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ABSTRACT

Key-value SSDs (KVSSDs) represent a major shift in the storage
stack design, with numerous potential benefits. Despite this, their
lack of native features critical to operation in real world scenarios
hinders their adoption, and these benefits go unrealized. More-
over, simply adapting existing key-value stores to run on KVSSDs
proves underwhelming, as KVSSDs operate at lower raw device
performance when compared to modern block SSDs.

This paper introduces Dotori. Dotori is a KVSSD based key-
value store that provides much needed functionality in a KVSSD
through an upper layer in the host, and takes advantage of the
unique KVSSD interface to enable further gains in functionality
and performance. At the core of Dotori is a novel B+tree design that
is only practical when the underlying storage device is a KVSSD.

We test Dotori with an enterprise grade KVSSD against state-
of-the-art block SSD based key-value stores through a range of
micro-benchmarks and real world workloads. Despite low KVSSD
raw device performance, Dotori achieves superior performance
to these block-device based key-value stores while also showing
significant gains in other important metrics.
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1 INTRODUCTION

Key-value stores (KV stores), and by extension, the key-value ab-
straction, are a favored choice for storage throughout various en-
vironments and applications. Examples include stream processing
systems [7], cloud storage environments[26], caching systems[33],
and more [2, 12, 14]. These KV stores are typically realized as a
software layer on top of traditional block-based storage devices;
hard disk drives (HDDs) and solid state drives (SSDs). However,
mismatch between the key-value abstraction and the block inter-
face causes a range of problems when block device-based KV stores
introduce indexing to find key-value data. For example, reads and
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rewrites to keep data sorted on disk and delete stale values (com-
paction) notably impacts performance and device lifetime, as does
index persistence for crash recovery.

We perform an experiment where we record the operations per
second of two 100% random insert workloads using RocksDB [15],
a popular LSM-tree based KV store, and ForestDB [1], a KV store
that uses a series of B+trees in a Trie to index data. For the first
run for each store, we use the default settings. For the second run,
we disable compaction in RocksDB and disable index persistence
in ForestDB. Without compaction, insertion in RocksDB is 4.9x
faster, and without index persistence, insertion in ForestDB is 3.3x
faster. Moreover, despite a pure insert workload, both stores read
a significant amount of data, and both suffer from notable write
amplification.

In an attempt to rectify these issues through a hardware-based
approach, key-value SSDs (referred to as KVSSDs) have been cre-
ated. Data is written directly to the device with the key itself, and as
the burden of key-value pair management is delegated to the device,
KVSSDs can offer high performance at little resource cost from a
host system standpoint. We carry out the same workload as before
on a KVSSD, which results in at least 1.6x the operations per second
compared to the other stores when compaction or index persistence
is on. Moreover, the KVSSD does not read any data, and application
level write amplification is 1, as only data requested to be written
by the user is sent to the KVSSD (as opposed to data for compaction
or index persistence). However, as KVSSDs currently only expose a
simple interface, they lack features critical to building real-world
applications such as batching, transactions, snapshots, recovery,
and range queries. As we will demonstrate in this work, the cost of
providing these features is non-negligible; an index is required on
the host side to enable them, however, running indexes previously
designed for block devices on a KVSSD can cause performance to
plummet.

In this paper we propose a hybrid architecture wherein both the
host and underlying KVSSD work together to provide necessary KV
store functionality, as opposed to shifting all functionality to one
layer. In the host, a software layer called Dotori provides KV store
auxiliary functionalities by managing a KVSSD-tailored host-side
index. Underneath, the KVSSD provides fast key-value storage and
the interface necessary for the host-side layer to efficiently manage
said index. Evaluations using Dotori and a real KVSSD show signifi-
cant gains in terms of throughput, latency, write amplification, and
space amplification when compared to state-of-the-art KV stores
running on comparatively faster block devices.

The major contributions of this work are:

(1) A novel B+tree design tailored to KVSSDs, named the OAK-
tree.

(2) The design of a KVSSD based KV store, Dotori, based on
the OAK-tree.
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(3) An in-depth comparison of Dotori versus state-of-the-art
block-device based KV stores running on an identical SSD
with different firmware.

2 KVSSDS AND THE KV INTERFACE

In this section we overview the KV interface and KVSSDs, and then
discuss a set of issues that the block interface causes in KV stores.

2.1 The KV Interface

The SNIA KV API Standard [42] defines the store_kvp, retrieve_kvp,
delete_kvp, and iterate commands, among others. store, retrieve,
and delete are self-explanatory. Iterate allows a user to provide a
prefix for which KV pairs on the device will be compared with,
and returned if they match. These commands take a key-value
pair, not a logical address, and translation from key to physical
location on disk is done entirely inside the device. A KVSSD is
essentially a hardware KV store, but the features exported by each
KVSSD are different. Some designs export features in-device such as
transactions [21][25], whereas others export a more simple interface
focusing on store and retrieve performance [19, 22].

2.2 Why is the KV Interface Better for KV
Stores?

Key-Value Stores KV stores aim to provide fast access to key-value
pairs while providing data consistency, transactions capabilities,
and more. However, modern storage devices operate on a block-
based interface, which causes mismatch when key-value pairs are
to be stored as offsets on a device. For example, user data belonging
to a key VLDB23 somehow needs to ultimately be written to and
retrieved from an offset on a block device. This is realized through
translations at the KV store itself, the file system, and on the device.
KV stores try to close this semantic gap by introducing persistent
indexes for efficiently storing and retrieving key-value pairs.

The mismatch between keys and the block interface ultimately
leads to numerous problems, and we explore them in this section.
At the crux of the KV interface lies three main benefits that the
block interface cannot provide. First, processing required for man-
aging KV data is performed closer to storage, reducing data transfer
between the host system and device. Second, the burden of locating
KV pairs is delegated to the device itself, freeing the host from
persisting indexes of its own. Third, users can operate on KV pairs
directly, instead of needing to organize data in larger logical units
such as blocks.

Software Stack Overheads When a user wants to store or
retrieve a KV pair in a KV store designed for block devices, the
request goes through several translations; KV store to file, file
system to device logical address, and device logical address to device
physical address. Such overheads are now non-negligible as device
speeds have increased [24, 46].

The KV interface greatly simplifies the journey a request must
make; the KV pair is sent directly to the device, and the only trans-
lation performed is from key to physical address on the device.
We note that this benefit of the KV interface is, currently, mostly
theoretical, as extra work at the device level to maintain its own
index increases latency notably (see section 2.3).
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Read and Write Amplification Read and write amplification
reduce performance as more time is spent transferring data to and
from host to device instead of serving user queries, and read am-
plification reduces cache effectiveness [29]. While a large amount
of work has gone into reducing these penalties in popular indexes
[4, 5, 11, 29, 37, 47], it is ultimately a losing battle; the problem lies
at the interface, not the index design. Whenever key-value data re-
sides within the same logical unit (a block), data copies will always
be necessary to read and rewrite valid entries during processes like
compaction that free up stale data. It is worth mentioning that some
forms of compaction have further utility in keeping data sorted on
disk for fast scans, but as random access speeds on modern storage
devices increase this trade-off between lower performance due to
compaction and scan optimization becomes less worthwhile.

In comparison, the KV interface alleviates this problem by en-
abling KV data to be deleted inside the device with a delete com-
mand, completely avoiding any data transfer between host and
device.

Space Amplification High space amplification is a problem
discussed in several recent works [13, 18, 28]. In KV stores, there is
a trade off between space amplification and performance. For exam-
ple, in RocksDB space amplification can be controlled by changing
the size of levels and size multipliers between levels of the LSM-
tree [16], where lower level sizes and multipliers, leading to lower
space amplification, may decrease performance and increase write
amplification.

In hash table based KVSSDs (such as the one we test in this
work), space usage may be aggressively curbed because removing
key-value data (by sending a delete command) is a lightweight
operation that can be scheduled to be performed when the device
sees fit.

Recovery Performance KV stores running on block devices
optimize recovery by designing the store in such a way that only the
key-value pairs from the latest commit or flush are required to be
read for the recovery. We run a write heavy workload on ForestDB
and WiredTiger [43] (a state-of-the-practice KV store) and crash
the stores at a time where recovery performance will be close to its
worst. During recovery, ForestDB’s steady-state read performance
is 45MB/s, and WiredTiger’s is 35MB/s. The tested drive had a max
sequential read throughput of 3100MB/s. Despite recovery being
theoretically simple in that all that is usually needed is scan of a log
or series of records, intricacies in the recovery process introduced
by the block interface slow down the process significantly. In the
ForestDB example, the crash happened during a compaction, and
the compaction recovery process incurred an initial slow circular
scan of the file to find the latest valid header. In WiredTiger, the
log scan is slowed significantly by checks needed to verify each log
record in order.

When using the KV interface in the above examples, ForestDB’s
header scan could have been carried out in parallel as we would
already know how a header key is formed. In the WiredTiger case,
every pair in the log could be directly read simultaneously and
checked, because logical separation of KV pairs at the interface
level means we do not need to first discover where the records
begin and end in a larger block or file.
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Figure 1: Performance of a KVSSD and block SSD running on identical hardware.

2.3 KVSSD Performance Characteristics

On paper, KVSSDs have potential, but does this translate to better
real-world performance? We evaluate the performance of a KVSSD
running on high-end hardware. The device is a 1 TB Samsung
PM983 NVMe KVSSD. For the performance comparisons, the block
SSD is the same device as the KVSSD, with the firmware re-flashed
to provide a block interface. We use 20 threads performing random,
synchronous I/O for each test. Our tested KVSSD is a hash-table
based KVSSD as described in [22].

IOPS and Latency Figures 1a and 1b show the retrieve/read and
write/store IOPS at value sizes from 4 KB to 32 KB. The KVSSD’s
IOPS are notably low when compared to the block SSD, around
66% less in the worst case. Considering that both evaluations ran
on the same device, this evaluation demonstrates a non-negligible
overhead for actual KVSSD implementation on fast, modern hard-
ware. The possible reasons for the overhead are numerous. First,
in-device mapping management in a block SSD can be less complex;
data is of fixed size, and DRAM and space allocation is simpler than
in a KVSSD where both key and value size are of arbitrary length
[38]. Second, KVSSDs must account for not only where to store the
value, but where to store the key too. Third, KVSSDs (like the one
we test) may need to persist extra information to support iterators,
such as buckets of key prefixes.

Figures 1c and 1d show the read and write latencies for each
device at a 4K value size. The latency results display an even more
stark difference than throughput. We attribute this to the extra
overheads required at the device level described before. In particular,
tail latencies for both reads and writes are higher in the KVSSD
we test due to collisions that happen at the device’s hash table.
Retrieves require potentially several extra hash table reads to find a
key-value pair. Similarly, collisions affect write latency too, as the
KVSSD needs to read and check the relevant parts of the hash table
for duplicate KV pairs before inserting a new one.

Real Workload Performance The results paint a somewhat
dire picture for the KVSSD’s performance. However, given that
KVSSDs can free a system from expensive processes such as com-
paction, are such results mirrored in real workloads when compared
to block KV stores? We compare the performance of the KVSSD on
a 50/50 uniform read/write workload against popular block-device
based KV stores RocksDB and WiredTiger. Key sizes are set to
8 bytes and value sizes range from 40 to 4000 bytes. We run the
workload for 10 minutes. Figure 1e shows the results.

Despite the lower device performance, the KVSSD offers superior
performance to the other stores. The reasons are those discussed
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previously; performance penalties for compaction (RocksDB), index
persistence and lookup (WiredTiger), lower read performance due
to level lookups (RocksDB), and more. However, despite these initial
impressive results, we contend that the performance testing in this
manner is unrepresentative of actual performance if a KVSSD was to
replace feature-complete KV store in the real world. The hash-table
based KVSSD we test does not support transactions and snapshots,
and has limited support for range queries. To provide such features,
an index needs to be present in the host system.

The rightmost bar on the graph, named ‘FKV’, is the performance
of an implementation of ForestDB (which provides all of the fea-
tures mentioned previously) where we replace the block SSD with
a KVSSD and disable ForestDB compaction. KV pairs are written
and read directly, instead of being placed within blocks as in the
original ForestDB. This configuration provides the full feature-set
of ForestDB, including its index, representing a naive implementa-
tion of a KV store on a KVSSD where a leaner I/O stack is in use,
and compaction is avoided thanks to the key-value interface (com-
paction is replaced by sending delete commands to the KVSSD).
Performance of this prototype plummets as the KVSSD needs to
execute frequent read-modify-writes to maintain ForestDB’s index,
exposing the KVSSDs lower device performance.

2.4 The Different Types of KVSSD

In this work we use a hash-table based KVSSD that follows the
SNIA KV API standard instead of a) a KVSSD that already supports
features such as transactions natively in the device [21], and b) a
KVSSD that uses an LSM-tree instead of a hash-table to index KV
pairs [19]. We focus on such a KVSSD for several reasons.

First, the KVSSD we test is, to the best of our knowledge, the only
available commercial-grade KVSSD on a modern, fast NVMe device,
representing actual current KVSSD performance at the enterprise
level. Likewise, the KVSSD we test is the only one we know of
that conforms to either the SNIA KV Storage API Specification [42]
or NVMe KV Command Set [34]. Targeting a device that uses a
standardized interface results in work that is more valuable to the
community at large, as devices with features that do not conform
to standardized interfaces require users to make adaptations or
changes which they may not be willing to make. Moreover, such a
focus on creating a KV store for a standardized KVSSD interface
is even more important at this early stage of KVSSD development,
where uptake of the devices is slow.

Second, hash-table based KVSSDs represent a class of KVSSD
that is cheaper to make. When designing a system for KV storage,



the trade-offs include cost vs performance, not just a sole focus on
performance. The hash-table based KVSSD we test runs on identical
hardware to a standard block NVMe drive, with only the firmware
changed. Current LSM-tree based KVSSDs require an additional
accelerator in the device to facilitate fast compaction.

Third, it is advantageous to system designers and developers to
have auxiliary KV store functionality such as transactions be im-
plemented on the host system, as they can be more easily modified.

2.5 Discussion

The results from this section form our motivation for this work.
KVSSDs have the potential to outperform modern block-device
based KV stores, despite having significantly lower raw device per-
formance. However, if the KVSSD itself does not provide features
such as transactions, snapshots, and range queries, an index will
need to be maintained on the host system. Using an index that
performs well on modern, fast block devices and simply replacing
the block device with a KVSSD is both problematic and wasteful. It
is problematic because as current KVSSDs are much slower than
modern block devices, as the KVSSD’s lack of performance is am-
plified when such an index is ran on it. It is wasteful because such a
configuration does not fully exploit the benefits of the KV interface,
such as delegating data placement and retrieval to the device.

It is an attractive notion to place all of these features inside the
device, but until such features are standardized (if ever), developing
for and improving KVSSDs themselves is challenging as the target is
an ever-changing set of commands, constraints, and requirements.
Designing a KV store for a standardized interface, as we do in this
work, gives developers and researchers a fixed set of constraints to
work in, and device manufacturers a fixed set of features to improve.
In this work we ask and demonstrate, can the KV interface be used
to design a new, faster index that eventually allows the KVSSD to
overtake the block SSD in performance?

3 DOTORI

3.1 Overview

Dotori is a host-side software layer that provides transactions, snap-
shots, and recovery functionality while at the same time achieving
high performance when using a KVSSD as the underlying storage
device. Dotori is based on ForestDB, but switches out the index
of ForestDB with a new B+tree-like index (Section 3.2) called the
OAK-tree, and makes several major design changes (Section 3.4).
Data from the OAK-Tree is persisted to the KVSSD for recovery, as
well as user KV data. The full read and write paths of Dotori are
detailed in section 3.3. We first introduce Dotori’s index.

3.2 Indexing

In KV stores designed for block devices, indexing is required first
and foremost to find a key-value pair on a device. In addition,
features such as snapshots necessitate that multiple versions of
key-value pairs exist on the device at any time (i.e., key-value pairs
are not overwritten in place), and indexing may be required to find
the different versions of these pairs. If a user simply requires fast
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Figure 2: OAK-tree insert process.

key-value storage, a KVSSD alone without an upper software layer
such as Dotori is sufficient. However, when using a KVSSD that
conforms to current KV interface standards, indexing is required
in the host system if the user needs features such as snapshots,
range queries, and transactions, as the standards themselves do not
describe these features.

Two prevalent B+tree designs are copy-on-write and write opti-
mized B+trees. In a copy-on-write B+tree, a typical write process is
as follows. First, the tree is read from the root to leaf node to find
the location of the requested key-value pair. Each node is stored as a
separate block, and usually the inner nodes are cached in the mem-
ory incurring little read overhead. Next, the leaf node is scanned
and the location of the key-value pair is found. The value is updated
if it previously exists, or inserted if not. This modification is applied
to the node cached in memory, and then the node is persisted later
to storage. The downside of this scheme is that as leaf nodes are
updated per insert or update, the target leaf needs to be read and
re-written in its entirety even for small updates. Such a process
turns writes into a read-modify-write path, creates a large amount
of write amplification, and can hamper write performance if the
nodes that need to receive updates aren’t in memory at the time.

Write-optimized designs differ from copy-on-write designs in
that the initial insert of new data may not need a read and rewrite
of the node. An example of this design is the B€-tree [20][36]. Index
nodes contain per-node buffers where data can be inserted, and
instead of new data being inserted to the leaf node immediately,
data is buffered in the root. Later, data is flushed from the root down
to the leaf when the buffers are full. While such a design helps write
throughput, flushes later down the tree are expensive, and added
complexity is introduced to the read path as write buffers and the
index node buffers themselves need to be checked for the KV pair
before moving down the tree.

The two designs are essentially trying to work around the same
complication; we cannot blindly persist updates immediately at the
leaf without having it in memory, because we would need to store
the locations these updates somewhere, and find them after a crash.
The key feature of the KV interface is that it delegates the search
of KV data to the device, and as a result we are able to sparsely
write index data without needing to worry about where the data
lies on the disk. The problems we discuss in this section and this
insight into the benefit of the KV interface motivate the design of
the OAK-tree.

OAK-tree OAK-tree stands for Out-of-Order Append-Only KVSSD
Based B+tree. The in-memory representation of the OAK-tree is
identical to that of a typical B+tree, but the methods of index data
persistence and retrieval differ significantly.



Algorithm 1 OAK-tree Insert Process

procedure OAK-TREE INSERT(tree_root, K, V)
leaf « find corresponding leaf node(K, tree_root)
if leaf not in memory then
leaf .nr_entries++
if leaf.nr_entries < Tgyy;; then
log(leaf,K, V)
return
/* Load the leaf node into memory.
This will update leaf.nr_entries accordingly */
leaf « load node(tree_root, leaf)
if K not in leaf then
leaf .nr_entries++

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:

if leaf .nr_entries > Tspy;; then
split(leaf)

update(leaf, K, V)

log(leaf,K,V)

15:
16:

Writes The key idea behind the OAK-tree is that when using
a KVSSD we do not need to write data in index nodes in order to
storage, nor do we need to read the node before writing. With prior
information of where index node data could be located (for example,
special keys designated for index data), we can blindly write updates
belonging to an index node and simply retrieve them later using
the KV interface. Similar to write-optimized designs designed for
the block interface, the OAK-tree appends index node updates to
per-node logs, without first reading the previously existing logs
for that node into the memory of the host. However, the OAK-tree
appends data at the log for that node, and does not buffer data
in another node to be flushed later. This has the advantage that
expensive flushes all the way down the tree are avoided entirely, as
data already exists at its final location.

Writing data sparsely to an arbitrary number of logs per index
node is only practical using the KV interface. If we were to imple-
ment the same scheme using the block interface, we would need
some way to locate each log (of which there are many) for each
index node. The process would essentially require another index
to exist just for the outstanding logs, which in turn would need to
also be persisted, doubling the cost of index persistence as a whole.
With the KV interface, we do not need any extra indexing to find
the logs on disk; the device does it for us.

Figure 2 overviews the update process for the OAK-tree. We
assume index node Ng is not cached when updates arrive. In the
OAK-tree, the modifications to Ng will be written to a log keyed
with index node ID of Ng on storage and the ID of the next log (an
in-memory counter exists per node) to be written for Ng (e.g., Ng : 1,
if N : 0 already existed on storage). No previous data relating to
index node Nj is read into host memory during the update process.
As shown at the bottom right of Figure 2, updates are written to
the KVSSD with keys Ng : 1 to Ng : 3. The figure assumes these
updates were written to logs at separate times, but they could also
have been written together in one log if they were present at the
same time. The process is the same if index node Ng already exists
in the cache; only the updates to node Ng are written to the log.
Finally, at no point is the index node itself written to storage, only
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the logs are. This design avoids problems with B+trees on block
storage described before; nodes are not read before an update or
written in their entirety per update, and node data does not need
to be flushed from upper node to its final location later, as in the
B€-Tree. The OAK-tree log format is a simple series of 16B KV pairs
of user key and Dotori internal key, explained in Section 3.4.

Reads A MAX_LOGS parameter determines how many logs can
exist on storage at a given time for an index node. When an index
node is absent from the cache and needs to be read, this MAX_LOGS
parameter is used to determine the range of keys that need to be
read from the KVSSD. For example, assume Dotori is configured
with MAX_LOGS set to 5. If a user wants to read a key-value pair
and its corresponding index node N is not in the cache, keys N : 0
to N : 4 will be read asynchronously and in parallel. Failed reads
(logs that didn’t exist) are simply ignored, and once all of the logs
are collected they are merged and the index node is created in host
memory. Logs may also be cached, and thus may not require a read
to storage.

Splits The design of the OAK-tree introduces a unique problem
relating to node splits. In this section we use the term update to refer
to either an insert or update to an index node, and specify where
appropriate. As modifications to index nodes can be written without
prior knowledge of the contents of the node, we may not know how
many entries an index node contains during the update process.
The result is that we do not know if the current modification of
the node is an insert (which could potentially cause a split), or an
update (which does not increase the amount of entries in the node).
To solve this problem, Dotori simply initially assumes that every
modification of an index node is an insert. An in-memory counter
for each index node is incremented each time the node is to be
updated, and that counter is used to determine whether or not the
node is a potential candidate for a split.

The process is shown in Algorithm 1. For brevity, we only con-
sider the insert process for the leaf. Ty refers to the threshold
at which a node is split. After finding the location of leaf node
corresponding to the tree, it is possible that the leaf itself is not in
memory. The search for the leaf will return without reading the
node from storage if it does not exist in the cache. In this case,
the in-memory counter of entries for that index node is updated
to reflect the current insert (line 4). If the number of entries in
the node is below the threshold for a split, the log for the leaf is
updated. Otherwise, the index node is constructed in memory by
reading its logs from storage. Once the node is read from storage,
the number of entries in the leaf is updated with the actual (not
speculated) amount of entries (line 10). Even though the node was
read into memory because of a possible split, the split is avoided if
the real amount of entries in the node is below the threshold (line
13). Otherwise, the split proceeds. Finally, the node is updated and
the changes to the node are logged.

When a node is split in Dotori, an extra log write is incurred for
the node that is the source of the split. This log contains tombstone
markers for the key-value pairs that were copied to the new node.
When reading an index node from storage, the tombstone markers
in the logs let the merge function know that these entries are to be
ignored.

Scans The OAK-tree serves range queries by opening a snapshot
(see section 3.4) and iterating the tree within said snapshot. This
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Figure 3: Detailed internals of Dotori.

snapshot is a logical abstraction in Dotori, not a snapshot function
on the KVSSD. We choose to implement scans this way in Dotori as
the KVSSD which it is currently designed for supports a slower, low
priority scan function which isn’t fast enough for scan-dependent
workloads.

Log Repacking The MAX_LOGS parameter is used not only to
determine the logs to read during index node retrieval, but also to
place a cap on both the amount of space that can be taken for the
logs of index nodes, and the time it takes to read the logs. If a log
corresponding to an index node is to be written, but already has
MAX_LOGS outstanding logs on storage, the outstanding logs for
that node are read, stale entries are removed, and the resulting log
is written back to log 0 of the index node, overwriting the previous
value.

3.3 Read and Write Paths

In Figure 3 we display a detailed version of Dotori’s internals, and
step through the read and write paths in this section.

Writes (1) User keys A, B, and C are converted to internal keys
IK4, IK5, and IK6. For example, A’s internal key is 0734 0014, con-
sisting of the current commit ID and a sequence number within
that commit (Section 3.4). (2) The values are written immediately
to the KVSSD, with the Dotori internal keys as the KVSSD keys.
IK0, IK1, IK2, and IK3 in the KVSSD refer to earlier versions of A, B,
and C, which were written previously. IK0, IK1, and IK3, still exist
on the KVSSD until a deletion routine deletes them. IK2 has already
been deleted. (3) After the writes complete, the values is stored in
a variable length KV pair cache, indexed by the internal key. (4)
The translation of user keys to internal keys (e.g. A to IK4) are then
stored in memory in the index update buffer.

Once the index update buffer reaches a threshold of unique
entries, it is flushed by applying the updated mappings from user
key to internal key to the OAK-tree. (5) Updates to keys A, B, and C
are applied in-memory to the OAK-tree. The mapping of user key
A to IK4 is written to node 25, whereas the mappings for Band C
are written to node 27. (6) While being applied to the OAK-tree in
memory, KV pairs of user key to internal key for A, B, and C will be
written to in-memory logs for their respective index node, which
are written to the KVSSD once all entries from the index update
buffer are applied to the OAK-tree. One outstanding log for both
nodes 25 and 27 already existed on the KVSSD, so the log writes
are composed of the node ID and "1", representing the second log
write for each node. The index update buffer is emptied and the
next writes to Dotori repeat the process.

Reads The provided user key for a read is first searched inside
the index update buffer. If it is found, the internal key is used to first
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check for the key-value pair in the KV cache. If it is found in the
cache, the value is returned. If not, the internal key is used directly
to retrieve the key-value pair from the KVSSD. If the translation
from user key to internal key is not found in the index update buffer,
the OAK-tree is checked in memory. If the index node belonging to
the key-value pair exists in memory, the internal key is read from
the node, and the key-value cache check is repeated as above. If
the index node does not exist in memory, Dotori collects the logs
for the node and builds the index node in-memory. The node is
then searched for the internal key and the key-value cache check
proceeds once again.

Concurrency The index buffer is sharded according to a user
specified amount of shards, and reads or writes of KV pairs will
be directed to a shard of the index buffer based on a modulo of a
hash of the key. A read or write to an index buffer shard will lock
the shard, meaning reads can block writes. However, as neither
update nor search of the index buffer require access to storage , both
operations are fast, and we find that synchronization on the index
update buffer is of little concern with a sufficient prime number of
shards.

The OAK-Tree cache in memory is structured in a similar way.
Requests to read a node of the OAK-Tree will be be again directed to
a shard, and thus reads can briefly block reads. However, reads do
not hold a lock on an OAK-Tree cache shard for the entire duration
of the user’s request; a private copy of each node is stored in the
Dotori handle the user initiates the reads from, of which there
can be many opened concurrently. The shard lock is held for the
duration of time required to copy the node to this private buffer.
When the index update buffer is flushing updates to the OAK-Tree,
similar private copies of index nodes are taken before writeback
at the end of the flush. Thus index buffer flush writes can briefly
block OAK-Tree reads.

In the current version of Dotori, index buffer flushes are single-
threaded and block incoming writes, however reads can still be
serviced at all times.

3.4 Dotori Features

No Compaction for User Data When a user overwrites a KV pair
in Dotori, the old version of that KV pair is placed on a stale list
and soon deleted by a background deletion thread. Using the KV
interface, we can simply tell the KVSSD to drop the pair from its
mappings with no data copies and rewrites from host to device
required, sidestepping a large cause of performance issues in block-
device KV stores. This does not mean that deletes are free, as inside
the KVSSD copies and rewrites may happen as a result of deletes,
depending on the implementation of KVSSD. Nevertheless, as data
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transfer between host and storage device is avoided, this enables
aggressive space reclamation.

Versioning In Dotori, key-value pairs are not written to the
device with the original user key. Instead, they are written to the
device with an 8 byte key that is a combination of the current
commit ID (4 bytes), and the current sequence number within the
commit (4 byte). This is done to support multiple versions of data,
enabling snapshots and crash recovery.

Commits and Index Buffer Flushing Commits in Dotori may
or may not trigger a flush of the index buffer. Typically, the size at
which the index buffer is flushed will be a multiple of the commit
interval, for example a 64K commit window and 128K index buffer
flush window. Commits that do not flush the index buffer in Dotori
persist a header and these headers are used to decide how many
writes per commit are to be read for the index buffer rebuild on
recovery. Commits which do trigger a flush of the index buffer also
trigger a background write of the index node logs, and the index
buffer is not declared completely flushed until after all of the logs
are successfully written.

Crash Consistency and Recovery Writes in Dotori are consid-
ered persistent only after commit is called. Once a commit returns,
the user is guaranteed that the KV pairs they wrote in the commit
are on the disk, and Dotori will be able to recover to that exact point.
If the store crashes between commits, the KV pairs that reached
the device are considered invalid, and will be deleted during recov-
ery. Dotori achieves this crash consistency by persisting 3 special
key-value pairs each commit. A milestone KV pair, which denotes
the current commit ID and commit ID of the last index buffer flush,
a commit header KV pair, which contains the amount of KV pairs
written in this commit (among other store metadata), and a KV pair
that contains a list of the logs to be flushed in this commit (if the
index update buffer is flushed this commit). How these pairs are
used for recovery is described below.

First, the index update buffer must be rebuilt. Recall that the
index update buffer contains mappings of user keys to internal
keys on the KVSSD. Upon a crash, the index update buffer must be
re-built as it contains entries that will be flushed to the main index
in a future commit. Therefore, the index update buffer recovery
process is from the last index update buffer flush to the last suc-
cessful commit. When the store crashes, the milestone key-value
pair, which contains the commit ID of the last commit, is read upon
reopening. Dotori reads the commit headers to discover how many
keys were written in each commit. Commit headers are found by
reading special key-value pairs corresponding to them, for exam-
ple COMMIT_10. Next, each key-value pair in each commit is read
asynchronously and in parallel. For example, if COMMIT 1’s header
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recorded that there were 64K writes in that commit, Dotori will
read KV pairs "1:0" to "1:65535". Although these reads are carried
out using internal keys, values in Dotori contain the original user
key, which is then used to fill the index buffer with user key to
internal key mappings. In contrast to block-device KV stores where
blocks or logs are read in sequence to figure out which values are
inside each block and what size they are before continuing, Dotori
does not need to wait before reading any KV pairs during the in-
dex buffer rebuild. This process of index buffer recovery is only
possible because of the KV interface provided by the KVSSD; since
we already know how keys in the commit are formed, we already
know what range of key-value pairs we need to ask the KVSSD to
retrieve for us. No ordered checking within larger logical units i.e.
blocks is needed to discover what pairs are inside.

Next, KV pairs that belong to the failed commit must be erased.
Removing data that belongs to a failed commit is potentially non-
trivial when using a KVSSD. Because there is no concept of a file
abstraction, Dotori cannot scan backwards to the last successful
commit, then discard the unwanted data. In Dotori, an internal
auto-flush makes sure that all KV pair writes before the auto-flush
is called have reached the disk, and this auto-flush range is used
to delete KV pairs that reached the disk when the store crashed,
but before the user’s commit completed. With an auto-flush set to
320K (the current value), Dotori uses the KVSSD’s delete function
to delete internal KV pairs with version numbers 0 to 320K from
the last successful commit ID + 1.

Finally, logs that are part of an incomplete flush must also be
discarded. If Dotori crashes during the log flush process, using the
logs from said flush after restarting can be erroneous. Consider a
situation where the logs for a node split (child, new sibling, and
parent) are to be flushed, but a crash happens and only one, or
some combination of two of the logs exists on storage. Reading
the logs will create an incorrect tree configuration, as either the
parent, child, or new sibling will lack knowledge of the split. If
Dotori crashes before the log flush completes, the list of logs is read
and the logs are simply deleted using the KVSSD’s delete function.

Figure 4 illustrates the recovery process in its whole. A special
milestone key-value pair is read and the latest index buffer flush
commit ID and latest successful commit ID are loaded. In the dia-
gram, the latest successful commit was 12, meaning any data from
commit 13 is to be discarded. The index buffer is reconstructed
asynchronously in parallel by reading the data from commits 10 to
12, and then an iterator is opened on commit 13 to delete 13:00 to
13:02. A list of logs that were to be flushed in commit 13 exists on
storage, which is then loaded and the logs inside the list are deleted
from the KVSSD.



Snapshots When a snapshot is opened in Dotori, the commit
at which the snapshot began is recorded and future updates to
the OAK-tree first check if a to-be-updated index node belongs to
an active snapshot. If the index node belongs to a snapshot, this
version of the node is made immutable. Outside of the snapshot, a
live copy of the index node is assigned a new version number so it
can receive future updates, and the tree outside of the snapshot is
updated to reflect the change. Thus, the OAK-tree is copy-on-write
for the first update to each index node contained in a snapshot.
After the first update, updates are written to the new version of the
node via logging as usual.

Transactions Dotori’s transaction implementation is identical
to that of ForestDB’s (the store Dotori is derived from), and thus we
only briefly overview it. A transaction is opened by the user and
writes inside the transaction are written to storage immediately. The
writes inside the transaction are placed into the index update buffer
as with normal writes, but are tagged as part of said transaction.
If the user commits the transaction, the updates will be flushed to
the index buffer during the next flush. If the transaction is canceled,
the entries are removed from the buffer and the entries written to
storage are added to the stale deletion list.

Atomic Read-Modify-Write Dotori does not currently posess
an explicit atomic read-modify-write (RMW) command, but we
sketch one possible implementation here. A user calls RMW on a
KV pair and the update is blindly written to the OAK-tree without
first reading the KV pair. The Dotori internal key of said update
is added to the OAK-Tree node containing the original key. In this
scheme, each value of the user-key to Dotori internal key mapping
in the OAK-tree nodes is a list. When the value is read, the list
of updates are read in parallel and the value is merged based on
user-specified logic. To control memory, the full KV pair can be
written back after a certain amount of updates are persisted, and
the lists compacted to contain the internal key of the full KV pair
only.

KVSSD 1/0 Dotori uses the kernel driver from the manufacturer
of the KVSSD [39], and use the respective KVSSD IOCTLs for I/O.
The KVSSD is the same we test in Section 2.3. A basic KVSSD
batch command is used for write I/O. This batch command is not
a part of the standard KVSSD API, and we were provided with a
special firmware that supports it. The batch command supports up
to 8 stores under 4K each in one command, and does not support
retrieves. When a user writes a key-value pair, the key and value are
added to a batch in user-space and the write returns immediately.
When a batch is full a payload is constructed and the batch is sent
as a single command to the KVSSD driver. For reads, the batch is
checked first and if the key-value pair is found, the data is copied
back to the user. Otherwise, data is retrieved from the KVSSD. This
means that data inside a batch (up to 8 writes) will be lost upon a
crash, despite the write returning as successful to the user. In Dotori,
writes are only guaranteed persistent after a commit finishes. A
typical process is a user writes a large number of KV pairs, then
calls commit. A batch will flush upon a commit call even if it is not
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Table 1: YCSB Workloads.

Workload Composition

50% read 50% update
95% read 5% update
100% read
95% read 5% insert (latest distribution)
95% scan, 5% update
50% read-modify-write 50% read

OO w e

4 EVALUATION

We first evaluate the performance of the OAK-tree using a series
of micro-benchmarks to gain an understanding of its performance
characteristics. We then compare Dotori to state-of-the-art and
state-of-the-practice block-device KV stores across a number of
real world workloads.

4.1 Experiment Setup

Hardware and Software Throughout these experiments, we use
a machine with a 40-core Intel Xeon Gold 5218R CPU and 256 GB
of RAM. The operating system is Ubuntu 16.04 with Linux kernel
version 4.9.5. The KVSSD and block SSD refer to an identical 1TB
NVMe SSD flashed with different firmware (as in 2.3). To ensure
tests represent steady-state KV store and device performance, the
SSD is pre-conditioned before the YCSB tests, except in the small
value test, explained in the next section. The capacity of the block
SSD is written twice, once sequential and once random. Then, an
ext4 file system is created, and a file is created to fill enough space
so that roughly 220GB is left on the device. To precondition the
KVSSD, we adapt the block SSD’s pre-conditioning method. Two
times the total device capacity is written to KV pairs that fill 85%
of the device.

Workloads For benchmarking Dotori and the other KV stores,
we first test using the YCSB benchmark suite [10]. The YCSB work-
loads are summarized in Table 1. In the YCSB workloads, we test
against three different value sizes; small (100B), medium (4K), and
large (16K). The drives are not preconditioned and filled with data
in the small value test, as the KVSSD we test in this work pads all
values under 1K to 1K to keep the hash table of a manageable size,
resulting in a notably skewed amount of data on disk for the same
amount of KV pairs between the block-device KV stores and Dotori.
This is a current limitation of hash table based KVSSDs that we
discuss further in Section 4.4. We test using uniform and zipfian
distributions. We limit system memory to 32GB using cgroups, and
for each workload we preload enough key-value pairs to reach a
roughly 100G store size (7M, 25M, and 750M pairs). We then run the
workloads for 30 minutes. A 5 minute warm-up period is carried
out before statistics are recorded for each test. 36 total threads are
used to perform reads and writes, except in ScyllaDB, as explained
in the next section.

Key-Value Stores We compare Dotori to RocksDB, an LSM tree
based KV store used widely throughout industry [17], WiredTiger
[43], a popular B-tree based KV store which is the default storage
engine in MongoDB, ScyllaDB, an LSM-tree based NoSQL store that
boasts higher performance due to a sharded design and efficient
I/O path [40], and the KVSSD itself. We give each store a 28GB
cache (including a simple KV pair cache in front of the KVSSD)



in the YCSB tests, leaving some for the OS and other in-memory
housekeeping structures per-store. In RocksDB, we increase the
number of background compactions to 8. In WiredTiger, we set the
checkpoint period to 30 seconds. For ScyllaDB, we set the num-
ber of background threads performing I/O to 28, as the minimum
recommended allocated memory per shard is 1GB [41]. ScyllaDB
works differently from the other stores in that clients place requests
onto background threads that perform asynchronous I/O, not syn-
chronous I/O. For this reason it is advised to have many more client
threads than cores. We apply a formula for deciding on how many
client threads to create from ScyllaDB from [6] by using Dotori’s
YCSB B medium value performance as a middle-ground baseline
and arrive at 644 workers total. For Dotori, the index buffer flush
limit is set to 320K entries, and MAX_LOGS to 4 for a focus on
lower latency (Section 4.2). The index node cache in Dotori is set to
enough to hold the OAK-Tree in memory in the medium and large
values tests, requiring 1GB and 256MB, respectively. In the small
value test, we give Dotori enough memory to hold the OAK-Tree’s
inner nodes, which is 12GB. The KV cache uses the remaining space
in each configuration (roughly 29GB for medium and large, and
18GB for small). In configurations where the OAK-tree can reside
in memory, KV pair reads still require a read to disk if they are
not cached. We leave a detailed analysis of this sizing tradeoff for
future work. Dotori is also functional if the index does not fit in
memory. Nodes in the OAK-tree are rebuilt via parallel log reading,
as described in Section 3.2 and demonstrated next.
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Figure 5: MAX_LOGS read latency and request breakdown.

4.2 OAK-Tree Performance

In this section, we perform a series of random insert (results not
shown), then random read-only workloads while varying Dotori’s
MAX_LOGS parameter to gain an understanding of the effect of
MAX_LOGS on read latency and throughput. Each insert phase
randomly inserts 50 million 8B/1024B KV pairs, and each read phase
performs 10 million random read operations. For these tests, we
set Dotori’s index cache size to 820MB, which is enough space to
cache all of the OAK-tree’s inner nodes, but few of the leaves. We
set the KV cache size to 180MB, for a total cache size of 1GB. In
such a configuration with a random access workload, most reads
will incur a leaf index node rebuild from storage, and a KV pair
read from storage. For a clearer picture of Dotori’s read latency
when storage access for reading index node logs is the dominant
factor, we modify Dotori so that logs are not cached in memory,
and thus each index node rebuild requires a read to storage for
every existing log for said node. The OAK-tree’s claim is that its
KV-interface specific design allows logs for a node to be retrieved
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in parallel, significantly decreasing the time taken to build an index
node from the logs. To verify this claim, we also include the latency
of a synchronous implementation of the OAK-tree’s log collection
for a MAX_LOGS value of 4 where logs for an index node are
collected one-by-one, in order.

The results are shown in Figure 5. From a MAX_LOGS value of
4 to a MAX_LOGS value of 16, read latency increases steadily. At
a MAX_LOGS value of 4, the P99.99 read latency is low at 2282us.
However, once the value of MAX_LOGS increases to 64 and beyond,
latency increases sharply. The reason for the large jump in latency
is that MAX_LOGS starts to match or exceed the asynchronous I/O
queue depth, and collecting a node takes an entire queue (or more)
of requests. To verify this assumption, a breakdown of an average of
100 slow requests (requests that fall into the P99 or above latency) is
provided for the cases when MAX_LOGS is set to 4, 32, and 64. Each
breakdown measures the time to submit all the log read requests, the
time spent waiting for all reads to return, the time taken to rebuild
the node from the logs, and finally the time to read the actual KV
pair the user requested. At a MAX_LOGS value of 4, the time spend
reading the logs dominates the overall latency, while submission of
all of the log reads is fast. However, at MAX_LOGS values of 32 and
64, log read command submissions only take up to 53% of the total
time. The results suggest that the time it takes to submit retrieve
commands for each log becomes prohibitively expensive at large
values of MAX_LOGS, but introduces the question of whether a
batched read command could help with this problem.

The synchronous implementation achieves similar P50 to P95
latencies to the asynchronous implementation, but the P99 to P99.99
latencies are 1.6X%, 6.2X, and 7.5% higher.

4.3 Dotori Performance

Figure 6 presents the results for the YCSB workloads. We discuss
the small value results in Section 4.4.

Large Values Dotori outperforms the other stores from 1.3x to
14.1X during the uniform write-heavy workloads, and significantly
outperforms the other stores during the read-heavy uniform work-
loads, outperforming the next best store by 1.95x in YCSB B, and
1.98% in YCSB C. When storage is the bottleneck, as in the uniform
distribution tests, a workload with large values favors Dotori for
two reasons. First, larger values can imply less KV pairs overall,
resulting in a smaller KVSSD hash table. Second, larger values re-
sult in more frequent index maintenance operations in other stores,
for example, compactions due to full memtables. Despite low write
interference in read-heavy YCSB B and D, Dotori still outperforms
the other stores. We test the read amplification during YCSB B for
each store and see that the next best performing store (WiredTiger)
incurs 20x read amplification vs Dotori’s 1 (only the value itself is
retrieved from the KVSSD). Additionally, Dotori almost matches the
KVSSD’s raw performance in all large value tests, despite providing
several features that the KVSSD does not.

The zipfian test results for Dotori hold across all value sizes,
and thus for space we include and discuss the large value test only.
Dotori is able to exceed the other stores in performance when
storage is the bottleneck, as in the uniform workloads, because
these workloads increase the burden of index maintenance for the
other stores. However, when locality is high, the index maintenance
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Figure 6: Evaluation results from the YCSB benchmarks.

penalties for the block-device KV stores reduces significantly and
Dotori can only match the other stores in performance at best due
to the nature of the slower KVSSD underneath.

Medium Values As before, Dotori outperforms the other stores
from 1.2X to 4.95X during the uniform write-heavy workloads.
However, this time ScyllaDB starts to match or exceed Dotori’s
performance in several of the tests. This gain in throughput comes
at a cost; ScyllaDB’s CPU usage is consistently high, around 90%,
and it suffers from high read latency (shown in the next section).

Dotori underperforms the KVSSD by 2x on YCSB A. The reason
for this is the overhead needed to flush logs and delete stale KV
pairs during the run. The KVSSD does not need to perform either
of these tasks, because it is not providing versioning features and
overwrites KV pairs in-place. Both optimizations to Dotori’s log
flushing scheme (resulting in less log flushes), and improvements to
the KVSSD itself (a faster KVSSD means log flushes take less of the
overall IOPS) would help with this issue. The KVSSD consistently
performs poorly in YCSB F (read-modify-write), suggesting that
contention on its inner data structures limits the performance of
such a workload.

Read Latency Figures 6d displays the P50 to P99.99 percentile
read latencies for the YCSB A run. Dotori achieves 93X lower P99.99
latency than ScyllaDB, 31X and 22X lower P99.9 and P99.99 latency
than RocksDB, and 4.64% and 4.72X lower P99.9 and P99.99 latency
than WiredTiger. We attribute such low latency to the fact that
the OAK-tree’s low maintenance overheads reduce contention at
the device level, allowing more resources to be prioritized for user
KV pair reads, writes, and garbage collection. The KVSSD itself
has significantly lower latency than all of the other stores at every
percentile, but is not providing the same feature set.

Write Amplification We test write amplification for the YCSB
A medium run at the application level and at the device level. For the
block KV stores, application level write amplification is recorded
using the total amount of data written by a benchmark as seen in
/proc/io divided by the actual data written by the user. For Dotori,
application level write amplification is calculated by recording the
amount of data sent to the KVSSD by Dotori, divided by the data
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written by the user. For both block KV stores and Dotori, device
level write amplification is recorded by dividing total bytes actually
written in the SSD (taken from SMART data) by the amount of
bytes sent to the device by the benchmark.

Figure 6e shows the write amplification at the application and
device level, and the total write amplification (application multi-
plied by device). Dotori’s total write amplification is 2.2X less than
RocksDB , 2x less than WiredTiger, and 2.1x higher than Scyl-
laDB’s. Dotori’s application level WA is the lowest out of all the
stores; updating nodes in the OAK-tree requires only a single write
I/0O with the log. However, Dotori experiences high device level
WA, which ultimately causes it to have a higher total write ampli-
fication than ScyllaDB. The reason is due to internal operations
needed to manage key-value data in the KVSSD. The KVSSD sees
lower internal WA than Dotori as it has less data overall due to the
absence of small log writing (giving it more chances to find empty
victim blocks for GC), and does not perform stale KV pair deletion
(deletions may trigger hash table updates, increasing device-level
WA).

Space Amplification To measure space amplification for the
block KV stores, we take the size of the directory divided by the to-
tal amount of user data. For Dotori, we take the total amount of data
in the KVSSD (recorded inside Dotori) divided by the total amount
of user data. In the YCSB A medium values run, Dotori’s space am-
plification is the lowest at 1.12x. The next best store, WiredTiger,
had a space amplification of 1.23X. Dotori’s space amplification is
lower than the other stores because the KV interface enables com-
paratively lightweight stale data removal with the delete command.

Recovery Speed To test recovery speed, each KV store is preloaded
with 10 million key-value pairs. Then, we run a 50/50 read/write
workload and crash each store in the middle of the workload. The
store is recovered and the process is repeated 4 more times for a total
of 5 recoveries. RocksDB and ScyllaDB have average recovery times
of under 1 second. WiredTiger’s recovery time averages to 31 sec-
onds, depending on how close to a checkpoint the crash happened.
Dotori’s recovery time averages 3.8 seconds, and during recovery
Dotori is able to rebuild the index buffer at the maximum IOPS of



the underlying KVSSD. Dotori’s average recovery time improves
significantly on a naive design where we adapt ForestDB’s recovery
process to a KVSSD. The naive design takes over 80 seconds to
recover a crashed Dotori instance.
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Figure 7: Large Dataset Test Results

Large Dataset Performance We preload each KV store with
65M KV pairs varying from 100B to 16K in size, totaling roughly
530GB of space (55% of the device space exported to the user) and
run a 3 hour 50/50 read/write workload with uniform key distribu-
tion. ScyllaDB is left out of the results as it ran out of space during
the run. Next, we preload Dotori and the KVSSD with 90M KV
pairs, occupying roughly 80% of the device. The results are shown
in Figure 7. Dotori outperforms WiredTiger by 1.14X and RocksDB
by 3.89%. Dotori maintains a throughput penalty compared to the
KVSSD due to log flushing and stale KV pair deletes, discussed
previously. However, Dotori and the KVSSD maintain an almost
identical read latency (not shown).

Between the two tests, Dotori and the KVSSD show similar
performance. In the second test, Dotori’s WA increases by 1.3x.
Despite this, Dotori manages to hold similar, stable performance at
both 50% and 80% device occupancy.
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Figure 9: Concurrency Test Results. 100% Update (left) and
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4.4 Tradeoffs and Limitations

Small Value Performance Small value sizes represent a challenge
to Dotori, and KVSSDs in general. Given databases of similar size,
smaller values results in more KV pairs overall, increasing the size
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of the hash table inside the KVSSD. A larger hash table means less
overall can be stored in memory, resulting in more reads to flash
to service KV pair read and writes. Moreover, contemporary block-
device based KV stores group writes from different threads in the
same commit, allowing multiple KV pair writes to fit inside the
same write unit to disk (a block) [44][9]. In comparison, KVSSDs
offer no such abstraction, meaning that each KV pair write results
in a system call and command sent to disk.

The small value YCSB results are shown in Figure 8. As the
KVSSD’s performance drops in this configuration, so does Dotori’s.
Although the KVSSD manages to compete with the other stores,
Dotori’s OAK-Tree maintenance overheads, while low, are enough
of a penalty in this setting that Dotori underperforms the other
stores. We discuss a possible solution to this in Section 5.

Small KV Pairs and Device Endurance As shown in the YCSB
medium value tests (and, though not shown, the large values tests
too), Dotori shows lower total write amplification than the other
KV stores. However, its device level write amplification is notably
higher due to internal KV pair management inside the KVSSD. De-
spite this, Dotori is able to achieve lower overall write amplification
when value sizes are above 1K. However, when values are under 1K
in size Dotori will experience high levels of device level write am-
plification due to how the underlying KVSSD pads all values under
1K to control the size of the hash table. In the YCSB A small value
Dotori’s device level WA is 8X that of the block KV stores. This
limitation is not introduced by or inherent to Dotori, and Dotori
would be free of this limitation given a KVSSD that does not have
such restrictions.

Sequential Accesses Block SSDs can benefit from logical se-
quential write and read access for numerous reasons, including
reducing mapping costs, reading many KV pairs in the same block,
device internal parallelism, and more. However, such a concept is
not as straightforward in a KVSSD as the hash table may break
ordering of KV pairs. We populate Dotori and the KVSSD by se-
quentially inserting 25M 4K KV pairs and then perform a sequential
read test, then a sequential update test for 25M operations each. We
then repeat the test but populate randomly and perform random
reads and updates. Performance is identical between sequential
and random accesses. Neither Dotori or the KVSSD benefit from
sequential accesses as what are sequentially written KV pairs in the
mind of the user aren’t seen as sequential at the disk level. This has
negative performance implications for workloads that benefit from
sequential accesses to large amounts of data, such as in replicated
environments where fast reads of the entire disk are used to copy
data to new nodes.

Concurrency We perform a 10-minute update-only and 10-
minute 50/50 read/write workload while increasing thread counts
to test concurrency. The results are shown in Figure 9. Index buffer
flushes impede scalability in Dotori in the update-only test, whereas
the KVSSD scales up to 32 threads. The block-device KV stores
likewise suffer scalability issues due to synchronization around logs
[9] (or at the filesystem [31]). Dotori scales better in the read/write
test, as writes do not block reads and index buffer flushes are less
frequent, but ultimately does not scale as well as the KVSSD again
due to index buffer flushes. Allowing writes to proceed while a
previous index buffer flushes is marked as future work for Dotori,
and the OAK-Tree is compatible with either design.



Key and Value Sizes Dotori currently supports 8 byte or smaller
keys only. This is a limitation of the in-memory B+Tree Dotori
inherits from ForestDB, and not a limitation introduced by the
OAK-Tree design. Dotori could accept keys longer than 8 bytes if
modified to work with an in-memory B+Tree that supports them.

5 DISCUSSION

Importance of a Batch Command Throughout this work we
identified several areas where a batch command could be critical in
helping KVSSDs and Dotori, and believe such a command should be
present in KVSSD API specifications moving forward. For example,
log flushing in Dotori reduces performance due to writing large
numbers of small logs, but a batch command supporting many
stores would likely help performance notably. Additionally, Dotori’s
write performance suffers as value sizes get smaller due to having no
mechanism to group writes together into a single NVMe command.

Make scans accurate or performant, or do not support
them at all The KVSSD we tested in this work supported a limited
iterator command in which a 4 byte prefix could be matched with
key-value pairs on the device. A previous iteration of Dotori used
this function to find KV pairs from a failed commit to delete, but it
was ultimately too slow and replaced with the internal auto-flush.
The iterator function was not fast or responsive enough to be used
elsewhere, and was too fuzzy to be used as the main method for
range queries. Given the choice of whether to have this limited
iterator function or more IOPS and lower latency, we would have
chosen the latter. We suspect maintaining key prefix buckets for
iteration was a large contributor to the lack of performance vs the
block SSD.

Dotori on other types of KVSSD We leave the testing of Dotori
on other types of KVSSD (e.g. LSM-tree based [19]) for future work.
To the best of our knowledge, the KVSSD we test in this work is the
only available production-ready KVSSD on enterprise hardware,
which makes comparison with other types of KVSSD infeasible as
they are prototypes that are generally unavailable, and the perfor-
mance of the hardware varies significantly [21][19]. Dotori is still
compatible with other types of KVSSD, assuming they have a store,
retrieve, delete, and list or iterator function. However, as LSM-trees
have first-class scan and potentially versioning support, it is un-
clear whether the full feature set of Dotori would be necessary on
such a device. The stance we take in this work is that hash table
based KVSSDs with fast KV access and less auxiliary features have
advantages over LSM-tree based KVSSDs (Section 2.4).

6 RELATED WORK

Key-Value Stores Recent KV store designs frequently center
around improving the LSM-tree. SILK [5] reduces the interfer-
ence between client and background operations for compaction.
PebblesDB [37] introduces an LSM-tree modification called the
fragmented LSM-tree to avoid data rewrites within LSM-tree lev-
els. WiscKey [29] introduces a technique wherein keys and val-
ues are separated in the LSM-tree, reducing compaction overhead.
FASTERKYV [8] is a KV store that enables a mix of in-place and out-
of-place updates while achieving high concurrency. The design of
ScyllaDB [40] departs from synchronous I/O in the era of very fast
disks to achieve high throughput, yet keeps the LSM-tree design.
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Dotori is different than these stores because it uses a KVSSD as the
underlying storage device. Instead of developing new techniques to
reduce inefficiencies whose root cause is the block interface, Dotori
does not use the block interface at all, and instead uses a KVSSD
and the key-value interface to implement a novel index storage
design.

Key-Value SSDs Several KVSSD designs [19, 21, 27, 30, 45]
and works that utilizes a KVSSD [25] have appeared in recent
times. KAML [21] is a KVSSD that exposes a transaction interface
to the user, but lacks iterator functionality that would be critical
to Dotori. PINK [19] is a KVSSD based on an LSM-tree design, as
opposed to a hash table design like in our tested KVSSD. While these
KVSSD designs make efforts to enable further native functionality
on the device itself, this work takes a different direction. We do
not focus on providing features in KVSSD hardware, and rather
use an underlying KVSSD with basic KVSSD functionality as a fast
key-value storage device instead of a fully-featured KV store.

B+tree Design B+trees power many databases used through-
out industry and academia [3, 32, 35, 43]. All of these B+trees are
designed for block devices and to one extent or another suffer
from the problems we discuss in this work. In comparison, our
work introduces a novel B+tree-like design in the OAK-tree that
is designed for a KVSSD, not a block device. Dotori’s OAK-tree
shares similarities with the log-structured B-tree (LSB-tree) [23]
and B€-tree[20]. Like the OAK-tree, the LSB-tree aims to append
updates to index nodes in a log. However, unlike the OAK-tree, the
LSB-tree needs to read in logs to memory before updating them.
Additionally, mapping information for finding logs on disk must
be maintained and persisted. The B¢-tree appends data without
first reading a node, similar to the OAK-tree, but must append said
data to the root and flush data towards the leaf later, unlike the
OAK-tree which appends data directly to the leaf. The OAK-tree’s
design is enabled by the KV interface, which makes it practical to
persist and later find data sparsely across the disk.

7 CONCLUSION

The adoption of KVSSDs suffers due to the lack of features they
provide that are critical to operation in real world scenarios. How-
ever, key value SSDs operate at lower raw device performance, and
cannot compete with mature block device based key-value stores
without new techniques and designs. In this work we introduced
Dotori, a KVSSD based key-value store that uses the key-value
interface to facilitate higher performance than state of the art block
SSD based key-value stores through a novel host-side index design.
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