Deploying Computational Storage for HTAP DBMSs Takes
More Than Just Computation Offloading

Insoon Jo* i
Hanyang University
insoonjo@hanyang.ac.kr

Kitaek Lee*
Hanyang University
ktlee20@hanyang.ac.kr

Hwang Lee
Samsung Electronics
h3.lee@samsung.com

ABSTRACT

Hybrid transactional/analytical processing (HTAP) would overload
database systems. To alleviate performance interference between
transactions and analytics, recent research pursues the potential of
in-storage processing (ISP) using commodity computational storage
devices (CSDs). However, in-storage query processing faces techni-
cal challenges in HTAP environments. Continuously updated data
versions pose two hurdles: (1) data items keep changing, and (2)
finding visible data versions incurs excessive data access in CSDs.
Such access patterns dominate the cost of query processing, which
may hinder the active deployment of CSDs.

This paper addresses the core issues by proposing an analytic
offload engine (AIDE) that transforms engine-specific query exe-
cution logic into vendor-neutral computation through a canonical
interface. At the core of AIDE are the canonical representation of
vendor-specific data and the separate management of data locators.
It enables any CSD to execute vendor-neutral operations on canon-
ical tuples with separate indexes, regardless of host databases. To
eliminate excessive data access, we prescreen the indexes before
offloading; thus, host-side prescreening can obviate the need for
running costly version searching in CSDs and boost analytics. We
implemented our prototype for PostgreSQL and MyRocks, demon-
strating that AIDE supports efficient ISP for two databases using
the same FPGA logic. Evaluation results show that AIDE improves
query latency up to 42X on PostgreSQL and 34X on MyRocks.

PVLDB Reference Format:

Kitaek Lee, Insoon Jo, Jaechan Ahn, Hyuk Lee, Hwang Lee, Woong Sul,
and Hyungsoo Jung. Deploying Computational Storage for HTAP DBMSs
Takes More Than Just Computation Offloading. PVLDB, 16(6): 1480 - 1493,
2023.

doi:10.14778/3583140.3583161

PVLDB Artifact Availability:
Artifacts are available at https://github.com/hyu-scslab/SmartSSD.

“These authors share co-first authorship

TWork done while at Samsung

iCorresponding author and principal investigator

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583161

jaechanahn@hanyang.ac.kr

Woong Sul
Hanyang University
woongsul@hanyang.ac.kr

1480

Jaechan Ahn*
Hanyang University

Hyuk Lee
Samsung Electronics
hyuk17 lee@samsung.com

Hyungsoo Jung*
Hanyang University
hyungsoo.jung@hanyang.ac.kr

1 INTRODUCTION

Larger-than-memory analytics have been a significant matter in
databases since it consumes substantial storage and computing
power. The growing demand for HTAP deepens the situation be-
cause resource contention between transactions and analytics would
rise steeply and badly impact the overall performance of databases.
In particular, unpredictable data analytics often overburden data-
base servers, leading performance metrics—transaction through-
put, query latency, and storage overhead—to fluctuate severely.
These significant challenges led to a busy research area, proposing
system designs, such as extract-transform-load (ETL)-based sys-
tems [5, 21, 28, 30, 32, 39, 41, 58], for better performance isolation.
As a promising way of isolating heterogeneous workloads and al-
leviating database loads, some research has explored the potential
of computational storage to offload all or part of query execution
plans to storage capable of in-storage (or in-situ) processing (ISP).

We have seen many proposals [10, 24, 54] in ISP for OLAP work-
loads, with a recent study [47] exploring ISP for HTAP. One of the
difficulties faced by emerging research is continuously updated data.
To overcome the problem, Tobias et al. [47] proposed an update-
aware near-data processing architecture that accumulates update
deltas and shares them with computational storage. Despite such
improvements, computational storage devices are hard-wired to
host databases since CSDs should understand database storage lay-
outs and semantics to execute version traversal logic, which causes
significant overhead in accessing required data versions [26, 27]. If
we ever offload version searching logic to CSDs, it may undermine
the rationale for fast analytics due to random, redundant data ac-
cess in computational storage. So, forestalling excessive data access
is crucial in designing ISP frameworks for HTAP databases.

We address the challenges by proposing an analytic offload
engine (AIDE), an intermediate layer aiding host databases for of-
floading vendor-specific analytics to computational storage. We
also explore potential sweet spots of ISP in HTAP. To this end,
AIDE relies on two features: (1) vendor-neutral computation with
version indexes and (2) prescreening of version indexes. For the for-
mer, AIDE transforms vendor-specific query execution into vendor-
neutral one and provides CSDs with data version indexes holding
canonical tuple identifiers (CTIDs) for accessing target data in a
vendor-neutral way. By doing this, the “vendor-neutrality” truly
enables FPGA kernels in CSD to be reusable in any engine without
costly reengineering work. Vendor-neutral computation in AIDE

https://www.acm.org/publications/policies/artifact-review-and-badging-current

supports a limited set of primitive operations; for our prototype
system, we support operations, such as hashing and exact matching
on primitive types, offered by commodity CSDs.

Next, one must deal with version searching if ISP runs for MVCC
databases. MVCC systems first find visible record versions sat-
isfying query snapshots and execute query operators. In HTAP,
transactions continuously update target tables, producing version
streams for tuples and increasing the cost of finding visible data
versions. Prior studies [26, 27] have identified increased overhead
for version lookup in HTAP as one of the main culprits responsible
for performance problems in MVCC systems. Hence, we exclude
the version searching logic from offloaded computation to uphold
vendor neutrality and unburden devices, which questions how to
provide visible data versions to computational storage. AIDE ad-
dresses this issue by prescreening version indexes to filter invisible
data versions before passing the indexes to computational storage.
Since it only provides visible CTIDs to storage, ISP can avert ran-
dom, redundant access to data files, thus accelerating some queries
even under update-heavy workloads.

To validate our claims, we implemented AIDE for two full-fledged
databases having completely different storage layouts: PostgreSQL
and MyRocks. We also implemented the vendor-neutral execu-
tion logic in commodity computational storage: Samsung SC1733
SSD [53] having 4 TiB capacity with Xilinx field-programmable
gate arrays (FPGAs) embedded. We use the same FPGA logic for
two database systems, while the host-side AIDE component is hard-
wired to its host engine to transform engine-specific semantics into
vendor-neutral ones. Experimental evaluation demonstrates that
AIDE helps databases execute query offloading to CSDs, reduce re-
source contention, and boost analytics (i.e., 42X on PostgreSQL and
34x for MyRocks). To the best of our knowledge, AIDE is the first
work enabling ISP in HTAP through vendor-neutral computation.

In summary, we make the following contributions:

o We show that offloading query analytics naively in HTAP

is inefficient due to excessive data access that is detrimental
to databases pursuing an efficient offloading framework.
We address the technical challenges by introducing an ana-
lytic offload engine that offloads vendor-neutral computa-
tion to CSDs and uses the prescreening technique.
Vendor-neutral computation allows CSDs to run analytics
without vendor-specific semantics. Prescreening eliminates
excessive data access in CSDs and contributes to excluding
version-searching logic from CSDs.
Evaluation shows that AIDE can aid HTAP DBMSs to of-
fload query operations to ease resource contention and
boost some suitable queries dramatically but also exhibit
limitations in handling other queries in CSDs.

2 BACKGROUND AND RELATED WORK
2.1 Background

The past decade has witnessed a plethora of research exploring the
benefits of offloading computation from host computer systems to
computational devices (e.g., computational storage [22, 31, 45, 46, 48,
49, 56] and programmable network interface cards [29, 36, 40, 57]).
Among them is in-storage processing of query executions that un-
loads data analytics on embedded processors in storage devices to

1481

Table 1: Literature review on in-storage query processing

Vendor- Supported Ops. Result size Workload

neutral
YourSQL [24] No Filter Unlimited TPC-H
Tbex [52] No Filter, Agg. Unlimited TPC-H
POLARDRB [10] No Filter Unlimited TPC-H
AQUOMAN [54] No Filter, Agg., Join, Sort Limited TPC-H
Tobias et al. [47] No Filter, Agg., Join Unlimited TPC-CH
AIDE Yes Filter, Join Unlimited TPC-CH

gain performance benefits, mainly due to near-data accessibility.
These studies implement either overall database operations, or a
subset of operations in favor of the in-storage processing approach.
In essence, computation offloading comprises two components:
operations and data. Operations must be clearly defined for pro-
gramming easiness, and data accessed by operations should be read-
ily accessible. From this perspective, one can transform database
operations into vendor-neutral formats, but data requires specific
access methods to understand vendor-defined data layouts. Since
modern databases tightly integrate access methods with relational
operations, query offloading may significantly increase develop-
ment costs when one implements in-storage processing of database
operations, thus making such implementations difficult to reuse.

Commercial or open-source databases [6, 7, 14, 16, 18, 19, 23, 25,
33, 34] relying on multiversion concurrency control (MVCC) [8, 9,
35, 37] maintain multiple record versions to provide queries with
point-in-time consistency. Under HTAP loads, MVCC databases
keep producing new data versions and increase the search space for
version lookup. Version searching on this increased space delays
query analytics substantially and may significantly devalue the
performance benefits of in-storage processing. Moreover, DBMS
vendors differ in what information to store for a version when man-
aging multi-versioned data and how to access a visible version. The
wide variety of version management makes version retrieval rely
heavily on vendor-specific data layouts and makes a vendor-neutral
form of computation offloading challenging. Recent studies [26, 27]
have reported results of comprehensive analyses on performance
issues arising in MVCC databases under HTAP workloads.

2.2 Related Work

In attempts to adopt ISP in the database landscape, prior propos-
als have used embedded processors [15, 24, 38], special-purpose
hardware [42, 51], GPUs [17, 20], or FPGAs [10, 47, 50, 52, 55] to
accelerate database analytics. In particular, FPGAs have attracted
attention due to their user programmability at a relatively low cost,
and vendors often combine storage devices with FPGA hardware.
Since the practical use of ISP demands the instruction-level regu-
larity and parallelism of the hardware, diverse characteristics of
internal workflow or unpredictable delays may not be suitable to
query offloading. From this perspective, most studies have used
static datasets, which can simplify hardware logic in accessing data.
For instance, FCAccel [50] modifies the data layout for operations
in hardware, and others [10, 55] use metadata to access tuples. How-
ever, MVCC databases undergo unpredictable access latencies for
fetching visible data versions, unfavorable to query offloading. We
overcome technical challenges by using version indexes to access
tuples and prescreening to avoid random data access.

Operation types also affect the efficiency of query offloading. For
instance, filter operations have proven to be the best candidates for
this purpose because they are favorable to reducing data movement

PostgreSQL

MyRocks Execution Logic

OlTP OLAP

MySQL offloading

o T query analytics to
§o [0) QL Roccbe computational storage
c Level 0

i

5 o heap | [] level1 5

@ pages : d SELECT ...

2 [mmmmwm . mm]levelN 4 © FROMRS,T
® > WHERE ...
a8 ®0

-J segment - SSTY ... SST
ry f index block - .
. <offset, length>

Zoffset, length> :
a - per segment yper SST
version indexes IE—EI 4gversion inde‘)ies
S
[og]

Level N

a(RmS)

prescreening
ZX version indexes

)

=}

<

G sync < S sync

a [E-0] Raw data offsets [E=E) Raw data offsets %Qﬂgﬂ o RS E

(o=l Sl)
version version IED TPGAS

Figure 1: Overall architecture of databases with AIDE.

due to high query selectivity. Most studies primarily focused on
filter operations and even join operations [10, 24, 50, 52, 55]. Such
operations use simple predicates and can form vendor-neutral for-
mats without difficulties. The group by aggregations can also be
feasible candidates for query offloading, and in particular, hash-
based aggregations can benefit from hardware parallelism [50, 52].
Although some studies attempted to offload other types of opera-
tions (e.g., sort in [55]), their operation unloading demanded sub-
stantial engineering efforts with vendor-specific storage layouts to
execute the required logic. Table 1 summarizes related proposals
in query offloading. We have spent time analyzing candidate rela-
tional operators by a few critical criteria: (i) popularity, (ii) resource
requirements, and (iii) ease of canonicalization. We exclude some
simple aggregate operations since they require vendor-specific se-
mantics or too many resources. Therefore, our target operations are
scan, filter, and join, all of which can readily form vendor-neutral
formats. In summary, AIDE supports ISP under HTAP loads for two
engines through vendor-neutral computation.

3 OVERVIEW OF DATABASES WITH AIDE

This section presents the design overview of AIDE and explains
how we integrated AIDE with PostgreSQL and MyRocks having
different storage formats. This overview highlights two central
claims. One is vendor neutrality, where AIDE can work regardless
of diverse storage layouts, and the other is a version index to deal
with continuously changing data. As illustrated in Figure 1, AIDE is
an intermediate layer between database engines and computational
storage devices (CSDs) and is responsible for offloading all or part
of query execution plans to CSDs. In particular, AIDE transforms
hash joins with simple predicate conditions on alphanumeric types
into a pre-defined set of primitive operations supported by CSDs
and provides version indexes holding canonical tuple identifiers,
enabling in-storage FPGAs to instantly spot newly modified tuple
data correctly without understanding database-specific page lay-
outs. In order to avoid offloading inefficient version searching to
CSDs, AIDE prescreens version indexes before unloading encoded
query operations to storage. We provide the design rationale for
our proposed techniques.

Canonical interface for vendor neutrality. As shown in Fig-
ure 1, database engines use different underlying storage architec-
tures, e.g., multi-segment storage in PostgreSQL and sorted string
tables (SSTables) in MyRocks. They use so-called tuple identifiers
and calculate column offsets using table schema encoded in a tuple
header to access a tuple and required columns. So, fetching a raw

in-file offset

version length
version header length
NULL bitmap

[[La] - | Lov] -] ISP Command
—

Column lengths

Header info

Column offsets

nth column length : % —

Logical schema : s Data file

[coll [-] cIN | = E

Physical schema MyRocks 5 S Tuple .-
[Theader | key | value : § g]

| —i [—]]Pocsct)glr'e\lsm E S <Tuple offset, length>

:

Figure 2: Canonical interface for vendor neutrality.

tuple must pass through multiple translation steps that demand an
understanding of vendor-specific layouts. For instance, PostgreSQL,
a representative RDBMS, uses a combination of a page (or block)
id and a slot id in a heap page as a unique tuple identifier (TID),
where a slot contains a pair of an in-page offset and tuple length.
In addition, accessing columns also needs the interpretation of a
tuple header to correctly handle columns having NULL and variable
sizes. Similarly, MyRocks manages records in the RocksDB storage
engine after reorganizing MySQL record formats into RocksDB-
compliant key-value formats. Such internal reformatting adds an
extra translation step in MyRocks when accessing tuples/columns.
To make data access vendor-neutral inside CSDs, we propose a
canonical interface to translate engine-specific row/column offsets
into vendor-neutral formats. To this end, AIDE uses a canonical
tuple identifier (CTID) comprising a raw tuple offset and meta-data
(e.g., NULL bitmap) for retrieving column offsets from a tuple with
the help of column lengths conveyed in ISP commands (see Fig-
ure 2). CTIDs are easily understandable by computational storage
for spotting the latest locations for database tuples; it consists of
a file offset, tuple length, header length, and NULL bitmap. With
information in a CTID, CSDs calculate column offsets in a data
version by summing column lengths in the given ISP command,
all done without understanding vendor-specific layouts. In order
to track the locations of all data versions, AIDE manages a version
index for each file and inserts new CTIDs in version indexes when
new versions arrive. Therefore, our canonical interface enables
CSDs to access tuples and columns in a vendor-neutral way.
Prescreening indexes for rapid data access. Multiversion con-
currency control pervading modern database systems requires that
DBMSs find visible record versions before passing them to the next
query execution stages. However, searching visible versions may
incur a considerable delay in analytic queries when DBMSs update
a large volume of data while processing OLTP workloads. Version
searching overhead is a notorious issue already studied in prior
work [26, 27], and unloading efficient version search algorithms still
poses challenges. First, to enable computational storage to search
versions, storage devices should understand vendor-specific stor-
age layouts, breaking vendor neutrality. Even worse, if we offload
such logic to devices, in-storage version searching incurs random
access to data blocks, leading to worst-case scenarios. Hence, we
exclude version searching logic from offloaded query execution
and delegate the job to AIDE to cope with these difficulties. For
this purpose, we propose a prescreening technique in that AIDE
first filters invisible data version locators from version indexes and

rebuilds a collection of visible ones for a given query. Then, it of-
floads computation with the rebuilt version indexes to CSDs that
will never do the version searching. The prescreening technique
upholds vendor neutrality even with HTAP and accelerates query
execution in CSDs by avoiding excessive access to data blocks.

4 ANALYTIC OFFLOAD ENGINE

Past research on computational storage has unveiled three design
factors impacting the performance of ISP. The first factor—the se-
lectivity of an offloaded query—decides the volume of query results,
and the second factor is the access pattern inside storage that affects
1/0 efficiency. The last one is the programming efforts required for
developing the logic in hardware accelerators. For the first criterion,
ISP, even with AIDE, cannot guarantee a performance boost for
all queries nor aim to achieve it mainly because modern DBMSs
evolve to utilize high parallelism and asynchronous processing (e.g.,
prefetching). Instead, AIDE takes a best-effort strategy to avoid un-
favorable cases by offloading query plans exhibiting high selectivity,
e.g., a join with filter predicates. Second, in conjunction with prior
work revealing that version traversal becomes a dominant cost
factor in query execution, we perceive that forestalling version
searching in ISP is of the utmost importance for efficiency. Third,
we retain vendor neutrality when offloading computation to de-
vices. This section discusses how we design AIDE regarding the
three criteria, starting with the vendor-neutral computation.

4.1 Vendor-neutral Computation

Database systems express an analytic query as a form of relational
algebra, resulting in a query plan consisting of a sequence of op-
erations and data with proper access methods specified. As prior
studies [10, 24, 54] transformed query operations into native ones
supported by FPGAs, we adopt the same approach so that AIDE
encodes query operations into canonical formats that the hardware
accelerator can easily understand and execute efficiently. By doing
this, we retain vendor neutrality for relational operations. How-
ever, preparing the target data for query operations may require
understanding database storage layouts. In particular, if CSDs use
the same approach as host databases, FPGAs should likewise pass
through multiple translation steps to get target data offsets. We
address the above issue by a canonical interface that represents
engine-specific data formats as canonical forms so that computa-
tional storage accesses required tuples and columns through the
lens of the canonical interface.

4.1.1 Canonical interface for tuple offsets. The canonical repre-
sentation of a physical schema needs two types of offsets: tuple
and column offsets. For the first type, tuple offset, AIDE extracts
record/key-value offsets with their lengths and keeps these canoni-
cal tuple identifiers in a separate index, called version index. AIDE
creates a version index for each data file (i.e., PostgreSQL segment
and MyRocks SSTable), and the index holds in-file offsets for all
data tuples stored in the file segment/SSTable. As shown in Figure 3,
per file version index contains CTIDs. Managing separate version
indexes has a similar design rationale to our recent work [27]. It
enables computational storage to track and access the latest raw
data offsets without traversing data tuples in database file seg-
ments/SSTables. Important to notice is the invariant that version

1483

Page Header Slot ID Array [g e [Tuple A Data blocks
BlockiD + SlotID Slot item r\llariabrl‘ej
engtl Values
offset length
-- |Header [Luser key] Key INuII bits‘ Co \ I
Tuple Header C C
rpeneater CO T T) | 5
Anext Data columns _|
BlockiD | SlotiD ’7 Metadata blocks | Footer
ey = T
#ofCTID | CTID [[[0 T @]~ #of CTID [CTID SST file SST file
I L] I
J Per segment Per SST
version index file [7"|_version index file

PostgreSQL segment and version index layout MyRocks SST file and version index layout

Figure 3: Storage layouts with version indexes.

indexes must hold all tuple offsets required for computation, and
referred data tuples must be present in data files. Hence, AIDE must
flush version indexes and their data files before query offloading
for this invariant.

4.1.2 Canonical interface for column offsets. Next, AIDE translates
column offsets typically embedded in a tuple header into normal-
ized formats (i.e., an array of column sizes) and passes them to
computational storage through an ISP command. Then computa-
tional storage can access target columns using a NULL bitmap in a
CTID and column size information conveyed in the ISP command.
Hence, the ISP command should include canonical column offsets
that work correctly even with engine-specific metadata fields em-
bedded in their physical format. As shown in Figure 4, MyRocks
embeds a sequence number and a NULL bitmap between its key
and the first column field. Suppose metadata fields are present in
key-value data. In that case, computational storage needs to under-
stand an engine-specific key-value layout to get a target column
offset, breaking vendor neutrality of our FPGA logic.

To deal with such metadata fields, we introduce a concept of
pseudo-columns to convert engine-specific metadata fields into one
of the regular canonical columns. Then, the canonical tuple format
contains more columns than the physical counterpart. To make
CSDs identify the correct columns, we adjust the mapping between
physical and canonical columns. Figure 4 illustrates how we remap
the column order in our canonical format. When we create an ISP
command for MyRocks, we should create one pseudo-column for
metadata (i.e., sequence number and NULL bitmap fields) and store
the pseudo-column size in the command. Later, a CSD correctly
accesses the target join column by summing column lengths and
header length: offset for Cjoin = HU+Z{:(I)"_1 L(C;). So, translation
from canonical into physical formats can be done inside computa-
tional storage without vendor-specific semantics.

e ISP ! L(Co') [Lc) |---!L(cw')|---
ith column cTID 7 L)

eoo| Hy o

join target column

Ganonial [T e |
length of column X ;

v [Con] o o]

i i
sequence number physical record format v ¥ H C",
ol s metadata length | Go | G |'--'|C,am| N
T Y
-1 column offset
Hv 20 LD =" For Con

[Femsomml e =]

Physical format IS 12 s ¥
tuple header | Co [===] Cn | [metadatalkey] Ns | No | Cifeeefcn]

Figure 4: Translation from canonical into physical formats.

4.1.3 Version index management. Managing version indexes incurs
extra contention and I/O under HTAP loads because we should
hold a page latch longer while updating and syncing index entries
to CSDs upon data updates. Update-heavy tables cause frequent up-
dates on version indexes, thus inducing a longer page latch duration.
To hide a long syncing delay, AIDE uses pipelined offloading by
overlapping syncing activities while computational storage scans
other data files. Nevertheless, we have faced unique challenges with
MyRocks; i.e., there is no lifetime information in key-value data,
and MyRocks runs compaction continuously under updates.

We overcome the issue by embedding lifetime information in
key-value data, requiring that it be modified when a new version is
committed, which determines the lifetime of the previous version.
Our design induces a consistency issue between the background
compaction threads and foreground update transactions if both
contend on the same data file. To handle the issue, we keep track
of the compaction outputs and make the updaters wait until their
related compaction ends. This forceful waiting at commit can cause
performance fluctuation if compaction threads are active under
massive updates (see §6.4.1 for performance evaluation). It is an
explicit limitation of our approach, left as future work, as it does
not impair vendor neutrality.

4.2 Prescreening Version Indexes

Although we manage CTIDs in version indexes, massive updates
continuously produce new ones that aggravate version searching
due to increased search space. We confirm this behavior by ob-
taining page I/O traces of multi-table join queries under updates
with and without long-running analytics on PostgreSQL. Figure 5
shows a snippet of traces for one table and implies that version
searching becomes a dominant query cost since it reads data pages
excessively during searching. Hence, providing correct and necessary
data locators to CSDs is at the core of the matter. This perspective
gives a few options for overcoming the technical hurdle.

w/o version traversal

s

Time (sec.)

w/ version traversal

Page #

1184.6 1184.7 96.7 1196.8

Time (sec.)

Figure 5: Page I/O traces w/ and w/o version traversal.

4.2.1 Visible data or indexes? That is the question. Despite being
vendor-neutral, version lookup logic is not apposite for ISP due
to excessive data access. More crucial to excluding the logic from
the main body of offloaded analytics is how to provide visible data.
Fortunately, version indexes already hold raw data offsets with vis-
ibility information, enabling AIDE to prescreen the indexes to filter
invisible data offsets. This prescreening procedure can pass all valid
data offsets to storage before offloading the main computation body.
The prescreening of input data offsets in version indexes is concep-
tually the same logic executed by traditional MVCC databases. It
inspects CTIDs in version indexes and filters out tuples invisible
to analytics by query snapshots. Validating CTIDs requires two
timestamps — min and max — for each tuple, and AIDE embeds
meta-data in in-memory version index entries.

1484

Prescreen Convert Parallel scans of visible CTIDs
version index —
o H
1 =]
or—| =7 | 23 &
: N 3 2
[o Lo =/
or— t e
2@
min, max, visible S > il result
offset, length CTIDs segment i [T |t -

Figure 6: Prescreening enables parallel file scans in CSDs.

The host-side prescreening opens opportunities for accelerating
ISP. First and foremost, file-wise screening enables CSDs to use
sequential access to the target data file. Since the FPGA platform
loads an entire segment/SSTable into its dedicated memory and
performs operations in memory, it forestalls random access across
multiple files. File-wise prescreening further allows FPGA to scan
data files in parallel, enabling parallel file scans (see Figure 6). Sec-
ond, version inspection is limited to each data file to screen visible
CTIDs from the version index. So, a prescreened version index can
confine in-storage scanning to its segment/SSTable, thus avoiding
random data access across multiple data files.

4.2.2 Prescreen-offload-execute model. Combined with vendor-
neutral computation, the prescreening technique can form an ef-
ficient offloading framework. We explain the overall sequence of
query offloading using a simple join with filter predicates. The
distinction between legacy engines and the engines with AIDE
arises after the legacy query optimizer produces a query plan. With
a given query plan, the engines with AIDE adopt the so-called
prescreen-offload-execute model. In the prescreening stage, we must
prescreen version indexes if ever modified since the last prescreen-
ing. To further optimize prescreening, AIDE internally manages a
file-wise minimum transaction ID for each data file and a minimum
value for a group of in-file data blocks. If a table has many data
versions, AIDE can efficiently decide whether or not to prescreen
an entire data file or a portion of page groups. This pruning strategy
is effective for tables undergoing massive updates (see Sections 6.3
and 6.4 for more details).

In the last stage, a CSD executes query operations by first per-
forming parallel scans of target files using the given version indexes.
It applies filter predicates to sift valid tuples satisfying the given
predicates. It then builds a hash table using filtered tuples and finds
matching tuples in the probing phase. If spilled, FPGA saves inter-
mediate or final results to a hidden result file during the probing
phase. Unlike the vanilla engine, AIDE always enables sequential
data access inside computational storage, thus escaping perfor-
mance disruption even with massive updates on target tables. In
HTAP environments like TPC-CH [12], we offload a subtree of an
original query plan tree that would suffer from redundant, random
access under massive updates but exhibit high selectivity; for ex-
ample, join queries involving update-intensive dimension tables
(i.e., stock) and tables with filter predicates.

4.3 Canonical Interface for Query Offloading

Query offloading in AIDE requires two types of information: en-
coded query operations and canonical tuple/column offsets. Our
prototype system uses OpenCL commands to communicate with
computational storage to either pass such information to storage or
receive query results. AIDE plays a translator for its host database

engine to unload computation with canonical tuple/column formats
to its underlying computational storage. The information delivered
to storage consists of descriptions for operations and file descriptors
for data files and their associative version indexes. Overall, AIDE
should pack all these parameters into a contiguous memory and
submit OpenCL commands to CSDs; then, the FPGA receives the
packed message to interpret for initiating offloaded query oper-
ations. For obtaining query results, computational storage saves
the final results (i.e., tuples) into separate temporary files for given
tables. The layout of the result file is as follows; the first 6-byte
fields contain the total number of tuples and the maximum tuple
length, and the rest of the file space stores result tuples.

5 IN-STORAGE QUERY PROCESSING

This section presents our implementations of required functions for
in-device analytics in commodity CSD that supports the latest Xilinx
Vitis™ development platform, allowing users to write functions
executed on FPGA using its High-Level Synthesis (HLS) tools. We
provide the key details for understanding our implementations of
vendor-neutral logic and its pipelined workflow to accelerate query
analytics. In essence, the Vitis OpenCL host code linked to AIDE
controls our FPGA logic in this CSD. Note that AIDE only supports
exclusive query offloading, where our CSD executes one query plan
at a time without accepting multiple query plans simultaneously.

5.1 Hardware Accelerator Logic

5.1.1 Core components of computational storage devices. Figure 7
depicts our proof-of-concept CSD and its in-device analytic compo-
nents tested in this work. Our CSD comprises an NVMe SSD and
an acceleration card, including FPGA logic and memory (4 GiB).
A tailored internal PCle switch connects PCle endpoint devices
and dispatches host calls to the correct target (omitting the PCle
switch for simplicity). In particular, it delivers I/O requests sent
from the host NVMe driver to an SSD; likewise, it passes accelera-
tion calls dispatched from Xilinx Runtime (hereafter noted as XRT)
to the embedded FPGA card. XRT is implemented as a device driver
and provides the OpenCL-compliant software interface facilitating
communication between the host application and the acceleration
kernels (functions compiled for FPGAs) deployed on the FPGA card
(i.e., Xilinx Kintex" Ultrascale+ FPGA). Executable device binary
downloaded to FPGA logic includes acceleration kernels responsi-
ble for native operations, while OpenCL commands take control
of memory management and data movement between the host
and hardware accelerators. Essential among many functionalities
of XRT is the task of orchestrating the execution of triggering,
sequencing, and synchronizing kernel computations.

5.1.2 Control and data plane. According to the OpenCL program-
ming model, we split ISP logic into host code and device code. The
host code, written in OpenCL, is linked to AIDE. At the same time,
the device code implementing filtering and hash join, written in C,
is compiled by Vitis HLS tools into an executable device binary that
runs within the programmable logic of FPGA. Communication be-
tween these two, including control and data transfer, occurs across
the PCIe bus for the XRT platform. Also, global memory in the
acceleration card is shared and used to transfer data between them.
Note that the host code takes control of issuing I/O commands and

1485

| Analytic Offload Engine OpenCL command

I
file 1/O query offloading query results

Xilinx Runtime(XRT)
Xilinx FPGA platform

e scan & filter build probe
? I

C

, . =

target segments data hash table

NVMe command

spilled
results

R va S 2]

segments
version index

segment file

1
IF —pre
hash table FPGA DRAM

Host code for controlling the scan-filter kernel
wait_list_sf.push_back(event_write_column_info);
wait_list_sf.push_back(event_write_segment_version_files);
wait_list_fs.push_back(event_prev_filter);
cl:Kernel krnl_filter = _fm->get_filter_kernel(filter_column_info);
_fm->q_ooo.enqueueTask(kml_filter, &wait_list_sf, &event_filter);

Host code for controlling the join kernel
wait_list_join.push_back(event_filter);
wait_list_join.push_back(event_prev_join);

cl:Kerel kml_join=_fm->get_join_kernel();
_fm->q_ooo.enqueueTask(kml_join, &wait_list_join,
&event_join);

Figure 7: In-storage query processing logic.

loading data blocks into FPGA DRAM. Meanwhile, device code (i.e.,
FPGA logic) operates data in its memory buffer and does not have
to understand the host file system or storage blocks.

As depicted in Figure 7, AIDE invokes OpenCL commands to
guide XRT to transfer the input parameters from the host database
to FPGA memory or move input data from SSD to FPGA memory.
Such commands also trigger sequenced invocation of the kernels
in the executable device binary that computes and stores results
back to the FPGA memory. The capacity limit of FPGA memory
causes kernels to spill intermediate or final output into a hidden
file in storage. It later would be loaded to FPGA memory upon
AIDE’s request for query outcome, copied into the host memory,
and consumed by host databases, i.e., PostgreSQL and MyRocks.

5.1.3 Hardware acceleration in action. The OpenCL host code at-
tached to AIDE controls the overall sequence of query offloading.
Upon a query request, AIDE creates memory buffers on the device
and copies input parameters (i.e., a list of join clauses, filter predi-
cates, and file descriptors of data files with their associative version
indexes) into them. It also loads data files and their associative
version index files into global memory. Then, from the executable
device binary, it creates program and kernel objects on FPGA, sets
the kernel arguments, and then triggers their sequenced execution.
While reading data from global memory, scan-filter and join kernels
perform native operations on the data: executing scan-and-filter,
building a hash table using filtered tuples, and probing the hash
table to find matching tuples. Join results are stored back to global
memory or spilled into an SSD under memory pressure. Such se-
quenced execution continues as long as data and version index
files arrive. Later, AIDE requests query results residing in global
memory or SSDs.

5.2 Pipelined Query Processing in FPGA

The core of vendor-neutral computation in our CSD is the pipelined
architecture of scan-filter-join operations that we implemented as
separate FPGA kernels. The pipelined architecture illustrated in
Figure 7 does not have a one-to-one correspondence with core
FPGA kernels since it includes the stage of loading target files into
FPGA global memory, and more details explaining the mismatch
will follow after covering core kernels. AIDE packs the kernel input
parameters in a message as an ISP command and loads it into global

memory before initiating kernels. We explain each kernel operation
first and describe the pipelined processing architecture next.

5.2.1 Scan-filter kernel in action. The first kernel performs dual
roles—scan and filter operations—and we embody these into a single
scan-filter kernel. The scan logic operates on data files with their
version indexes loaded from the SSD into global memory; it can find
the correct location for each visible tuple within the file boundary.
The scan operation feeds visible tuples to the next filter operation
that applies user-defined predicates to the fetched tuple stream. For
all valid tuples, the filter operation adopts the late materialization
technique; it stores the location, instead of an entire tuple, and the
column value required for the next join operation so as to save
global memory and reduce the number of memory accesses. So, the
scan-filter kernel passes tuple meta-data to the final join kernel.

5.2.2 Join kernel in action. The following join kernel performs the
so-called build-probe phases that build a hash table using the left
(i-e., build) table and probe to find matching tuples. After the scan-
filter kernel is complete on time for the join stage, the join kernel
starts probing the constructed hash table using newly arriving join
columns and then builds a new hash table using matching tuple
data in this step, except the last join step. Note that the join kernel
supports multi-table join and assumes a hash table built in the
previous step. In the case of the first join step with no previous
hash table, it considers all tuples for probing to find a match. We set
a pre-defined threshold for each data structure in memory for fair
usage of limited global memory. If the memory usage of the hash
table exceeds its limit (128 MiB in our prototype), query offloading
will fail with a join memory exhaustion error. For the same reason,
when join results require more memory beyond the buffer limit
(480 MiB), the join kernel stores spilled results in a hidden file.

5.2.3 Put all core kernels into pipelined processing. AIDE exploits
pipeline parallelism since the sequential execution naturally leads
some ready kernels to wait around for their input. Our PoC CSD
uses a three-stage pipeline consisting of load, scan-filter, and join.
The first load stage is a simple data movement from SSD to FPGA
memory that requires no separate kernel. Hence, only the last two
stages have matching kernels. We synthesize those kernels into a
single executable binary, thus making them co-reside on the same
FPGA. To allow simultaneous execution, we examined data de-
pendency across stages. The last two stages must wait for their
preceding stage to complete, while the first load stage can run in-
dependently. We show the host code snippets that orchestrate the
pipelined execution of FPGA kernels on the bottom of Figure 7,
omitting device code for space limitation. Note that we created
the command queue (i.e., _fm->g_o00) with out-of-order execu-
tion (i.e., CL_QUEUE_OUT_OF _ORDER_EXEC_MODE_ENABLE) enabled
to allow concurrent execution of kernels having no dependency.

5.2.4 The pros and cons of our approach. There are some pros
and cons of our approach. In the case of best-fit queries (refer to
§6.2 for more details), ‘build’-side data files would be relatively
small compared to ‘probe’-side data files in the hash join stage,
and filter predicates would filter out a majority of tuples. So, all
three stages would take considerably less time for the build phase
than the probe phase. Moreover, FPGA memory access is far more
time-consuming than computation. The scan-filter stage incurs

1486

more random memory access and takes longer than the compute-
intensive join stage. Thus, parallelism is logically proportional to
the number of data files if we start the scan-filter stage at each step.

However, our PoC CSD imposes strict limitations on the global
memory and programmable logic blocks, 4 GiB and 300K LUTs re-
spectively. Considering the required memory for each data file (i.e.,
up to 1 GiB) and in-memory data structures, such as hash table and
join result buffer, it allows up to two data files for concurrent pro-
cessing. Moreover, the number of logic blocks required for multiple
kernel instances exceeds the PoC device’s capacity. Such restriction
of our mid-range FPGA device limits the concurrency level to two,
with a single instance of each kernel executing. We create a single
out-of-order command queue for the parallel execution of these
kernel instances where enqueued kernels can go out of order. To
this end, we use the OpenCL event (cl::event) to make them wait
for their preceding stage(s) to finish.

Despite all our effort in developing FPGA kernels, FPGA-based
ISP has a few critical limitations. Since modern databases have
adopted asynchronous I/O and parallel processing (e.g., parallel
scan) to reduce (or hide) the speed gap in the memory hierarchy,
many ISP proposals, including AIDE, with general-purpose designs
may still possess I/O or memory access delays. Due to these limita-
tions, the AIDE-enabled ISP may not guarantee better processing
speed than the vanilla system when operating conditions do not
meet our criterion (i.e., version search overhead). However, it will
show a breakeven point as random, redundant access starts domi-
nating the cost for query processing (see Sections 6.3 and 6.4 for
more details). We believe this can be a dilemma between DBMS-
dependent or DBMS-oblivious.

6 EXPERIMENTAL EVALUATION

6.1 Evaluation Setup

As a prototyped system, we implemented AIDE for PostgreSQL-12.0
and MyRocks of Facebook MySQL 5.6. Also, we wrote FPGA kernels,
and use the same kernels for both database engines. Our server
features two AMD EPYC 7003 processors, each having 64 cores and
256 MiB cache. It has 128 GiB memory. We also use Samsung SC1733
CSD having an FPGA with 300 MHz clock frequency and 300K LUTs.
Since our CSD has limited FPGA memory (i.e., 4 GiB) compared to
sufficient memory in our server, we intentionally restrict available
DRAM and database buffer sizes to emulate larger-than-memory
analytics environments. To limit host memory, we use the cgroup
feature of the Linux kernel.

Workloads. We use two benchmark tools to measure various
performance metrics on our server: sysbench-1.0.20 benchmark [1]
with our synthetic multi-table join queries and TPC-CH [12], a
mixed workload containing both TPC-C and TPC-H. For TPC-CH,
we adopted the open-source tools [11] released by Citus Data [13]
for running CH-benCHmark with HammerDB [2]. This is the most
common benchmark to evaluate HTAP systems, and uses a hy-
brid schema of all TPC-C tables and some TPC-H tables. It runs
all TPC-C transactions without changes and TPC-H queries with
modifications. We only create a small dataset with scale factor 2
(SF=2), equivalent to 1.6 GiB, since the dataset will grow quickly as
update transactions run. In addition, we introduce special update
transactions to create situations that produce a continuous stream

of data versions from the stock table, which increments and decre-
ments stock level count without infringing TPC-CH specifications.
To this end, a group of dedicated threads only run that transaction
continuously, and we call this workload TPC-CH+. Since their up-
date throughput is around 34kTps, we expect that initially, AIDE
may not be helpful to ISP for both engines. However, it will later
show the breakeven point where ISP can be faster than vanilla
systems that spend time in version searching.

For the sysbench experiments on each engine, we create 12 tables,
each with 100k tuples, and use OLTP transactions updating tables.
We then open a query that internally performs multi-table joins
(randomly selected four tables) continuously. As time elapses, join
queries should act on multiple data versions in the vanilla system,
while AIDE-enabled ISP only accesses required visible versions
during join processing. The setting is similar to the one used in the
prior work [27], so we reconfirm the same phenomenon and see
whether our approach can address it.

Common database configurations. We have set common con-
figurations to allow more updates on tables. In PostgreSQL, we
use large log files to suppress checkpoint activities and relax strict
durability by adopting “asynchronous commit [44]”. Also, to reduce
unwanted contention between worker processes, we disable the
PostgreSQL parallel query [43]. All analytic queries in TPC-CH+
run under the isolation level REPEATABLE READ. For MyRocks, we
disable binary logging used for replication. We also relax strict
durability by avoiding log flushing at transaction commit.

AIDE-specific database configurations. The cost-based opti-
mizers of both engines try to choose the best plan, but at present
may not be perfect for AIDE. When generating query plans, they are
unaware of properties related to ISP (e.g., operational costs for ver-
sion search and underlying CSD) and neglect them. To enable our
AIDE-based ISP, in PostgreSQL, we enforce the hash join algorithm
with the sequential scan access method. We deploy an extension
module (i.e., pg_hint_plan [3]) and generate apposite query plans
to ISP. By adding hinting phrases to the target queries, we can
reorder relational operations and change access methods for tables.
For example, we attach the following hint prefix to the Q8 query of
TPC-CH+ to enforce the hash join algorithm with the specified join
order: /x+ Leading((stock item)) HashJoin(stock item) */.
Of course, the vanilla PostgreSQL optimizer generates a different
query plan. For MyRocks, at the start of each query session, we
set a session variable for the target table to offload. AIDE-enabled
MyRocks generates a query plan where the table retrieved from
the session variable would be the first of the join order. Also, to
enforce predicate filtering and join by ISP, it transforms index seeks
for target tables into table scans.

6.2 Workload Characterization

The characteristics of target query plans offloaded to our CSD
substantially impact the performance of ISP. Although TPC-CH+
faithfully emulates HTAP workloads, not all the queries deserve
ISP because queries may include static (or insert-intensive) tables.
Queries also specify various join types (e.g., full/anti/semi-join) or
memory-intensive operations (e.g., sort, GROUP BY, or ORDER BY)
that we did not embody in our kernels. To get a better understanding

1487

of ISP with various query plans, we add hints to all queries in TPC-
CH+ and categorize them into four groups: G1 (most favorable),
G2, G3, and G4 (ill-suited to ISP) based on the ‘EXPLAIN’ outputs
from vanilla PostgreSQL. Then, we offload sub-query plans from
the first three groups and see how good or bad the efficiency of
query offloading is. None of the prior studies have analyzed the
in-situ processing of query analytics in HTAP environments.

6.2.1 Join by hash-based equijoin. To maximize the performance
improvements while attaining better performance isolation by un-
burdening host database systems, we use three empirical criteria
when identifying good candidates: i.e., type of join operations,
frequency of updates on target tables, and the presence of filter
predicates. The criteria guide our prototype to support the equijoin
condition wherein FPGA scans inner and outer tables sequentially.
However, as opposed to prior work, we do not aim to offload a
single table scan since simple in-situ table scans would not give
significant benefits. Unlike table scans, joins are resource-hungry
operations; the reduction in a result set during in-storage join pro-
cessing can propagate up to the root of query plan trees, leading to
reduced query results. Also, database systems have used software
optimization techniques, such as pushing down filter predicates, in
the early stages of query processing. We, therefore, prefer to choose
sub-plans having equijoin operations.

6.2.2 Join with update-heavy tables using filter predicates. 1t is
well-known that query selectivity profoundly impacts query pro-
cessing. Specifically, the presence of massively updated tables and
filter predicates substantially affects the efficiency of in-storage ta-
ble scans. When join tables have neither static (or insert-intensive)
properties nor filters to be applied, one cannot expect a consid-
erable reduction in the result set and cannot achieve much gain
accordingly. Considering the limited computing power and memory
in FPGA cards and the considerable cost of deploying them (e.g.,
initialization, communication, and data transfer), the gains will
unlikely outweigh the price we pay. However, suppose we enhance
a reduction factor by eliminating the hefty version search logic and
additional filter predicates occurring during in-storage join process-
ing. In that case, AIDE can produce the desired result set that would
decrease, owing to ISP. In TPC-CH+, queries having join conditions
involving fact and dimension tables with massive updates and filter
predicates are suitable candidates for query offloading.

6.2.3 Extract target join sub-trees. We develop different strategies
for identifying a candidate sub-tree to offload, since unfortunately
the only join method in MySQL 5.6 version is nested-loop method.
In PostgreSQL, AIDE starts a plan tree traversal in reverse order.
When meeting any join node whose type is not inner hash join, it
stops and assesses how suitable this sub-tree is for offloading by
considering the criteria described above. We focus on the join node
at the tree’s top-level obtained from the reverse order traversal. If
any of the join tables is update-heavy and has filter predicates to be
applied to, this query must be apposite for offloading. By contrast,
for MyRocks, we guide AIDE on how to generate a query plan using
MySQL system variables. By referring those variables, it sets the
first of join order and adjusts the number of tables to offload. Also,
it converts index seeks for target tables into table scans.

Table 2: Categories (un)suitable for query offloading

[Group[] Queries | Offloaded sub-plans [FRY]
Q2,5 O} name like ‘Europz’ Tr>d Tn ™ Tsup b4 Tt 0.80
Qs Oi_datalike ‘zb’(T1) > Tst 0.98
Gl Qg Oi_datalike ‘BB’ (Ti) > Tst 0.99
Q11,21 n_name = ‘Germany’ (Tn)» Tsup > Tt 0.98
Q20 9} datalike ‘co (Ti) ™ Tt 0.99
Q7 Tsup ™ Tt
G2 Q15 Tst > Ty
Q16 Tj > Tt
G3 Q3, 10, 12, 14, 17, 18, 19
! Q1, 4, 6, 13, 22 (Not evaluated)

* Tg is a table in TPC-CH+ benchmark, where

a € {1’ (region), ‘n’ (nation), ‘sup’ (supplier), ‘st’ (stock), ‘i’ (item), ‘o’
(order_line)}.

T FR: Filtering ratio of a predicate

How well query characteristics conform to our empirical criteria
determines the speed-up by our ISP. For evaluation, we apply our
criteria to the whole 22 TPC-H queries from CH-benCHmark and
categorize them into four groups. As shown in Table 2, only queries
that belong to the first two groups, i.e., G1 and G2, become good
candidates for offloading. After classifying them, we obtain seven
and three queries for each group, respectively. The queries in G1
would be the best fit for ISP because they include a representative
stock table under massive updates as well as a small dimension
table with a highly-selective filter predicate (e.g., the item table),
filtering out at least 80% of tuples. Such queries pass reduced join
results to its parent node for further processing. In contrast, AIDE
would avoid or ignore queries from the last two groups because
they seldom satisfy the first or the second criterion.

6.3 TPC-CH+ Workloads

In this section, we run TPC-CH+ workloads and use the HammerDB-
4.4 benchmark. Note that TPC-H queries in G4 have either futile
simple scans or join types unsupported by AIDE and have not been
evaluated. We use a small dataset (SF=2) to see the behavior and con-
figure our server to limit physical memory to 8 GiB. We set a 2 GiB
buffer pool for PostgreSQL and MyRocks. In this experiment, we use
dedicated workers to run TPC-C and TPC-H; 12 threads for TPC-C,
44 threads for TPC-H queries—half of them run within a long-lived
transaction to intentionally emulate larger-than-memory analytics.
In addition, we assign eight threads for updating the stock table,
which impacts overall performance. As time elapses, two noticeable
changes occur: (1) insert-intensive tables (e.g., order_line) grow
due to newly inserted tuples, and (2) the size of the stock table also
increases because of continuously generated data versions.

Our TPC-CH+ workloads overburden both engines and incur
harmful performance interference. For evaluation, we adapted the
TPC-CH+ schema to make as many queries runnable in our vendor-
neutral CSD as possible, e.g., transforming string matching on a
fixed length prefix into an equality condition on a newly added
column storing a character value. This temporary expedient may
harm MyRocks since it shows immense overhead in join processing
on a non-indexed column.

6.3.1 Performance metrics of vanilla PostgreSQL/MyRocks. We first
run TPC-CH+ on vanilla engines with a small dataset (SF=2). We
measure three performance metrics: the number of data versions
generated, latency for each TPC-H query, and space overhead. Al-
though we intentionally limit physical memory to emulate larger-
than-memory analytics, three metrics look normal until the version

1488

E Updates on STOCK(x10° TPS) —— | 20[TPC—C throughput(x10* tpmC) ——
3 M 10F
0 0 -
Gt |OLAP Va'l“”a — [59 qz2(G1) o~ 2] as(G1) - 8] Q8(G1)
& |'atency(sec) 5 e T~ o A
Test time : 600(sec) W\N _—
63| 100200300 400 500 | o 0 ol —~
8 a9(a1) Ol atay] [a20@1) 201 q21(G1) B
_ U
4J/\W/"‘/w 200 10F A pen AN 10 T
/ Pt
ol — ——~— 4 o | o | o
201 q7(G2) |59 ats(G2) 2l at6G2) s~ | 9| Q3(G3)
N R o
10 ™, 300) 10 3
/ P | PN
9 o~ 0
12| a10(G3) UREE) 61 a14(a3) 8l a17(G3)
6 8| | T M
,/M et 1 IS
) w——————e I ~ ol——"
20 o18(G3) 8 Q19(G3) 8] Space(GiB) Tables w/o STOCK mm
STOCK
10 | S
0 ol "M o

(a) Performance of PostgreSQL under TPC-CH+

50

g Updates on STOCK(x10* TPS) —— TPCC throughput(x10% tpmC) ——

~
\
4 25(1\ / A N,
oTVEAAAAMAANAAASAR AR SV WA N7 e
61 [oLaP Vanila 18T @z2(G1) 801 @s5(G1)] 6] as(G1)
G \alency(seé\ 8 40 //,,,,,»f 8
Test time : 600(sec) A M
G3| 100200 300 400500 | o —| o} 9
201 q9(a1)] %] a20@1) T 200 a7(@2) 81 Q3(G)
10 et 25 Nl 10 3
0 0 ol | pe —
16 20 10 v
Q10(G3) pE Q19(G3) A Space(GiB) Tables wio STOCK mm
® A 10— MR | B
|_eefimma
of 0 0

(b) Performance of MyRocks under TPC-CH+

Figure 8: Performance of the engines under TPC-CH+.

search on massive data versions overburdens the database buffer.
As shown in Figure 8a, seven queries in G1 and G2 (i.e., Q2, Q5, Q7,
Q11, Q15, Q16, and Q21) show increasing latency in vanilla Post-
greSQL as update transactions produce data versions in the stock
table. The remaining queries in G1—Q8, Q9, and Q20—are notice-
able since they exhibit slowly increasing query latency. For these
queries, the vanilla PostgreSQL optimizer generates plans perform-
ing join operations against large tables first, which passes a reduced
result set to the upper-level join with the stock table. In practice,
the highly-selective inner join against the largest order_line table
returns a tiny result set (100 ~ 200 records). In this case, the version
search overhead for matching tuples from the stock table would
not be noticeable and took less than 2 sec in our evaluation (SF=2).
Other queries in G3 are not acting on the stock table, but are
only affected by insert-only tables (e.g., order_line). Among them,
the latency of Q18 is noticeable. In this case, the PostgreSQL opti-
mizer’s large-tables-first strategy backfires, and non-selective hash
joins with sequential scan methods to the largest (and increasing)
order_line and orders tables are performed first.

Vanilla MyRocks shows similar behaviors, except for noticeable
differences between the two engines (see Figure 8b). Since MyRocks
internally relies on the RocksDB storage engine, it has to reformat
key-value data into MySQL record formats. When MyRocks per-
forms nested loop join algorithms, it has to fetch and reformat
key-value data streams more than necessary, even with queries
having high selectivity. Such queries are Q10 and Q19 in G3, which
show increasing latency in vanilla MyRocks. Another exception is
Q2 which runs much faster compared to vanilla PostgreSQL. Other
queries in G1 and G2 show similar behavior as we have seen in
vanilla PostgreSQL. As mentioned earlier, some queries — Q12, Q14,

Query latency with AIDE (sec)

09 | 192 556 762 661 741 816 836 854 913 952
07| 188 574 719 728 798 7.68 855 826 888 8.95
-‘E 05| 183 598 6.88 695 767 11.78 875 852 924 975
g 03 | 168 534 686 689 751 794 835 773 831 8.99
E 0.1 | 165 510 559 6.62 743 7.75 849 888 929 947
005 | 162 515 6.44 726 767 826 759 839 902 11.65
001 | 172 567 739 723 750 813 947 873 9.15 0946
Latency of in-storage query processing (sec)
09 | 149 481 6584 595 668 746 771 785 844 882
. 0.7 | 145 500 6.43 655 725 6.96 7.82 756 818 8.26
£ 05142 527 620 626 699 11.06 8.07 7.87 858 9.05
§ 03 | 129 468 620 626 688 729 771 711 774 836
&g 01127 442 501 605 683 715 789 828 870 887
005 | 124 453 579 665 707 764 7.02 779 841 11.05
001 | 130 500 675 655 686 753 885 8.11 854 887
Time (min) 0 1 2 3 4 5 6 7 8 9
(a) Latency of PostgreSQL with AIDE
useful

1350 9.85 42.69 3804 3454 3371 29.04 27.14 26.03 45

. 558 41.64 41.10 37.51 39.00 35.02 31.53 29.34 29.09 N

£ 259 928 41.20 37.29 2429 32.69 29.21 26.93 25.53 £

3 12.94 10.08 35.43 3250 30.74 29.21 36.72 34.17 31.56 o

g 6.30 20.60 17.41 34.49 33.05 30.16 28.87 23.78 23.33 %
470 11.71 28.20 26.68 24.79 37.70 34.10 31.70 24.55
5.09 13.40 41.46 39.97 36.85 31.64 34.33 20.69 20.01

Time (min) 0 1 2 3 4 5 6 7 8 9 unuseful

Latencyyanilia)
LatencyArpE

Figure 9: Performance of multi-table joins on PostgreSQL.

(b) Normalized latency of vanilla PostgreSQL (

and Q17 — experience colossal delays due to MyRocks’ join process-
ing overhead on our non-indexed columns, so we omit comparison
results with vanilla MyRocks here. Note that the vanilla engine’s
metrics — update rate on the stock table and tpmc — are similar to
the AIDE-based engine, so we only show numbers with AIDE.

6.3.2 Performance metrics of the engines with AIDE. Next, we run
the same test on the engines with AIDE. Since AIDE accelerates the
execution of sub-plans acting on update-intensive tables by offload-
ing join operations to storage, we show the query latency for repre-
sentative queries primarily concerned when the dataset has many
data versions in the stock table (i.e., at time 600 sec. As shown in
Figure 8a, queries in G1—Q2, Q5, Q11, and Q21—and queries in G2—
Q7, Q15, and Q16—outperform vanilla PostgreSQL by up to 6.76x
(Q11). Except for Q2 and Q5, AIDE can sustain their processing la-
tency, although we enforce a less effective query plan to PostgreSQL.
Noticeable are their latencies with non-optimal query plans that
we force PostgreSQL to use by joining the stock table first. The
latency tells that the benefit of running a non-optimal query plan to
avoid version searching overhead sometimes outclasses an optimal
plan generated by the standard optimizer, unaware of increased
version search overhead. The results of MyRocks with AIDE are
similar to PostgreSQL. AIDE-enabled MyRocks can sustain query la-
tency better than AIDE-enabled PostgreSQL, regardless of versions
and selectivity. What is interesting to notice from our experiments
is that, unlike PostgreSQL, selectivity substantially affects vanilla
MyRocks due to its inherent internal reformatting overhead.

6.4 In-depth Analysis with Multi-table Joins

6.4.1 Experimental setup. In this section, we perform an in-depth
analysis by running synthetic multi-table join queries with sys-
bench OLTP workloads. We created 12 tables, populated each table

1489

Query latency with AIDE (sec)
726.0 726.0 726.0 726.0 726.0 726.0
446.7 446.7 4429 4429 4429 4429
230.7 230.7 230.7 230.7 227.0 227.0
82.83 79.92 79.92 80.65 79.50 80.36 80.36 86.88 83.96
1224 9.14 1044 987 1047 9.81 10.08 11.60 9.63
13.14 340 352 399 344 335 337 465 3.38
498 148 182 184 180 167 195 213 184

0.9
0.7
0.5
0.3
0.1
0.05
0.01

726.0 726.0
446.7 446.7
228.6 228.6

726.0
4429
227.0

726.0
4429
227.0
82.33
10.61
3.17
1.69

Selectivity

Latency of in—storage query processing (sec)
335 335 335 335 335 335
365 3.65 4.05 4.05 405 4.05
253 253 253 253 233 233
121 293 146 208 208 8.07
170 178 215 137 1.68 3.83
159 174 143 138 136 224
135 140 136 125 153 1.71

2 3 4 5 6 7

3.35
3.65
3.25
3.20
3.19
3.15 1.02
0.01 | 3.12 1.02
Time (min) 0 1

3.35
3.65
3.25
1.21
1.09

3.35
4.05
233
5.69
1.51
1.40
1.38
8

3.35
4.05
2.33
1.86
218
1.34
1.25

Selectivity

o
o
o

(a) Latency of MyRocks with AIDE
useful

w
o

3.37
4.84
7.65
23.39
0.05 | 8.18 30.34

3.37
4.80
7.65
20.99
29.32
12.48
2

3.37
4.80
7.58
22.20
26.00
12.55
3

340 340 340 340 3.40
480 480 488 488 488
769 7.61 777 718 743
20.94 22.33 21.63 18.81 22.65
30.20 33.15 33.00 2219 32.22
12.83 13.37 10.84 10.86 12.90

4 5 6 7 8

3.40
4.88
7.58
20.55
34.33
13.69
9

Selectivity
AIDE utility

4.80 15.87
Time (min) 0 1

unuseful

Latencyyaniiia)
Latencyaipg

Figure 10: Performance of multi-table joins on MyRocks.

(b) Normalized latency of vanilla MyRocks (

with 100k tuples, and set 2 GiB for a database buffer pool with 8
GiB of physical memory restricted by cgroup. We use 48 dedicated
worker threads to update target tables, committing around 200kTps.
For running synthetic OLAP queries, we use 20 OLAP clients, again
half of which run multi-table join queries on randomly selected
four tables within an open transaction to emulate long-running
analytic queries, while the other half run each query within a single
transaction. We adjust a predicate condition imposed on a table to
measure the performance with varying selectivity. The following
is an example of our synthetic multi-table join queries:

SELECT SUM(sbtest1.k + ... + sbtest4.k)

FROM sbtestl, sbtest2, sbtest3, sbtest4

WHERE sbtestl.id = sbtest2.id AND sbtest2.id = sbtest3.id AND
sbtest3.id = sbtest4.id AND sbtest1.k <= 10 /% PostgreSQL x/
sbtestl.k = sbtest2.k AND sbtest2.k = sbtest3.k AND
sbtest3.k = sbtest4.k AND sbtestl.k <= 10 /% MyRocks */

WHERE

We only enable the hash join algorithm to guide the PostgreSQL
optimizer to generate what ISP-enabled AIDE expects. The ex-
periment runs for 10 minutes by running all transactions/queries
altogether. For MyRocks, we use different configurations. MyRocks
supports a block nested loop join algorithm that takes significant
time in reformatting key-value data into MySQL record formats;
in particular, when we perform multi-table joins on non-indexed
columns, the overhead becomes immense. So, we decide to use
non-indexed columns (i.e., k) as join targets. In this case, AIDE can
help substantially reduce the result tuple set digested by MyRocks.

6.4.2 Performance metrics of PostgreSQL with AIDE. As we have
seen in the previous results with TPC-CH+ workloads, AIDE-enabled
in-storage query processing initially has longer latency than the
vanilla engine. This result explains why we could expect little gain
from offloading joins whose input tables are barely different in
size. In this case, the gains will unlikely outweigh the cost we pay,
considering various FPGA kernel overhead (e.g., initialization and

PostgreSQL MyRocks
~ 20 TPS —— | 20 TPS ——
al
X
=10 10
A Tl
[
0 0
® Space Space
cm 8 8
82 4 4
0 200 400 600 O 200 400 600
Time (sec) Time (sec)

Figure 11: Update throughput and space overhead.

communication). However, Figure 9a shows that AIDE-enabled ISP
can sustain the query processing delay, although update transac-
tions produce a large volume of data versions piled up in heap pages;
hence, it isolates multi-table joins from transactions/analytics run-
ning in the host database.

As queries get more data from ISP (i.e., higher selectivity value),
AIDE takes longer to complete the post-processing of result tuples,
but in-storage processing time would stay the same. As versions
pile up, the effect of AIDE’s prescreening proves its worth in elim-
inating redundant, random access to data pages, thus offsetting
the fixed cost for ISP. To verify our claim, we also measure the
latency of in-storage processing and plot results in Figure 9a. The
general tendency is that computational storage sustains the time to
complete offloaded query operations throughout all experiments,
except that we can see a non-trivial increase in latency as time
elapses due perhaps to internal throttling mechanisms (see §6.4.6).

6.4.3 Performance metrics of MyRocks with AIDE. As shown in
Figure 10, the normalized latency shows a steep fall upon selectiv-
ity increase. This behavior is due to the overhead of MyRocks join
processing explained in §6.4.1. Nevertheless, AIDE performs better
in all spectrums of selectivity since AIDE-based ISP reduces the in-
termediate join set size. In-storage processing time shows a similar
tendency as in Figure 9a, although our CSD acts on SSTable files
whose underlying layouts differ from PostgreSQL segment files.
The latency of the vanilla engine is around 23 sec with a selectivity
value of 0.01. However, the latency grows steeply to 103 sec with
selectivity 0.05 and up to 1966 sec with selectivity 0.9. As selectivity
increases, the increased join set size attenuates the reduction effect
of AIDE-enabled ISP. Thus, the query latency of AIDE increases,
and accordingly, the gap between the vanilla and AIDE narrows.

6.4.4 The cost of in-storage processing. As shown in the left side of
Figure 11, OLTP transactions initially sustain a decent update rate
when they start running with analytic queries. As our synthetic
multi-table join queries start, growing version space in heap pages
impacts crucial performance metrics. First, short-running queries
or transactions slow down due to increasing version traversal time
in PostgreSQL; short transactions spend excessive time travers-
ing from the oldest version to the recent tuple. Short queries have
longer latency for the same reason. Second, PostgreSQL suffers
from space overhead due to delayed vacuuming. In all environ-
ments, our synthetic analytic queries have growing latency values
as data versions pile up. Update throughput also degrades since
short transactions spend more time traversing version chains.
The right side of Figure 11 clearly shows the overhead for main-
taining the version index in MyRocks. In MyRocks, copies of a data
version may spread across multiple SSTables due to continuous

1490

Normalized latency of vanilla PostgreSQL with the index scan

0.9 117 124 1.16 1.31 1.89 1.90 | useful
0.8 123 1.1 146 255 247 229 | [|
0.7 125 1.04 121 145 126 199

. 08 130 140 143 1.78 1.68 283 >

£ 05 127 110 125 146 156 257 K

S 04 113 120 142 1.6 1.39 589 5.62 a

g o3 114 1.14 1.36 1.04 137 219 13.61 g
0.2 1.02 1.11 110 1.05 1.12 158 4.06
0.1 111 120 112 1.36 160 667 6.30
0.05 114 122 118 1.04 125 1.95 4.46 | |l
0.01 114 1.16 129 1.28 1.87 570 5.25 | unuseful

Normalized latency of vanilla PostgreSQL with the bitmap heap scan
0.9 108 .17 127 1.25 1.07 104 1.28 168 4.25] useful
0.8 1.09 1.16 1.15 1.06 1.08 123 120 232 | [|5
0.7 180 1.82 1.30

.. 06 1.00 133 9.14 S

g 05 1.03 1.01 167 172 E

3 04 120 3.70 o

3 03 0.65 1.83 1.75 Q
0.2 0.58 0.67 0.63 227 155 <
0.1 0.50 059 053 10047 2.03
0.05 0.47 057 059 1.83 1.49
0.01 0.38 051 0.54 1,05 3.85 | unuseful

Time (sec) 0 6 12 18 24 30 36 42 48 54

Figure 12: The utility of AIDE showing breakeven points.

compaction. Since we must modify the version index on updates,
we must mutate data copies across the RocksDB storage engine to
preserve consistency. This design breaks the invariant that SSTables
are immutable, inducing a concurrency issue between the back-
ground compaction threads and the version index writers. To handle
the issue, we keep track of the compaction outputs and make the
writers wait until their related compaction ends. This forceful wait-
ing causes the sharp fluctuation in Figure 11. This outcome is an
explicit limitation of our approach, and we leave it as future work
as it does not impair vendor neutrality.

6.4.5 AIDE vs. other access methods. We use vanilla PostgreSQL
with the same workload and configuration to quantify the utility of
the AIDE-based ISP framework. For this experiment, we configure
the vanilla engine to use two well-known table access methods—
index scan and bitmap heap scan—if possible. As shown in
Figure 9b, the vanilla engine’s overall query latency behavior wors-
ens as expected; in particular, PostgreSQL with AIDE is better than
the vanilla engine (i.e., normalized latency is greater than 1) after 1
min. To get fine-grained results on a timeline showing breakeven
points before 1 min, we show normalized latency results of vanilla
PostgreSQL with the two access methods in Figure 12. The results
clearly show the pros and cons of the two access methods; the
bitmap heap scan shows strengths with low selectivity values,
whereas the index scan works well with high selectivity values.
Despite their merits, PostgreSQL with AIDE outshines all of them
after breakeven points, where the latency for vanilla PostgreSQL
steeply increases due to the dominant version search cost. The re-
sults imply that query optimizers can hit sweet spots to get the best
of both approaches by dynamically offloading sub-plans to com-
putational storage, provided that crucial information is available.

6.4.6 Where does the time go? We use Xilinx performance profiling
toolkits (i.e., Vitis Analyzer [4]) to peek inside the FPGA to get
more accurate timing information and runtime profile. The best
scenario is that all are busy doing productive activities, but reality
depends on workloads. Figure 13 breaks down ISP when a single
sysbench query has been conducted twice on different datasets of
100k and 1M tuples, respectively. In the first Pre-step stage, AIDE

Pre-Step
Prescreen
Flush Buf.
FPGA /O

FPGA Krn.

Read out

Post-step [t

Time(sec.) 0

30 60 90 120 150 180 210 240 270 300
(a) Multi-table joins on tables with 100k records per table (selectivity: 0.1)

Pre-Step
Prescreen [} i i i
Flush Buf. —} 1 | | 1]
FPGA /O [—HHH- R HEH
FPGA K. (—HHH—HHH—HHA—HHH—HH—HHH—HHH—HHH—HHEH

Readout ——i——&—#—#—&—&—&—H
Post-step PR PPPSTTIOS NP FPPOTTOO0 HOPT IO FOTTIOO I] T
Time(sec.)0 30 60 90 120 150 180 210 240 270 300

(b) Multi-table joins on tables with 1M records per table (selectivity: 0.1)
Figure 13: The breakdown of ISP on PostgreSQL.

loads parameters into FPGA global memory and then feeds kernels
with target data and associative version index file descriptors after
forcing them to storage (Prescreen and Flush Buf.). After reading
each pair of data and version index files from SSDs (FPGA I1/0),
AIDE enqueues kernels, which are executed through a command
queue (FPGA Krn.). When PostgreSQL later starts a sequential
scan on the offloaded join tables, AIDE loads ISP results into host
memory for further processing (Read), and PostgreSQL executes
the remaining steps in the original plan (Post-step).

This experiment is to confirm that the dataset size affects the
performance of ISP proportionally. As we use large datasets, ISP
needs more time for I/O on both host and FPGA sides. Long ex-
ecution times may lead to power competition between SSDs and
FPGA. Our PoC device internally has a power capping mechanism;
thus, both hardware components start decreasing I/O performance
and FPGA frequency to stay within the given threshold. Figure 13a
shows that the time spent on FPGA activities increases as time
elapses (from 1.3 sec to 8 sec), whereas other AIDE activities spend
almost the same time. When we increase the dataset to 1M tuples,
Figure 13b shows that FPGA activities already spend 23 sec when
the query starts, which is twice as much as we expect. The time
duration increases to 34 sec at the end of the experiment. With lim-
ited profile information, we only conjecture that internal throttling
mechanisms restrict FPGA activities unfavorably. Device vendors’
in-depth studies are more than welcome.

6.4.7 AIDE vs. high-end vanilla PostgreSQL. To get more insight
into the value of the AIDE-based ISP framework, we measure the
latency of vanilla PostgreSQL on a high-end server, using 100 GiB
of shared memory without resource restrictions. We also turn on
the parallel join to fully utilize all workers, and there is only one
background long-running analytic query. In this setting, vanilla
PostgreSQL uses 24 parallel workers to run a single join query
with all heap pages in memory. Figure 14 shows that the high-end

—~ 40
8 Sequential Scan
& Index Scan
3 20 AIDE ——
=
2o
©
-0
0 400 800 1200

Time (sec)

Figure 14: AIDE vs. high-end vanilla PostgreSQL.

1491

vanilla with any access method initially crushes its resource-hungry
counterpart (i.e., AIDE). However, the vanilla with the sequential
scan gradually slows down as versions pile up, whereas the vanilla
with the index scan shows a dramatic increase in query latency
due to redundant data access on heap pages. The engine with AIDE
benefits from the prescreening effect, thus surprisingly outpacing
the high-end vanilla with the index scan dragged out by the growing
overhead of version traversal. This result suggests that the vanilla
PostgreSQL optimizer must consider the growing version space
when choosing the access method.

7 DISCUSSION

We draw some lessons demystifying real-life barriers faced to make
good use of intelligent storage for HTAP databases.

Query processing is always resource-hungry. ISP needs a gi-
ant jump in expanding its internal bandwidth and access latency to
compete with evolving database engines highly optimized for utiliz-
ing large storage bandwidth. Contrary to what was expected [15],
the gap between the aggregate internal bandwidth and the band-
width supported by host I/O interfaces is negligible even in the
latest high-end NVMe SSDs. So, we can find the benefits of ISP only
with queries acting on update-intensive tables mainly due to the
inescapable fixed cost of ISP and limited resource capacity.

ISP for HTAP DBMSs costs more than expected. In HTAP,
where datasets keep changing, just offloading computation to stor-
age would not work efficiently. To overcome it, database vendors
must put substantial efforts into modifying host databases to make
recent data and rapid access methods available for storage. In this
context, our work epitomizes how much practical effort database
developers should put into deploying computational storage in
HTAP databases.

8 CONCLUSION

This paper presents AIDE, an intermediate layer aiding MVCC
databases for offloading query plans to computational storage,
which aims to reduce resource contention and accelerate query
operations by eliminating random, redundant data access in stor-
age under massive updates. AIDE transforms all or part of vendor-
specific query plans into vendor-neutral formats with version in-
dexes holding canonical tuple identifiers for all visible data in target
tables. AIDE prescreens version indexes to filter out invisible data
versions, which also precludes version traversal logic from ISP.
Our experiments show that vendor-neutral computation with pre-
screening can make query offloading feasible in both PostgreSQL
and MyRocks and boost query processing significantly under HTAP
workloads. Although our work has room for improvement, we hope
database designers find our approach helpful in deploying compu-
tational storage for HTAP DBMSs.

ACKNOWLEDGMENTS

We thank the reviewers for their thoughtful comments. This work
was supported by the National Research Foundation of Korea grant
funded by the Korean government (MSIT) (No. 2022R1A2C2008427).
This work was also partially supported by the Institute of Informa-
tion Communications Technology Planning & Evaluation (II'TP)
funded by the Korean government (MSIT) (No. 2021-0-00590).

REFERENCES

(2]

[10]

(11

[12]

[13]

=
it

(15

[16]

(18]
[19]

[20]

[21]

[22

2020. sysbench-1.0.20. Available at https://github.com/akopytov/sysbench.
2022. HammerDB Version 4.4. Available at https://github.com/TPC-Council/Ha
mmerDB/releases/tag/v4.4.

2022. NTT OSS Center DBMS Development and Support Team: pg_hint_plan-1.4.
Available at https://github.com/ossc-db/pg_hint_plan.

2022. Vitis Unified Software Platform Documentation: Application Acceleration
Development (UG1393): Vitis Analyzer. Available at https://docs.xilinx.com/r/en-
US/ug1393-vitis-application-acceleration/Using- the- Vitis- Analyzer.

Amazon Web Services, Inc. 2022. What Is AWS Glue? https://docs.aws.amazon.
com/glue/latest/dg/what-is-glue.html.

Oracle Corporation and/or its affiliates. 2022. MySQL 8.0 Reference Manual: 15.3
InnoDB Multi-Versioning. https://dev.mysql.com/doc/refman/8.0/en/innodb-
multi-versioning html

Oracle Corporation and/or its affiliates. 2022. Oracle Database Concept: 9 Data
Concurrency and Consistency. https://docs.oracle.com/en/database/oracle/ora
cle-database/19/cncpt/data- concurrency-and-consistency.html

Philip A. Bernstein and Nathan Goodman. 1982. Concurrency Control Algorithms
for Multiversion Database Systems. In Proceedings of the First ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing (Ottawa, Canada)
(PODC ’82). Association for Computing Machinery, New York, NY, USA, 209-215.
https://doi.org/10.1145/800220.806699

Philip A. Bernstein and Nathan Goodman. 1983. Multiversion Concurrency
Control—Theory and Algorithms. ACM Trans. Database Syst. 8, 4 (Dec. 1983),
465-483. https://doi.org/10.1145/319996.319998

Wei Cao, Yang Liu, Zhushi Cheng, Ning Zheng, Wei Li, Wenjie Wu, Linqiang
Ouyang, Peng Wang, Yijing Wang, Ray Kuan, et al. 2020. POLARDB Meets Com-
putational Storage: Efficiently Support Analytical Workloads in Cloud-Native
Relational Database. In 18th USENIX Conference on File and Storage Technologies
(FAST 20). 29-41.

Citus Data. 2020. Citusdata: Tools for running CH-benCHmark with HammerDB.
https://github.com/citusdata/ch-benchmark.

Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
Kai-Uwe Sattler, Michael Seibold, Eric Simon, and Florian Waas. 2011. The
Mixed Workload CH-BenCHmark. In Proceedings of the Fourth International
Workshop on Testing Database Systems (Athens, Greece) (DBTest '11). Association
for Computing Machinery, New York, NY, USA, Article 8, 6 pages. https:
//doi.org/10.1145/1988842.1988850

Umur Cubukcu, Ozgun Erdogan, Sumedh Pathak, Sudhakar Sannakkayala, and
Marco Slot. 2021. Citus: Distributed PostgreSQL for Data-Intensive Applications.
In Proceedings of the 2021 International Conference on Management of Data (Xi’an,
Shaanxi, China) (SIGMOD °21). Association for Computing Machinery, New York,
NY, USA, 2490-2502. https://doi.org/10.1145/3448016.3457551

Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mit-
tal, Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL
Server’s Memory-Optimized OLTP Engine. In Proceedings of the 2013 ACM SIG-
MOD International Conference on Management of Data (New York, New York,
USA) (SIGMOD ’13). Association for Computing Machinery, New York, NY, USA,
1243-1254. https://doi.org/10.1145/2463676.2463710

Jaeyoung Do, Yang-Suk Kee, Jignesh M Patel, Chanik Park, Kwanghyun Park,
and David J DeWitt. 2013. Query processing on smart ssds: Opportunities and
challenges. In Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data. 1221-1230.

Franz Farber, Sang Kyun Cha, Jiirgen Primsch, Christof Bornhovd, Stefan Sigg,
and Wolfgang Lehner. 2012. SAP HANA Database: Data Management for Modern
Business Applications. SIGMOD Rec. 40, 4 (Jan. 2012), 45-51. https://doi.org/10
.1145/2094114.2094126

Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. 2006. GPUT-
eraSort: high performance graphics co-processor sorting for large database
management. In Proceedings of the 2006 ACM SIGMOD international conference
on Management of data. 325-336.

Carnegie Mellon University Database Group. 2020. Peloton: The Self-driving
Database Management System. https://pelotondb.io/

Carnegie Mellon University Database Group. 2020. Terrier: The Self-driving
Database Management System. https://github.com/cmu-db/terrier

Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo, and
Pedro Sander. 2008. Relational joins on graphics processors. In Proceedings of the
2008 ACM SIGMOD international conference on Management of data. 511-524.
Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu
Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,
Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,
Liquan Pei, and Xin Tang. 2020. TiDB: A Raft-Based HTAP Database. Proc. VLDB
Endow. 13, 12 (aug 2020), 3072-3084. https://doi.org/10.14778/3415478.3415535
Junsu Im, Jinwook Bae, Chanwoo Chung, Arvind Arvind, and Sungjin Lee.
2020. PinK: High-Speed in-Storage Key-Value Store with Bounded Tails. USENIX
Association, USA.

1492

[29

[30

[31

[32

[33

[35

[36]

(37]

[38

(39]

[40

[41

[42

MemSQL Inc. 2022. MemSQL. https://www.memsgl.com/

Insoon Jo, Duck-Ho Bae, Andre S. Yoon, Jeong-Uk Kang, Sangyeun Cho, Daniel
D. G. Lee, and Jaeheon Jeong. 2016. YourSQL: A High-Performance Database
System Leveraging in-Storage Computing. Proc. VLDB Endow. 9, 12 (aug 2016),
924-935. https://doi.org/10.14778/2994509.2994512

Alfons Kemper and Thomas Neumann. 2011. HyPer: A Hybrid OLTP&OLAP
Main Memory Database System Based on Virtual Memory Snapshots. In Proceed-
ings of the 2011 IEEE 27th International Conference on Data Engineering (ICDE
’11). IEEE Computer Society, USA, 195-206. https://doi.org/10.1109/ICDE.2011.
5767867

Jongbin Kim, Kihwang Kim, Hyunsoo Cho, Jaeseon Yu, Sooyong Kang, and
Hyungsoo Jung. 2021. Rethink the Scan in MVCC Databases. In Proceedings of the
2021 International Conference on Management of Data (Virtual Event, China) (SIG-
MOD ’21). Association for Computing Machinery, New York, NY, USA, 938-950.
https://doi.org/10.1145/3448016.3452783

Jongbin Kim, Jaeseon Yu, Jaechan Ahn, Sooyong Kang, and Hyungsoo Jung.
2022. D1va: Making MVCC Systems HTAP-Friendly. In Proceedings of the 2022
International Conference on Management of Data (Philadelphia, PA, USA) (SIG-
MOD °22). Association for Computing Machinery, New York, NY, USA, 49-64.
https://doi.org/10.1145/3514221.3526135

Per-Ake Larson, Adrian Birka, Eric N. Hanson, Weiyun Huang, Michal
Nowakiewicz, and Vassilis Papadimos. 2015. Real-Time Analytical Process-
ing with SQL Server. Proc. VLDB Endow. 8, 12 (aug 2015), 1740-1751. https:
//doi.org/10.14778/2824032.2824071

Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang Xiong, Andrew
Putnam, Enhong Chen, and Lintao Zhang. 2017. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC. In Proceedings of the 26th
Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17). As-
sociation for Computing Machinery, New York, NY, USA, 137-152. https:
//doi.org/10.1145/3132747.3132756

Tianyu Li, Matthew Butrovich, Amadou Ngom, Wan Shen Lim, Wes McKinney,
and Andrew Pavlo. 2020. Mainlining Databases: Supporting Fast Transactional
Workloads on Universal Columnar Data File Formats. Proc. VLDB Endow. 14, 4
(Dec. 2020), 534-546. https://doi.org/10.14778/3436905.3436913

Shengwen Liang, Ying Wang, Cheng Liu, Huawei Li, and Xiaowei Li. 2019. InS-
DLA: An In-SSD Deep Learning Accelerator for Near-Data Processing. In 2019
29th International Conference on Field Programmable Logic and Applications (FPL).
173-179. https://doi.org/10.1109/FPL.2019.00035

Zhenghua Lyu, Huan Hubert Zhang, Gang Xiong, Gang Guo, Haozhou Wang,
Jinbao Chen, Asim Praveen, Yu Yang, Xiaoming Gao, Alexandra Wang, Wen
Lin, Ashwin Agrawal, Junfeng Yang, Hao Wu, Xiaoliang Li, Feng Guo, Jiang Wu,
Jesse Zhang, and Venkatesh Raghavan. 2021. Greenplum: A Hybrid Database for
Transactional and Analytical Workloads. Association for Computing Machinery,
New York, NY, USA, 2530-2542. https://doi.org/10.1145/3448016.3457562
Microsoft. 2022. Microsoft SQL Server. https://www.microsoft.com/en-us/sql-
server/

NuoDB. 2022. NuoDB. https://nuodb.com/

Christos H. Papadimitriou and Paris C. Kanellakis. 1982. On Concurrency Control
by Multiple Versions. In Proceedings of the 1st ACM SIGACT-SIGMOD Sympo-
sium on Principles of Database Systems (Los Angeles, California) (PODS °82).
Association for Computing Machinery, New York, NY, USA, 76-82. https:
//doi.org/10.1145/588111.588125

Boris Pismenny, Liran Liss, Adam Morrison, and Dan Tsafrir. 2022. The Benefits
of General-Purpose on-NIC Memory. Association for Computing Machinery, New
York, NY, USA, 1130-1147. https://doi.org/10.1145/3503222.3507711

D.P.Reed. 1978. Naming and Synchronization in a Decentralized Computer System.
Technical Report. USA.

Erik Riedel, Christos Faloutsos, and David Nagle. 2000. Active disk architecture
for databases. Technical Report. CARNEGIE-MELLON UNIV PITTSBURGH PA
DEPT OF COMPUTER SCIENCE.

Rubao Lee, Minghong Zhou, Chi Li, Shenggang Hu, Jianping Teng, Dongyang
Li, and Xiaodong Zhang. 2021. The Art of Balance: A RateupDB™ Experience of
Building a CPU/GPU Hybrid Database Product. Proc. VLDB Endow. 14, 12 (Aug.
2021), 2999-3013. https://doi.org/10.14778/3476311.3476378

Henry N. Schuh, Weihao Liang, Ming Liu, Jacob Nelson, and Arvind Krish-
namurthy. 2021. Xenic: SmartNIC-Accelerated Distributed Transactions. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles
(Virtual Event, Germany) (SOSP °21). Association for Computing Machinery, New
York, NY, USA, 740-755. https://doi.org/10.1145/3477132.3483555

Vishal Sikka, Franz Féarber, Wolfgang Lehner, Sang Kyun Cha, Thomas Peh,
and Christof Bornhovd. 2012. Efficient Transaction Processing in SAP HANA
Database: The End of a Column Store Myth. In Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data (Scottsdale, Arizona,
USA) (SIGMOD ’12). Association for Computing Machinery, New York, NY, USA,
731-742. https://doi.org/10.1145/2213836.2213946

Malcolm Singh and Ben Leonhardi. 2011. Introduction to the IBM Netezza
warehouse appliance. In Proceedings of the 2011 Conference of the Center for

[43]

[44]

[45]

[47]

(48]

[49]

Advanced Studies on Collaborative Research. 385-386.

The PostgreSQL Global Development Group. 2022. PostgreSQL: Documentation
for PostgreSQL 12: Chapter 15. Parallel Query. https://www.postgresql.org/doc
s/12/parallel-query.html.

The PostgreSQL Global Development Group. 2022. PostgreSQL: Documentation
for PostgreSQL 12: Chapter 29.3. Asynchronous Commit. https://www.postgres
ql.org/docs/12/wal-async-commit.html.

Devesh Tiwari, Simona Boboila, Sudharshan S. Vazhkudai, Youngjae Kim, Xi-
aosong Ma, Peter J. Desnoyers, and Yan Solihin. 2013. Active Flash: Towards
Energy-Efficient, in-Situ Data Analytics on Extreme-Scale Machines. In Proceed-
ings of the 11th USENIX Conference on File and Storage Technologies (San Jose,
CA) (FAST’13). USENIX Association, USA, 119-132.

Tobias Vingon, Arthur Bernhardt, Ilia Petrov, Lukas Weber, and Andreas Koch.
2020. NKV: Near-Data Processing with KV-Stores on Native Computational
Storage. In Proceedings of the 16th International Workshop on Data Management
on New Hardware (Portland, Oregon) (DaMoN °20). Association for Computing
Machinery, New York, NY, USA, Article 10, 11 pages. https://doi.org/10.1145/33
99666.3399934

Tobias Vincon, Christian Knodler, Leonardo Solis-Vasquez, Arthur Bernhardt,
Sajjad Tamimi, Lukas Weber, Florian Stock, Andreas Koch, and Ilia Petrov. 2022.
Near-Data Processing in Database Systems on Native Computational Storage
under HTAP Workloads. Proc. VLDB Endow. 15, 10 (sep 2022), 1991-2004. https:
//doi.org/10.14778/3547305.3547307

Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson.
2021. Evaluating List Intersection on SSDs for Parallel I/O Skipping. In 2021 IEEE
37th International Conference on Data Engineering (ICDE). 1823-1828. https:
//doi.org/10.1109/ICDE51399.2021.00161

Jianguo Wang, Dongchul Park, Yang-Suk Kee, Yannis Papakonstantinou, and
Steven Swanson. 2016. SSD In-Storage Computing for List Intersection. In
Proceedings of the 12th International Workshop on Data Management on New
Hardware (San Francisco, California) (DaMoN ’16). Association for Computing
Machinery, New York, NY, USA, Article 4, 7 pages. https://doi.org/10.1145/2933

1493

[55

[56]

[57

[58

349.2933353

Satoru Watanabe, Kazuhisa Fujimoto, Yuji Saeki, Yoshifumi Fujikawa, and Hiroshi
Yoshino. 2019. Column-oriented database acceleration using FPGAs. In 2019
IEEE 35th International Conference on Data Engineering (ICDE). IEEE, 686-697.
Ronald Weiss. 2012. A technical overview of the oracle exadata database machine
and exadata storage server. Oracle White Paper. Oracle Corporation, Redwood
Shores (2012).

Louis Woods, Zsolt Istvan, and Gustavo Alonso. 2014. Ibex: An intelligent
storage engine with support for advanced sql offloading. Proceedings of the VLDB
Endowment 7, 11 (2014), 963-974.

Xilinx. 2021. SmartSSD Computational Storage Drive. https://www.xilinx.com/a
pplications/data-center/computational-storage/smartssd.html

Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim, Sungjin Lee, and
Arvind Arvind. 2020. AQUOMAN: An Analytic-Query Offloading Machine.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 386-399. https://doi.org/10.1109/MICRO50266.2020.00041

Shuotao Xu, Thomas Bourgeat, Tianhao Huang, Hojun Kim, Sungjin Lee, and
Arvind Arvind. 2020. AQUOMAN: An Analytic-Query Offloading Machine.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). IEEE, 386-399.

Shuotao Xu, Sungjin Lee, Sang Woo Jun, Ming Liu, Jamey Hicks, and Arvind.
2016. BlueCache: A Scalable Distributed Flash-based Key-value Store. Proc. VLDB
Endow. 10 (2016), 301-312.

Haichang Yang, Zhaoshi Li, Jiawei Wang, Shouyi Yin, Shaojun Wei, and Leibo
Liu. 2021. HeteroKV: A Scalable Line-rate Key-Value Store on Heterogeneous
CPU-FPGA Platforms. In 2021 Design, Automation Test in Europe Conference
Exhibition (DATE). 834-837. https://doi.org/10.23919/DATE51398.2021.9474088
Jiacheng Yang, Jan Rae, Jun Xu, Jeff Shute, Zhan Yuan, Kelvin Lau, Qiang Zeng,
Xi Zhao, Jun Ma, Ziyang Chen, Yuan Gao, Qilin Dong, Junxiong Zhou, Jeremy
Wood, Goetz Graefe, Jeff Naughton, and John Cieslewicz. 2020. F1 Lightning:
HTAP as a Service. Proc. VLDB Endow. 13, 12 (aug 2020), 3313-3325. https:
//doi.org/10.14778/3415478.3415553

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Overview of Databases with AIDE
	4 Analytic Offload Engine
	4.1 Vendor-neutral Computation
	4.2 Prescreening Version Indexes
	4.3 Canonical Interface for Query Offloading

	5 In-Storage Query Processing
	5.1 Hardware Accelerator Logic
	5.2 Pipelined Query Processing in FPGA

	6 Experimental Evaluation
	6.1 Evaluation Setup
	6.2 Workload Characterization
	6.3 TPC-CH+ Workloads
	6.4 In-depth Analysis with Multi-table Joins

	7 Discussion
	8 Conclusion
	Acknowledgments
	References

