
Sparkly: A Simple yet Surprisingly Strong TF/IDF Blocker for
Entity Matching

Derek Paulsen
University of Wisconsin-Madison

Informatica Inc.
dpaulsen2@wisc.edu

Yash Govind
Apple Inc.

yash_govind@apple.com

AnHai Doan
University of Wisconsin-Madison

Informatica Inc.
anhai@cs.wisc.edu

ABSTRACT
Blocking is a major task in entity matching. Numerous blocking
solutions have been developed, but as far as we can tell, blocking
using the well-known tf/idf measure has received virtually no atten-
tion. Yet, when we experimented with tf/idf blocking using Lucene,
we found it did quite well. So in this paper we examine tf/idf block-
ing in depth. We develop Sparkly, which uses Lucene to perform
top-k tf/idf blocking in a distributed share-nothing fashion on a
Spark cluster. We develop techniques to identify good attributes
and tokenizers that can be used to block on, making Sparkly com-
pletely automatic. We perform extensive experiments showing that
Sparkly outperforms 8 state-of-the-art blockers. Finally, we pro-
vide an in-depth analysis of Sparkly’s performance, regarding both
recall/output size and runtime. Our findings suggest that (a) tf/idf
blocking needs more attention, (b) Sparkly forms a strong baseline
that future blocking work should compare against, and (c) future
blocking work should seriously consider top-k blocking, which
helps improve recall, and a distributed share-nothing architecture,
which helps improve scalability, predictability, and extensibility.

PVLDB Reference Format:
Derek Paulsen, Yash Govind, and AnHai Doan. Sparkly: A Simple yet
Surprisingly Strong TF/IDF Blocker for Entity Matching. PVLDB, 16(6):
1507 - 1519, 2023.
doi:10.14778/3583140.3583163

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/anhaidgroup/sparkly.

1 INTRODUCTION
Entity matching (EM) finds data instances that refer to the same
real-world entity. Most EM solutions proceed in two steps: blocking
and matching. Given two tables A and B to match, the blocking step
uses heuristics to quickly remove tuple pairs (a ∈ A,b ∈ B) judged
unlikely to match. The matching step then applies a matcher to the
remaining tuple pairs to predict match/no-match.

Both the blocking and matching steps have received significant
attention (e.g., [1, 5–7, 12, 14, 26, 27, 30, 32]). In this paper we focus
on the blocking step. Over the past 30 years, numerous blocking
solutions have been developed. The goal is to maximize recall (the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583163

fraction of true matches that survive blocking) while minimizing
the output size and the runtime (see Section 2). In the past few
years, as a part of the Magellan project at UW-Madison, which
develops a comprehensive open-source EM platform [19], we have
implemented many of the proposed blocker types, develop new
blocker types [38], and applied them tomany real-world EM tasks in
domain sciences and industry [16]. While doing this, we found that
a relatively simple blocking solution that uses the tf/idf similarity
measure, as implemented in the open-source Apache Lucene library,
seems to work quite well.

This is rather surprising because as far as we can tell, tf/idf based
blocking has received virtually no attention. For example, the book
“Data Matching” [6] and several recent EM surveys [14, 32] do not
discuss any tf/idf solutions for blocking, and we are not aware
of any recent work proposing tf/idf solutions. Yet we found tf/idf
blocking highly promising in many informal experiments.

As a result, in this paper we perform an in-depth examination
of tf/idf blocking. We begin by developing a solution called Sparkly
Manual, which takes as input two tables A and B with the same
schema, and outputs tuple pairs (a ∈ A,b ∈ B) judged likely to
match. There are two key ideas underlying Sparkly Manual. First,
it performs top-k blocking. For each tuple t of the larger table, say
B, it finds the top k tuples in A with the highest tf/idf scores (k is
pre-specified), then pairs these tuples with t and outputs the pairs.

Second, Sparkly Manual performs the above top-k computations
in a distributed shared-nothing fashion, using Lucene on a Spark
cluster (hence the name Sparkly, which stands for Spark + Lucene
+ Python). Specifically, it uses Lucene to build an inverted index I
for table A on the driver node of the Spark cluster, ships the index I
to all worker nodes, distributes the tuples of table B to the worker
nodes, then uses Lucene to perform top-k computations for the
tuples at the worker nodes. Thus, the worker nodes operate in
parallel and share no dependencies. Each node processes a subset
of tuples in B.

We compare Sparkly Manual with 8 state-of-the-art (SOTA)
blockers on 15 datasets that have been extensively used in recent
EMwork [25, 29, 38]. Surprisingly, Sparkly Manual outperforms all of
the above blockers. It achieves higher or comparable recall at a much
smaller output size, and the performance gap is quite significant in
several cases (see the experiment section).

While appealing, Sparkly Manual has a limitation. It requires
the user to manually identify the attributes to be blocked on, e.g.,
product title, or name and phone. Then it computes the tf/idf score
between any two tuples a ∈ A,b ∈ B using only these attributes,
after 3-gram tokenization.

It can be difficult for users to identify good blocking attributes.
So we develop Sparkly Auto, which automatically identifies a set of

1507

https://doi.org/10.14778/3583140.3583163
https://github.com/anhaidgroup/sparkly
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583163
https://www.acm.org/publications/policies/artifact-review-and-badging-current

good blocking attributes, together with an appropriate tokenizer for
each attribute. The key observation underlying Sparkly Auto is that
a good blocking attribute helps to discriminate between matches and
non-matches.We propose techniques to quantify discriminativeness,
then to effectively search a large space for the optimal combination
of attributes and tokenizers that maximizes this quantity.

We show that Sparkly Auto achieves comparable or higher recall
than Sparkly Manual, yet runs much faster. In particular, Sparkly
Auto can block large datasets at reasonable time and cost, e.g., block-
ing tables of 10M tuples under 100 minutes on an AWS cluster of 10
commodity nodes, costing only $12.5, and blocking tables of 26M
tuples under 130 minutes on an AWS cluster of 30 nodes, costing
$67.5. This suggests that Sparkly Auto can already be practical for
many real-world EM problems.

We conclude by discussing questions that arise in light of Sparkly’s
strong performance. In summary, the contributions and takeaways
of this paper are as follows:

• We develop Sparkly, a tf/idf blocker that uses Lucene to
perform top-k blocking on a Spark cluster. We develop tech-
niques to automatically identify good attributes and tokeniz-
ers to block on.

• Extensive experiments show that Sparkly outperforms 8
state-of-the-art blockers. This is rather surprising because
tf/idf blocking has received virtually no attention in the past
30 years. The takeaway here is that tf/idf blocking needs more
attention, and that Sparkly forms a strong baseline that future
blocking work should compare against.

• We provide an in-depth analysis of Sparkly’s performance.
The takeaway here is that future blockingwork should seriously
consider top-k blocking, which helps improve recall, and a
distributed share-nothing architecture, which helps improve
scalability, predictability, and extensibility.

• Based on the above analysis, we identify a number of promis-
ing research directions for blocking.

For more information on Sparkly, see [34], which provides the
code, all experiment datasets (except Hospital, which is private),
and a longer technical report.

2 BLOCKING FOR ENTITY MATCHING

EM, Blocking, Matching: Many EM variations exist [6, 12]. A
common EM variation [38], which we consider in this paper, is as
follows: given two tables A and B with the same schema, find all
tuple pairs (a ∈ A,b ∈ B) that refer to the same real-world entity.
We call these pairs matches.

Considering all pairs inA×B takes too long for large tables. So EM
is typically performed in two steps: blocking and matching [6, 12].
The blocking step uses heuristics to quickly remove a large number
of pairs judged unlikely to match. The matching step applies a rule-
or ML-based matcher to each remaining pair, to predict match or
non-match. Figure 1 illustrates these steps. Here blocking keeps
only those pairs that share the same state. In this paper we focus
on the blocking step.

Existing Blocker Types, Threshold vs. Top-k Blocking: Nu-
merous blocking solutions have been developed (see [5, 27, 32] for

Figure 1: The blocking and matching steps of EM.

surveys). They fall roughly into five types: sort, hash, similarity-
based, rule-based, and composite. Sorted neighborhood computes for
each tuple a key, sorts tuples based on keys, then outputs a pair of
tuples if their keys are within a pre-defined distance. Hash-based
methods compute for each tuple a hash value (a.k.a. key), groups all
tuples sharing the same hash value into a block, then outputs a pair
of tuples if they belong to the same block. Examples of such meth-
ods include attribute equivalence, phonetic blocking, suffix array,
etc. [5, 27, 32]. Most existing blocking methods are hash-based.

Similarity-based methods output only those tuple pairs where
the similarity score between the tuples exceeds a pre-specified
threshold, or one tuple is within the kNN (k-nearest) neighborhood
of the other tuple [29].

We refer to the above two options as threshold blocking and top-
k blocking, respectively. As we will see later, Sparkly uses top-k
blocking, which we show to be critical to achieve high recall.

Similarity scores that have been considered for blocking include
syntactic scores such as Jaccard, cosine, edit distance [12], and se-
mantic scores such as those computed using word embedding/deep
learning (DL) techniques [38].

Rule-based methods employ multiple blocking rules, where each
rule can employ multiple predicates (e.g., if the Jaccard score of the
titles is below 0.6 and the years are not equivalent, then the two
papers do not match) [15]. Given a set of rules, the blocker figures
out the best way to create a workflow and execute it using indexes
[15]. Finally, composite methods generalizes rule-based blocking and
can combine multiple blocking methods in a complex pre-specified
workflow. Examples include canopy blocking [12] and the union of
a DL method with a rule-based method in [38].

Recent Research Directions: In recent years researchers have
pursued several directions regarding the above five blocker types
[27, 32]. They have examined how to scale blocking methods (e.g.,
using Hadoop/Spark) [9] and how to apply DL (e.g., to develop
novel hash-based [13] and similarity-based blockers [38]).

As discussed earlier, hash-based methods generate blocks of tu-
ples, then output pairs whose tuples belong to the same block. A
novel recent direction, called meta-blocking, examines how to man-
age these blocks (e.g., remove/prune blocks) [32]. A related direction
is token blocking, in which each block contains all tuples that share
a particular token. These blocks can be managed using meta block-
ing. Another interesting direction, called schema-agnostic, drops
the assumption that Tables A and B share the same schema. The
well-known JedAI EM platform implements many meta-blocking,

1508

token-blocking, and schema-agnostic techniques [31, 33]. Other im-
portant directions include learning blockers [15], using the feedback
from the matcher to improve the blocker, and explaining blockers
[5, 27, 32].

Evaluating Blockers: Most existing works evaluate blockers in
three aspects: recall, output size, and runtime. Let G ⊆ A × B be the
set of (unknown) gold matches, and C ⊆ A × B be the set of tuple
pairs output by a blockerQ . Then the recall ofQ is |C ∩G |/|G |, the
fraction of gold matches in the output of Q . The output size is |C |,
and the runtime is measured from when the blocker receives the
two tables A and B until when it outputs C .

Other aspects considered important, especially in industry, in-
clude the ease of tuning, the ability to block on arbitrarily large
tables (e.g., those with billions of tuples) without crashing, extensi-
bility (e.g., with more blocking methods/rules), the ability to esti-
mate the total blocking time, explainability, and the ability to run
the blocker easily in a variety of environments (e.g., a single laptop,
a Spark cluster, a Kubernetes cluster), among others.

In this paper, we will evaluate blockers using the above three
popular aspects: recall, output size, and runtime. We will briefly
discuss Sparkly regarding some additional aspects, but deferring a
thorough evaluation of these aspects to future work.

3 THE SPARKLY SOLUTION
We now describe the tf/idf measure used in keyword search (KWS),
the open-source KWS library Lucene, then Sparkly, which uses
Lucene to perform blocking for EM.

3.1 The TF/IDF Family of Scoring Functions
TF/IDF is a well-known family of scoring functions for ranking
documents in KWS [24]. To explain, consider a set of documents
D = {D1, . . . ,DN }, where each document Di is a string (e.g., arti-
cle, email). Given a user query Q , which is also a string, we want
to find documents in D that are most relevant to Q . To do so, we
compute a score s(D,Q) for each document D, then return the
documents ranked in decreasing score.

A well-known scoring function [12], TFIDF-cosine, is as follows.
First we tokenize each document D into a bag of tokens, also called
terms. Next, we convert documentD into a vectorVD ofweights, one
weight per term, where the weight for term t is VD (t) = t f (t ,D) ·
id f (t). Here t f (t ,D) is the frequency of term t in document D, i.e.,
the number of times it occurs inD. The quantity id f (t) is the inverse
document frequency of term t , defined as loд(N /d f (t)), where N
is the number of documents in D, and d f (t) is the number of
documents that contain term t .

We tokenize and convert query Q into a vector of weights VQ in
a similar fashion. Finally, we compute score s(D,Q) to be the cosine
of the angle between the two vectors VD and VQ :

s(D,Q) = [
∑
t
VD (t) ·VQ (t)]/[

√∑
t
VD (t)2 ·

√∑
t
VQ (t)2], (1)

where t ranges over all terms in D and Q . This definition captures
the intuition that if a term t of queryQ occurs often in a documentD,
then D is likely to be relevant toQ and score s(D,Q) should be high.
This is reflected in the use of the term frequency t f (t ,D). A higher

t f (t ,D) leads to a higher weight for t in VD , and consequently a
higher s(D,Q). But this should not be true if term t also occurs in
many other documents. In such cases term t should be discounted,
i.e., its weight in VD should be low, and this is accomplished by
multiplying the term frequency t f (t ,D) with the inverse document
frequency id f (t).

Over the years, many tf/idf scoring functions have been pro-
posed. Among them, the following function, called Okapi BM25,
has become most popular, and is the default scoring function used
by Lucene [36]:

s(D,Q) =
∑
t ∈Q

t f (t ,D) · (k1 + 1)

t f (t ,D) + k1 · (1 − b + b ·
|D |

avдdl)
· id f (t), (2)

where id f (t) = loд(N−df (t)+0.5
df (t)+0.5 + 1), and k1 and b are free param-

eters, often set as k1 ∈ [1.2, 2.0] and b = 0.75. The tech report
explains the intuition behind BM25 (see also [36]), which has been
shown to work quite well for KWS [18, 24].

3.2 The Lucene KWS Library
Many open-source software for KWS have been developed. Among
them Apache Lucene has become most popular [18]. The latest
releases of Lucene, since 2015, have used state-of-the-art techniques
in KWS to be both accurate and fast [18].

Specifically, Lucene uses BM25 as the default scoring function,
ensuring highly accurate KWS results. It has also been extensively
optimized, to be very fast for top-k querying, i.e., given a query Q
and a set of documents D, find the top k documents in D that have
the highest BM25 score with Q , for a pre-specified k (typically up to
a few hundreds). To do this, naively we can use an inverted index
to find all documents in D that share at least one term with Q ,
compute BM25 scores for all of them, then sort and return the top
k documents. This however would be very slow, because the set of
documents sharing at least one term with Q is often very large.

To solve this problem, Lucene uses a recently developed KWS
technique called block-maxWAND [3, 10, 11]. This technique allows
Lucene at query time to perform a branch-and-bound search to find
the top k. This way, Lucene can avoid examining a huge number of
documents, and can generally find the top-k documents very fast,
as we will see in the experiment section.

Lucene has become the library of choice for a wide variety of
KWS applications. Two other popular open-source KWS systems,
Solr and ElasticSearch, build on Lucene.As a library, Lucene provides
two key API functions: indexing and querying. Solr (started in 2004)
and ElasticSearch (started in 2010) use these API functions, but
provide extensive support for indexing and querying a large number
of documents on a cluster of machines.

3.3 The Sparkly Solution
We now describe Sparkly, which takes as input two tables A and
B with the same schema, and outputs a table C consisting of tuple
pairs (a ∈ A,b ∈ B) judged likely to match.

To do so, Sparkly uses two key ideas. First, it performs top-k
blocking. Specifically, it builds an inverted index I for the smaller
table, say table A. Then for each tuple b in table B, it probes I to
find the top k tuples in A with the highest tf/idf scores (where k is
pre-specified), then pairs these tuples with b and outputs the pairs.

1509

Figure 2: Sparkly’s execution on a 3-node cluster.

Second, Sparkly executes the above steps in a distributed share-
nothing fashion, using Lucene on a Spark cluster. We now describe
the execution in detail, using the 3-node Spark cluster in Figure 2.
Build the inverted index I of table A: Suppose that tables A and B

reside on the primary node N1 (see Figure 2), and that A is the
smaller table, i.e., having fewer tuples than B. Sparkly chops tableA
horizontally into multiple chunks, each containing multiple tuples,
starts multiple threads on the entire Spark cluster, sends each chunk
to a thread, which calls Lucene’s indexing procedure to create an
inverted index for that chunk. Sparkly then combines these inverted
indexes into a single inverted index I for table A, and writes I to
the local disk of node N1.
Ship index I and tuples of table B to the secondary nodes: Sparkly
then ships index I to the local disks of the secondary nodes N2
and N3 (see Figure 2). Next, it chops table B (on primary node N1)
into chunks, each containing multiple tuples (currently set to 500),
sends each chunk to a secondary node and assigns to a thread on
that node. Figure 2 shows that a chunk B1 of table B consisting of
tuples u1,u2,u3 is sent to a thread on node N2, and that another
chunk B2 consisting of tuples u4,u5,u6 is sent to a thread on node
N3.
Find top-k tuples in table A for each tuple of table B: Each thread
now goes through the tuples in the assigned chunk. For each tuple,
it probes index I to find the top k tuples in table A with the highest
tf/idf scores, pair these tuples with the probing tuple, then sends
the pairs back to the primary node N1. (The thread only sends back
the IDs, not the full tuples.)

Consider again the thread for chunk B1 with tuples u1,u2,u3
(under “Node N2” in Figure 2). Suppose k = 2. This thread first
processes tuple u1: it probes index I to find the top 2 tuples in table
A with the highest tf/idf scores with u1. Suppose these are tuples
v1,v2. Then the thread creates the pairs (u1,v1), (u1,v2) and send
them back to node N1 (see the figure). Next, the thread processes
tuple u2, then tuple u3. Similarly, Figure 2 shows how a thread on
node N3 processes chunk B2 = {u4,u5,u6}.

When Sparkly has processed all chunks of table B, and all pairs
sent back from the secondary nodes have been collected into a
tableC on primary node N1, Sparkly terminates, returningC as the
blocking output.
The tf/idf scoring function: All that is left is to describe the scoring
function used by Sparkly. First, we ask that the user manually
identify a set of attributes to block on. Typically these are “identity”

attributes, such as name, phone, address, product title, brand, etc.
Next, for each tuple (in table A or B), we concatenate the values
of these attributes into a single string s , lowercase all characters
in s , tokenize s into a bag of 3-gram tokens, and remove all non-
alphanumeric tokens.

Let Bt be the bag of 3-grams for a tuple t . When indexing table
A, for each tuple t ∈ A, we index only Bt , not the entire tuple t .
Finally, when querying, we compute the BM25 score between two
tuples u,v to be the BM25 score between Bu and Bv .

Discussion:We now discuss the rationales behind the main design
decisions of Sparkly.
Use top-k instead of thresholding: This is the most important deci-
sion that we made. We use top-k instead of thresholding for the
following reasons. First, it is often easier to select a value for k than
a threshold α . Given a value for k , we know precisely how big the
blocking output will be, and the rule of thumb is to select k that
produces the largest blocking output that the matching step can
handle, because the larger the blocking output, the higher the recall.
On the other hand, we often do not have any guidances on how to
select a good threshold α .

Second, we observe that real-world data is often so noisy that
the similarity scores of many matching tuple pairs can be quite low
(see Section 5). This makes it very difficult to set threshold α . A
high threshold kills off many matches, producing low recall. A low
threshold often blows up the blocking output size in unpredictable
ways. In contrast, in such cases we observe that the matching tuples
are often still within the top-k “distance” of each other, making
top-k retrieval still effective, as we show in Section 4.

Finally, Lucene and many other KWS systems are highly opti-
mized runtime-wise for top-k search, but not for threshold search.
Do top-k on just one side instead of both sides: Currently we do top-
k only from table B into table A. Another option is to do top-k on
both sides: from B into A and from A into B, then return the union
of the two outputs. We experimented with this option but found
that it can significantly increase runtime yet improve recall only
minimally. It also complicates coding (e.g., we have to write code
to remove duplicate pairs from the outputs of both sides).
Do top-k from the larger table: We index the smaller table, say table
A, then do top-k probing from the larger table B because indexing
the smaller table takes less time and produces a smaller index I .
Shipping this smaller index I to the secondary Spark nodes takes
less time. Finally, probing from the larger table rather than the
smaller one tends to produce higher recall, given the same k value.
Ship the index and tuples of table B to the secondary nodes: This is
the second most important decision that we made. The challenge here
is to find an efficient way to do distributed top-k probing on a Spark
cluster. Toward this goal, recall that we create the inverted index I
for table A on the primary node N1. Table B also resides on N1. So
the simplest solution is to do all top-k probings there, using only
the cores of N1. However, N1 has a limited number of cores (e.g.,
16, 32), so it can run only a limited number of threads, severely
limiting how much top-k probing we can do in parallel.

The next solution is to send the tuples of B to the secondary
Spark nodes, then do top-k probing from the secondary nodes into
the index I on primary node N1. This way, the secondary nodes can

1510

run a much larger number of threads. Unfortunately, when these
threads contact primary node N1 to do top-k probing, they would
need to rely on the threads running on the cores of N1 to do the
actual probing into index I . So once again, the limited number of
threads on N1 becomes the bottleneck for scaling.

As a result, we decided to ship the index I and the tuples of B
to the secondary nodes. Each secondary node then runs multiple
threads, each doing top-k probing using the copy of I on that node.
So we can do as many top-k probings in parallel as the number
of threads on the secondary nodes. This produces a share-nothing
parallel solution that is highly modular and can scale horizontally
as we add more secondary Spark nodes.
Partitioning very large tables A and B: Amajor concern is whether
shipping index I would take too long, because it can be very large.
This turned out not to be the case. For example, in our experiments,
indexing a table of 10M tuples produces indexes of size 1.3-2GB,
and shipping these takes 21-32 seconds (see Section 4).

Still, one may ask what if the tables have 500M or 5B tuples?
Would the indexes become too big to fit on the disks of Spark
nodes? Our solution is to break table A (the smaller table, to be
indexed) into partitions of say 50M tuples, then process the partitions
sequentially. For example, if table A has 100M tuples, then we break
A into partitions A1 and A2 each having 50M tuples, then run two
blocking tasks: A1 vs. B and A2 vs. B. Finally, we combine the top-k
results produced by these tasks. This guarantees that Sparkly never
has to build and ship indexes for more than 50M tuples.

Use Lucene instead of ElasticSearch or Solr: We use Lucene because
it provides highly effective procedures to index a table and do top-k
probing, which are exactly what we need. ElasticSearch (ES) and
Solr build on top of Lucene and provide a lot more capabilities that
we do not need (e.g., sharding) yet can cause complications. For
example, when we first built Sparkly, we used ES and observed
two problems. First, it took much longer (and more pain) to install
Sparkly, because we had to install ES as a part of the process. Second,
Sparkly has less applicability, because we could not run it in certain
environments, e.g., on a Kubernetes cluster, because we cannot
ensure data locality (i.e., when Spark performs a top-k query, the
query will go to an ES instance installed on the same node). So we
switched to Lucene, which addresses the above problems.

3.4 Selecting Attributes and Tokenizers
So far we ask an expert user to manually select a set of attributes.
Then we concatenate the values of these attributes into a string,
tokenize it using a default (3-gram) tokenizer, then index and search
on the tokenized string. We call this solution Sparkly Manual.

Sparkly Manual works well, but can suffer from three problems.
First, it can be difficult even for expert users to select good block-
ing attributes. Second, concatenating the attributes is problematic
because the importance of a token depends on which attribute it
appears in. Finally, using a single tokenizer is also problematic be-
cause different attributes may best benefit from different tokenizers.
To address these problems, we will automatically select blocking
attributes and associated tokenizers, as elaborated below.

Problem Definition: First we formally define this selection prob-
lem. Let the attributes of tables A and B be F = { f1, . . . , fn }.

Figure 3: Illustrating the discriminativeness of configs.

Let T = {t1, . . . , tm } be a set of tokenizers (e.g., 3-gram, word-
level). We define a configuration L (or config L for short) as a set
of (attribute, tokenizer) pairs L = {(fi1, ti1), . . . , (fip , tip)}, where
fi j ∈ F , ti j ∈ T , j = 1 . . .p. Thus, in a config L different attributes
can use different tokenizers.

Let L be the set of all configs. Our goal is to find the config
L ∈ L that maximizes the recall. To define recall, we begin by
defining the similarity score. Given two tuples b ∈ B,a ∈ A,
we define their similarity score with respect to config L as the
sum of the BM25 scores of the individual attributes in the con-
fig (tokenized using the assigned tokenizers). Formally, we have
s(b,a,L) =

∑p
j=1 sj [ti j (b . fi j), ti j (a. fi j)]. Here ti j (b . fi j) applies the

tokenizer ti j to the value of attribute fi j of tuple b, producing a
bag of tokens, and ti j (a. fi j) produces another bag of tokens. Then
sj [ti j (b . fi j), ti j (a. fi j)] computes the BM25 score between these two
bags of tokens.

Next, we define the blocking output for when the above similarity
score s(b,a,L) is used. For any tuple b ∈ B, let Q(b,A,k,L) be the
list of top-k tuples from A that has the highest tf/idf scores, as
defined by s(b,a,L), with b. Let C(b,A,k,L) be the set of all pairs
(b,v) where v ∈ Q(b,A,k,L). Then the blocking output can be
defined as C(B,A,k,L) = ∪b ∈BC(b,A,k,L).

Finally, let recall(C(B,A,k,L)) be the fraction of true matches
in C(B,A,k,L). Then our problem is to find a config L ∈ L that
maximizes recall(C(B,A,k,L)) for a given k .

The above problem raises two challenges: how to estimate the
recall of a config and how to find the config with the highest recall
in a large space of configs. We now address these challenges.

Estimating the Recall of a Config: Given a config L, it is not
possible to estimate its recall recall(C(B,A,k,L)) because we do
not know the true matches. To address this problem, we make
the key observation that it is possible to estimate the discriminative
power of a config L, which captures its ability to tell apart the matches
from the non-matches.We can then search for the config with the
maximal discriminativeness, on the heuristic assumption that this
config is likely to achieve high recall.

Example 3.1. To motivate, consider a tuple b ∈ B and three single-
ton configs L1,L2,L3 involving attributes f1, f2, f3, respectively. Let
r1, r2, r3 be the top-k lists for b, produced by querying the inverted
index I of table A using the above 3 configs, respectively. Figure 3.a
shows the top-k lists r1, r2, r3. Note that each top-k list contains tuple
IDs in A, already sorted in decreasing BM25 scores. For each list, the
figure shows the scores, plotted against the ranks of where they appear
in the list.

1511

Figure 3.a suggests that for the above tuple b ∈ B, r3 is quite
“discriminative”, because it “slopes down” steeply (i.e., the top few
tuples of r1 have very high scores while the rest of the tuples have
much lower scores). In fact, the curve r3 appears more discriminative
than r1 and r2, which do not “slope down” as much.

It may appear that we can measure this discriminativeness as the
area under the curve (AUC): smaller AUC means higher discrimina-
tiveness. In Figure 3.a, this is indeed true for r3 and r1: AUC(r3) <
AUC(r1) and r3 is more discriminative than r1. But it is not true for
r3 and r2, because AUC(r2) < AUC(r3), yet r2 is not more discrim-
inative than r3. The problem is that the BM25 scores of the curves
(generated by using different configs) are not comparable, and hence
the AUCs are also not comparable. To address this, we normalize the
BM25 scores of each curve to be between [0,1] (by dividing the original
scores in each curve by the maximum score). Figure 3.b shows the
normalized curves. Now it is indeed the case that smaller AUC means
higher discriminativeness.

Thus, we can define the discriminativeness of a config L for a
table B (given a table A and an inverted index I) as the average dis-
criminativeness of config L for each tuple in B:meanAUC(B,L,k) =
1
|B |

∑
b ∈B AUC(b,L,k).

In turn, we can define the discriminativeness of config L for a tu-
pleb inB as the normalizedAUC. Let r (b,L,k) = ((v1, s1), ...(vk ′ , sk ′))
be the top-k tuple list retrieved from index I , for record b ∈ B,
scored according to config L, sorted in decreasing order of score
s1, . . . , sk ′ (k ′ ≤ k because only tuples with positive score can
be in the list). Then we can compute the area under the curve
as AUC(b,L,k) = 1

k ′ ·s1
∑k ′−1
i=1 si+1 +

si−si+1
2 . The tech report [34]

explains how we arrive at this formula.
In practice, computing meanAUC(B,L,k) for a config L is too

expensive, as we have to query index I with all tuples in B. So
we approximate it usingmeanAUC(B′,L,k), where B′ is a random
sample of 10K tuples of B (and we set k to 250).

Searching for a Good Config: Our goal now is to find the con-
fig L that maximizes meanAUC(B′,L,k). The number of configs
can be huge (e.g., in the millions). So we adopt a greedy search
approach. First, we score all singleton configs (each using a single
attribute/tokenizer pair) and find the top 10 configs with the lowest
meanAUC scores. Next, we combine these configs to create “com-
posite” configs, where each config has up to 3 attributes. We do not
consider configs of more than 3 attributes because in our experience
these configs take much longer to run yet only minimally improve
recall, if at all. Finally, we score all configs and return the one with
the lowestmeanAUC score.

Since we use at most 10 singleton configs to create more configs
of size up to 3 attributes, the total number of configs to score is at
most 175, making exhaustive scoring of all configs possible.

We further speed up the above search using a technique called
early pruning. To illustrate, consider again the problem of scoring
all singleton configs to find the top 10 configs. Scoring a config
means querying the inverted index I with all tuples b ∈ B′. Even
though B′ is small (currently set to 10K), this still takes time. So
we score the configs using a sample B′′ which is a small subset of
B′, use a statistical test to remove all configs for which we can say
with high confidence that they will not make it into the top 10, then

Table 1: Datasets for our experiments.

expand B′′ with more tuples, re-score the remaining configs, and so
on. Specifically: (1) Initialize the subsample B′′ = ∅ and S to be the
set of all configs from which we have to compute the top 10 configs.
(2) Expand the subsample B′′ by adding to it a small random sample
of h tuples from B′ \ B′′. (3) Compute themeanAUC for all configs
in S using B′′ and finding the set R̂ of the top-10 configs. (4) For
each config L ∈ S \ R̂, use the Wilcoxon signed-rank test [39] to
determine (with high confidence) if itsmeanAUC score is greater
than those of the configs in R̂. If yes, then L is unlikely to ever be
in the top 10. Remove L from S . (5) If S = R̂ or B′′ = B′, return R̂ as
the top-10 configs, otherwise go back to Step 2.

We also use the above early pruning procedure to search the
space of the larger configs. We defer further details to the tech
report [34].

4 EMPIRICAL EVALUATION

Datasets: We use 15 datasets described in Table 1, which come
from diverse domains and sizes, and have been extensively used in
recent EM work [23, 25, 29, 38] (except Hospital, which is private).
Structured datasets have short atomic attributes such as name,
age, city. Textual datasets have only 2-3 attributes that are textual
blobs (e.g., title, description). For dirty EM, we focus on one type
of dirtiness, which is widespread in practice [25] mainly due to
information extraction glitches, where attribute values are “moved”
into other attributes. Textual and dirty datasets are derived from the
corresponding structured datasets (e.g., the textual dataset Amazon-
Google2 is derived from the structured dataset Amazon-Google1).

Later we use 6 additional datasets for certain experiments, as
discussed in Section 4.5 and Section 5.

Methods: We compare Sparkly to 8 state-of-the-art (SOTA) EM
blockers.
Autoencoder, Hybrid, Union(DL,RBB): A recent work [38] shows
that deep learning (DL) based blockers significantly outperform
many other blockers. So we compare Sparkly to the two best DL
blockers: Autoencoder and Hybrid [38]. The work [38] also shows
that combining the best DL blocker and RBB, a SOTA industrial
blocker, produces even better recall at a minimal increase of block-
ing output size. As a result, we also compare Sparkly with that
blocker, henceforth called Union(DL,RBB).

1512

Figure 4: SM vs. the two best DL methods in terms of recall and blocking output size.

PBW, DBW, JD: Hash blockers have been very popular, and recent
EM work has developed highly effective hash blockers, as captured
in the pioneering JedAI open-source EM platform [31, 33]. These
blockers hash each tuple to be matched into multiple blocks, one
per each unique token in the tuple, then employ sophisticated
methods to remove/clean blocks, among others. Based on personal
communications with the JedAI authors, we compare Sparkly to
3 SOTA blockers in JedAI: PBW, DBW, and JD (we describe these
methods in the technical report [34]).
kNN-cosine, kNN-jaccard: Finally, a recent work [29] shows that a
kNN blocker outperforms many other blockers. This blocker finds
all tuple pairs where a tuple is among the k nearest, i.e., most similar,
neighbors of the other tuple, where the similarity measure is cosine
over 5-gram tokenization. So we compare Sparkly with this blocker,
denoted kNN-cosine. We also compare Sparkly to kNN-blockers
where the similarity measure is cosine over 3-gram tokenization
and Jaccard over 3-gram and 5-gram tokenization.

4.1 Recall and Output Size
We begin by comparing Sparkly to existing methods in terms of
recall and output size. To keep the comparisonmanage-able, we first
compare SM, the Sparkly version where the user manually selects
the attributes to be blocked on (i.e., Sparkly Manual), with all SOTA
blockers. Then we compare SM with SA, the Sparkly version that
automatically selects blocking attributes (i.e., Sparkly Auto).

Comparing SM to DL Methods: Figure 4 compares SM with the
two best DL blockers, Autoencoder and Hybrid [38]. The figure
shows 15 plots, one per dataset. Consider the first plot, which is
for the structured Amazon-Google dataset. Here the x-axis shows
the recall R = |C ∩G |/|G |, where C is the blocking output and G
is the set of all gold matches. The y-axis shows the candidate set
size ratio CSSR = |C |/|A × B |. Both axes show values in percentage.
So a value of 85 on the x-axis means recall of 85%, and a value of
5 on the y-axis means CSSR of 5%. Like SM, the two DL blockers
Autoencoder and Hybrid are also top-k. So we vary the value of k
to generate the above plot. We generate the remaining 14 plots in a
similar way. Note that the y-axes of the 15 plots vary significantly

in scale. This is necessary so that we can show the difference among
the curves.

All 15 plots show that SM significantly outperforms the two DL
blockers: for each recall value, SM achieves a much lower CSSR,
and this gap widens dramatically as recall approaches 100%. For
example, on the first plot, at recall of 98%, Sparkly-Man achieves
CSSR of 2.5%, whereas the two DL blockers achieve CSSR of 10%.
These gaps are bigger for textual datasets, suggesting that SM can
better handle textual data than the DL blockers. The gaps are smaller
but still quite significant on all dirty datasets.

The above two DL methods concatenate all attributes and then
block on the concatenation. In the next experiment, we modified
them to block on the concatenation of only those attributes that SM
blocks on. Even in this case, SM still outperforms both DL methods
on 14 datasets (sometimes by very large margins) and is comparable
on 1 dataset (see the tech report for details).

Comparing SM to Other Methods: Next we compare SM with
Union(DL,RBB), which combines the best DL blocker and RBB (a
SOTA industrial blocker), and the three JedAI methods: PBW, DBW,
and JD. It is very difficult to vary the parameters of these methods in
such a way that generates meaningful recall-CSSR curves, because
they do not have a top-k parameter that we can adjust. So we
compare them with SM at k = 10, 20, 50, as shown in Table 2.

This table shows that SM is very predictable: it achieves high
recall for all datasets (92.5-100% for k = 10, 96.4-100% for k = 20,
98.7-100% for k = 50), and its output size is capped as k ∗ |B |. In
contrast, the remaining fourmethods are unpredictable. For example,
PBW’s recall can be perfect (100%) but also can be as low as 74.5%,
and its output size can be small but can also be as high as 4.2 billions
for the structured dataset Songs. (We report no results for “S - D”
because PBW was out of memory on this dataset, on a machine
with more than 100G of RAM). Similarly, DBW’s recall can be as
low as 84.7% and output size as high as 454.5M.

JD producesmuchmore reasonable output size across all datasets,
but at the cost of lower recall 35.4-96.4%. Similar to JD, Union(DL,RBB)
also produces reasonable output sizes (larger than those of JD), but
varying recalls 83-99.9%.

1513

Table 2: SM vs. the three JedAI methods and Union(DL,RBB) in terms of recall and blocking output size.

Dataset PBW DBW JD Union (DL,RBB) Sparkly K=10 Sparkly K=20 Sparkly K=50

|C| Recall |C| Recall |C| Recall |C| Recall |C| Recall |C| Recall |C| Recall

AG - S 24.5k 92.1 15.9k 89.2 5.9k 80.5 77.7k 98.8 33.3k 96.8 66.5k 97.8 165.9k 99.2

WA - S 1.5m 99.7 159.8k 93.8 88.3k 95.0 2.1m 98.9 220.7k 98.4 441.4k 99.0 1.1m 99.5

DG - S 430.5k 91.0 779.3k 99.6 53.1k 79.7 7.6m 99.6 641.1k 99.9 1.3m 100.0 3.2m 100.0

DA - S 8.1k 83.7 35.1k 99.9 2.3k 80.3 198.4k 99.9 22.9k 99.8 45.9k 100.0 114.7k 100.0

H - S 11.9k 100.0 4.0k 84.7 1.4k 35.4 209.8k 99.9 17.8k 100.0 35.4k 100.0 85.4k 100.0

S - S 4.2b 100.0 379.4m 99.8 2.5m 82.0 50m 98.7 10.0m 96.3 20.0m 97.9 50.0m 99.3

AG - T 24.5k 92.1 15.9k 89.2 5.9k 80.5 33.6k 85.0 33.3k 96.8 66.5k 97.8 165.9k 99.2

WA - T 1.5m 99.7 159.8k 93.8 88.3k 95.0 7.9m 83.0 220.7k 98.4 441.4k 99.0 1.1m 99.5

AB - T 4.7k 74.5 6.0k 88.6 1.2k 65.2 44.6k 95.7 10.9k 98.1 21.8k 98.9 54.5k 99.2

AG - D 38.8k 94.1 18.7k 91.3 6.4k 79.5 360.0k 99.3 33.3k 96.6 66.5k 98.2 166.0k 99.0

WA - D 1.1m 99.5 225.2k 97.4 88.1k 95.9 935.9k 97.9 220.7k 99.1 441.5k 99.7 1.1m 99.8

DG - D 4.0m 99.7 925.5k 98.8 180.5k 96.4 47.6m 99.8 642.2k 99.9 1.3m 100.0 3.2m 100.0

DA - D 12.5k 86.6 42.0k 97.2 4.7k 82.4 1.0m 99.8 22.9k 99.3 45.9k 99.8 114.7k 100.0

H - D 22.5k 100.0 31.2k 87.9 2.4k 56.1 136.8k 98.5 17.9k 94.0 35.6k 97.1 88.4k 98.7

S - D — — 454.5m 96.2 3.1m 68.3 50m 95.2 10.0m 92.5 20.0m 96.4 50.0m 98.8

Figure 5: SM vs. SA in terms of recall and output size.

Finally, we compare SM with the kNN methods. The tech report
[34] provides the details, including plots. Here we only summarize
the findings. As mentioned earlier, a recent paper [29] finds that
kNN-cosine using 5-gram tokenization outperforms many SOTA
blockers. We find that on 10 datasets SM outperforms this method,
sometimes by huge margins. On 1 dataset SM is comparable, and on
the remaining 4 datasets SM is worse than kNN-cosine-5gram, but
the performance gap is very small. We also find that kNN-cosine
using 3grams is comparable to kNN-cosine using 5grams, and both
outperform kNN using Jaccard (either 3grams or 5grams).

Comparing SM to SA: Figure 5 shows that SA outperforms SM
on 10 datasets in terms of recall and output size, sometimes by a
large margin. SA is worse than SM on the remaining 5 datasets,
but the performance gap is very small. For example, at 98% recall,
SA’s output size is at most 0.7% larger than that of SM. We discuss
possible reasons for SA being worse than SM on several datasets in
the tech report.

4.2 Runtime
We now examine the runtime of Sparkly. We ran all experiments on
an AWS cluster of 10 nodes. Each node is an m5.4xlarge instance
with 16 cores, 64G RAM, costing $0.75/hour (as of July 2022).

Figure 6.a shows the runtime of SM (the solid lines) and SA (the
dotted lines), as we vary the size of two datasets: Songs and WDC.
Songs has 1M tuples. WDC is a large dataset of 26M tuples used
by recent work [35] (we cannot use WDC for recall experiments
because it does not have all gold matches). A point n on the x-axis
reports the runtimes measured on a sample of n millions tuples
randomly obtained fromWDC, and on a sample of n millions tuples
obtained by replicating Songs n times.

The above figure shows that both SM and SA scale (slightly su-
perlinearly) as we increase the dataset size, and that SA is much
faster than SM. This is because SA scores the attributes individu-
ally, instead of scoring their concatenation as SM. Concatenation
produces long attributes, and performing top-k search on long at-
tributes takes more time than on short attributes. Further, SA can

1514

Figure 6: Runtime for (a) varying dataset sizes, and (b) vary-
ing cluster sizes using datasets of 10M tuples each.

use word tokenizers on some attributes, whereas SM only uses
3gram tokenizers. This produces fewer tokens, which often leads
to faster top-k search.

It is noteworthy that SA can block datasets of size 10M under
100 minutes, incurring an AWS cost of only $12.5.

Figure 6.b shows the runtime of Sparkly on the 10M WDC and
10M Songs datasets, as we vary the size of the AWS cluster. As the
number of nodes goes from 3 to 15, runtime decreases significantly,
as expected. As we increase the cluster size, eventually the overhead
time (indexing, shipping, attribute/tokenizer selection, etc.) will
dominate (compared to the top-k probing time).

4.3 Performance of Sparkly’s Components
We find the indexing time to be minimal. For example, on the same
AWS cluster described above, indexing Songs at size 5M and 10M
takes 76 and 115 seconds, respectively. The resulting index sizes are
also reasonable. For Songs and WDC at size 1M, 5M, and 10M, the
sizes are 137, 664, 1318MB, and 214, 1034, and 2042MB, respectively.
Shipping these indexes to the Spark nodes takes minimal time. For
Songs and WDC at 1M, 5M, and 10M, shipping the indexes takes
2.2, 7.2, 21 seconds, and 2.5, 11, 32 seconds, respectively.

Finally, recall that SA performs a search for a good set of at-
tributes/tokenizers (to block on). On Songs and WDC 1M, 5M, and
10M, without early pruning, this search takes 4, 9.2, 15.6 mins and
4.6, 10.1, 17.2 mins, respectively. Early pruning cuts these times
by up to 70%, to 1.2, 3.2, 6 mins, and 2, 5.3, 14 mins, respectively.
The greedy method used by the searcher was quite effective. We
performed exhaustive search on 11 datasets to find the optimal
configs, and found that the greedy method found a config with a
score within 0-0.8% of the optimal score on 10 datasets and within
10% on 1 dataset.

4.4 Sensitivity Analysis
We now vary the parameters of the major components to examine
the sensitivity of Sparkly. We only summarize the findings here,
deferring a detailed discussion to the TR.

Blocking Attributes: Recall that in SM, the user manually selects
a set of attributes S to block on. We find that varying this set of
attributes does impact the performance of SM, minimally by 0-1.5%
CSSR in 11 datasets, and moderately by 2-5% CSSR in 4 datasets.
This suggests that while manually selecting blocking attributes
is a reasonable strategy, there is still room to improve, e.g., by
automatically finding such attributes, as done in SA.

Tokenizers: Recall that SM uses a 3gram tokenizer. Next we exam-
ine replacing this tokenizer with a 2gram, 4gram, and word-based
tokenizer, respectively. We find that changing the tokenizer can

significantly impact the performance (e.g., by up to 11.5% CSSR).
Overall, the 3gram tokenizer (used by SM) is a good choice as it has
reasonable performance on most datasets. The 2gram and 4gram
tokenizers perform worst, with the 2gram tokenizer also incurring
the longest runtime.

BM25’s Parameters: BM25 has two parameters: k1 (default value
1.2) and b (default value 0.75), to handle term saturation and docu-
ment length. Varying k1 from 1 to 2 does not significantly change
SM’s performance. This may be because in our setting blocking
attributes do not have many terms, and they do not have high term
frequency, so term saturation is not a major issue. Varying b from
0.5 to 1 changes SM’s performance more, by up to 2% CSSR. But
we also find that b = 0.75 provides a good default value for SM, as
its curve is either the best curve or very close to the best curve on
most datasets.

Config Searcher’s Parameters: SA uses a searcher to find a good
blocking config. This searcher has four major parameters: (1) the
size of B′, a sample of table B on which to score the configs (set to
10K), (2) the number of tuples returned in each querying k = 250,
(3) the number of initial configs selected (set to 10), and (4) the max
number of attributes considered in a config (set to 3).

Varying (1) from 5K to 15K changes SA minimally. Varying (2)
from 200 to 300 again changes SA minimally (only up to 0.2% CSSR
on 1 dataset). Similarly, varying (3) from 8 to 12 and varying (4)
from 2 to 4 show minimal changes. In all cases, the default values
for (1)-(4) provide a good curve, which is either the best or very
near the best.

4.5 Additional Experiments
We now examine how Sparkly performs on very large datasets, how
it compares runtime-wise to DL methods, and whether DL methods
can achieve higher accuracy, given larger datasets (to train on).

It is very difficult to find very large public datasets with com-
plete gold, i.e., all true matches (without which we cannot compute
the blocking recall). After an extensive search, we settle on three
datasets: BC, MB, and WDC. BC (Big Citations) blocks two tables of
2.5M and 1.8M paper citations. MB (Music Brainz) blocks a table of
20M songs (against itself), and WDC blocks a table of 26M product
descriptions [35]. BC and MB have complete gold, but WDC does
not (see the tech report).

Table 3 shows the results. First, we deployed an AWS cluster of
30 m5.4xlarge nodes (16 cores, 64G RAM, $0.75/hour, per node),
then ran Sparkly on all three datasets (see the first three rows of
the table). Each row lists the results of SM and SA separated by “/”.
Column “Time” shows the total time in minutes, while the next
three columns show the recall at k = 10, 25, 50. We cannot compute
recall for WDC as it does not have the complete gold.

The first three rows show that Sparkly scales to very large datasets,
and that SA is much faster than SM, taking only 130 and 168 mins
to block WDC 26M and MB 20M, respectively, at a reasonable cost
of less than $67.5 on AWS. Sparkly achieves high recall on MB and
BC at k = 50.

Skipping the 4th row of Table 3 (which we discuss later), we
now consider the DL method Autoencoder. Unfortunately we had

1515

Table 3: Sparkly and DL methods on large datasets.

Method Dataset Time Recall @ 10 Recall @ 25 Recall @ 50

Sparkly

WDC 26M 603/130 - - -

MB 20M 449/168 79/95 87/97 91/98

BC 2.5M 44/11 99/79 100/89 100/94

MB 10M 132/61 85/96 91/98 94/98

Autoencoder

WDC 10M 925 - - -

MB 10M 691 30 35 40

BC 2.5M 146 81 84 85

Hybrid BC 2.5M 2719 73 76 78

tremendous difficulties scaling Autoencoder to large datasets. Au-
toencoder is a prototype code used in the paper [38], for datasets
of up to 1M tuples. It runs on a single GPU and uses many Python
libraries that are not well suited to large datasets (e.g., the SVD
implementation of Sklearn). So when applied to large datasets, Au-
toencoder quickly exhausts memory and crashes, and there is no
easy way to modify it to run in a distributed setting (where it can
use a lot more GPU memory).

After extensive optimization efforts, we managed to apply Au-
toencoder to BC 2.5M, WDC 10M, and MB 10M, on a SOTA hard-
ware available to us (32t/16c CPU with 64G RAM coupled with RTX
2080ti GPU with 11G RAM). Table 3 shows the results. While it
is not entirely fair to compare the runtimes of Autoencoder and
Sparkly, because they run on different hardware, it is still interesting
to note that Autoencoder takes much more time than Sparkly, e.g.,
691 vs 132/61 mins (for SM/SA) on MB 10M, and 146 vs 44/11 mins
on BC 2.5M. Autoencoder spent most time in preprocessing and
self-supervised training.

Hybrid is far more complex than Autoencoder, and we only
managed to run it on BC 2.5M (it ran out of memory on WDC 5M
and MB 5M). Even on BC, its runtime is already very high (2719
mins). This suggests that existing prototype DL blockers do not scale
to large datasets, requiring a lot more future work on this topic.

Both Autoencoder and Hybrid achieve far lower recall at k = 50
than Sparkly (see the rows for BC 2.5M and MB 10M), suggest-
ing that these methods still cannot exploit larger datasets to achieve
higher accuracy than Sparkly. In the tech report we discuss how the
remaining SOTA methods also do not scale to these large datasets.

5 DISCUSSION & FUTUREWORK
We now discuss questions that may arise in light of Sparkly’s strong
blocking performance.

Why Little Attention So Far? TF/IDF has long been studied in
the matching step of EM [8]. It is not clear why it has not been
studied in the blocking step. A possible reason is that so far EM
researchers have preferred to focus on hash-based blocking, which
is conceptually simple and easy to scale [5, 27, 32]. Even when
considering similarity-based blocking, researchers have preferred
similaritymeasures that seem simpler andmore amenable to scaling,
e.g., edit distance, Jaccard, overlap, cosine [5, 27, 32]. TF/IDF appears
difficult to scale. A straightforward application of inverted indexes
is slow, and it was not obvious how to do much better.

Up until 2015, Lucene was also slow, making tf/idf blocking
using Lucene impractical. Then it adopted the block-max WAND
indexing technique and became much faster [18]. As this paper has

Figure 7: Distributions of the scores of gold matches.

shown, a combination of the “new” Lucene and Spark has nowmade
tf/idf blocking very competitive, and suggests that going forward
it should receive more attention.

Top-k vs Thresholding: We believe doing top-k search is critical.
To see this, we compute the similarity scores of all gold matches
on each dataset, for tf/idf, Jaccard, and cosine measures. Figure
7 shows the smoothed histograms of these scores, on the first 3
datasets (see the TR for similar results on the remaining 12 datasets).
Only on the 3rd dataset would most of these scores be in a narrow
range near 1.0 (e.g., between 0.8 and 1), making thresholding work
well, i.e., achieving high recall. In the first 2 datasets, these scores
are spread all over the range [0,1]. This suggests that thresholding
cannot achieve high recall, unless we set the threshold very low,
which blows up the blocking output size.

In contrast, Section 4 shows that doing top-k (as in Sparkly)
achieves high recall without blowing up the output size. Thus, we
believe that future blocking solutions should seriously consider doing
top-k, rather than thresholding.

Do We Need Both TF and IDF? But top-k alone is not enough.
kNN-cosine and kNN-jaccard also use top-k, yet underperform
Sparkly, which uses tf/idf. So it seems we need tf/idf too. But do
we need both tf and idf for blocking? To answer this question, we
performed several experiments. We summarize the findings here
(deferring the details to the TR). When we remove idf from SM (by
dropping “idf(t)” in the BM25 formula of Equation 2 in Section 3),
we find that SM greatly outperforms SM-no-idf.

Similarly, when we remove idf from TFIDF-cosine, by dropping
“idf(t)” from the formula VD (t) = t f (t ,D) · id f (t) (see Section 3,
recall that TFIDF-cosine is the well-known tf/idf measure that com-
putes s(D,Q) = [

∑
t VD (t) ·VQ (t)]/[

√∑
t VD (t)

2 ·
√∑

t VQ (t)
2]), we

find that TFIDF-cosine greatly outperforms TFIDF-cosine-no-idf
on many datasets. This suggests that idf is important for blocking.

Interestingly, whenwe performed a similar experiment where we
removed tf, we did not see a clear trend. TFIDF-cosine and TFIDF-
cosine-no-tf perform largely the same. SM is minimally better than
SM-no-tf on some datasets, minimally worse on some others, and
about the same on the remaining datasets.

So tf seems to have minimal effect on the 15 datasets. We believe
this is because the attributes to block on (e.g., product title, person
name) tend to be short, where few tokens repeat multiple times.
To test this hypothesis, we consider Companies, a highly textual
dataset where each tuple is a long document describing a company,
and we need to block using the entire tuple (this dataset was used
in the paper [25] to evaluate DL methods for matching). Indeed on
this dataset where many tokens repeat multiple times, SM greatly
outperforms SM-no-tf, e.g., achieving 62% vs 33% recall at k = 50.
Similarly, TFIDF-cosine greatly outperforms TFIDF-cosine-no-tf.

1516

This result suggests that tf’s effect on short blocking attributes is
minimal, but can be significant on long textual blocking attributes.

Which Scoring FunctionWorks Best? The above results suggest
using both tf and idf. But many scoring functions (which combine
tf and idf) exist. TFIDF-cosine and BM25 are just two functions
among them. So which scoring function works best? To explore, we
examine four scoring functions: TFIDF-cosine, TFIDF-jacc, SM, and
SM+. TFIDF-cosine is the cosine similarity function using tf/idf, de-
scribed earlier, while TFIDF-jacc is the function f msapx described
in [4], which can be viewed as the Jaccard similarity function using
idf. SM uses BM25, and SM+ is an extension of SM that we will
describe shortly.

Our experiments shows that TFIDF-jacc is somewhat worse than
TFIDF-cosine (see the TR). But surprisingly, TFIDF-cosine is better
than SM on many datasets. We found this is because TFIDF-cosine’s
scoring function incorporates the tf and idf of each term from both
the queryQ and the document D sides (see Equation 1 in Section 3),
but the BM25 scoring function used by SM does not. It incorporates
only tf and idf of each term from the document D’s side, not from
the query Q’s side. In other words, TFIDF-cosine treats Q and D
uniformly, whereas the BM25 function of SM does not. This makes
sense in keyword search, where typically Q has few terms, each
occurring only once and all terms in Q are important. But these
are not true in EM, where Q is a tuple in Table B (and is often as
long as D, which is a tuple in Table A). Here, it makes more sense
to treat Q and D uniformly, like TFIDF-cosine.

Using the above observation, we modify BM25 to incorporate tf
and idf from Q ’s side (see the TR), producing the SM+ solution. We
find that SM+ performs very well, being either the best solution
or very close to the best solution on all datasets. We modified SA
similarly to produce the SA+ solution.We find that SA+ outperforms
SA: better or equal to SA in 12 datasets, and worse in 3 datasets.
In general, SA+ is either the best solution or very close to the best
solution in 14 datasets (see the TR).

Another point worth noting is that BM25 (or the modified BM25
used in SM+ and SA+) enables very fast incremental index update
(when tuples get added or removed), whereas TFIDF-cosine does
not. All these results suggest that using tf/idf weighting and the
BM25 scoring function, but modifying it to incorporate tf and idf from
the query side, is a promising future direction to explore.

Blocking Numeric Datasets: Next we examine how well Sparkly
blocks numeric datasets. It is very difficult to find numeric public
datasets with complete gold. After an extensive search, we settle
on two datasets AW and RE. Each dataset matches the columns
of all tables within a data lake. As such, each dataset consists of a
single table X where each tuple describes a column (listing column
name, table name, the average length of the column’s values, the
average/min/max of the column’s values if it is numeric, etc.). The
goal then is to match X with itself. AW (AdventureWorks) and RE
(Real Estate) have 799 and 451 tuples, respectively. See the TR for
more details.

Here we found that SM is better than SA. On AW and RE, SM
achieves 81% and 94% recall at k = 50 compared to 79% and 67% for
SA. This is because SA was confused by numeric attributes and so
picked up some numeric attributes to block on. SM is comparable

to kNN-jaccard and kNN-cosine, and is much better than the two
DL methods and JedAI (see the TR).

SM however can still be improved. For example, a separate work
on schema matching for data lakes (under preparation, from where
we obtained the above two datasets) extended SM to incorporate
rules such as “if the average values of two numeric columns are too
far apart, e.g., one value is greater than 10 times the other value,
then do not include the columns as a pair in the blocking output”.
This solution achieves recall 99% and 97% at k = 50 for AW and RE.
It turns out that we can naturally incorporate many such rules into
the querying function of Lucene.

Thus, the results suggest that Sparkly still performs better or
comparable to SOTA methods on numeric data. Further, it can signif-
icantly be improved with rules exploiting the properties of numeric
attributes, and many such rules can naturally be incorporated into
Lucene. Future work should explore this direction, and also improve
SA to avoid picking up numeric attributes to block on.

Scalability, Predictability, Extensibility, and Updates:We be-
lieve Sparkly scales due to four reasons. First, it decomposes blocking
into executing a large number of independent tasks (each querying
the inverted index I using a chunk of tuples in table B). Second, it
executes these tasks on a Spark cluster in a parallel share-nothing
fashion, by shipping the index I to the Spark worker nodes, then
execute the tasks there. Third, it can execute each task fast, by using
the block-max WAND indexing technique of Lucene. Finally, when
the tableA is too big (e.g., 200M tuples), it breaksA into smaller par-
titions (e.g., of 50M tuples each) and blocks each partition against
table B (this minimizes the problem of having the indexes and other
intermediate data structures grow uncontrolled as the table sizes
increase, eventually crashing the cluster). As such, Sparkly can
maximally utilize the entire Spark cluster, and scale horizontally by
adding more nodes.

The above architecture is also predictable. Recall that we chop
table B into chunks of tuples, and execute these chunks (i.e., use
them to query index I) on the worker nodes. After executing a few
hundred chunks, it is possible to use the execution times of these
chunks to estimate with high accuracy how much longer Sparkly
will run.

The above architecture is also extensible, in that we can add other
kinds of blocking. For example, consider hash blocking. We can
create a hash H of table A and ship it to the worker nodes. Then
given a tuple b ∈ B, we can consult the inverted index I to obtain a
top-k result, consult the hashH to obtain a result, union or intersect
the two results, then send the output back to the driver node. In
general, we can ship all kinds of indexes to each worker node, then
do processing for each tuple b ∈ B using these indexes.

Thus, we believe that future blocking solutions should seriously
consider an architecture similar to Sparkly, which can provide signifi-
cant benefits in scaling, predictability, and extensibility.

Finally, Sparkly can naturally handle updates. An appealing prop-
erty of BM25 is that it enables very fast incremental index updates,
when we add or remove tuples from the indexed table. In contrast,
TFIDF-cosine requires the entire index to be rebuilt from scratch.
Fast index update can provide moderate to significant benefits in
many cases, e.g., when matching two tables or matching a tuple in
real-time into a table, as we discuss in the TR.

1517

Limitations of Sparkly: We now analyze cases where Sparkly
may achieve low recall. Consider a match д = (u ∈ B,v ∈ A). There
are three possible reasons why tuple v may not make it into the
top-k list of u (thus excluding д from the blocking output). First, v
may have a low tf/idf score with u. This can happen due to numeric
data (as we saw earlier), dirty data, missing values, synonyms, and
natural variations (e.g., “Robert Smith” vs. “Ben Smith”). Second, v
may have a high tf/idf score with u, but there are more than k true
matches for u, so v is excluded.

Finally, many other non-matching tuples in A may have high
tf/idf scores with u, crowding out v . For example, if we block just
on the person name, then the top-k list for a particular “David
Smith” may contain tuples of many other “David Smith”-s, because
David Smith is a very common name. As another example, the non-
match (“iPhone 12 mint condition 32G white with case”, “iPhone 12
mint condition 32G black with case”) may have a high tf/idf score,
because tf/idf fails to locate the colors and realize that if the colors
do not match then the tuples do not match.

To address the above limitations, possible solutions include ways
to clean and standardize the data, using a dynamic k value (e.g.,
if all tf/idf scores in the current top-k list is high, then increase k
then query again), and performing information extraction to isolate
important attributes such as color.

Future Directions: Based on the above discussion, we propose the
following research directions. First, we should study tf/idf blocking
in more depth, improving Sparkly and similar tf/idf systems.

Second, we should developmuch bigger benchmarks for blocking.
The current datasets are too small (or some are large but have no
gold matches, so we cannot evaluate blocking recall), and do not
contain enough variety.

Third, we should develop effective methods to clean and stan-
dardize datasets, as this can significantly improve blocking recall
and minimize the need to use sophisticated but costly blocking
methods. Recent large language models (LLMs, a.k.a. foundation
models, such as GPT-3, T5) may be promising here, as they can help
clean and summarize the tuples.

Fourth, we should study how to improve existing blocking solu-
tions and develop new ones, using Sparkly as a benchmark.

Finally, it is likely that an ideal blocking solution will have to
use multiple blocking techniques, including tf/idf and others, to
maximize recall. It must also scale, i.e., block tables of hundreds of
millions of tuples in a reasonable time on a reasonable hardware
at a reasonable cost. Toward this goal, the scalable share-nothing
architecture of Sparkly provides a promising starting point.
6 ADDITIONAL RELATEDWORK
EM has been a long-standing challenge in data management [1,
6, 7, 12, 14, 26, 30]. There has been multiple academic efforts on
building scalable EM systems such as JedAI [31, 33], Magellan [19],
and CloudMatcher [17].

Over the past decades, numerous blocking solutions have been
developed. See [5, 27, 32] for surveys, and see Section 2 for a dis-
cussion of the main blocker categories. However, tf/idf blocking
has received virtually no attention, as far as we can tell. The closest
work that we have found is the recent work [28], which performs
token blocking, i.e., hashing each tuple to multiple blocks, each
corresponding to a token in the tuple. This work removes blocks

that correspond to tokens of low tf/idf values. The work [4] devel-
ops a scoring function that can be viewed as the Jaccard similarity
function using IDF. We evaluated this function in Section 5.

TF/IDF has long been used in IR and Web search [24]. Lucene
was released in 1999. For a long time it was somewhat slow and
inaccurate, and was largely ignored by researchers [18]. In 2015,
however, Lucene adopted cutting-edge techniques such as BM25
and block-max WAND. It is now viewed as quite accurate and fast,
and has attracted attention from IR researchers [18]. TF/IDF has
long been used in the matching step of EM [8].

The work [40] has studied top-k search, but only for similar-
ity measures such as Jaccard, cosine, dice, and overlap, for string
matching. As far as we can tell, top-k tf/idf search has been studied
intensively by IR researchers (resulting in the block-max WAND
technique), but not by database researchers. The work [41] devel-
ops AutoBlock, which was shown by [38] to underperform the DL
methods Autoencoder and Hybrid, which underperform Sparkly.
The work [22] also addresses blocking. But it maximizes recall
while keeping precision (i.e., the fraction of pairs in the blocking
output that are correct matches) above a threshold. We consider a
fundamentally different problem of maximizing recall for any given
k (i.e., any given blocking output size).

The share-nothing architecture of Sparkly is reminiscent of share-
nothing architectures for parallel processing of relational data [37],
and our Spark-based probing method for blocking is reminiscent
of distributed/parallel joins for relational data [20, 21]. But here we
consider the novel context of blocking for EM. Finally, the work [2]
describes an industrial blocking solution at Amazon, which uses
meta blocking to manage token-centric blocks and uses sophisti-
cated techniques to scale.

7 CONCLUSIONS
Despite decades of research, tf/idf blocking has received very lit-
tle attention. Yet anecdotal evidence suggests that it can do very
well. As a result, in this paper we have performed an in-depth
examination of tf/idf blocking.

We developed Sparkly, a novel solution that performs top-k
tf/idf blocking, using Lucene and Spark in a distributed share-
nothing architecture. We developed techniques to select good at-
tribute/tokenizer pairs to block on, making Sparkly completely
automatic. Extensive experiments show that Sparkly outperforms
8 state-of-the-art blocking solutions and scales to large datasets.

Overall, our work suggests that tf/idf blocking should receive
more attention, that future blocking work should consider Sparkly
as a baseline, and that the distributed share-nothing architecture
of Sparkly provides a promising starting point to build blocking
solutions that are scalable, predictable, and extensible.

ACKNOWLEDGMENTS
We are grateful to the reviewers whose insightful comments greatly
improve this paper. We thank George Papadakis and Themis Pal-
panas for assistance with running experiments with JedAI and
feedback on an earlier draft, and Saravanan Thirumuruganathan
for assistance with the DeepBlocker software.

1518

REFERENCES
[1] Nils Barlaug and Jon Atle Gulla. 2020. Neural networks for entity matching.

arXiv preprint arXiv:2010.11075 (2020).
[2] Andrew Borthwick, Stephen Ash, Bin Pang, Shehzad Qureshi, and Timothy

Jones. 2020. Scalable Blocking for Very Large Databases. In ECML PKDD 2020
Workshops - Workshops of the European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML PKDD 2020): SoGood 2020, PDFL 2020,
MLCS 2020, NFMCP 2020, DINA 2020, EDML 2020, XKDD 2020 and INRA 2020,
Ghent, Belgium, September 14-18, 2020, Proceedings (Communications in Computer
and Information Science), Irena Koprinska et al. (Eds.), Vol. 1323. Springer, 303–319.
https://doi.org/10.1007/978-3-030-65965-3_20

[3] Andrei Z. Broder, Michael Herscovici, and Jason Zien. 2003. Efficient query
evaluation using a two-level retrieval process. In In Proc. of the 12th ACM Conf.
on Information and Knowledge Management.

[4] Surajit Chaudhuri, Kris Ganjam, Venkatesh Ganti, and Rajeev Motwani. 2003.
Robust and Efficient Fuzzy Match for Online Data Cleaning. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data, San Diego,
California, USA, June 9-12, 2003, Alon Y. Halevy, Zachary G. Ives, and AnHai
Doan (Eds.). ACM, 313–324. https://doi.org/10.1145/872757.872796

[5] Peter Christen. 2011. A survey of indexing techniques for scalable record linkage
and deduplication. IEEE transactions on knowledge and data engineering 24, 9
(2011), 1537–1555.

[6] Peter Christen. 2012. Data Matching - Concepts and Techniques for Record Linkage,
Entity Resolution, and Duplicate Detection. Springer. https://doi.org/10.1007/978-
3-642-31164-2

[7] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2020. An overview of end-to-end entity resolution for big
data. ACM Computing Surveys (CSUR) 53, 6 (2020), 1–42.

[8] William W. Cohen, Pradeep Ravikumar, and Stephen E. Fienberg. 2003. A Com-
parison of String Distance Metrics for Name-Matching Tasks. In Proceedings of
IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03), August 9-10,
2003, Acapulco, Mexico, Subbarao Kambhampati and Craig A. Knoblock (Eds.).
73–78. http://www.isi.edu/info-agents/workshops/ijcai03/papers/Cohen-p.pdf

[9] Sanjib Das, Paul Suganthan G. C., AnHai Doan, Jeffrey F. Naughton, Ganesh
Krishnan, Rohit Deep, Esteban Arcaute, Vijay Raghavendra, and Youngchoon
Park. 2017. Falcon: Scaling Up Hands-Off Crowdsourced Entity Matching to
Build Cloud Services. In Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19,
2017, Semih Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu
(Eds.). ACM, 1431–1446. https://doi.org/10.1145/3035918.3035960

[10] Constantinos Dimopoulos, Sergey Nepomnyachiy, and Torsten Suel. 2013. Opti-
mizing top-k document retrieval strategies for block-max indexes. In Sixth ACM
International Conference on Web Search and Data Mining, WSDM 2013, Rome, Italy,
February 4-8, 2013, Stefano Leonardi, Alessandro Panconesi, Paolo Ferragina, and
Aristides Gionis (Eds.). ACM, 113–122. https://doi.org/10.1145/2433396.2433412

[11] Shuai Ding and Torsten Suel. 2011. Faster top-k document retrieval using block-
max indexes. In Proceeding of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2011, Beijing, China, July
25-29, 2011, Wei-Ying Ma, Jian-Yun Nie, Ricardo Baeza-Yates, Tat-Seng Chua, and
W. Bruce Croft (Eds.). ACM, 993–1002. https://doi.org/10.1145/2009916.2010048

[12] A. Doan, A. Halevy, and Z. Ives. 2012. Principles of Data Integration. Elsevier.
[13] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad

Ouzzani, and Nan Tang. 2018. Distributed representations of tuples for entity
resolution. PVLDB 11, 11 (2018), 1454–1467.

[14] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. 2007.
Duplicate Record Detection: A Survey. TKDE 19, 1 (2007).

[15] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and X. Zhu.
2014. Corleone: hands-off crowdsourcing for entity matching. SIGMOD.

[16] Yash Govind, Pradap Konda, Paul Suganthan G. C., Philip Martinkus, Palaniappan
Nagarajan, Han Li, Aravind Soundararajan, Sidharth Mudgal, Jeffrey R. Ballard,
Haojun Zhang, Adel Ardalan, Sanjib Das, Derek Paulsen, Amanpreet Singh Saini,
Erik Paulson, Youngchoon Park, Marshall Carter, Mingju Sun, Glenn Moo Fung,
and AnHai Doan. 2019. Entity Matching Meets Data Science: A Progress Report
from the Magellan Project. In Proceedings of the 2019 International Conference
on Management of Data, SIGMOD Conference 2019, Amsterdam, The Netherlands,
June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold, Anastasia Ailamaki,
Amol Deshpande, and Tim Kraska (Eds.). ACM, 389–403. https://doi.org/10.1145/
3299869.3314042

[17] Yash Govind, Erik Paulson, Palaniappan Nagarajan, Paul Suganthan G. C., AnHai
Doan, Youngchoon Park, Glenn Fung, Devin Conathan, Marshall Carter, and
Mingju Sun. 2018. CloudMatcher: A Hands-Off Cloud/Crowd Service for Entity
Matching. Proc. VLDB Endow. 11, 12 (2018), 2042–2045. https://doi.org/10.14778/
3229863.3236255

[18] Adrien Grand, Robert Muir, Jim Ferenczi, and Jimmy Lin. 2020. FromMAXSCORE
to Block-Max Wand: The Story of How Lucene Significantly Improved Query
Evaluation Performance. In Advances in Information Retrieval - 42nd European

Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020, Proceed-
ings, Part II (Lecture Notes in Computer Science), Joemon M. Jose, Emine Yilmaz,
João Magalhães, Pablo Castells, Nicola Ferro, Mário J. Silva, and Flávio Martins
(Eds.), Vol. 12036. Springer, 20–27. https://doi.org/10.1007/978-3-030-45442-5_3

[19] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan,
Jeffrey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al.
2016. Magellan: Toward building entity matching management systems. PVLDB
9, 13 (2016), 1581–1584.

[20] Donald Kossmann. 2000. The State of the art in distributed query processing.
ACM Comput. Surv. 32, 4 (2000), 422–469. https://doi.org/10.1145/371578.371598

[21] Paraschos Koutris, Semih Salihoglu, and Dan Suciu. 2018. Algorithmic Aspects
of Parallel Data Processing. Found. Trends Databases 8, 4 (2018), 239–370. https:
//doi.org/10.1561/1900000055

[22] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-
FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples. In
SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava (Eds.). ACM, 1064–1076. https://doi.org/10.1145/3448016.3452824

[23] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep entity matching with pre-trained language models. PVLDB 14, 1
(2020), 50–60.

[24] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Intro-
duction to information retrieval. Cambridge University Press. https://doi.org/10.
1017/CBO9780511809071

[25] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep learning for entity matching: A design space exploration. In SIGMOD.

[26] Felix Naumann and Melanie Herschel. 2010. An introduction to duplicate detec-
tion. Synthesis Lectures on Data Management 2, 1 (2010), 1–87.

[27] Kevin OHare, Anna Jurek-Loughrey, and Cassio de Campos. 2019. A review of
unsupervised and semi-supervised blocking methods for record linkage. Linking
and Mining Heterogeneous and Multi-view Data (2019), 79–105.

[28] Kevin O’Hare, Anna Jurek-Loughrey, and Cassio P. de Campos. 2022. High-Value
Token-Blocking: Efficient Blocking Method for Record Linkage. ACM Trans.
Knowl. Discov. Data 16, 2 (2022), 24:1–24:17. https://doi.org/10.1145/3450527

[29] G. Papadakis, M. Fisichella, F. Schoger, G. Mandilaras, N. Augsten, and W. Nejdl.
2022. Benchmarking Filtering Techniques for Entity Resolution. Technical Report.
arXiv:2022.12521v3.

[30] George Papadakis, Ekaterini Ioannou, Emanouil Thanos, and Themis Palpanas.
2021. The Four Generations of Entity Resolution. Synthesis Lectures on Data
Management 16, 2 (2021), 1–170.

[31] George Papadakis, George Mandilaras, Luca Gagliardelli, Giovanni Simonini, Em-
manouil Thanos, George Giannakopoulos, Sonia Bergamaschi, Themis Palpanas,
and Manolis Koubarakis. 2020. Three-dimensional Entity Resolution with JedAI.
Information Systems 93 (2020), 101565.

[32] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and filtering techniques for entity resolution: A survey. ACM
Computing Surveys (CSUR) 53, 2 (2020), 1–42.

[33] George Papadakis, Leonidas Tsekouras, Emmanouil Thanos, Nikiforos Pittaras,
Giovanni Simonini, Dimitrios Skoutas, Paul Isaris, George Giannakopoulos,
Themis Palpanas, and Manolis Koubarakis. 2020. JedAI3: beyond batch, blocking-
based Entity Resolution.. In EDBT. 603–606.

[34] D. Paulsen, Y. Govind, and A. Doan. 2022. Homepage of the Sparkly Blocking
System. https://github.com/anhaidgroup/sparkly.

[35] Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019. The WDC Training
Dataset and Gold Standard for Large-Scale Product Matching. In Companion of
The 2019 World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May
13-17, 2019, Sihem Amer-Yahia, Mohammad Mahdian, Ashish Goel, Geert-Jan
Houben, Kristina Lerman, Julian J. McAuley, Ricardo Baeza-Yates, and Leila Zia
(Eds.). ACM, 381–386. https://doi.org/10.1145/3308560.3316609

[36] Rudi Seitz. 2022. Understanding tf/idf and BM25. Technical Report. https:
//kmwllc.com/index.php/2020/03/20/understanding-tf-idf-and-bm-25.

[37] Michael Stonebraker. 1986. The Case for Shared Nothing. IEEE Database Eng.
Bull. 9, 1 (1986), 4–9. http://sites.computer.org/debull/86MAR-CD.pdf

[38] Saravanan Thirumuruganathan, Han Li, Nan Tang,MouradOuzzani, Yash Govind,
Derek Paulsen, Glenn Fung, and AnHai Doan. 2021. Deep Learning for Blocking
in Entity Matching: A Design Space Exploration. Proc. VLDB Endow. 14, 11 (2021),
2459–2472. https://doi.org/10.14778/3476249.3476294

[39] Frank Wilcoxon. 1945. Individual Comparisons by Ranking Methods. Biometrics
Bulletin 1, 6 (1945), 80–83. http://www.jstor.org/stable/3001968

[40] C. Xiao, W. Wang, X. Lin, and H. Shang. 2009. Top-k set similarity joins. ICDE.
[41] Wei Zhang, Hao Wei, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos,

and Davd Page. 2020. AutoBlock: A hands-off blocking framework for entity
matching. In WSDM. 744–752.

1519

https://doi.org/10.1007/978-3-030-65965-3_20
https://doi.org/10.1145/872757.872796
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2
http://www.isi.edu/info-agents/workshops/ijcai03/papers/Cohen-p.pdf
https://doi.org/10.1145/3035918.3035960
https://doi.org/10.1145/2433396.2433412
https://doi.org/10.1145/2009916.2010048
https://doi.org/10.1145/3299869.3314042
https://doi.org/10.1145/3299869.3314042
https://doi.org/10.14778/3229863.3236255
https://doi.org/10.14778/3229863.3236255
https://doi.org/10.1007/978-3-030-45442-5_3
https://doi.org/10.1145/371578.371598
https://doi.org/10.1561/1900000055
https://doi.org/10.1561/1900000055
https://doi.org/10.1145/3448016.3452824
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1017/CBO9780511809071
https://doi.org/10.1145/3450527
https://github.com/anhaidgroup/sparkly
https://doi.org/10.1145/3308560.3316609
https://kmwllc.com/index.php/2020/03/20/understanding-tf-idf-and-bm-25
https://kmwllc.com/index.php/2020/03/20/understanding-tf-idf-and-bm-25
http://sites.computer.org/debull/86MAR-CD.pdf
https://doi.org/10.14778/3476249.3476294
http://www.jstor.org/stable/3001968

	Abstract
	1 Introduction
	2 Blocking for Entity Matching
	3 The Sparkly Solution
	3.1 The TF/IDF Family of Scoring Functions
	3.2 The Lucene KWS Library
	3.3 The Sparkly Solution
	3.4 Selecting Attributes and Tokenizers

	4 Empirical Evaluation
	4.1 Recall and Output Size
	4.2 Runtime
	4.3 Performance of Sparkly's Components
	4.4 Sensitivity Analysis
	4.5 Additional Experiments

	5 Discussion & Future Work
	6 Additional Related Work
	7 Conclusions
	Acknowledgments
	References

