and origin (O𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) relations are defined
with respect to versions𝑇 or𝑇 ′. Specifically, the relations O𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛

and G𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 can be a projection (subset of attributes) or selec-
tion (subset of tuples) over either 𝑇 or 𝑇 ′. In vertical explanations
(adding or removing attributes), the associated goal and origin
names (G𝑛𝑎𝑚𝑒 and O𝑛𝑎𝑚𝑒) are the projected attributes. For hori-
zontal explanations (adding or removing tuples), G𝑛𝑎𝑚𝑒 and O𝑛𝑎𝑚𝑒

correspond to the set of tuple ids in the subset. When clear from
context, we refer to the goal and the origin by their names.

Table 1: Notations used in the paper. The changes 𝐿Δ𝐴, 𝐿∇𝐴,

𝐿Δ𝑟 , and 𝐿∇𝑟 are defined wrt the left-hand table 𝑇 . The right-

hand notation can be obtained by replacing 𝑇 with 𝑇 ′
below.

Notation Meaning Notation Meaning

b
a
s
i
c 𝑇 Left-hand dataset 𝑇 ′ Right-hand (revised) dataset

𝑇𝐴 The attribute set of dataset 𝑇 𝑇𝑟 The tuple set of dataset 𝑇

c
h
a
n
g
e
s 𝐿Δ𝐴 Unmatched attributes in T 𝐿∇𝐴 Matched attributes in T

{𝐴𝑖 : 𝐴𝑖 ∈ 𝑇𝐴 ∧ 𝐴′
𝑗
∈ 𝑇 ′ : (𝐴𝑖 , 𝐴

′
𝑗
) ∈ Σ𝐴} 𝑇𝐴\ 𝐿Δ𝐴

𝐿Δ𝑟 Unmatched tuples in T 𝐿∇𝑟 Matched tuples in T
{𝜋𝐿∇𝐴

[𝑟 𝑗] : 𝑟 𝑗 ∈ 𝑇𝑟 ∧ 𝑟 ′
𝑖
∈ 𝑇 : 𝑟0𝑖 = 𝑟 ′0𝑖 } {𝜋𝐿∇𝐴

[𝑟 𝑗] : 𝑟 𝑗 ∈ 𝑇𝑟 }\𝐿Δ𝑟

Example 4. Recall the versions in Figures 1a (𝑇) and 1b (𝑇 ′
). An

example explanation for a goal G = (𝑎6, 𝜋𝑎6 [𝑇 ′]) is composed of

an origin O = (𝑎2, 𝜋𝑎2 [𝑇]) and a transformation P = 𝜋𝑎2 [𝑇] ÷ 60,
which is tuple-based, i.e., divide each tuple in 𝜋𝑎2 [𝑇] by 60. When

clear from context, we denote this explanation as E𝑎6 = (𝑎2, 𝑎2÷60).

Recalling the change sets, we aim to find vertical addition expla-
nations for 𝐿Δ𝐴 , vertical removal explanations for 𝑅Δ𝐴 , horizontal
addition explanations for 𝐿Δ𝑟 , and horizontal removal explanations
for 𝑅Δ𝑟 . An explicit problem definition, that relies on the quality
of explanations is provided in Section 7.2.

Example 5. Recall the versions of Figure 1, annotated changes
in Figure 2, and 𝐿Δ𝐴 , 𝑅Δ𝐴 , 𝐿Δ𝑟 , and 𝑅Δ𝑟 , defined in Example 2. A

possible set of explanations to explain the changes is as follows

Ea5 = (𝑎1, extract(a1, ‘(.*?)’))
Ea6 = (𝑎2, 𝑎2 ÷ 60)

Ea7 =

𝑎3,

4, if 9 ≤ 𝑎3
3, if 8 ≤ 𝑎3 < 9
2, if 7 ≤ 𝑎3 < 8
1, otherwise

Ea8 = (𝑎1, len(a1))
Em4 = (∅, has_NaN)

Most of the explanations are self-explanatory (as they should be).

Interesting cases are E𝑎5, that extracts value in parenthesis. Another
example is the horizontal explanation E𝑚4, for which the origin is an
empty set and the tuple was removed due to a NaN (null equivalent)

value. Although the goal is𝑚4, the transformation we find is one

that removes𝑚4 and no other tuples.

Explain-Da-V is a data-driven2 method composed of four parts cor-
responding to adding/removing attributes/tuples. We first describe
our core explanation methods (Section 4), which are then utilized
to explain vertical (Section 5) and horizontal changes (Section 6).

4 CORE SEMANTIC EXPLANATION METHODS

Our core explanation methods rely on fitting an appropriate ex-
planation methodology to data types we find in the origin O and
the goal G. Rather than the traditional database attribute types
(strings, integers, floats, etc.), given the nature of our analysis, we
look into ML feature types [82]. We focus on three main types,
namely, Numeric, Categorical and Textual (mixed types are consid-
ered textual), which characterizes the core changes Explain-Da-V
covers.3 Aiming to resolve a high variety of changes, we develop

2Data-driven reflects that we only use data values (we do not use meta-data).
3Explain-Da-V can be easily extended to support additional types such as dates.

1590

methods that are built on top of different types of origin sets using
multiple approaches that exploit the type of change. Accordingly,
Explain-Da-V can be applied over any pair of versions, regardless
of how far apart the versions are (meaning how many transfor-
mations have been applied). If an explanation is not found for a
specific change, it is declared idiopathic (unexplained).

Note that among the different changes, the vertical additions are
the most common and complex and, thus, the presented methods
mostly address such a scenario. Specifically, for the presentation
of methods, we assume the goal as a single attribute (a right-hand
attribute to be explained) with its data values. Also, given a goal,
finding its origin is not straight forward. For the moment, assume
the origin is the original left-hand table 𝑇 . We discuss a method to
“find” an origin, given a goal, in Section 4.6.

4.1 Numeric Change Explanations

Whenever we need to explain a numeric goal using an origin that
contains numeric data, we position the problem as regression in
which the origin relation tuples are treated as independent vari-
ables and the goal relation tuples as dependent variables. Aiming
at explainable transformations, we build on top of linear regres-
sion [28]. To reduce model complexity and prevent over-fitting [89],
we experiment with Lasso and Ridge regularization.

Example 6. A numeric transformation is given in Figure 1b,

where explaining a6 can be resolved by fitting a regressor
1
60 · 𝑎2.

Not all numeric transformations can be covered by a linear func-
tion. Accordingly, to allow richer, more flexible, numeric transfor-
mations, we extend the feature space (i.e., the origin) by generating
additional features. Note that while these extensions are motivated
by commonly used data science and engineering operations [63],
they do not (and cannot) cover every possible transformation.
Polynomial Regression and Inter-relation Features: To explain
polynomial transformations, we generate additional polynomial
features [41] over O. Given a predefined degree 𝑑 , the polynomial
extension of O is given by 𝑝𝑜𝑙𝑦 (O) whose attributes correspond to
{𝐴2

𝑖
, . . . , 𝐴𝑑

𝑖
,∀𝐴𝑖 ∈ O𝑛𝑎𝑚𝑒 }. The extended origin relation is created

on a tuple level by applying the associated operation. For example,
the attribute𝐴2

𝑖
of the tuple 𝑟 𝑗 in the extended relation would get the

value in attribute 𝐴𝑖 squared, meaning 𝜋𝐴𝑖
[𝑟 𝑗]2. We also introduce

feature inter-relation, that is, multiplication and division between
different attribute values in O. Note that addition and subtraction
are already supported when using linear regression. The inter-
relation extension of O, 𝑖𝑛𝑡𝑒𝑟 (O) corresponds to {𝐴𝑖 · 𝐴 𝑗 , 𝐴𝑖 ÷
𝐴 𝑗 . . . ,∀𝐴𝑖 , 𝐴 𝑗 ∈ O ∧𝐴𝑖 ≠ 𝐴 𝑗 }. Also here the transformations are
done on the tuple level, e.g., the attribute 𝐴𝑖 · 𝐴 𝑗 of the tuple 𝑟 𝑗
would get the value 𝜋𝐴𝑖

[𝑟 𝑗] · 𝜋𝐴 𝑗
[𝑟 𝑗]. The extensions can also be

applied consecutively, e.g., 𝑖𝑛𝑡𝑒𝑟 (𝑝𝑜𝑙𝑦 (O)) to create attributes such
as 𝐴𝑖 ÷𝐴2

𝑗
to resolve, for example, the BMI formula (𝑘𝑔 ÷𝑚2).

Mathematical Transformations: When generating new features
over numeric data, it is also common to use mathematical oper-
ations [25]. Specifically, to support this type of explanation we
generate a math extension of O, 𝑚𝑎𝑡ℎ(O), with the attributes
{𝑙𝑜𝑔(𝐴𝑖), 𝑠𝑞𝑟𝑡 (𝐴𝑖), 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 (𝐴𝑖), 𝑒𝑥𝑝 (𝐴𝑖), . . . ,∀𝐴𝑖 ∈ O}, where
𝑠𝑞𝑟𝑡 (𝐴𝑖) =

√
𝐴𝑖 , 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 (𝐴𝑖) = 𝐴−1

𝑖
, and 𝑒𝑥𝑝 (𝐴𝑖) = 𝑒𝐴𝑖 . The

transformations are tuple-based, e.g., the feature 𝑙𝑜𝑔(𝐴𝑖) of the

tuple 𝑟 𝑗 in the extended relation would get the value 𝑙𝑜𝑔(𝜋𝐴𝑖
[𝑟 𝑗]).

Global Aggregations: We also generate aggregate features. This
extended set is especially important when looking at one of the
most common transformations in machine learning, that is, (value)
normalization [100]. We introduce an extension of O, 𝑎𝑔𝑔(O), with
the attributes {𝑠𝑢𝑚(𝐴𝑖),𝑚𝑒𝑎𝑛(𝐴𝑖),𝑚𝑎𝑥 (𝐴𝑖),𝑚𝑖𝑛(𝐴𝑖) . . . ,∀𝐴𝑖 ∈
O}. Here, although assigned on a tuple level, the extended values
are computed over all the values in the attribute. For example, the
feature 𝑠𝑢𝑚(𝐴𝑖) of the tuple 𝑟 𝑗 would get the value

𝑟𝑖𝑘 ∈𝜋𝐴𝑖 (𝑇) 𝑟𝑖𝑘 .

Then, if a user applies a sum normalization over 𝐴𝑖 , the feature-set
𝑎𝑔𝑔(𝑖𝑛𝑡𝑒𝑟 (O)) that includes the feature𝐴𝑖 ÷𝑠𝑢𝑚(𝐴𝑖) would be able
to resolve and explain this added attribute. Similarly, in the case
of min-max normalization [100] the additional features of𝑚𝑖𝑛(𝐴𝑖)
and 𝑚𝑎𝑥 (𝐴𝑖) can be used to generate accurate explanations. An-
other example is the common collaborative filtering transformation
of subtracting the mean value (𝐴𝑖 −𝑚𝑒𝑎𝑛(𝐴𝑖)) [67].

An extended feature-set is used to fit a regressor that assigns
coefficients for extended feature-set. A perfect regressor would be
able to deal one all-inclusive feature-set (i.e., 𝑝𝑜𝑙𝑦 (𝑖𝑛𝑡𝑒𝑟 (. . . (O) ∪
𝑖𝑛𝑡𝑒𝑟 (𝑝𝑜𝑙𝑦 (. . . (O), . . .); yet, since it is not realistic to expect that
(from an explainable regressor), we apply each set independently
(power-set of the extensions) and generate multiple “possible” ex-
planations. Section 7.4 addresses the issue of choosing among them.

Note that the transformation is “learned” (fitted) only based on
the two dataset versions𝑇 and𝑇 ′ and no additional training data

is required. Section 5.1 discusses the main application of numeric
change explanations and illustrates it using multiple examples.

4.2 Categorical Change Explanations

Aiming to explain a categorical goal using an origin relation that
contains numeric, we position the problem as classification, in which
the tuples of the origin relation are treated as explanatory variables
and the goal relation tuples are used as the output class labels. The
output class can be binary (e.g., is movie longer than two hours) or
multi-class (e.g., a7, Example 1). Aiming at explainability, we focus
on decision trees [28]. Note that decision trees cover only explana-
tions that can be represented as disjunction of conjunctions [69].
Each path from the root to a leaf corresponds to a conjunction and
the tree is the disjunction of these conjunctions.

a3>9

a7=4a3<7

a3>8

a7=2a7=3

𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒

a7=1

𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒

𝐹𝑎𝑙𝑠𝑒 𝑇𝑟𝑢𝑒
Example 7. Figure 1b

provides an example a

categorical transformation,

namely, a7, which can be

resolved with the help of the

following decision tree.

4.3 Textual Change Explanations

When the origin and/or goal are textual, we follow the PBE ap-
proach (see Section 2.3), using a search-based solution. Specifically,
we adopt an existing framework called Foofah [55]. The PBE so-
lution is composed of designing a space of possible operators and
a search algorithm. The search algorithm (A*, following Foofah)
navigates the space of operators using a heuristic function (based

1591

on dissimilarity of tables) that estimates the cost of any proposed
partial solution. The space is pruned to boost search speed [55].

4.3.1 Textual-to-Textual. Addressing data versioning, we extend
the traditional PBE operators to include operators the cover fre-
quent text-processing steps [93], including text lowering, lemmati-
zation, removal of special charterers (e.g., punctuations and numeric
values) and tokens (e.g., stop-words and html tags). All implemented
additional operators for foofah are given in our repository [14].

Unlike Foofah, we also consider textual-to-numeric and textual-
to-categorical. Note that although in recent years transformer-based
models have become a standard way to extract (latent) features from
text, traditional feature engineering over text, that is, extracting
manual numeric and categorical features from textual values, is still
an important ingredient in NLP [33, 36, 62] and in other research
disciplines such as HCI [29] and information management [48].

4.3.2 Textual-to-Numeric. The search space defined for resolving
this kind of transformation includes a meta-operation that counts
the occurrences of some pattern 𝑝𝑎𝑡 in a value (count𝑝𝑎𝑡 (𝑟𝑖 𝑗)),
where 𝑟𝑖 𝑗 is a value in the table, see Section 3). Using this operation
we can define operations such as number_of_words = count‘␣’ (𝑟𝑖 𝑗)
and number_of_questions = count‘?’ (𝑟𝑖 𝑗). We also cover counting
a pre-defined set of stop-words and punctuation marks.

4.3.3 Textual-to-Categorical. We define a similar meta-operation
for a pattern existence (contains𝑝𝑎𝑡 (𝑟𝑖 𝑗)), which is used to gener-
ate operations such as contains_percent = contains‘%′ (𝑟𝑖 𝑗).

Example 8. Figure 1b provides an example of textual-to-textual

transformation, namely, a5, which can be resolved with the help of

the foofah environment in its original implementation. Specifically,

if we consider a1 as an origin, foofah would consider 𝜋𝑎1 [𝑇] as input
examples and 𝜋𝑎5 [𝑇 ′] as corresponding output examples (goal in our

terms) and synthesize a tuple-based data transformation program

(1) t = split(t, 0, ‘(’), (2) t = split(t, 1, ‘)’), (3) t = drop(t, 0), (4) t = drop(t, 2)
the tuple value Moana (U), for example, would be transformed as

follows [Moana , U)]→[Moana , U,]→ [U,] → U.
Resolving a8 requires Explain-Da-V’s extensions that includes

textual-to-numeric transformations (len()).

Note that Foofah aims to synthesize transformations using a
given set of example tuples, and is often able to do so using just a
few examples. Our goal, in contrast, is to generate an explanation
that correctly explains a full table transformation (a dataset version).
Hence, our tremendous expansion of the search space beyond text-
to-text transformations plays a critical role. Moreover, Section 4.6
introduces a technique that prunes the search space in this context.

4.4 Categorical-encoding Change Explanations

Whenever dealing with mixed types, textual and categorical values
may be encoded. A common encoding approach, which we use
here, is one-hot-encoding [80]. Let 𝐴𝑖 ∈ O be a textual/categorical
attribute in the origin. One-hot-encoding of this attribute generates
an additional attribute for each unique value (or category) in𝐴𝑖 and
assigns a value of 1 to each tuple that corresponds to this value (cat-
egory). This addition, not only allows the resolution of this common
encoding scheme, but also a richer representation that can be used

to resolve other types of encoding (e.g., ordinal encoding) and addi-
tional transformations. Such encodings are also commonly used in
data preparation for machine learning [26]. Recalling Example 1,
if a user aims to predict the rating of a movie, extracting features
such as Is_Drama or Is_Action can be beneficial for learning.

4.5 Reshaping Change Explanations

Generally group-by is a table-reshaping operation [97], i.e., a natu-
ral attribute-match and tuple-match do not exist. However, when it
comes to feature engineering, group-by can also be used to gener-
ate aggregated features based on some other attribute. The latter
is addressed in a manner that is similar to numeric change ex-
planations. An extended origin, similar to Section 4.1, would be
created for each numeric attribute 𝐴 𝑗 ∈ 𝑇𝐴 with respect to each
textual/categorical attribute 𝐴𝑖 ∈ O independently or conjointly
(grouping by multiple attributes). We use an SQL syntax for clarity.

SELECT 𝐴𝑖 , mean(𝐴𝑗), max(𝐴𝑗)...
FROM T
GROUP BY 𝐴𝑖

Figure 3: Group by Query

A helper query (Figure 3)
can be used to generate
the extended group-by fea-
tures of the numeric at-
tribute 𝐴 𝑗 ∈ 𝑇𝐴 with re-
spect to a textual/categor-
ical attribute 𝐴𝑖 ∈ O.

If more than one numeric attribute exists, it will be added to the
GROUP BY and SELECT clauses. Using this helper query, by joining
it with the origin, we obtain the additional possible attributes.

We also consider the reshaping scenario introduced in previous
work, e.g., [97]. Reshaping is often considered as a possible opera-
tion that can be applied over a table throughout the search (see Sec-
tion 2.3). We introduce an alternative data-driven approach. Specifi-
cally, reshaping is associated only with attribute-match when there
is no tuple-match. We explicitly reshape the table using the query of
Figure 3 and fit a regressor over it. Currently, Explain-Da-V does
not support other reshaping transformations such as transpose and
pivot, which we intend to explore in future work.

4.6 Finding the Origin

In our discussion so far, we have assumed that the origin for the
transformations P is the original relation𝑇 . However, we can make
our search more efficient if we can determine that for a specific
goal, the origin is only a portion of 𝑇 . Accordingly, we aim to “find

the origin”. Different from some related literature where the input-
output scope is clear (see Section 2.3), in data versioning we do
not know what was used to derive a specifical goal. Hence, our
approach first searches for an origin for the transformation.

A naïve solution to use all available data values. For example,
in the context of adding attributes, using all attributes of 𝑇 as an
origin, i.e., O = (𝑇𝐴,𝑇). The problem with this method is twofold.
First, unrelated attributes may serve as noise when aiming to find a
proper transformation for the goal. For example, referring back to
Example 1, aiming to resolve a5 using all attributes (a1-a4) presents
a much larger search space than aiming to resolve it using a2. A
second issue has to do with the data types. Using a numeric change
explanation (Section 4.1) may be more beneficial than a textual
change explanation (Section 4.3). For example, using a2 as an origin
to explain a5 instead of using a1 to a4.

1592

When examining the creation of a new attribute from existing
attributes, we observe a side effect of creating a functional depen-

dency between the origin and the new attribute (goal). For example,
if two movies have the same runtime in minutes (a2), they will have
the same runtime in hours (a5), which, by definition constructs a
functional dependency between a2 and a5. Accordingly, we use a
functional dependency discovery algorithm [76] to find the origin.4
We find dependencies in which our goal is the dependent set and
the discovered determinant is used as the origin. Note that there
can be more than one attribute set that determines the goal and
accordingly multiple origins may be generated.

We analyze all determining attribute sets by considering each one
of them as a candidate origin. Accordingly, multiple explanations
may be generated for a goal. Section 7.4 describes how we choose
among them. Specifically, we rank the determinants by size and
cardinality and, if desired, an early stop condition can be introduced
based on the size or quality of the discovered transformation.

Example 9. Recall Figure 1 and consider attribute a7 as a goal.
Since the example tables are small, any combination of attributes

in {a1, a2, a3, a4} can be considered as an origin. If no high quality

explanations are found for singleton attributes, the algorithm can

consider combinations of attributes. In a larger real example, only a

few attributes or combinations of them may be an origin.

5 EXPLAINING VERTICAL CHANGES

With our arsenal of explanation methods, we now consider how to
use them to explain changes. We begin with attribute additions, after
which, we describe our approach to handling attribute removal.

5.1 Addition Explanations for 𝑅Δ𝐴

Adding an attribute is a very common operation in data science,
mainly revolving around data preparation and feature engineering
for machine learning (ML) [100]. Added attributes are usually a
result of applying some transformation over the existing data. We
first find the origin (Section 4.6) an then utilize the core explanation
methods (Section 4) to find transformations that, when applied to
the origin relation, generate the desired goal relation.

Explain-Da-V attribute addition explanation is iterative, aiming
to resolve each added attribute (i.e., the goal G = (𝐴𝑖 , 𝜋𝐴𝑖

[𝑇 ′]))
at a time. First a set of possible origins for 𝐴𝑖 is found following
Section 4.6. Then, Explain-Da-V uses the core explanation methods
(Section 4) in a case-based manner (according to the types of the
origin and the goal) to generate explanations. For example, if a
numeric origin is found for a numeric goal, Explain-Da-V uses a
numeric explanation method (Section 4.1). Multiple explanations
may be generated for each goal (e.g., due to multiple origins), for
which we introduce a search strategy in Section 7.4. A full algorithm
is given in a technical report [84]. We illustrate it over Figure 4,
which provides an additional version of the table in Figure 1a. A
more detailed example can be found in a technical report [84].

Example 10. Among the new added attributes a9 and a10 are
numeric. The attribute a9 is a (sum) normalization of the values in

a3 (normalized rating). Explain-Da-V would first find its origins

4In our experiments we use a discovery algorithm called FDEP [44].

Column Addition

a0 a1 a2 a3 a4 a9 a10 a11 a12 a13 a14

m1 The Godfather (A) 175 9.2 Drama 0.28 3.15 1 godfather a 8.9 1

m2 Hamilton (PG-13) 160 8.6 Drama 0.28 3.23 1 hamilton pg 8.9 1

m3 The Avengers (UA) 143 8.0 Action 0.24 3.36 0 avengers ua 8.0 2

m5 Moana (U) 107 7.6 Animation 0.23 4.26 0 moana u 7.6 3

Figure 4: Dataset version created by UserC over Figure 1a.

(Section 4.6). As in the case of a6 (see Example 9), also a9 can be

determined by multiple attribute sets. Among the possible origins,

consider a3. Since both a3 and a9 are numeric, Explain-Da-V uses
numeric change explanations (Section 4.1). A baseline explanation

will be generated by fitting a regressor over a3. Then, different
extensions will be applied over the origin, each will be associated

with an explanation by fitting a regressor. Among the generated

extensions we will find 𝑎𝑔𝑔(𝑖𝑛𝑡𝑒𝑟 (O)), that contains the feature
a3÷sum(a3) over which a transformation a9=a3÷sum(a3) will be

fitted to generate an explanation E𝑎9 = (𝑎3, 𝑎3÷𝑠𝑢𝑚(𝑎3)). Similarly,

consider {a2, a3} as an origin for a10, the following explanation

will be generated E𝑎10 = ({𝑎2, 𝑎3}, 60 · 𝑎3 ÷ 𝑎2) (rating per hour).

a3>8

a11=0a11=1

𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒
Example 10 (cont.). Attribute a11

is categorical and consider, for exam-

ple, the numeric origin a3. Accordingly,
Explain-Da-V uses categorical change
explanations (Section 4.2) and might fit the following decision tree to

explain a11. Note that a11 might been created by applying a3>8.5
which differs from Explain-Da-V’s data-driven explanation. Our

goal however is to provide an accurate explanation which both are.

Interestingly, if we consider a2 as an origin we can derive a similar

decision tree rooted at 𝑎2 > 150. These issues refer to the explana-
tions generalizability, which is discussed in Section 7.

Attribute a12 is textual and focuses on text cleaning.

Explain-Da-V executes Section 4.3.1 and using, for example, a1 as

an origin, the resolved transformation removes punctuation marks

(e.g., ‘(’) and numeric values (‘13’) and lowers the text. Note that

such a transformation requires our extensions to Foofah and would

not be accurately resolved using the original Foofah [55].

Attribute a13 is numeric and among possible origins, consider

{a3,a4}, which is mixed. Explain-Da-V would turn to encod-

ing (Section 4.4) and reshaping (Line 4.5). Consider the latter,

Explain-Da-V will generate an explanation using the transfor-

mation 1 · (𝑚𝑒𝑎𝑛(𝑎3) 𝑏𝑦 𝑎4) which represents a group by a4 and
computing the mean of a3 (mean rating by genre).

Finally, attribute a14 is categorical and consider, a4 as an ori-

gin. In addition to applying textual explanations (Section 4.3.3),

Explain-Da-Vwould also turn to encoding (Section 4.4) and reshap-
ing (Section 4.5) explanations. Consider the former and note that

a14 is an ordinal encoding of attribute a4 (Drama→1, Action→2,

Animation→3). The three encoded attributes, namely is_Drama,
is_Action? and is_Animation? are used to resolve a14. Note
that in a real-world scenario, an attribute like a14 would not nec-
essarily be recognized as a categorical (e.g., if it has high cardi-

nality it could be misclassified as a numeric value). In this case

Explain-Da-V would turn to Section 4.1 resulting in the transfor-

mation 1·is_Drama? + 2·is_Action? + 3·is_Animation?.

1593

5.2 Removal Explanations for 𝐿Δ𝐴

Removing attributes is less common and usually include superficial
transformations. We treat each attribute in 𝐿Δ𝐴separately as a goal.
We cover two main types of explanations for removal reflecting
data cleaning (removing duplicated and noisy attributes).

First, we examine a table-independent attribute removal, which
in our terms reflects an empty origin (O = ∅). Specifically, we
use a threshold to decide whether a attribute was removed be-
cause it has too many (above a threshold) missing (NaN) values.5
In this case an explanation for a removed attribute 𝐴𝑖 ∈ 𝐿Δ𝐴
will be in the form of E𝐴𝑖

= (∅, ‘contains missing information’).
Formally, the ‘contains missing information’ can be defined as

𝐴𝑖 =

∅, if ratio of NaN values > 𝛼

𝐴𝑖 , otherwise
,

where 𝛼 ∈ [0, 1] is some threshold.
As a second case, we look into duplicated information. A trivial

explanation can be provided for an identical attribute in 𝑇 ′. Given
a goal 𝐴𝑖 , the origin is some attribute 𝐴′

𝑗
∈ 𝑇 ′ such that 𝐴′

𝑗
∉ 𝑇 and

𝜋𝐴𝑖
[𝑇] = 𝜋𝐴′

𝑗
[𝑇 ′] (full overlap of values). A natural extension of

finding duplications is looking into similarities between attributes.
We look into two types of similarities, measuring the overlap be-
tween attributes and if there is a one-to-one dependency between
them. Overlap is measured and, if it meets some threshold, an expla-
nation is generated using the overlapping attribute 𝐴′

𝑗
as the origin

and an ‘overlaps with 𝐴′
𝑗
’ transformation, which is defined similar

to above. We also check if some attribute in 𝑇 ′ determines (using
a similar methodology as described in Section 4.6) 𝐴𝑖 ∈ 𝐿Δ𝐴 . Ob-
viously many other measures of similarity exist, which we intend
to explore in future work. Finally, note that sometimes attribute
removal can be idiopathic, i.e., the user simply removed an attribute
because they are not interested in some parts of the data.

6 EXPLAINING HORIZONTAL CHANGES

We begin with the common data cleaning operation of tuple re-
moval, after which we discuss adding tuples.

6.1 Removal Explanations for 𝐿Δ𝑟

Tuple removal is a very common operation in data preparation,
which mainly revolves around cleaning data. Our examination be-
gins iteratively by looking into each removed tuple in 𝐿Δ𝑟 indepen-
dently. This may, for example, result in the horizontal explanation
E𝑚4 from Example 5. Finally, we explore if a predicate was applied
to remove them all remaining (unexplained) tuples conjointly.

As in Section 5.2, we aim to find tuples that were removed collec-
tively in a table-independent manner due to missing values (NaNs),
see the m4 explanation in Example 5. For table-dependent expla-
nations, we find duplicated tuples, which is a common result of
data cleaning using entity resolution [43, 66]. We focus only on
identical tuple removal. Note that this strict requirement can be
relaxed and any entity resolution technique, e.g., using declarative
rules [27], can be used to find duplicated-tuple removal explana-
tions. Specifically, if a duplicated tuple 𝑟 ′

𝑗
∈ 𝑇 ′ is found for a goal

tuple 𝑟𝑖 ∈ 𝐿Δ𝑟 , we create a horizontal explanation of the form

5The threshold can be treated as an hyper-parameter or a user-provided input.

E𝑟𝑖 = (∅, duplicated of 𝑟 ′
𝑗
). This transformation can be expressed

as follows 𝑟𝑖 =

∅, ∃𝑟 ′

𝑗
∈ 𝑇 ′𝑠 .𝑡 .𝑟𝑖 = 𝑟 ′

𝑗

𝑟𝑖 , otherwise
Finally, outlier detectors (Z-method and IQR-method [30, 90]) also
serve as explanations for removed tuples.

Not all tuples can be explained independently, thus, for all unex-
plained tuples, 𝐿Δ𝑟𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 , we aim to find a joint explanation
in the form of a predicate. Given a set of unexplained tuples, we
use a categorical explanation method (Section 4.2) to find a joint
explanation. Similar to Section 5.1, in case the origin has mixed
types, a decision tree is applied also over encoded (using categorical-
encoding change explanation, Section 4.4) attributes in the table.

Running example (row removal) – Over 8.5
Drama or Action

a0 a1 a2 a3 a4

m1 The Godfather (A) 175 9.2 Drama

m2 Hamilton (PG-13) 160 8.6 Biography

m3 The Avengers (UA) 143 8.0 Action

m4 Inception (UA) NaN 8.8 Action

m5 Moana (U) 107 7.6 Animation

(a) Dataset version created by

UserD over Figure 1a.

a3>8.5

removeis_Drama?

is_Action?

removemaintain

𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒

maintain

𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒

𝑇𝑟𝑢𝑒 𝐹𝑎𝑙𝑠𝑒

(b) Tree

Figure 5: UserD version of Figure 1a and its explanation.

Example 11. In the example of Figure 1b we present a simple

example of tuple removal due to NaN value. Figure 5a provides an

example of applying a predicate over the table. To resolve this predi-

cate, Explain-Da-V will first add the one-hot-encoded features cor-

responding to a4 (is_Drama?, is_Action? and is_Animation?),
then, using a decision tree, it will try to resolve the predicate. The

decision tree in Figure 5b will be generated.

6.2 Addition Explanations for 𝑅Δ𝑟

The non-idiopathic addition of tuples may be a result of over-
sampling (bootstrapping). To detect such a transformation, we use
a similar methodology as in Section 6.1. Given an added tuple 𝑟 ′

𝑖
∈

𝑅Δ𝑟 , we aim to find a duplicated (equal or similar) tuple 𝑟 𝑗 ∈ 𝑇 to
create an explanation noting that the tuple has been bootstrapped.

7 EVALUATING EXPLANATIONS

We aim to generate user friendly explanations that capture the
semantics of changes. Specifically, the explanation (transformation)
can reproduce the change and generalize it beyond a specific setup.
Aiming to assess such semantics, we now describe how we evaluate
explanations. Sometimes multiple explanations can be generated
with respect to a change. Recall Example 10 in which we present
two possible valid explanations for a11. The first decision tree
explanation is rooted at 𝑎3 > 8 and the second is rooted at 𝑎2 >

150. Also a decision tree rooted at 𝑎3 > 7.5 is a possible (invalid)
explanation. In what follows, an important question that needs to be
asked is how to compare (and choose among) possible explanations?

Related work on data transformation (see Section 2.3) employ
success rates that measure whether the output was generated suc-
cessfully by applying the transformation over the input. Yang et al.
also introduce a ranking measure (MRR) over possible transforma-
tions (pipelines in their terms), which still views the transformation
as a whole [97]. We claim that solely using such a measure does

1594

not capture the true nature of the transformation, especially when
evaluating an attribute-to-attribute (Section 5.1) transformations.
To provide a more fine-grained evaluation, we evaluate both the
validity and generalizablity computed over the transformed values
to assess the coverage of the transformation. As we are interested
in providing explainable solutions, we also use two explainability

dimensions, conciseness and concentration.

7.1 Explanation Validity and Generalizablity

Attribute (vertical) addition explanations are richer than removal or
tuple transformations, so their evaluation is addressed accordingly.
Vertical Additions: We separate this evaluation into validity (does
the generated transformation recreate the goal using the origin?)
and generalizability (will the generated transformation be able to

recreate a similar goal using a similar origin?). Recall Definition 3
and the notation of origin (O), goal (G), and transformation (P).
For simplicity, we denote the output of a transformation applied to
an origin relation as Ĝ = P(O𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛). Validity is computed in a
tuple-based manner over value-pairs (𝑟𝑖 𝑗 , 𝑟𝑖 𝑗) such that 𝑟𝑖 𝑗 ∈ Ĝ is a
transformed value corresponding to a goal value 𝑟𝑖 𝑗 ∈ G𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 , i.e.,
𝑟𝑖0 = 𝑟𝑖0 (𝑟𝑖0 is the tuple id so this means the tuples are matching,
see Section 3). Explanation validity is measured as follows:

𝑉𝑎𝑙 (EG) =
1

|G𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 |
∑︁

𝑟𝑖 𝑗 ∈Ĝ,𝑟𝑖 𝑗 ∈G𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 :
𝑠.𝑡 .𝑟𝑖0=𝑟𝑖0

I(𝑟𝑖 𝑗 = 𝑟𝑖 𝑗) (1)

where I(𝑟𝑖 𝑗 = 𝑟𝑖 𝑗) is an indicator returning the value 1 if the trans-
formed value equals to the corresponding goal value and 0 other-
wise. The validity can be viewed as a tuple-based success rate, i.e.,
the proportion of the tuples that were successfully transformed.

Example 12. Recall the vertical explanation E𝑎9 = (𝑎3, 𝑎3 ÷
𝑠𝑢𝑚(𝑎3)) which was created for the attribute a9 in Figure 4 (see

Example 6). Also consider an alternative vertical explanation E ′
𝑎9

= (𝑎3, 𝑎3÷ 33.4). Both explanations would have a validity score of 1
as applying the corresponding transformation recreates a9 perfectly.

As illustrated in the example, validity only looks at the given
dataset versions 𝑇 and 𝑇 ′, which may result in overfitting (e.g.,
selecting 𝑎3 ÷ 33.4 over 𝑎3 ÷ 𝑠𝑢𝑚(𝑎3)). Aiming to measure such
scenarios, we introduce generalizability, measuring the extent to
which a solution can explain an equivalent set of versions. Specifi-
cally, generalizability can be measured if a pair of versions 𝑇 and
𝑇 ′ exist such that 𝑇 ′ was generated as a version of 𝑇 using the
same transformations that were used to generate 𝑇 ′ from 𝑇 . Let Õ
be the origin over 𝑇 and G̃ the goal over 𝑇 ′. The generalizability
of an explanation 𝐺𝑒𝑛(EG) is measured by applying P over Õ to
generate ˆ̃G and is computed as in Eq. 1 over ˆ̃G and G̃. We illustrate
the importance of generalizability using the following example.

Example 13. Fig. 6 provides two dataset versions. The top table is
similar to Fig. 1a and the bottom table corresponds to Fig. 4 such that

the same transformations over Fig. 1a generates Fig. 4. Recall the

explanations E𝑎9 = (𝑎3, 𝑎3 ÷ 𝑠𝑢𝑚(𝑎3)) and E ′
𝑎9 = (𝑎3, 𝑎3 ÷ 33.4).

While these two are valid, using Fig. 6, we observe that E𝑎9 is also
generalizable while E ′

𝑎9 is not. Specifically, if we apply E𝑎9 over
a3 in Fig. 6 we obtain the values of a9 in the bottom table. However,

Running example (generalizability)

a0 a1 a2 a3 a4

m6 Pulp Fiction (A) 154 8.9 Drama

m7 Saw (UA) 103 7.6 Horror

m8 Snatch (UA) 104 NaN Crime

m9 King Kong (Passed) 100 7.9 Adventure

a0 a1 a2 a3 a4 a5 a6 a7 a8

m6 Pulp Fiction (A) 154 8.9 Drama A 2.56 4 16

m7 Saw (UA) 103 7.6 Horror UA 1.72 2 8

m9 King Kong (Passed) 100 7.9 Adventure Passed 1.67 2 18

Running example (generalizability)

a0 a1 a2 a3 a4

m6 Pulp Fiction (A) 154 8.9 Drama

m7 Saw (UA) 103 7.6 Horror

m8 Snatch (UA) 104 NaN Crime

m9 King Kong (Passed) 100 7.9 Adventure

a0 a1 a2 a3 a4 a9 a10 a11 a12 a13 a14

m6 Pulp Fiction (A) 154 8.9 Drama 0.36 3.47 1 pulp fiction a 8.9 1

m7 Saw (UA) 103 7.6 Horror 0.31 4.43 0 saw ua 7.6 4

m9 King Kong (Passed) 100 7.9 Adventure 0.32 4.74 0 king kong passed 7.9 5

24.4

Figure 6: Example versions for generalizability

if we apply E ′
𝑎9, we obtain the values 0.27, 0.23, and 0.24 for the

records m6, m7, and m9, respectively, resulting in a 0 generalizability.

In practical settings, generalizability can be computed when the
same changes are applied to multiple datasets, e.g., in a data pipeline
such as ETL [92]. For our new benchmark (Section 8.1.1), we gener-
ate an annotated hold-out set, used to compute generalizability.
Other Explanations: For tuple removal, we apply a reconstruction
methodology to evaluate validation and generalizability globally.
We gather all generated explanations and apply them over𝑇 and try
to regenerate𝑇 ′. Then, we check the overlap between the removed
tuples and the tuples that are not included in 𝑇 ′. For example, if a
a3>8 predicate was used to explain the removed tuples, the same
predicate would be applied over𝑇 and compared to𝑇 ′. This overlap,
i.e., the proportion of tuples that were correctly removed using the
explanations of Explain-Da-V, is used as the overall validity of
tuple removal. The generalizability is measured similar to above
using an additional dataset version pair 𝑇 and 𝑇 ′.

We also compute validity and generalizability for other expla-
nations. Validation and generalizability of a removed attribute or
added tuple are computed independently, i.e., a score of 1 is given if
an attribute was removed correctly or a tuple was added correctly.

7.2 Problem Definition

We now formally state the problem of explaining data versions.
Recall the change sets defined over the 𝑇 and 𝑇 ′ (see Section 3.2).

Definition 14. Given 𝑇 ′
, a version of 𝑇 where the goals are

𝐿Δ𝐴(left-hand delta attributes), 𝑅Δ𝐴(right-hand delta attributes),

𝐿Δ𝑟 (left-hand delta tuples), and 𝑅Δ𝑟 (right-hand delta tuples). From a

search space of possible explanations, the version explanation problem

is to find, for each goal, a set of explanations with the highest validity.

A solution to the version explanation problem is a set of explana-
tions that composed come closest to producing𝑇 ′ from𝑇 . Note that
with validity alone we may have ties (as in our examples where
multiple explanations have validity 1). If we have multiple datasets
(or a dataset holdout), we can use generalizability to pick among
the multiple solutions. We may also relax Definition 14 to find so-
lutions whose validity is within some range of the best and then
use generalizability to select among these candidate solutions. In
addition, we can use explainability (described next) in this selection
and pick explanations that a user can better understand.

7.3 Explanation Explainability

As motivated above, we care about the explainability of the gen-
erated solution. We, again, mainly focus on the attribute addition

1595

transformations. Since we use different models to generate explana-
tions (regressors, decision trees, and programs), we seek a common
ground to measure explainability. Inspired by Narayanan et al. [71]
and Lakkaraju et al. [64], who focus on decision sets, we introduce
two explainability dimensions, namely conciseness, and concentra-

tion, that can be measured across different explanations types.
Explainability Conciseness: Studies show that the fewer the
components in a model and the shorter it is, the easier it is for a
user to understand it [35, 77]. In what follows, we measure the
conciseness of the transformation as the number of components
(𝑁𝑐) it holds. For regression models we use the number of coefficients,
for decision trees we use the number of nodes, and for programs we
use the number of implementation lines.

Example 15. Consider an 𝑒𝑥𝑝 (𝐴𝑖) transformation. Obviously a

desired explanation would use the𝑚𝑎𝑡ℎ(·) extension (Section 4.1) to

generate a valid and generalizable explanation (𝐴𝑖 , 𝑒𝑥𝑝 (𝐴𝑖)) that
obtains an explainability conciseness of 1 (a sole coefficient).

An alternative explanation would use a Taylor Series over the

𝑝𝑜𝑙𝑦 (·) extension to generate a valid and generalizable explanation

(𝐴𝑖 , 1 + 𝐴𝑖 +
𝐴2
𝑖

2 + 𝐴3
𝑖

6 + . . .) with an explanability conciseness of

1
𝑑+1 , where 𝑑 is the polynomial degree. Note that this case also

highlights the trade-off between validity (or generalizability) and

explainability. The bigger the selected degree, the higher the validity

(and generalizability) and the lower the explainability.

Explainability Concentration: While a more concise explanation
is favorable, it should also contain as few components as possi-
ble [65] (i.e., it should be as concentrated as possible). Specifically,
since humans have a limited working memory, a solution that is
grouped into fewer chunks of information is favorable [71]. For
example, a linear regression function is easier to understand than
a polynomial regression with reciprocal and logarithmic transfor-
mations, even if the former is longer. For regressors, we count the
extensions that were used (e.g., polynomials and math operations).
For decision trees, we count the number of internal nodes that repre-
sent conditions and for programs we use the number of intermediate

transformations. Let 𝑁𝑔 be the number of chunks, the explanability
concentration is then given as 1÷𝑁𝑔 such that a more concentrated
transformation gets a higher score.

Example 16. The concentration of (𝐴𝑖 , 𝑒𝑥𝑝 (𝐴𝑖)) and (𝐴𝑖 , 1 +
𝐴𝑖 +

𝐴2
𝑖

2 + . . .) is 0.5 (1 extension, 1 degree) and 1
𝑑
, respectively.

To highlight the difference between conciseness and concentration

consider, for example, E1 = 𝐴1 +𝐴2 + 5 and E2 = 𝑙𝑜𝑔(𝐴1) +𝐴2
2 ·𝐴1.

While E1 is less concise (
1
3 vs

1
2 of E2), it is more concentrated (1)

than E2 (
1
3) which involves two additional extensions.

The total explanability is a linear combination of conciseness
and concentration that can be defined by a user or a system.6

7.4 On Choosing an Explanation

Explain-Da-V works iteratively, aiming to find valid explanations
for each detected change following Section 5 and Section 6. As
mentioned above, for each goal, multiple explanations can be gen-
erated, for example, if there are multiple origins (Section 4.6) or

6In our experiments we use a uniform combination.

we have more than one methodology to explain a transformation
(e.g., different extensions in Section 4.1). Explain-Da-V chooses
the most explainable valid explanation for each goal.

Each independent explanation is derived in a way that optimizes
some notion of error within the respective context that is not always
the same as our definition of validity. A regressor (Section 4.1)
minimizes the mean squared errors, a PBE solution (Section 4.3)
directly optimizes accuracy via search and a decision tree (greedily)
optimizes the split functions of nodes. Given a set of explanations,
we choose one as follows. (1) Find the highest validity in the set. (2) If
multiple explanations share this value, return the most explainable
based on total explainability (see Section 7.3).

Note that generalizability can not be used for explanation selec-
tion unless we have access to a 𝑇 and 𝑇 ′ (see Section 7.1).

Potentially, there can be a large number of transformations. Deal-
ing with this size, the explanations in a set are generated in a sorted
order by the size and cardinally of their origin (see Section 4.6).
Similarly, among regression models the explanations are sorted
by the amount of extensions that were applied (i.e., first, a model
without extensions is considered). Accordingly, we introduce an
early stop condition such that if an explanation meets a predefined
threshold of validity and explainability, it is returned and the search
is stopped.7 Empirically, almost 70% of cases are terminated early.

8 EMPIRICAL EVALUATION

We now compare our performance to baselines (Section 8.2) and
analyze the components using an ablation study (Section 8.3).

8.1 Experimental Setup

We now detail our benchmarks, implementation, and baselines. The
benchmark and code are available in our repository [14].

8.1.1 Benchmarks. We design a new benchmark for the novel task
of semantic data versioning, termed Semantic Data Versioning
Benchmark (SDVB), composed of five version-sets. We also adopt a
publicly available dataset designed by Yang et al. [97] for a similar
task of synthesizing data pipelines.
Semantic Data Versioning Benchmark (SDVB): SDVB contains
a total of 342 dataset versions (136 version pairs) over five different
topics, ranging in length (number of tuples) and width (number of
attributes).8 Each topic represents a version-set that was derived
from a well-known seed dataset detailed in Table 2, which includes
smaller datasets (e.g., IRIS) along side bigger datasets (e.g., WINE).
Version Generation: Given a seed dataset, we revise it to generate
a version of it by first selecting a subset of change dimensions (e.g.,
𝑅Δ𝐴and 𝐿Δ𝑟). Then, based on the dimension, we perform a set of
transformations (some sampled and some manually created). We
assure that each of the five version-sets cover all change dimensions.
Prior to version generating, each dataset is split into 𝑇 and 𝑇 (80%-
20%), where the latter is a hold-out to compute generalizability.
Following Section 7.1, the same changes applied to 𝑇 to generate
𝑇 ′ are applied to 𝑇 to generate 𝑇 ′.9

Finally, note that a version may be created using more than one
change and, in practice, the aforementioned number of versions is

7In our experiments the threshold was set to .95.
8Not all versions use all original attributes.
9The numbers reported in Table 2 include the hold-outs.

1596

Table 2: Semantic Data Versioning Benchmark Details.

Topic (Name) # of Original # of Original # of # of
Tuples Attributes Versions Version-pairs

Movies and TV shows [7] (IMDB) 1,000 6 72 29

NBA Players [9] (NBA) 11,700 9 68 27

Wines Reviews [11] (WINE) 129,971 6 72 29

Iris Flowers [8] (IRIS) 150 5 58 22

Titanic Passengers [10] (TITANIC) 891 6 72 29

actually composed of 1,702 changes. For example, to create the
72 WINE dataset versions, a total of 681 changes were applied over
the original dataset and its versions.
Auto-Pipeline Benchmark [1]: This benchmark contains real
data pipelines extracted from Github notebooks. As we focus on
dataset versions, we filter out pipelines that include more than one
table (e.g., those that use a join). Following Yang et al. [97], we
consider the “test” table as 𝑇 and the “target” table as 𝑇 ′. For a fair
comparison, we run Explain-Da-V and all baselines on all the data
and do not consider generalizability for this benchmark.

8.1.2 Implementation. Explain-Da-Vwas implemented in python,
following Sections 5 and 6. Main parts of the code are provided
in our repository [14]. Linear regression with Lasso [12] and
Rigde [15],10 regularization and decision trees [3] were imple-
mented with Scikit-learn. We extended Foofah’s python publicly
available implementation [6]. We use the Featuretools [5] frame-
work to generate aggregated and group by features (see Section 5.1).

8.1.3 Baselines. Foofah [55] is used as a PBE baseline (see Sec-
tion 2.3). Foofah+ denotes Foofah with our novel extensions (e.g.,
textual-to-numeric, see Section 4.3). As Auto-pipeline’s implemen-
tation is not publicly available, we reproduced its search method-
ology11 using Foofah’s framework by implementing the operators
provided by Yang et al. (Auto-pipeline*) [97]. Search has an expo-
nential worst case time complexity, so we apply a 60 second timeout
for all methods following the default in Foofah [55].12

We also ran AutoPandas [17] using their available implementa-
tion [2]. AutoPandas creates a search space based on pandas [13]
operations and prunes the space of programs using deep learn-
ing. Similar to the reported performance in Auto-pipeline [97],
AutoPandas performance was inferior and thus not reported. We
also experimented with SQUARES [74], a recent query reverse engi-
neering framework, and, similarly, do not report its inferior results.
Since SQUARES was designed to synthesize traditional SQL queries
it can sometimes resolve selection predicates; yet, it fails to cope
with other changes such as attributes added using transformations.

Finally, a naïve implementation of the baselines would use all
of 𝑇 and 𝑇 ′ as input-output examples. However, to allow a fair
comparison, we “find the origin” (see Section 4.6) for each of the
baselines and vertical explanations are solved iteratively (each at-
tribute at a time). For horizontal addition explanations the tuples
of 𝑇 are used as input and the tuples of 𝑇 ′ as output (similarly for
horizontal removal with 𝑇 ′ as input and 𝑇 as output).

10We first tried applying Lasso and if failed we applied Rigde.
11Reinforcement learning requires training data, which we assume unavailable.
12We note that Auto-pipeline default timeout limit is an hour

8.1.4 Evaluation Measures. The explanations provided by our base-
lines are of a single type (programs, not regressors or decision trees),
thus, in Section 8.2, we compare the Validity (Val.) and Generalizabil-
ity (Gen.) of Explain-Da-V to the baselines. Since Explain-Da-V
can return explanations that do not have a validity/generalizability
score of 1.0, we also report the proportion of such explanations out
of all output explanations. We further report the average number of
explanations (# E) from which the method selects the most explain-
able valid (see Section 7.4). We also compare and report runtimes.
Section 8.3 also uses explainability (conciseness and concentration).

8.2 Explain-Da-V Compared to Baselines

The comparison between Explain-Da-V and the baselines (Sec-
tion 8.1.3) over the benchmarks (Section 8.1.1) is reported in Table 3.

Explain-Da-V performs much better than the baselines mainly
due to its ability to cope with varying data types (numeric and
categorical in addition to textual). The adapted Auto-pipeline
benchmark is an exception where Explain-Da-V only performs
slightly better than Auto-pipeline*. Also, even if we zoom-in only
on textual transformations (provided in a technical report [84]),
Explain-Da-V still out-performs all baselines. Even when we eval-
uate only the 100% valid/generalizable explanations returned by
Explain-Da-V (denoted in parenthesis in Table 3), we observe a sig-
nificant improvement. Across baselines, we observe that extending
Foofah (Foofah+) provides an average validity and generalizability
boost of 9.5%, showing the benefit of the extended search space. All
methods select among multiple explanations (# E, see Section 8.1.4)
based on multiple origins (see Section 8.1.3). Explain-Da-V consid-
ers almost twice as many explanations since it generates expanded
origins for numeric explanations (see Section 4.1).

Comparing among version-sets, we observe that in the IRIS
dataset, Explain-Da-V obtained the best performance (.927 Val.
and .831 Gen.) and the highest improvement. For the IMDB version-
set, Explain-Da-V obtained the worst performance (.732 Val. and
.602 Gen.) and lowest improvement (among the newly suggested
benchmark version-sets). IRIS is mostly composed of numeric at-
tributes (4 out of 5) which are solved using our numeric change
explanations (Section 4.1) and are not dealt with by the baselines.
Note that accordingly, Explain-Da-V considers almost three times
as many explanations. Yet, the numeric extensions introduced in
Section 4.1 and the fact that we find the origin helps to home in
on a valid solution quite quickly (see runtime below). The IMDB
version-set, on the other hand, contains more textual attributes (5
out of 6) and involves changes that Explain-Da-V fails to solve. For
example, one of the IMDB version-sets involves a transformation
that adds an attribute containing the count of the number of genres
from a Genre attribute. In the Genre attribute, the genres are sepa-
rated by a comma (e.g., Drama, Romance). A correct transformation
would, for example, count the number of commas and add 1. While
finding a transformation that counts the number of commas is a
practical task for Explain-Da-V (which includes textual transfor-
mations and aggregations), such a composition is not currently
possible. Instead, the explanation Explain-Da-V chose (most valid,
see Section 7.4) uses an IMDB Rating attribute to determine the
number of genres using a decision tree with a validity of 0.65.13

13The explanation is available in the repository [4].

1597

Table 3: Performance in terms of Validity (Val), Generalizability (Gen) and average number of explanations the method chooses

from (# E). For Explain-Da-V, we also report (in parenthesis) the proportion of explanations with Val/Gen score of 1.

Dataset→ IMDB NBA WINE IRIS TITANIC Auto-pipeline

↓Method Val Gen # E Val Gen # E Val Gen # E Val Gen # E Val Gen # E Val Gen # E
Foofah .42 .42 3.7 .28 .28 4.2 .29 .29 3.9 .23 .23 3.1 .29 .29 4.1 .55 - 3.3
Foofah+ .44 .44 3.7 .29 .29 4.2 .34 .34 3.9 .25 .25 3.1 .37 .37 4.1 .55 - 3.3
Auto-pipeline* .44 .44 3.7 .30 .30 4.2 .33 .33 3.9 .26 .26 3.1 .37 .37 4.1 .78 - 3.3

Explain-Da-V .73 (.64) .60 (.56) 6.4 .90 (.89) .79 (.69) 7.3 .87 (.76) .81 (.59) 6.8 .93 (.88) .83 (.76) 8.9 .88 (.79) .77 (.68) 7.2 .82 (.78) - 5.7
+ over baseline +65% +36% +202% +167% +156% +138% +254% +217% +140% +109% +5% -

Finally, we note that the performance varies with respect to the
different change dimensions. Interestingly, if we only look at verti-
cal removals (Section 5.2), all three baselines have a validity and
generalizability score of 1. The reason for that is their ability to
discover projections (in their terms applying a drop operation over
an attribute). Although it successfully finds these transformations,
it lacks the ability to explain the semantics of the attribute removal.
Explain-Da-V, although not perfectly valid and generalizable (.95),
is more expressive in term of explaining the removal. For exam-
ple, explaining that an attribute was removed because it contains
duplicated information (see Section 5.2). When looking at tuple
removal, Explain-Da-V performs much better than the baselines.
Since Auto-pipeline does “not consider row-level filtering” [97],
we recall the comparison against SQUARES (see Section 8.1.3). De-
spite its focus on learning a selection predicate, SQUARES is able
to resolve cases where a predicate was applied with 0.6 validity
(Explain-Da-V obtains 0.73 over these changes). This is because
SQUARES was not able to resolve removing tuples containing NaN
values and duplicate tuples (two cases in the benchmark). 14

Runtime: In these experiments, excluding timeouts (see Sec-
tion 8.1.3), finding an explanation using foofah took an average of
4.9 seconds, foofah+ 12.4 seconds, Auto-pipeline* 8.1 seconds, and
Explain-Da-V 2.4 seconds. A reason for that difference is that fit-
ting a regressor (linear time complexity) and learning a decision tree
(quadratic complexity) are more efficient than search (exponential).

8.3 Explain-Da-V Ablation Study

Figure 7 provides an ablation study of Explain-Da-V. We focus on
vertical addition explanations and analyze Explain-Da-V perfor-
mance without finding the origin (W/O find origin), i.e., using 𝑇

as a whole to explain a given goal and without the extensions for
numeric-to-numeric transformations (W/O extensions). We also an-
alyze the resolved data types by applying Explain-Da-V assuming
all types are numeric (All numeric) or all textual (All textual).

As illustrated in Figures 7a and 7b, the full Explain-Da-V pro-
vides the most valid and generalizable performance. Adding exten-
sions and finding the origin provide an average performance boost
of 30% and 107%, respectively, in terms of validity, while addressing
all attribute types as numeric and textual decreases the validity
by 35% and 64%, respectively. The NBA version-set demonstrates
an interesting case. Since it contains diverse attributes of varying
types, without finding origin, Explain-Da-V obtains very low va-
lidity and generalizability. Similarly, as mentioned above, since the
IRIS version-set mainly consists of numeric attributes, treating all
attributes as textual results in very low performance.

14Additional cases from the experiments are provided in a technical report [84].

(a) Validity (b) Generalizability

(c) Conciseness (d) Concentration

Figure 7: Ablation Study over SDVB datasets, namely, IMDB

(■), IRIS (▲), WINE (•), NBA (⬣), TITANIC (♦)

Examining the explainability (Figures 7c-7d), we observe that
while less valid and generalizable, explanations without extensions
are more concise and concentrated. If an origin is not found, the
explanations are usually less concise and much less concentrated.
Finally, numeric explanations are more explainable than textual
explanations especially in terms of conciseness.

9 CONCLUSION

This work laid the groundwork for explaining semantic changes in
data versioning. Explain-Da-V, uses different types of techniques
to resolve and explain changes between a pair of dataset versions.
We introduced measures to evaluate explanations and show that
Explain-Da-V performs better than multiple baselines over an ex-
isting adapted benchmark and a newly introduced data versioning
benchmark. In future work, we intend to extend Explain-Da-V
to address additional data types, e.g., dates, and address changes
that are triggered by external data such as performing joins and
unions. An additional future challenge is to formulate the version
explanation problem as a multi-objective optimization problem that
collectively optimizes validity, generalizability, and explainability.

ACKNOWLEDGMENTS

This work was supported in part by NSF under award numbers
IIS-1956096 and IIS-2107248.

1598

REFERENCES

[1] 2022. Auto-pipeline benchmark. https://gitlab.com/jwjwyoung/autopipeline-
benchmarks. accessed on Feb 7, 2023.

[2] 2022. AutoPandas Implementation. https://github.com/rbavishi/autopandas.
accessed on Feb 7, 2023.

[3] 2022. Decision Trees. https://scikit-learn.org/stable/modules/tree.html. ac-
cessed on Feb 7, 2023.

[4] 2022. Explanation Example. https://github.com/shraga89/ExplainDaV/blob/
main/Explanation_Example.md. accessed on Feb 7, 2023.

[5] 2022. Featuretools. https://www.featuretools.com/. accessed on Feb 7, 2023.
[6] 2022. Foofah Implementation. https://github.com/umich-dbgroup/foofah. ac-

cessed on Feb 7, 2023.
[7] 2022. Initial IMDB dataset. https://www.kaggle.com/datasets/

harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows. accessed
on Feb 7, 2023.

[8] 2022. Initial IRIS dataset. https://www.kaggle.com/uciml/iris. accessed on Feb
7, 2023.

[9] 2022. Initial NBA dataset. https://www.kaggle.com/justinas/nba-players-data.
accessed on Feb 7, 2023.

[10] 2022. Initial TITANIC dataset. https://www.kaggle.com/competitions/titanic.
accessed on Feb 7, 2023.

[11] 2022. Initial WINE dataset. https://www.kaggle.com/christopheiv/
winemagdata130k. accessed on Feb 7, 2023.

[12] 2022. Lasso Regularization. https://scikit-learn.org/stable/modules/generated/
sklearn.linear_model.Lasso.html. accessed on Feb 7, 2023.

[13] 2022. Pandas. https://pandas.pydata.org/. accessed on Feb 7, 2023.
[14] 2022. Repository. https://github.com/northeastern-datalab/Explain-Da-V. ac-

cessed on Feb 18, 2023.
[15] 2022. Rigde Regularization. https://scikit-learn.org/stable/modules/generated/

sklearn.linear_model.Ridge.html. accessed on Feb 7, 2023.
[16] Ziawasch Abedjan, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti,

and Michael Stonebraker. 2016. DataXFormer: A robust transformation discov-
ery system. In 32nd IEEE International Conference on Data Engineering, ICDE

2016, Helsinki, Finland, May 16-20, 2016. IEEE Computer Society, 1134–1145.
https://doi.org/10.1109/ICDE.2016.7498319

[17] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019.
AutoPandas: neural-backed generators for program synthesis. Proc. ACM Pro-

gram. Lang. 3, OOPSLA (2019), 168:1–168:27. https://doi.org/10.1145/3360594
[18] Ladjel Bellatreche and Robert Wrembel. 2013. Special issue on: Evolution and

versioning in semantic data integration systems. , 57–59 pages.
[19] Anant P. Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande,

Aaron J. Elmore, Samuel Madden, and Aditya G. Parameswaran. 2015. DataHub:
Collaborative Data Science & Dataset Version Management at Scale. In Seventh

Biennial Conference on Innovative Data Systems Research, CIDR 2015, Asilomar,

CA, USA, January 4-7, 2015, Online Proceedings. www.cidrdb.org. http://cidrdb.
org/cidr2015/Papers/CIDR15_Paper18.pdf

[20] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and Aditya
Parameswaran. 2015. Principles of dataset versioning: Exploring the recre-
ation/storage tradeoff. In Proceedings of the VLDB Endowment. International

Conference on Very Large Data Bases, Vol. 8. NIH Public Access, 1346.
[21] Tobias Bleifuß, Leon Bornemann, Theodore Johnson, Dmitri V Kalashnikov, Fe-

lix Naumann, and Divesh Srivastava. 2018. Exploring change: A new dimension
of data analytics. Proceedings of the VLDB Endowment 12, 2 (2018), 85–98.

[22] Tobias Bleifuß, Leon Bornemann, Dmitri V Kalashnikov, Felix Naumann, and
Divesh Srivastava. 2019. DBChEx: Interactive Exploration of Data and Schema
Change. In CIDR.

[23] Alex Bogatu, Norman W. Paton, Alvaro A. A. Fernandes, and Martin Koehler.
2019. Towards Automatic Data Format Transformations: Data Wrangling at
Scale. Comput. J. 62, 7 (2019), 1044–1060. https://doi.org/10.1093/comjnl/bxy118

[24] Leon Bornemann, Tobias Bleifuß, Dmitri Kalashnikov, Felix Naumann, and
Divesh Srivastava. 2018. Data change exploration using time series clustering.
Datenbank-Spektrum 18, 2 (2018), 79–87.

[25] Richard J Brook and Gregory C Arnold. 2018. Applied regression analysis and

experimental design. CRC Press.
[26] Jason Brownlee. 2022. Data preparation for machine learning.
[27] Douglas Burdick, Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang-

Chiew Tan. 2016. A Declarative Framework for Linking Entities. ACM Trans.

Database Syst. 41, 3 (2016), 17:1–17:38.
[28] Nadia Burkart and Marco F Huber. 2021. A survey on the explainability of

supervised machine learning. Journal of Artificial Intelligence Research 70 (2021),
245–317.

[29] Hancheng Cao, Vivian Yang, Victor Chen, Yu Jin Lee, Lydia Stone, N’godjigui Ju-
nior Diarrassouba, Mark E Whiting, and Michael S Bernstein. 2021. My team will
go on: Differentiating high and low viability teams through team interaction.
Proceedings of the ACM on Human-Computer Interaction 4 (2021), 1–27.

[30] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[31] Sudarshan S Chawathe and Hector Garcia-Molina. 1997. Meaningful change
detection in structured data. ACM SIGMOD Record 26, 2 (1997), 26–37.

[32] Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. 1996. Change detection in hierarchically structured information. Acm
Sigmod Record 25, 2 (1996), 493–504.

[33] Anton Chernyavskiy, Dmitry Ilvovsky, and Preslav Nakov. 2021. Transform-
ers:“The End of History” for Natural Language Processing?. In Joint European

Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
677–693.

[34] Gregory Cobena, Serge Abiteboul, and Amelie Marian. 2002. Detecting changes
in XML documents. In Proceedings 18th International Conference on Data Engi-

neering. IEEE, 41–52.
[35] Nicole Cruz, Jean Baratgin, Mike Oaksford, and David E Over. 2015. Bayesian

reasoning with ifs and ands and ors. Frontiers in psychology 6 (2015), 192.
[36] Giovanni Da San Martino, Seunghak Yu, Alberto Barrón-Cedeno, Rostislav

Petrov, and Preslav Nakov. 2019. Fine-grained analysis of propaganda in news
article. In Proceedings of the 2019 conference on empirical methods in natural

language processing and the 9th international joint conference on natural language

processing (EMNLP-IJCNLP). 5636–5646.
[37] Canada Open Data. 2020. https://open.canada.ca/en/open-data
[38] UK Open Data. 2020. https://data.gov.uk/
[39] Boer Deng. 2015. Papers with shorter titles get more citations. Nature News 26

(2015).
[40] Dong Deng, Wenbo Tao, Ziawasch Abedjan, Ahmed K. Elmagarmid, Ihab F.

Ilyas, Guoliang Li, Samuel Madden, Mourad Ouzzani, Michael Stonebraker,
and Nan Tang. 2019. Unsupervised String Transformation Learning for Entity
Consolidation. In 35th IEEE International Conference on Data Engineering, ICDE

2019, Macao, China, April 8-11, 2019. IEEE, 196–207. https://doi.org/10.1109/
ICDE.2019.00026

[41] Jeffrey R Edwards. 2002. Alternatives to difference scores: Polynomial regression
and response surface methodology. Advances in measurement and data analysis

(2002), 350–400.
[42] Kareem El Gebaly, Parag Agrawal, Lukasz Golab, Flip Korn, and Divesh Srivas-

tava. 2014. Interpretable and informative explanations of outcomes. Proceedings
of the VLDB Endowment 8, 1 (2014), 61–72.

[43] Ahmed K Elmagarmid, Panagiotis G Ipeirotis, and Vassilios S Verykios. 2006.
Duplicate record detection: A survey. IEEE Transactions on knowledge and data

engineering 19, 1 (2006), 1–16.
[44] Peter A Flach and Iztok Savnik. 1999. Database dependency discovery: a machine

learning approach. AI Communications 12 (3) (1999), 139 – 160. http://content.
iospress.com/articles/ai-communications/aic182 Publisher: IOS Press.

[45] Avigdor Gal, Haggai Roitman, and Roee Shraga. 2019. Learning to rerank
schema matches. IEEE Transactions on Knowledge and Data Engineering 33, 8
(2019), 3104–3116.

[46] Yihan Gao, Silu Huang, and Aditya G. Parameswaran. 2018. Navigating the
Data Lake with DATAMARAN: Automatically Extracting Structure from Log
Datasets. In Proceedings of the 2018 International Conference on Management of

Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, Gautam
Das, Christopher M. Jermaine, and Philip A. Bernstein (Eds.). ACM, 943–958.
https://doi.org/10.1145/3183713.3183746

[47] Bar Genossar, Roee Shraga, and Avigdor Gal. 2023. FlexER: Flexible En-
tity Resolution for Multiple Intents. In SIGMOD Conference 2023. ACM.
arXivpreprintarXiv:2209.07569

[48] Dimitris C Gkikas, Katerina Tzafilkou, Prokopis K Theodoridis, Aristogiannis
Garmpis, and Marios C Gkikas. 2022. How do text characteristics impact user
engagement in social media posts: Modeling content readability, length, and
hashtags number in Facebook. International Journal of Information Management

Data Insights 2, 1 (2022), 100067.
[49] William R. Harris and Sumit Gulwani. 2011. Spreadsheet table transforma-

tions from examples. In Proceedings of the 32nd ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2011, San Jose, CA,

USA, June 4-8, 2011, Mary W. Hall and David A. Padua (Eds.). ACM, 317–328.
https://doi.org/10.1145/1993498.1993536

[50] Yeye He, Xu Chu, Kris Ganjam, Yudian Zheng, Vivek R. Narasayya, and Surajit
Chaudhuri. 2018. Transform-Data-by-Example (TDE): An Extensible Search
Engine for Data Transformations. Proc. VLDB Endow. 11, 10 (2018), 1165–1177.
https://doi.org/10.14778/3231751.3231766

[51] Yeye He, Zhongjun Jin, and Surajit Chaudhuri. 2020. Auto-Transform: Learning-
to-Transform by Patterns. Proc. VLDB Endow. 13, 11 (2020), 2368–2381. http:
//www.vldb.org/pvldb/vol13/p2368-he.pdf

[52] Fred Hohman, Kanit Wongsuphasawat, Mary Beth Kery, and Kayur Patel. 2020.
Understanding and visualizing data iteration in machine learning. In Proceedings

of the 2020 CHI conference on human factors in computing systems. 1–13.
[53] The home of the U.S. Government’s open data. 2020. https://data.gov/
[54] Silu Huang, Liqi Xu, Jialin Liu, Aaron J Elmore, and Aditya Parameswaran. 2017.

ORPHEUSDB: Bolt-on Versioning for Relational Databases. Proceedings of the
VLDB Endowment 10, 10 (2017).

1599

https://gitlab.com/jwjwyoung/autopipeline-benchmarks
https://gitlab.com/jwjwyoung/autopipeline-benchmarks
https://github.com/rbavishi/autopandas
https://scikit-learn.org/stable/modules/tree.html
https://github.com/shraga89/ExplainDaV/blob/main/Explanation_Example.md
https://github.com/shraga89/ExplainDaV/blob/main/Explanation_Example.md
https://www.featuretools.com/
https://github.com/umich-dbgroup/foofah
https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://www.kaggle.com/uciml/iris
https://www.kaggle.com/justinas/nba-players-data
https://www.kaggle.com/competitions/titanic
https://www.kaggle.com/christopheiv/winemagdata130k
https://www.kaggle.com/christopheiv/winemagdata130k
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html
https://pandas.pydata.org/
https://github.com/northeastern-datalab/Explain-Da-V
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html
https://doi.org/10.1109/ICDE.2016.7498319
https://doi.org/10.1145/3360594
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper18.pdf
http://cidrdb.org/cidr2015/Papers/CIDR15_Paper18.pdf
https://doi.org/10.1093/comjnl/bxy118
https://open.canada.ca/en/open-data
https://data.gov.uk/
https://doi.org/10.1109/ICDE.2019.00026
https://doi.org/10.1109/ICDE.2019.00026
http://content.iospress.com/articles/ai-communications/aic182
http://content.iospress.com/articles/ai-communications/aic182
https://doi.org/10.1145/3183713.3183746
arXiv preprint arXiv:2209.07569
https://doi.org/10.1145/1993498.1993536
https://doi.org/10.14778/3231751.3231766
http://www.vldb.org/pvldb/vol13/p2368-he.pdf
http://www.vldb.org/pvldb/vol13/p2368-he.pdf
https://data.gov/

[55] Zhongjun Jin, Michael R. Anderson, Michael J. Cafarella, and H. V. Jagadish. 2017.
Foofah: Transforming Data By Example. In Proceedings of the 2017 ACM Interna-

tional Conference on Management of Data, SIGMOD Conference 2017, Chicago, IL,

USA,May 14-19, 2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang,
and Dan Suciu (Eds.). ACM, 683–698. https://doi.org/10.1145/3035918.3064034

[56] Zhongjun Jin, Michael J. Cafarella, H. V. Jagadish, Sean Kandel, Michael Minar,
and Joseph M. Hellerstein. 2019. CLX: Towards verifiable PBE data transfor-
mation. In Advances in Database Technology - 22nd International Conference

on Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26-29,

2019, Melanie Herschel, Helena Galhardas, Berthold Reinwald, Irini Fundu-
laki, Carsten Binnig, and Zoi Kaoudi (Eds.). OpenProceedings.org, 265–276.
https://doi.org/10.5441/002/edbt.2019.24

[57] Mary Beth Kery, Amber Horvath, and Brad Myers. 2017. Variolite: Supporting
Exploratory Programming by Data Scientists. In Proceedings of the 2017 CHI

Conference on Human Factors in Computing Systems. 1265–1276.
[58] Mary Beth Kery, Bonnie E John, Patrick O’Flaherty, Amber Horvath, and Brad A

Myers. 2019. Towards effective foraging by data scientists to find past anal-
ysis choices. In Proceedings of the 2019 CHI Conference on Human Factors in

Computing Systems. 1–13.
[59] Mary Beth Kery, Marissa Radensky, Mahima Arya, Bonnie E John, and Brad A

Myers. 2018. The story in the notebook: Exploratory data science using a
literate programming tool. In Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems. 1–11.
[60] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller.

2022. Integrating Data Lake Tables. Proc. VLDB Endow. 16, 4 (2022), 932–945.
https://www.vldb.org/pvldb/vol16/p932-khatiwada.pdf

[61] Alexandra Kim, Laks VS Lakshmanan, and Divesh Srivastava. 2020. Sum-
marizing hierarchical multidimensional data. In 2020 IEEE 36th International

Conference on Data Engineering (ICDE). IEEE, 877–888.
[62] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. 2019.

Revealing the Dark Secrets of BERT. In Proceedings of the 2019 Conference on

Empirical Methods in Natural Language Processing and the 9th International Joint

Conference on Natural Language Processing (EMNLP-IJCNLP). 4365–4374.
[63] Max Kuhn and Kjell Johnson. 2019. Feature engineering and selection: A practical

approach for predictive models. CRC Press.
[64] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable

decision sets: A joint framework for description and prediction. In Proceedings

of the 22nd ACM SIGKDD international conference on knowledge discovery and

data mining. 1675–1684.
[65] Benjamin Letham, Cynthia Rudin, Tyler H McCormick, and David Madigan.

2015. Interpretable classifiers using rules and bayesian analysis: Building a
better stroke prediction model. The Annals of Applied Statistics 9, 3 (2015),
1350–1371.

[66] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep entity matching with pre-trained language models. Proceedings of
the VLDB Endowment 14, 1 (2020), 50–60.

[67] Benjamin Marlin. 2004. Collaborative filtering: A machine learning perspective.
University of Toronto Toronto.

[68] Renée J Miller. 2018. Open data integration. Proceedings of the VLDB Endowment

11, 12 (2018), 2130–2139.
[69] Tom Mitchell. 1997. Decision tree learning. Machine learning 414 (1997), 52–78.
[70] Heiko Müller, Johann-Christoph Freytag, and Ulf Leser. 2006. Describing differ-

ences between databases. In Proceedings of the 15th ACM international conference

on Information and knowledge management. 612–621.
[71] Menaka Narayanan, Emily Chen, Jeffrey He, Been Kim, Sam Gershman, and Fi-

nale Doshi-Velez. 2018. How do humans understand explanations from machine
learning systems? an evaluation of the human-interpretability of explanation.
arXiv preprint arXiv:1802.00682 (2018).

[72] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (aug 2019), 1986–1989. https://doi.org/10.14778/3352063.
3352116

[73] Andrew Nierman and HV Jagadish. 2002. Evaluating Structural Similarity in
XML Documents.. In webdb, Vol. 2. Citeseer, 61–66.

[74] Pedro Orvalho, Miguel Terra-Neves, Miguel Ventura, Ruben Martins, and Vasco
Manquinho. 2020. SQUARES: a SQL synthesizer using query reverse engineer-
ing. Proceedings of the VLDB Endowment 13, 12 (2020), 2853–2856.

[75] Aslihan Özmen, Mahdi Esmailoghli, and Ziawasch Abedjan. 2021. Combin-
ing Programming-by-Example with Transformation Discovery from large
Databases. In Datenbanksysteme für Business, Technologie und Web (BTW 2021),

19. Fachtagung des GI-Fachbereichs „Datenbanken und Informationssysteme"

(DBIS), 13.-17. September 2021, Dresden, Germany, Proceedings (LNI), Kai-Uwe
Sattler, Melanie Herschel, and Wolfgang Lehner (Eds.), Vol. P-311. Gesellschaft
für Informatik, Bonn, 313–324. https://doi.org/10.18420/btw2021-16

[76] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-Peer
Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. 2015. Func-
tional Dependency Discovery: An Experimental Evaluation of Seven Algorithms.
Proc. VLDB Endow. 8, 10 (2015), 1082–1093. https://doi.org/10.14778/2794367.

2794377
[77] Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M Hofman, Jennifer Wort-

man Wortman Vaughan, and Hanna Wallach. 2021. Manipulating and measuring
model interpretability. In Proceedings of the 2021 CHI conference on human factors

in computing systems. 1–52.
[78] Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic

schema matching. the VLDB Journal 10, 4 (2001), 334–350.
[79] John F Roddick. 1995. A survey of schema versioning issues for database

systems. Information and Software Technology 37, 7 (1995), 383–393.
[80] Pau Rodríguez, Miguel A Bautista, Jordi Gonzalez, and Sergio Escalera. 2018.

Beyond one-hot encoding: Lower dimensional target embedding. Image and

Vision Computing 75 (2018), 21–31.
[81] Maximilian E Schüle, Josef Schmeißer, Thomas Blum, Alfons Kemper, and

Thomas Neumann. 2021. TardisDB: Extending SQL to Support Versioning.
In Proceedings of the 2021 International Conference on Management of Data.
2775–2778.

[82] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.
2021. Towards Benchmarking Feature Type Inference for AutoML Platforms.
In Proceedings of the 2021 International Conference on Management of Data.
1584–1596.

[83] Roee Shraga, Avigdor Gal, and Haggai Roitman. 2020. Adnev: Cross-domain
schema matching using deep similarity matrix adjustment and evaluation.
Proceedings of the VLDB Endowment 13, 9 (2020), 1401–1415.

[84] Roee Shraga and Renée J. Miller. 2023. Explaining Dataset Changes for Semantic
Data Versioning with Explain-Da-V (Technical Report). https://arxiv.org/pdf/
2301.13095

[85] Rishabh Singh. 2016. BlinkFill: Semi-supervised Programming By Example for
Syntactic String Transformations. Proc. VLDB Endow. 9, 10 (2016), 816–827.
https://doi.org/10.14778/2977797.2977807

[86] Rishabh Singh and Sumit Gulwani. 2012. Learning Semantic String Trans-
formations from Examples. Proc. VLDB Endow. 5, 8 (2012), 740–751. https:
//doi.org/10.14778/2212351.2212356

[87] Richard T Snodgrass, Curtis Dyreson, Faiz Currim, Sabah Currim, and Shailesh
Joshi. 2008. Validating quicksand: Temporal schema versioning in 𝜏XSchema.
Data & Knowledge Engineering 65, 2 (2008), 223–242.

[88] Charles Sutton, Timothy Hobson, James Geddes, and Rich Caruana. 2018. Data
diff: Interpretable, executable summaries of changes in distributions for data
wrangling. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining. 2279–2288.
[89] Christos Thrampoulidis, Samet Oymak, and Babak Hassibi. 2015. Regularized

linear regression: A precise analysis of the estimation error. In Conference on

Learning Theory. PMLR, 1683–1709.
[90] Kai Ming Ting, Sunil Aryal, and Takashi Washio. 2018. Which Outlier Detector

Should I use?. In 2018 IEEE International Conference on Data Mining (ICDM).
IEEE, 8–8.

[91] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. 2014. Query
reverse engineering. The VLDB Journal 23, 5 (2014), 721–746.

[92] Panos Vassiliadis. 2009. A survey of extract–transform–load technology. Inter-
national Journal of Data Warehousing and Mining (IJDWM) 5, 3 (2009), 1–27.

[93] S Vijayarani, Ms J Ilamathi, Ms Nithya, et al. 2015. Preprocessing techniques
for text mining-an overview. International Journal of Computer Science &

Communication Networks 5, 1 (2015), 7–16.
[94] Xiaolan Wang and Alexandra Meliou. 2019. Explain 3D: explaining disagree-

ments in disjoint datasets. Proceedings of the VLDB Endowment 12, 7 (2019).
[95] Yuan Wang, David J DeWitt, and J-Y Cai. 2003. X-Diff: An effective change detec-

tion algorithm for XML documents. In Proceedings 19th international conference

on data engineering (Cat. No. 03CH37405). IEEE, 519–530.
[96] Cong Yan and Yeye He. 2020. Auto-suggest: Learning-to-recommend data

preparation steps using data science notebooks. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data. 1539–1554.
[97] Junwen Yang, Yeye He, and Surajit Chaudhuri. 2021. Auto-pipeline: synthesizing

complex data pipelines by-target using reinforcement learning and search.
Proceedings of the VLDB Endowment 14, 11 (2021), 2563–2575.

[98] Gunce Su Yilmaz, Tana Wattanawaroon, Liqi Xu, Abhishek Nigam, Aaron J
Elmore, and Aditya Parameswaran. 2018. Datadiff: User-interpretable data
transformation summaries for collaborative data analysis. In Proceedings of the

2018 International Conference on Management of Data. 1769–1772.
[99] Amy X Zhang, Michael Muller, and Dakuo Wang. 2020. How do data science

workers collaborate? roles, workflows, and tools. Proceedings of the ACM on

Human-Computer Interaction 4, CSCW1 (2020), 1–23.
[100] Alice Zheng and Amanda Casari. 2018. Feature engineering for machine learning:

principles and techniques for data scientists. " O’Reilly Media, Inc.".
[101] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J Miller. 2019. Josie:

Overlap set similarity search for finding joinable tables in data lakes. In Pro-

ceedings of the 2019 International Conference on Management of Data. 847–864.
[102] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-Join: Joining Tables

by Leveraging Transformations. Proc. VLDB Endow. 10, 10 (2017), 1034–1045.
http://www.vldb.org/pvldb/vol10/p1034-he.pdf

1600

https://doi.org/10.1145/3035918.3064034
https://doi.org/10.5441/002/edbt.2019.24
https://www.vldb.org/pvldb/vol16/p932-khatiwada.pdf
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.14778/3352063.3352116
https://doi.org/10.18420/btw2021-16
https://doi.org/10.14778/2794367.2794377
https://doi.org/10.14778/2794367.2794377
https://arxiv.org/pdf/2301.13095
https://arxiv.org/pdf/2301.13095
https://doi.org/10.14778/2977797.2977807
https://doi.org/10.14778/2212351.2212356
https://doi.org/10.14778/2212351.2212356
http://www.vldb.org/pvldb/vol10/p1034-he.pdf

	Abstract
	1 Introduction
	2 Related Work
	2.1 Data Versioning
	2.2 Data Change, Difference, and Integration
	2.3 Data Transformation By Example

	3 Semantic Data Versioning
	3.1 Change Explanations
	3.2 Explaining Dataset Changes

	4 Core Semantic Explanation Methods
	4.1 Numeric Change Explanations
	4.2 Categorical Change Explanations
	4.3 Textual Change Explanations
	4.4 Categorical-encoding Change Explanations
	4.5 Reshaping Change Explanations
	4.6 Finding the Origin

	5 Explaining Vertical Changes
	5.1 Addition Explanations for RA
	5.2 Removal Explanations for LA

	6 Explaining Horizontal Changes
	6.1 Removal Explanations for Lr
	6.2 Addition Explanations for Rr

	7 Evaluating Explanations
	7.1 Explanation Validity and Generalizablity
	7.2 Problem Definition
	7.3 Explanation Explainability
	7.4 On Choosing an Explanation

	8 Empirical Evaluation
	8.1 Experimental Setup
	8.2 Explain-Da-V Compared to Baselines
	8.3 Explain-Da-V Ablation Study

	9 Conclusion
	Acknowledgments
	References

