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ABSTRACT

As big data processing in the cloud becomes prevalent today, data
privacy on such public platforms raises critical concerns. Hardware-
based trusted execution environments (TEEs) provide promising
and practical platforms for low-cost privacy-preserving data pro-
cessing. However, using TEEs to enhance the security of data ana-
lytics frameworks like Apache Spark involves challenging issues
when separating various framework components into trusted and
untrusted domains, demanding meticulous considerations for pro-
grammability, performance, and security.

Based on Intel SGX, we build Flare, a fast, secure, and memory-
efficient data analytics framework with a familiar user program-
ming interface and useful functionalities similar to Apache Spark.
Flare ensures confidentiality and integrity by keeping sensitive
data and computations encrypted and authenticated. It also sup-
ports oblivious processing to protect against access pattern side
channels. The main innovations of Flare include a novel abstrac-
tion paradigm of shadow operators and shadow tasks to minimize
trusted components and reduce domain switch overheads, memory-
efficient data processing with proper granularities for different
operators, and adaptive parallelization based on memory allocation
intensity for better scalability. Flare outperforms the state-of-the-
art secure framework by 3.0× to 176.1×, and is also 2.8× to 28.3×
faster than a monolithic libOS-based integration approach.
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1 INTRODUCTION

The prominent paradigm of cloud computing allows cost-efficient
and convenient computational outsourcing to much more power-
ful remote servers. However, sending computations to the cloud
inevitably exposes user data to the public, raising severe security
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concerns especially with security-sensitive applications that pro-
cess private data [14]. Widely used data analytics frameworks, e.g.,
Apache Spark [84], enable high-performance distributed processing,
but do not provide native data privacy protection. Modern cryp-
tographic algorithms, such as homomorphic encryption [20] and
secure multi-party computation [24, 83], could be applied on top of
these frameworks, but would incur unacceptably huge overheads
with over 1000× slowdown [15, 46, 54]. Alternatively, commer-
cially available hardware-based trusted execution environments
(TEEs), such as Intel SGX [32] and ARM TrustZone [1], provide
us a more practical solution. They rely on hardware enclaves with
attestation and isolation, resulting in much smaller overheads than
cryptography-based approaches.

However, building a fast and secure data analytics framework
with Intel SGX is not trivial. A monolithic method to directly in-
tegrate Spark into enclaves [3, 6, 75] is undesired. The substan-
tially enlarged trusted computing base (TCB) would include libOS
and JVM, and expose many vulnerabilities [35, 74]. Some essential
features of the distributed framework would be discarded due to
limited support [70, 75] and/or high performance overheads. We
therefore follow a minimalist philosophy which carefully separates
and coordinates the framework components across the trusted and
untrusted domains. Doing so requires us to rethink the framework
design paradigm and come up with new optimizations, in order to
keep similar programmability and functionalities, alleviate various
performance overheads, and ensure strong security guarantees.

We propose a fast, secure, and memory-efficient distributed data
analytics framework, Flare, which leverages Intel SGX to offer con-
fidential and verifiable outsourcing computations against malicious
adversaries. Flare offers a familiar user programming interface
similar to Apache Spark. With the key principle of trusted/untrusted
domain separation, Flare keeps the Spark RDD abstraction as well
as various complicated management and scheduling modules in the
untrusted domain. This minimizes the TCB, and also retains most
desired functionalities such as distributed scheduling, fault tolerance,
and data persistence/caching. In the trusted domain, Flare uses a
novel abstraction paradigm of shadow operators to process data
inside enclaves. A shadow operator can be efficiently associated to
and shared by different RDDs of the same type outside enclaves.

Flare incorporates novel performance optimizations to alleviate
various SGX overheads, such as cross-domain context switches,
data footprints exceeding trusted cache/memory regions, and con-
tention incurred by intensive memory allocation. Shadow operators
support serialization-free data transfers across domains by maintain-
ing consistent memory layouts and known data types. They could
also be fused into shadow tasks to further reduce the overheads of
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domain switches and data transfers. Flare transparently manages
data processing in a memory-efficient manner. It applies different
data processing granularities for different execution phases, such as
block-level streaming for local computation and sub-partitioning for
global shuffling. Flare also adaptively adjusts its degrees of multi-
thread parallelization based on the intensity of memory allocation,
to avoid contention and improve scalability.

For security, Flare supports both an encryption mode for data
content protection, and a stronger oblivious mode to further address
the access-pattern-related side-channel vulnerabilities in SGX at
the cost of higher performance overheads. Specifically, while the
aforementioned performance optimizations are all applicable to
the encryption mode, the oblivious mode cannot use the optimized
sub-partitioning shuffling and must fall back to the more expensive
oblivious sort primitive. In addition, to ensure dynamic execution
integrity even in the presence of an untrusted task scheduler, Flare
uses novel cooperative integrity guards across the distributed en-
claves, logging and verifying their runtime traces.

Flare is implemented in Rust, a high-performance and memory-
safe language, widely recommended for secure systems. We eval-
uate Flare on both the newest and the old SGX processors with
different trusted memory capacities, across a wide range of data
analytics, graph processing, and machine learning benchmarks.
Compared with two state-of-the-art secure data analytics frame-
works, Opaque [88] and SGX-PySpark [40], Flare achieves 3.0× to
176.1×, and 13.4× to 469.4× speedups, respectively. The security
overhead, e.g., slowdown over the corresponding insecure counter-
part, is reduced by 5.4× in Flare over Opaque. Flare is also 2.8×
to 28.3× faster than a monolithic design that directly uses libOS
porting [69]. Even when compared to several optimized insecure
baselines, Flare only incurs up to 8.8× slowdown, and sometimes
even outperforms Apache Spark due to language advantages. We
also evaluate and analyze Flare scalability under both multi-core
and multi-node settings.

2 BACKGROUND AND MOTIVATIONS

Flare is a fast and secure data analytics framework that relies on
hardware-based trusted execution environments (TEEs). We first
introduce the background on distributed analytics frameworks and
TEEs. Then we highlight the challenges of combining the two into
an efficient design, under the threat model assumed in this work.

2.1 Distributed Analytics Framework: Spark

Spark is a widely used distributed data analytics framework [84]. It
supports various interfaces built on top of Spark Core, including
Spark SQL, Spark Streaming, MLlib (for machine learning), and
GraphX (for graph processing), making it convenient to write par-
allel programs on multi-core machines and multi-node clusters.
Spark leverages in-memory computation, thus exhibiting superior
performance compared to traditional MapReduce engines [10].

The fundamental data abstraction in Spark is resilient distributed
datasets (RDDs), which can be transparently partitioned across mul-
tiple compute nodes. RDDs are immutable. When programming, the
user creates a series of RDDs, each representing a parallel operation
such as map, groupBy, or reduceByKey. Some of them may embed
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Figure 1: Narrow and shuffle dependencies in Spark.

function literals (closures). For example, map(_.split(" ")) trans-
forms an RDD to a new one by splitting each string by spaces. Such
a series of RDD transformations form a lineage that reflects the
dependencies among them.

There are two types of dependencies capturing the relationship
of partitions in adjacent RDDs, as shown in Figure 1. The narrow
dependency indicates that at most one partition in a child RDD is
derived from each parent RDD partition, so that the partitions can
be processed independently, such as in parallel or by streaming.
The shuffle (a.k.a., wide) dependency is more complex, where more
than one child RDD partitions depend on a parent RDD partition.
Therefore the processing of shuffle dependency is typically divided
into two steps, shuffle write and shuffle read. During shuffle write, a
partitioner acts on each parent RDD partition to generate multiple
buckets. The number of buckets and their data distribution are
determined by the child RDD partitions. For example, in Figure 1,
the child RDD3 has two partitions, so the partitioner generates two
buckets 𝐵0 and 𝐵1 per each partition of RDD1 and RDD2 by hashing
their keys. Then, in shuffle read, the child RDD fetches from these
buckets to compose its partitions, e.g., the 𝑅3𝑝0 partition fetches
from all the 𝐵0 buckets.

Spark applies lazy evaluation, i.e., RDDs are not computed and
materialized until an action is invoked to produce some externally
visible results (e.g., count the number of elements or save to the
disk). The leader node in the cluster constructs a job, described
by a directed acyclic graph (DAG) of relevant RDD lineage. The
job DAG is further divided at shuffle dependencies into stages. At
the beginning of each stage, the leader determines the number of
partitions, and then spawns and dispatches one task per partition
to the compute nodes, as shown in Figure 1.

Spark supports persistence by storing RDDs either to external
disks or in memory (i.e., caching). Persisting/caching an RDD can
exclude the previous transformations from the task, avoiding re-
peated computation and materialization. Spark also provides fault
tolerance. If a partition is lost, it can be recovered from a persisted
copy (checkpoint) if one exists, or is simply recomputed according
to the lineage information.

2.2 Trusted Execution Environment: SGX

Intel Software Guard eXtension (SGX) is an instruction set archi-
tecture (ISA) extension to support hardware-based TEEs [2, 29, 50].
SGX provides a set of instructions on a trusted processor to securely
create, manage, and destroy a trusted enclave within an untrusted
computing platform. An enclave is created by loading the authentic
user program and verifying its content through attestation. After-
wards, even privileged software, including the operating system
(OS) and the virtual machine manager, can never steal/distort the
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Table 1: Normalized performance overheads of sequential

and random data accesses in the trusted and untrusted do-

mains, respectively. Measured on Scalable SGX.

Domain Untrusted Trusted
Access Pattern Sequential Random Sequential Random

Perf. Penalty 1× up to 10× ≈ 1× up to 15×

sensitive data or tamper with the code. The user then supplies en-
crypted data to the program through an ECALL, which enters the
enclave and invokes the trusted code, decrypting and processing the
data. An OCALL can be performed within the ECALL to temporarily
leave the enclave and use system services (e.g., system calls) from
the untrusted OS. These context switches across domains (a.k.a.,
domain switches) incur large performance overheads (Section 2.3).

At runtime, whenever enclave data need to leave the processor
package, e.g., evicted from on-chip caches to off-chip memory, SGX
hardware transparently performs data encryption and authentica-
tion [28, 31, 34], increasing the memory access latency [3]. Legacy
versions of SGX used costly Merkle tree structures to protect off-
chip memory content freshness. The newest SGX on recent Scalable
Intel processors (called “Scalable SGX” in our paper) has eliminated
this overhead, but still exhibits up to 15× performance penalty for
cache misses from the trusted domain, significantly higher than that
of the untrusted accesses, as shown in Table 1. In addition, SGX uses
a processor-reserved trusted memory region called enclave page
cache (EPC) to store enclave code and data. Scalable SGX supports
a large EPC size such as 1 TB [34], but the legacy SGX only allows a
small EPC space, e.g., 128MB [33], which causes huge secure paging
overheads if the application memory footprint exceeds the EPC
limit [3, 79]. Unfortunately, many practically deployed systems still
support only the legacy SGX.

Dynamic memory allocation is now supported by SGX [49]. The
current SGX SDK only ports Doug Lea’s dlmalloc and Google’s
tcmalloc into enclaves [32]. Compared to the untrusted world, de-
signing an efficient memory allocator for enclaves is non-trivial and
needs additional optimizations due to various requirements. For
security, SGX does not allow multiple enclaves to share memory
space, so mmap support must be restricted [68]. Synchronization
and other security bugs must be avoided in the allocator implemen-
tation [80]. For performance, more expensive cache/EPC misses
make cache locality optimizations more critical [27], and OCALL
invocations in the allocator incur extra domain switch cost [79].

Despite the theoretically secure specifications, existing hardware
implementations of SGX still suffer from various side-channel vul-
nerabilities, including access-pattern-based attacks [26, 41, 64, 77,
82] and power/electromagnetic signal analysis [19, 47, 87]. There-
fore, additional programming efforts and/or software-level protec-
tions must be incorporated [12, 71, 88]. Cryptographic primitives to
hide access patterns, such as oblivious RAM (ORAM) [23, 25, 58, 73],
can be integrated into TEEs [9, 45, 62], but would incur unaccept-
able performance overheads up to several orders of magnitude.
Some enclave architectures provide hardware oblivious memory
(OM) [18, 71], where the access patterns to data within the OM can-
not be observed externally. OM typically makes use of the on-chip
cache space, with extra locking and cleansing to ensure clean states

before use and remain non-interference until released. OM allows
for more efficient oblivious execution than generic ORAM [9, 45].
But different from ORAM which can protect the whole memory
space, the OM size is typically limited, e.g., only a few MBs.

2.3 Motivations and Challenges

It is possible to use existing approaches like libOS to directly inte-
grate Spark into SGX with minor modification [3, 6, 69, 75]. How-
ever, such a solution is actually neither secure nor efficient. Spark
has a large code base with various complex components including
the heavy Java virtual machine (JVM) runtime. Naively porting
everything into enclaves would substantially enlarge the trusted
computing base (TCB) with higher vulnerability [35, 74]. It also
stresses the limited trusted memory space (cache, OM, EPC, etc.)
with large memory footprints, causing significant performance
degradation. Note that instruction cache misses are typically worse
than data cache misses, because processor front-end stalls are much
more difficult to hide with microarchitectural optimizations than
back-end stalls. Furthermore, ensuring obliviousness for both code
and data accesses also becomes more difficult using the limited
hardware OM, and may inevitably require the even more expensive
ORAM primitive.

We therefore adopt the minimalist philosophy, i.e., place the
minimally necessary components into the enclave, and coordinate
the framework components across the trusted and untrusted domains.
While promising, such a design needs careful considerations for
programmability, performance, and security.

Theprogrammability and functionalities of the secure frame-
work should ideally be similar to the original insecure Spark for ease
of use. Users would like to write similar high-level (e.g., functional)
programs as before. The interaction between trusted and untrusted
components should be handled automatically and efficiently by the
framework. The framework should also support various features
such as distributed execution, fault tolerance, and data persistence
and caching, which are essential for practical large-scale data an-
alytics. Integrating them with SGX is non-trivial as the data and
their processing are now spread across multiple distributed nodes
each containing both trusted and untrusted domains.

SGX incurs several major performance overheads that must be
alleviated in the framework design. First, the separation of frame-
work components would lead to frequent interaction between the
trusted and untrusted domains, with expensive domain switches [13,
79, 86]. The accompanying data transfers, including necessary en-
cryption/decryption and potentially also (de)serialization, further
exacerbate the latency. Second, data analytics applications typi-
cally process large datasets of GBs to TBs. The legacy SGX with a
limited EPC size would suffer from excessive secure paging [3, 79].
Although Scalable SGX [34] with a large EPC is free from secure
paging, it still exhibits large overheads from processor cache misses
that introduce extra encryption/authentication.

Third, in this work we also observe a specific performance bot-
tleneck of memory allocation when porting Spark-like computation
into SGX. Our target framework is allocation-intensive. The im-
mutability of RDDs implies that new output objects must be created
for each RDD transformation, which could involve heavy mem-
ory allocation. However, current allocator implementations in SGX
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Table 2: Multi-thread scalability of SGX on two micro-

benchmarks with different amounts of memory allocation.

The input is a vector of a billion 32-bit integers.

map(|x|vec![x]) map(|x|x+1)

1 thread 8 threads 1 thread 8 threads

31.8 s 688.8 s 0.61 s 0.09 s

Table 3: Correlation between allocation intensity and

speedup of 8 threads over 1 thread, when using SGX to ex-

ecute representative tasks in our benchmarks.

Alloc. Intensity 0.004 0.01 0.02 1.1 2.4 3.2

Speedup 8 4.6 1.9 0.19 0.11 0.087

severely limit the multi-thread scalability. Table 2 shows the ex-
ecution time of two micro-benchmarks running on our servers
that support Scalable SGX; map(|x|vec![x]) (Rust syntax) needs
to allocate a vector for every data item, while map(|x|x+1) only
allocates once for the entire array. It is clear that excessive memory
allocation would destroy multi-thread scalability due to the heavy
contention on the shared user-space heap and the allocator internal
states [32, 86], even resulting in over 20× slowdown at 8 threads. We
further run a diverse set of tasks from our benchmarks (Section 7.2).
We correlate the speedup of 8 vs. 1 thread with the allocation inten-
sity, defined as the memory allocation count per input data item.
The results in Table 3 show higher allocation intensity leads to
lower speedup and even serious slowdown.

Finally, the security of the full system needs to be carefully
enforced. By moving some complex but critical framework com-
ponents, e.g., the task scheduler, out of the trusted domain, it is
possible that the execution integrity could be compromised if the
generated job DAG has been tampered with. It is insufficient to
simply rely on the confidentiality and integrity protection of each
individual enclave in the distributed system; tasks with wrong con-
trol flow and/or wrong input data could be dispatched from the
malicious scheduler. In addition, due to the significance of side-
channel vulnerabilities, oblivious processing becomes a common
requirement for SGX development [16, 52, 62, 88]. It is desired that
our framework could also support such a higher level of security.

2.4 Threat Model and Security Guarantees

The user locally owns a trusted client machine. At the server side
which consists of a distributed cluster with multiple compute nodes,
only the SGX-capable hardware processors on these nodes are
trusted. We assume a powerful malicious attacker, who is able to
control all privileged software on each server including the OS and
the virtual machine manager, and wants to steal sensitive informa-
tion or mislead the client through incorrect or stale results. The
attacker can arbitrarily observe and tamper with the code and data
in the untrusted devices, including memories, disks, and network-
ing. However, any curious or malicious adversarial behaviors to
the trusted enclaves will fail because of the guarantees of SGX.

We consider two modes with different security levels.
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Figure 2: System overview of Flare.

The encryptionmode protects computation confidentiality and
integrity. It ensures that the privacy of user data values is never
compromised, and the result received by the client must either
be correct or explicitly indicate the execution has been attacked.
Although the encryption mode does not consider side-channel
issues, it is still a practical and commonly applicable scenario, since
it offers a reasonable balance between performance and security.

The obliviousmode additionally considers access-pattern-based
side channels on top of the encryption mode, where the attacker
has the ability to infer sensitive information from the access traces,
including memory and disk access addresses on each single ma-
chine, and network traffic among distributed nodes. This mode
guarantees that these access traces are irrelevant to the sensitive
data content. More formally, let 𝐼 be the input data (of size 𝑆𝐼 and
with element type 𝑇𝐼 ), 𝑃 be the program (e.g., a physical plan in
SQL), 𝑂 be the output result (of size 𝑆𝑂 and type 𝑇𝑂 ). The public
parameters are params = (𝑆𝐼 , 𝑆𝑂 ,𝑇𝐼 ,𝑇𝑂 , 𝑃) which are irrelevant to
the sensitive data values. The access traces on the specific input
data 𝐼 are defined as Trace(params, 𝐼 ). The oblivious mode ensures
that, for all 𝐼 ,𝑂 , and 𝑃 , there exists a polynomial-time simulator Sim
such that Sim(params) ≃ Trace(params, 𝐼 ), i.e., a computationally
indistinguishable trace can be simulated without knowing the data
content. Supporting for obliviousness enables stronger security, but
usually at the cost of significant performance overheads.

Other timing-based attacks [7, 30] (e.g., externally observable
execution time), as well as denial-of-service (e.g., powering off the
server cluster), are considered as out of scope.

3 DESIGN OVERVIEW

We build a fast, secure, and memory-efficient data analytics frame-
work, Flare, to address the challenges in Section 2.3. Figure 2
illustrates the system overview and the overall workflow of the
Flare framework. Flare is written in Rust, and users still use
Spark-like APIs such as map and groupBy to write programs. Flare
supports both the encryption mode and the oblivious mode defined
in Section 2.4, with different performance vs. security tradeoffs.
More specifically, the encryption mode in Flare uses a number of
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performance optimizations to address the inefficiencies of domain
switches, data transfers, and memory allocation, while only a subset
of these techniques are safely applicable to the oblivious mode. We
will clearly specify the conditions as we introduce each technique.

Following the minimalist philosophy, Flare leaves most frame-
work logic in the untrusted domain, including the complicated task
scheduler and the immutable RDD abstraction; it only ports the
functions that directly process sensitive data into enclaves. Note
that the separation is not about data. All data in Flare are treated
as sensitive and must be processed in the enclaves unless other-
wise specified. All sensitive data, when kept by RDDs outside the
enclaves, are encrypted and authenticated.

Such a framework separation has several benefits. First, it allows
Flare to maximally preserve the desired rich functionalities in the
original framework. With the same RDD abstraction and execution
flow in the untrusted domain, distributed execution, fault tolerance,
and data persistence/caching can be easily supported without in-
tertwining with the SGX mechanisms. Second, the TCB of Flare
is also reduced. The scheduling and management code is typically
complicated and vulnerability-prone [8, 36, 61], so excluding them
from the trusted domain could greatly improve security, as well as
performance (reducing instruction cache miss cost in the trusted
domain, Section 2.2). The trusted binary, including the framework
code, has a small size around 4MB, well within the cache/OM limit,
benefiting performance and simplifying oblivious execution.

Flare leverages a novel paradigm called shadow operators to effi-
ciently process plaintext data inside the trusted domain (Section 4).
Conceptually, they are a bunch of atomic operators initialized inside
the enclave and invoked dynamically by the corresponding RDDs
from outside the enclave at runtime. Shadow operators effectively
reduce SGX domain switch overheads, by enabling serialization-free
cross-domain data transfers and by being fused into shadow tasks.

Flare also supports memory-efficient data processing (Section 5).
For various execution phases such as narrow computations and
shuffle operations, Flare uses different data granularities to ensure
the currently processing data are within the cache/OM limit. Flare
also adjusts the degrees of parallelization, i.e., the number of threads
used on each node, to avoid contention in memory allocation.

Flare carefully ensures security (Section 6). It uses cooperative
integrity guards across enclaves to prevent the untrusted frame-
work scheduler from compromising execution integrity. Its oblivi-
ous mode avoids access pattern leakage, and also alleviates specific
control-flow side channels [60, 81].

We next summarize the common workflow of initialization and
execution for both encryption and oblivious modes in Flare.

Initialization. As shown in Figure 2a, the user first prepares
the program by compiling her code with the Flare framework
at the local trusted client machine, which produces trusted and
untrusted code to run inside and outside enclaves, respectively.
This process uses standard compiler tools plus a simple, custom
source-to-source translation script in Flare (Section 4.1). Then she
submits the compiled binaries to the server cluster. All compute
nodes correctly load the trusted part into their enclaves, ensured
by remote attestation [2, 4, 63].

In the untrusted domain, the leader and the workers initialize
a set of basic structures similar to those in Spark, e.g., runtime
contexts, a scheduler, and a cache tracker. In the trusted enclaves,

the workers construct the shadow operators in correspondence to
the RDDs outside, as well as the local integrity guards. The leader
additionally creates a global integrity guard in its enclave. These
components will be used in the ways described below.

Execution. As in Figure 2b, the execution flow in the untrusted
domain stays almost the same as Spark (Section 2.1). RDDs are lazily
evaluated. An action triggers the leader to build a job DAG of several
stages. At each stage, the scheduler generates and distributes tasks
to the workers. Upon receiving a task, the worker executes it using
the shadow operators in its enclave. It copies the encrypted RDD
data into the enclaves, decrypts them, executes a shadow task on
the data, encrypts the results, and transfers them out to materialize
the RDDs in the untrusted domain. At the same time, the local
guards inside the enclave record the task execution metadata. The
detailed flow is elaborated in Section 4. Once the worker completes
all dispatched tasks, it holds the results, waiting for the next stage
to fetch from it, or sends back to the leader if it is the final stage in
the job. Moreover, it securely sends the task execution metadata to
the global guard in the leader enclave. The global guard checks the
information against the desired execution flow it holds.

4 SHADOW OPERATORS & SHADOW TASKS

Prior secure computing systems (e.g., Opaque [88]) have also adopted
the philosophy of trusted and untrusted domain separation. A
straightforward way is to prepare a set of generic, abstract op-
erators (e.g., map) inside the enclave, and individually invoke them
when their corresponding RDD transformations are applied on
the sensitive data [88]. This approach has several inefficiencies.
First, it incurs frequent domain switches and data transfers when
invoking the abstract operator for every RDD. Second, abstract
operators cannot perceive the concrete data types and function
closures. For example, both map(_.split(" ")) and map(i=>i+1)
in user programs invoke the same in-enclave operator map, despite
the different data types and closures. Therefore, abstract operators
require interpreted execution and data serialization, i.e., taking a
sequence of bytes as input, deserializing the data, and interpreting
the closure to execute, which would incur large overheads. Third,
although abstract operators may allow for more generic program-
ming of the user enclave code, it still requires the user to specify
and interpret any user-defined functions (UDFs) [39].

In Flare, we propose a novel abstraction called shadow operators
for the trusted domain to resolve the above inefficiencies. The
key idea is to generate customized in-enclave operators that embed
the concrete information such as data types and function closures,
rather than using generic and abstract operators, thus supporting
serialization-free cross-domain data transfers and interpretation-
free execution (Section 4.1). Instead of individually executing each
shadow operator, we can dynamically fuse shadow operators into
shadow tasks according to the tasks assigned from the scheduler,
thus eliminating excessive data copy and encryption/decryption
across the enclave boundary (Section 4.2). The techniques in this
section apply to both the encryption and oblivious modes.

4.1 Shadow Operators

Formally, shadow operators are mutable function templates in the
trusted domain, and are the counterpart to the immutable RDDs
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5. while(res0 > res1) {

6. let rdd2 = rdd1.map(…);
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11. res1 = rdd1.reduce(…);

12.}

RDD Shadow Operator Shadow Task

Figure 3: Flare code execution example. RDDs are mapped

to shadow operators, which are then fused to shadow tasks.

in the untrusted domain. Each shadow operator is denoted by
(𝐼𝐷,𝑇in,𝑇out,𝑂𝑝, 𝐹, 𝜎), where𝑇in and𝑇out are the input/output data
types, 𝑂𝑝 and 𝐹 stand for the abstract operator (e.g., map) and the
closures (i.e., UDF, if any). 𝜎 denotes a set of parameters that are the
only mutable part in the template. It includes the dependencies, the
number of partitions of its corresponding RDD, and any variables
captured by the closures. While RDDs are dynamically created at
runtime, shadow operators are built statically and deterministically
at initialization. For example, rdd2 in Figure 3 may not be created
if the while loop never executes, but shadow operator 2 is always
constructed inside the enclaves. As a result, certain parameters in
the shadow operator need to be mutable (see below).

To construct shadow operators, Flare provides a simple source-
to-source script to process the user program (e.g., remove all control
flow statements like while and if and keep all basic blocks). There-
fore all shadow operators could be built in all worker enclaves at the
beginning. The processed program is compiled together with the
Flare framework to generate the trusted code running in enclaves
(Figure 2a). Other than the script, the rest of the compilation uses
standard compilers (e.g., rustc) without extra modification. The
original user program, in particular its control flow, is still used to
create RDDs in the untrusted domain.

Such a static build flow of shadow operators in Flare greatly
simplifies the execution management. If shadow operators were
built on demand during execution, extra synchronization and book-
keeping would be necessary to track which operators have been
prepared in each worker. Ensuring execution integrity would be-
come difficult in such a dynamic setting.

Statically building shadow operators also implies that a shadow
operator could be shared by multiple RDDs of the same type. Fig-
ure 3 shows an example of the mapping from RDDs to shadow
operators. In the untrusted context, separate RDDs are created
for multiple iterations of the same loop at runtime. In contrast,
inside the trusted enclaves, only five shadow operators are stati-
cally constructed, each of which is shared by the RDDs at the same
code location but created in different loop iterations. Furthermore,
shadow operator sharing also saves enclave space.

Sharing requires shadow operators to be mutable, while RDDs in
Flare are still immutable for fault tolerance reasons. When invoked,
a shadow operator is associated with a specific RDD outside. The
output data, after encrypted, are sent out to materialize this RDD.

Again, 𝐼𝐷 , 𝑇in,𝑇out,𝑂𝑝, 𝐹 are fixed after compilation, while others
(e.g., dependencies) could change according to the associated RDD.
For example, shadow operator 2 may depend on RDD 1 or 6 (both
referring to the variable rdd1 in the code) in Figure 3.

Finally, owing to the embedded information, shadow operators
enable serialization-free data transfers across the two domains and
interpretation-free execution in the enclave. In previous designs such
asOpaque [88], data (de)serialization is necessarywhen transferring
data across the enclave boundary. This is because the data types
cannot be known beforehand and the two domainsmay use different
memory layouts. For example, in Opaque, the untrusted part is
written in Scala, while the trusted part is in C++, and they use
flatbuffer to encode data type information. In contrast, Flare
keeps the information about data types and closures in the shadow
operators, and the code components in both domains are written
in Rust so they use the same memory layout.

4.2 Fusing into Shadow Tasks

To avoid separately invoking individual shadow operators from the
untrusted domain with excessive domain switches, Flare fuses the
shadow operators that execute together into a shadow task within
one ECALL. Data could thus be directly passed from one shadow
operator to the next one inside the enclave in plaintext, without
repetitive cross-domain transfers and encryption/decryption.

Though fusion is a standard optimization, previous frameworks
(e.g., Opaque [88]) cannot do it efficiently because type systems can-
not be shared across isolated domains, resulting in interpretation
and serialization. To support fusion, Flare combines static compi-
lation and dynamic invocation. At compilation, shadow operators
are specially constructed to embed types and closures (Section 4.1).
The actual fusion happens dynamically at execution time. When
a worker receives a task dispatched from the scheduler, it passes
the sequence of the involved shadow operator IDs to the enclave
through a single ECALL. Each shadow operator in the shadow task
does not immediately materialize its output; instead, it lazily hands
over the iterator to the next, in order to improve data locality (Sec-
tion 5.1). More specifically, the enclave code starts from the shadow
operator indexed by the last ID. When the last shadow operator
needs its input from the previous one, the previous shadow opera-
tor is invoked, and in turn asks for its previous one. The shadow
operator indexed by the first ID is finally encountered, and it creates
an iterator on the input data. Then the direction turns backward.
The intermediate shadow operators transform the iterator, and the
final one would consume the iterator and generate the output.

In Spark, users may specify a cache point to any intermediate
RDD. Flare supports this by materializing the data in the middle
of the shadow task and storing to the (encrypted) RDD in the
untrusted domain, so other workers could fetch it through network.
The enclave code fully consumes the iterator when encountering
a cache point, and creates a new iterator on the materialized data
for further transformations.

Flare automatically performs rule-based fusion. First, fusion
does not cross task boundaries, since the shuffle between two tasks
involves interaction among multiple enclaves. As in the example of
Figure 3, shadow operator 2 could only be fused with 1 (and 0, if 1
is not cached), due to the shuffle before 3 (reduceByKey). Second,
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if adjacent operators process data with different granularities (Sec-
tion 5), they are also not fused. Some operators like mapPartitions
need to process the whole partition for correct functionalities, while
other operators in the same task can do element-wise execution.

5 MEMORY-EFFICIENT DATA PROCESSING

As discussed in Section 2.3, even with the new Scalable SGX, proces-
sor cache misses (and EPC paging in the legacy SGX) cause severe
performance degradation, which advocates in-cache computation.
The oblivious mode also requires data to fit in the limited hardware
OM. Moreover, memory allocation greatly impacts the scalability
of in-enclave threads.

To solve the above issues, Flare achieves memory-efficient data
processing by carefully adjusting data granularities and paralleliza-
tion degrees when executing different phases. Currently, in Spark
and Flare, the job DAG is divided into stages at the points of
shuffle dependencies, and each stage contains multiple tasks, one
per data partition (Section 2.1). As a result, most tasks in Flare
consist of three phases, shuffle read (if any), narrow computation,
and shuffle write (if any), as shown in Figure 1. When tasks are
executed in enclaves, there are extra decryption and encryption
phases. All these phases exhibit different memory access and al-
location characteristics, where Flare handles them using specific
techniques. Specifically, to restrict memory footprints within the
caches/OM, we apply two data granularities, block-level streaming
and sub-partitioning, to narrow and shuffle operations, respectively
(Sections 5.1 and 5.2). To alleviate the memory allocation scalabil-
ity issue, we propose allocation-adaptive parallelization, by only
selectively enabling multi-thread processing for beneficial phases
(Section 5.3), without designing a new memory allocator. All these
managements in Flare are transparent to user programs.

This section first discusses all the optimizations applicable to the
encryption mode. For the oblivious mode, some techniques need to
be adjusted, specifically the shuffle operation in Section 5.2, which
will be discussed in details in Section 6.2.

5.1 Block-Level Streaming for Narrow Ops

Data in Flare are encrypted and authenticated in the unit of blocks,
whose size balances between encryption/authentication overheads
(preferring larger block sizes) and fine-grained control capabilities
(preferring smaller block sizes). The latter is desired because shuffle
operations need to extract individual data items (Section 5.2). We
allow user programs to configure the block size, and also empirically
find a default 64 kB (typically thousands of items) works well in
most cases. Each data partition in Flare contains many such blocks.

For the narrow computation phase of a task, the computations
on different data items are highly independent. This is the nature
of narrow dependencies, i.e., each output partition only depends on
one input partition. Therefore, we can simply process each block in a
streaming manner, minimizing the memory footprint in the enclave.
All blocks are handled in one ECALL with fused shadow operators,
sequentially pulling each block into the enclave for processing.

5.2 Sub-Partitioning for Shuffle Ops

Unfortunately, streaming is not suitable for shuffle operations due to
the all-to-all data dependencies. When the partition size exceeds the
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cache/OM capacity limit, a straightforward approach is to further
divide them into smaller sub-partitions [67]. A sub-partition consists
of many blocks. Each time we keep one sub-partition in the enclave
and generate intermediate buckets from it during shuffle write,
similar to Figure 1 but now sub-partitions substitute partitions.

However, a naive sub-partitioning implementation would affect
shuffle correctness as illustrated in the example of Figure 4. This is
because the sub-partitions are coarsely divided from an unsorted
partition so the data keys are arbitrarily distributed among them,
unlike the partitions that are grouped by the keys. If we separately
shuffle each sub-partition, the same keys in different sub-partitions
would not be correctly grouped into one output partition.

Liebig’s law fetch. To ensure correct shuffle, we use a technique
named Liebig’s law fetch that applies extra sorting on data keys. As
in Figure 5 left, when generating buckets from each sub-partition
during shufflewrite, we sort each plaintext bucket inside the enclave
(illustrated using gradually changing colors), before encrypting and
sending them out. Note that the sub-partition is sized to fit in the
cache/OM (discussed later), and so does the sorting of the buckets.

During shuffle read, we collect all relevant buckets generated
from different input sub-partitions, and fetch one block from the
beginning of each bucket into the enclave (Figure 5 right). Because
each bucket is sorted, these blocks contain the smallest keys among
all buckets. So we can aggregate the items in the ascending key
order, until they fill up a block, and are further processed with
block-level streaming. The rest items remain in the enclave. When
we exhaust one input block, we fetch the next from that bucket.
This follows the Liebig’s law, i.e., always fetching from the shortest
remaining bucket. The aggregation on a certain key is finished
and the newly formed block can be further processed only when
the smallest remaining keys in all buckets are larger than it, thus
solving the issue in Figure 4. Note that at the beginning, we must
fetch all the first blocks from all buckets, though there may be some
bucket that has larger keys (e.g., 𝑏10 of the 2nd bucket) than the
later blocks in another bucket (e.g., 𝑏01 of the 1st bucket). Only after
decryption, can we know the actual order among them.
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Sub-partition sizing. Liebig’s law fetch requires us to keep
at least one block from each bucket in the enclave. However, the
number of buckets could be large after applying sub-partitioning,
because instead of per partition, now we generate buckets per sub-
partition. This requires us to use larger sub-partition sizes while
still staying within the cache/OM limit. We observe that shuffle
operations usually exhibit robust and predictable memory usage
proportional to the input data size, because they do not produce new
data but simply reorganize existing data. This allows for a simple
approach to assemble blocks into a sub-partition in the enclave
after the narrow computation, until the size of the sub-partition
exceeds a pre-defined threshold (e.g., less than the cache size).

5.3 Allocation-Adaptive Parallelization

Memory allocation remains as a critical scalability bottleneck in
Flare, as illustrated in Section 2.3. Note that using mutable shadow
operators in Flare instead of immutable RDDs does not decrease
the allocation intensity. The generated results of each shadow oper-
ator invocation must be separately allocated as usual. Shadow task
fusion and block-level streaming also do not affect the allocation
count; they only alter the order of allocating different data items.

The intuitive way to overcome limited allocation scalability is to
design or port a new allocator. However, there are many more chal-
lenges beyond performance involved in a comprehensive allocator
design as discussed in Section 2.2. Actually, even in the untrusted
domain, there are many allocator designs such as ptmalloc [22],
tcmalloc [21], and jemalloc [17], with different tradeoffs in various
aspects. People make different choices in different scenarios.

Therefore, in Flare we opt for a higher-level approach that can
work for any specific allocator implementation. Flare adapts to dif-
ferent workloads based on their allocation intensity, i.e., only enabling
multi-thread parallelization for those with light memory allocation,
while restricting parallelization when heavy memory allocation
occurs. Such allocation-adaptive parallelization is compatible to
different allocators, including dlmalloc and tcmalloc in the current
SGX SDK as well as those that might be ported in the future.

More specifically, recall that a (shadow) task contains multiple
phases including decryption, shuffle read, narrow computation
(fused shadow operators), shuffle write, and encryption. We can
classify each phase as either heavy or light in terms of allocation
intensity by using a pre-determined threshold (a framework hy-
perparameter). All phases could be either heavy or light, except
that the encryption phase is light since the outputs are always byte
arrays. We then allow (resp. forbid) multi-thread parallelization for
the light (resp. heavy) phases. We find that for the current dlmalloc
and tcmalloc in SGX, it is best to always use the maximum number
of threads for light phases and a single thread for heavy phases. For
more complex allocators, it is possible to set multiple thresholds
for finer increments of parallelization degrees.

Two issues remain: how to set the threshold, and how to measure
the allocation intensity of a phase. Given that different allocators
exhibit diverse scalability, we use per-allocator thresholds deter-
mined from the empirical correlation similar to Table 3, i.e., setting
the threshold to the point between speedup and slowdown. We
use online profiling to measure allocation intensity. Flare counts
the allocation for each phase of a dispatched task on the first few
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block/sub-partition samples to determine the heavy vs. light classi-
fication. Then it applies the configuration on the rest data.

Optimizations for shuffle.We further optimize shuffle oper-
ations in Flare. With our Liebig’s law fetch optimization in Sec-
tion 5.2, shuffle operations in Flare heavily rely on sorting to gener-
ate buckets during the shuffle write phase. We observe that sorting
can be made in-place without memory allocation, thus eliminating
the bottleneck. Specifically, we decompose the shuffle write phase
into a sorting phase plus an aggregation phase. Each sub-partition
is first in-place sorted in the enclave before generating the buckets.
As a result, we know directly how many items should go to each
bucket, and can pre-allocate the bucket space once. After that, we
copy the items into the buckets, and (optionally) simultaneously
aggregate the same keys (now continuously stored) into partial
results to reduce the communication cost in the later shuffle read
phase. The shuffle read phase is kept the same as Section 5.2.

The decomposition has two benefits. First, it reduces memory
allocation during bucket generation. Second, as shown in Figure 6,
the zero-allocation sorting phase can now be made overlapped
(i.e., pipelined) with the other heavy phases before and after it
(narrow computation, aggregation). These heavy phases only use a
single thread. As sorting does not introduce contention, it is free to
leverage the otherwise idle cores in the system.

6 SECURITY ENHANCEMENTS

6.1 Cooperative Integrity Guards

In Flare, shadow operators are dynamically fused into shadow
tasks according to the tasks dispatched from the untrusted scheduler.
Such a design exposes an execution integrity vulnerability, where
the adversary who controls the scheduler could execute a task
composed of any operators as well as a sequence of arbitrary tasks.
Note that it is completely legal for a shadow operator to be fused
with different other ones in different tasks; in Figure 3, shadow
operators 0 and 1 are fused in job 0 triggered by fold, while 1
(already cached) and 2 are fused in job 1 for reduce.

To ensure the execution indeed follows the authentic control
flow, we propose cooperative integrity guards in all enclaves. At
runtime, the worker and leader enclaves cooperatively use their
local and global guards, to verify the dynamic execution flow. More
specifically, we include a copy of the user program as part of the
leader enclave so it gets attested during initialization (Figure 2a).
The global guard in the leader enclave then analyzes the program
and builds the same job DAG as the scheduler would do. Specif-
ically, each task in the DAG is represented by (𝐼𝐷𝑠, 𝜎𝑠, 𝑖𝑛, 𝑜𝑢𝑡).
𝐼𝐷𝑠 denotes the sequence of shadow operators executed in order
in this task. Recall for each shadow operator, all parameters are
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Figure 7: Cooperative integrity guards in leader and worker

enclaves. The DAG corresponds to the 2nd job in Figure 3.

fixed at compilation and attested during initialization, except for
𝜎 . Therefore, we only need to verify 𝜎 at runtime to ensure the
integrity of each individual shadow operator. 𝑖𝑛 and 𝑜𝑢𝑡 denote the
input/output data MACs, respectively. The user supplies 𝑖𝑛 of the
input at the beginning, e.g., 𝑖𝑛0 and 𝑖𝑛1 in Figure 7.

The global guardwaits for the local guards in theworker enclaves
to submit execution logs. In the worker enclave, the local guard
records the metadata of each executed shadow task (𝐼𝐷𝑠, 𝜎𝑠, 𝑖𝑛, 𝑜𝑢𝑡)
as explained above, and securely sends the log to the global guard,
where it is checked against the corresponding DAG, as shown in
Figure 7. The checks include (1) whether each 𝜎 is valid (for the
integrity of each shadow operator); (2) whether 𝐼𝐷𝑠 and 𝜎𝑠 compose
a valid fused shadow task (for the integrity of the shadow task); (3)
whether the input data match the output data of the predecessor
tasks, i.e., no data blocks are dropped, and their MACs match (for
the integrity between tasks). Notice that because SGX enclaves
run attested code, as long as the input data MAC is correct and
the shadow operator fusion is valid, the integrity of the output
data MAC is guaranteed. If the verification passes, the global guard
regards this task as successfully executed, and unlocks the successor
tasks depending on it by properly propagating the data MACs. The
procedure continues until the last stage, where the MAC of the final
result is sent to the user as an authentication.

In Flare, both domains will generate the DAG, but the DAGs
contain different information. In the untrusted domain, the DAG
contains details for various execution management, e.g., scheduling
and fault tolerance. In the trusted domain, the generated DAG is
thinner, mainly for integrity checks. The user program included
in the leader enclave is usually much smaller than the framework
code, so the TCB would be still small.

Recall that Flare computes MACs in the unit of data blocks
(Section 5.1) instead of partitions. This fine granularity may result in
manyMACmessages and increase the communication cost between
the workers and the leader. We propose hierarchical authentication
in Flare, as shown in Figure 7. Specifically, in Flare, when buckets
are generated from sub-partitions and encrypted in the unit of
blocks at the end of a task, we compute the MAC of a bucket
by hashing the concatenation of the block MACs belonging to
this bucket. For example, in Figure 7, a task in the previous stage
computes the bucket MAC 𝑚0, which serves as an input MAC
of the current task. Similarly, since a partition contains multiple
sub-partitions, we compute the bucket set MAC by hashing the
concatenation of the bucket MACs, e.g., 𝑖𝑛𝑥 in Figure 7. The bucket
set MAC is the final MAC sent to the global guard in the leader.

When the current task fetches the relevant buckets, the local guard
first verifies the block MACs (i.e., 𝑏00) and decrypts the data blocks,
then computes the bucket MACs and the bucket set MACs. MAC
computations run in parallel with data block computations.

Different from Opaque [88] and VC3 [63], the cooperative guards
are designed to work with the memory optimizations in Flare.
Moreover, Opaque [88] tracked execution and input/output data
at each operator granularity, while Flare does so per task. This is
because no intermediate results between internal shadow operators
leave enclaves, so we only need to record the operator IDs and the
input/output MACs of the entire task. Moreover, the lightweight
check procedure is overlapped with the computation in the workers,
and thus the cost is mostly hidden. Per-task MAC generation incurs
negligible (<1%) cost measured in our experiments.

6.2 Oblivious Mode

Hiding access patterns. Flare’s basic architecture (e.g., shadow
operators and integrity guards) supports both the encryption and
oblivious modes. However, the shuffle-related optimizations (Sec-
tion 5.2) rely on value-based partitioning, which does not satisfy
the stronger security requirements in Section 2.4. For example, the
communication volume between nodes depends on the private data
content. Flare uses similar oblivious algorithms as in Opaque [88]
in its oblivious mode. We first briefly illustrate the algorithms in
Opaque, which are not our contribution. We then discuss how to
adapt the encryption mode techniques to support obliviousness.

The core building block in Opaque is oblivious sort across all
the workers, replacing shuffle write and read. Operations involving
shuffle are transformed into oblivious sort and scan [88]. For ex-
ample, for aggregate, oblivious sort is first performed to explicitly
group items with the same key, and then each worker conducts a
single scan to aggregate locally. Since a group may cross workers,
inter-node communication is needed to derive the final aggregated
values. We leave algorithm-level optimizations to future work.

In Flare, Liebig’s law fetch (Section 5.2) is only secure for the
encryptionmode, but the relevant sub-partitioning can be leveraged
to optimize local oblivious sort. Given the existence of hardware
oblivious memory (OM), Flare first performs quicksort on each
sub-partition fitting in the OM. Then it applies bitonic sort [53] to
merge the sorted sub-partitions. Moreover, in the oblivious mode
where sorting dominates performance (>80% in our evaluation),
we statically decide to only parallelize the sorting and encryption
phases, while the other phases use single-thread.

Mitigating control-flow side channels. For single-job execu-
tion, the control flow is deterministic. However, for general Spark
applications, there may exist statements such as if and while with
predicates involving secret variables, triggering different jobs and
causing distinguishable access patterns. To mitigate this issue, we
use dummy execution. Specifically, it is the global guard that is
responsible for resolving secret predicates. For if branches, the
untrusted scheduler is told to execute both branches, but only the
correct result is selected by the global guard. For loops, the global
guard asks the untrusted scheduler to launch more iterations un-
til reaching a constant threshold 𝑟 . Such execution padding hides
sensitive loop iterations. Users may flexibly specify 𝑟 in Flare to
balance security levels and performance overheads.
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7 EVALUATION

7.1 Implementation

Flare is implemented in Rust (about 25k LOC) on top of Vega [65],
an open-source re-implementation of Apache Spark in Rust. Rust
offers advantageous language features like memory safety [44],
zero-cost abstraction, and functional programming. While Vega has
only limited support for all the features in Spark, it is able to provide
competitive performance. We use the Rust SGX SDK v1.1.3 [11,
78] for the framework code in the trusted domain. Flare uses
the AES-GCM scheme to encrypt/decrypt when data leave/enter
enclaves. The relevant keys in different enclaves and the secure
communication channels are established during enclave attestation.

7.2 Experimental Setup

Platform. To evaluate Flare, we use three types of machines: (1)
Local Scalable SGX, an Intel Xeon Gold 5317 processor of 3 GHz
and 64GB EPC. (2) Local legacy SGX, an Intel Core i7-9700K pro-
cessor of 3.6 GHz and 128MB EPC. Both these two local machines
run Ubuntu 18.04 with Linux kernel 5.4.0. (3) Cloud instances

ecs.g7t.4xlarge on Alibaba Cloud, with Scalable SGX and inter-
machine network bandwidth of up to 25Gbps. We use the local
Scalable SGX as the default platform for detailed evaluation.

Workloads. We use a diverse set of benchmarks from data ana-
lytics, graph processing, and machine learning, including PageRank
(PR), Transitive Closure (TCl), Dijkstra (Dij), Triangle Counting
(TCo), K-Means (KM), Logistic Regression (LR), Matrix Multiplication
(MM), and Pearson Correlation (PC). They are widely used in other
frameworks [12, 63, 67, 88], and cover both sequential and random
access patterns. We use real-world datasets [42, 43, 48], with large
memory footprints up to several tens of GB on a single node. We
also use TPC-H at scale factor 1 as a SQL benchmark. We choose
scale 1 because larger datasets are too slow to run on the Opaque
baseline due to the lack of memory-efficient optimizations. Our
results show Flare exhibits higher benefits on larger datasets.

Baselines. Besides Spark [84] and Vega [65], we use four other
Spark-like systems as baselines. PySpark is an interface for Apache
Spark in Python. Vega-Occlum directly puts Vega into Occlum
v0.27.1 [69], an SGX libOS. Opaque [88] implements operators
of Spark with C/C++ in SGX. SGX-PySpark [40] combines SGX
and PySpark using SCONE [3]. Vega-Occlum, Opaque, and SGX-
PySpark provide security, respectively based on Vega, Spark, and
PySpark. We evaluate the encryption mode by default unless other-
wise stated, as Opaque does not open source the oblivious mode.

7.3 Single-Machine Overall Performance

Figure 8 shows the overall performance comparison between Flare
and the baselines. Besides the default large datasets of tens of GBs,
we also use smaller datasets (10 to 50MB) because some baselines
cannot run the large datasets (e.g., JVM errors) or have extremely
slow speeds. The small datasets are still larger than the on-chip
cache capacity. All experiments run on one Scalable SGX machine
with a sufficient EPC size even for the large datasets. Dij is not
implemented in Opaque because its UDFs are not supported.

In Figure 8a with the small datasets, we use single-thread. Among
the three secure frameworks, Flare largely outperforms Opaque by
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Figure 8: Overall performance on a single machine.

3.0× to 176.1×, and is also 13.4× to 469.4× faster than themonolithic
integration in SGX-PySpark. Some of these advantages are from
their different insecure counterparts (Vega for Flare, Spark for
Opaque, PySpark for SGX-PySpark). PySpark is consistently slower
than Spark; Vega, despite not fully optimized, runs faster than Spark
due to the language advantages. Nevertheless, even if we only look
at the slowdown within each pair of secure/insecure frameworks,
the security overhead of Flare (i.e., 𝑡 (Flare)/𝑡 (Vega)) is still 5.4×
smaller on average than that of Opaque, not yet considering Opaque
re-implemented Spark in faster C/C++. Flare is even slightly faster
than Vega on TCo due to our extra memory-efficient optimizations.

We now analyze the significant improvements of Flare over
Opaque. First, Opaque executes each operator separately, incurring
repetitive data transfer overheads including encryption/decryption
and (de)serialization. Flare instead uses shadow operator fusion
and serialization-free transfers (Section 4). Second, Flare inte-
grates various memory-efficient techniques (Section 5), which re-
duce cache misses and off-chip secure data accesses. Opaque also
inefficiently triggers unnecessary actions to ensure timely RDD
materialization before processing inside enclaves. In contrast, SGX-
PySpark fuses all operators in one Python process inside the enclave,
which avoids frequent domain switches. Therefore, despite being
based on the slower PySpark framework, SGX-PySpark sometimes
outperforms Opaque, but is still consistently slower than Flare.

The experiments on the large datasets in Figure 8b are allowed
to use multi-thread execution up to 8 threads. We only use Vega
and Spark with their best 8-thread configurations as the insecure
references; PySpark is always slower to Spark. For the secure frame-
works, we find Opaque does not scale to large datasets and crashes
for most experiments. For the few successful runs, Opaque is more
than two orders of magnitude slower than Flare. So we use another
baseline, Vega-Occlum. We also evaluate the Flare oblivious mode.

Flare in its encryption mode achieves 2.8× to 28.3× speedups
over the best multi-thread configurations (1 or 8 threads) of Vega-
Occlum, which directly ports Vega with the Occlum libOS [69].
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Table 4: Flare slowdown on legacy SGX over Scalable SGX.

Mode KM LR MM PC Dij PR TCl TCo

E 0.9 0.7 1.3 0.6 0.9 1.5 1.2 1.6
O 3.5 0.7 12.3 0.6 4.8 3.7 31.9 14.9
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Figure 9: Multi-thread and multi-node scalability of Flare.

The minimalist philosophy in Flare results in better performance
than the monolithic integration. Using large datasets and multi-
thread execution also makes the memory-efficient optimizations
and the allocation-adaptive parallelization in Section 5 more criti-
cal. Compared to the insecure multi-thread baselines, Flare only
exhibits moderate slowdown of 1.1× to 8.8× over Vega, and 0.2×
(even faster) to 2.7× over Spark. Some benchmarks, e.g., PC, show
high security overheads in Flare. This is because they involve little
computation, so the relative cost of data transfers (encryption, etc.)
across enclave boundaries dominates performance. Finally, Flare
oblivious mode is on average 6.5× slower than its encryption mode.

Compatibility on legacy SGX. Table 4 runs Flare on the
legacy SGX machine and summarizes the slowdown compared to
the default Scalable SGX machine. Generally the encryption mode
performance is similar in both systems, demonstrating that Flare
memory optimizations effectively overcome the EPC limit in legacy
SGX. Some computation-intensive workloads (e.g., PC) actually run
faster because of the higher CPU frequency. The slowdown mainly
results from repetitive encryption/decryption to keep the data size
within the EPC. The oblivious mode sees larger slowdown due to
the extra rounds of sorting on the whole partitions. LR and PC do
not involve shuffle and thus behave the same in both modes.

7.4 Multi-Thread/Multi-Node Scalability

We evaluate the scalability of Flare under both the multi-thread ex-
ecution on a single machine, and the multi-node distributed setting.
In Figures 9a and 9b, when using fixed 1, 2, 4, 8 threads without
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Figure 10: Overall performance on TPC-H at scale factor 1.
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Figure 11: Benefits of shadow operators and shadow tasks.

adaption, Flare does not scale well, and may even slow down for
some workloads (e.g., LR). Switching from dlmalloc to tcmalloc
alleviates the issue [32] but still has poor scalability. Our adaptive
parallelization in Section 5.3 selectively enables multi-thread ex-
ecution for each phase, and reduces allocation contention during
shuffle. It almost always achieves the best performance across all
fixed degrees of parallelization for each workload. The implemen-
tation incurs at most 30% overheads, e.g., in Dij with dlmalloc.

We use cloud instances on Alibaba Cloud to evaluate the Flare
scalability to multiple distributed nodes. As shown in Figure 9c,
across different workloads, using 16 worker nodes achieves 3.2× to
15.2× speedups than using 1 node. Six out of the eight workloads
have speedups larger than 8×. TCl has the worst scalability due to
its heavy communication. For the Flare encryption mode, the com-
munication cost among nodes is nearly the same as Spark except
for small extra data integrity checksums; only each individual node
runs slower due to interaction with the local enclave. Therefore the
achieved scalability is reasonable.

7.5 TPC-H Performance

Given that Opaque exposes the higher-level SQL interface while
Flare directly supports the low-level Spark Core, for a fair com-
parison, we additionally run the 22 queries of TPC-H. We keep the
physical plans in both systems as similar as possible. The results
are shown in Figure 10. In the single-node setting, the speedup
ranges from 13× to 458×. In the multi-node setting, the speedup
ranges from 4.6× to 55×. The main reasons for such performance
advantages are similar to those explained in Section 7.3.

7.6 Benefits of Individual Techniques

Using shadow operators reduces data transfer overheads in Flare
mostly in twoways: fusion decreases the number of necessary trans-
fers, and serialization-free alleviates per-transfer cost. Figure 11
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Table 5: Comparison of execution time (in seconds) between

Flare and Vega-Occlum, demonstrating the effectiveness of

cache-friendly designs.

Systems KM LR MM PC Dij PR TCl TCo

Flare (E mode) 13.9 32.9 30.5 54.3 36.2 75.1 30.5 12.4
Vega-Occlum 54.9 74.6 83.4 77 99.8 519.3 379.3 173.2

Speedup 3.9 2.3 2.7 1.4 2.8 6.9 12.4 13.9

quantifies these benefits. We disable either serialization-free or op-
erator fusion, and both. Both techniques have significant impacts.
When combined, they result in up to 4.4× and on average 2.1×
better performance.

Then we evaluate the cache efficiency of Flare. Recall that
Flare reduces costly instruction cache misses from the trusted
domain by moving complex code out of enclaves, and reduces
data cache miss overheads with memory-efficient data processing.
We compare Flare with Vega-Occlum, which also uses Rust. As
shown in Table 5, Flare cache-friendly designs bring 1.4× to 13.9×
speedups. We argue that these benefits mainly come from their
cache usage differences, not the other effects, becaues (1) the libOS
integration in Vega-Occlum potentially reduces the ECALLs/OCALLs,
and operator fusion is naturally done in Vega, from which point
Flare is no better, and (2) here both systems use single-thread and
the same memory allocator. For PC, no shuffle is involved, and the
access pattern is sequential, so the 1.4× speedup mostly comes from
the instruction cache miss reduction. For TCl and TCo, they exhibit
more random access patterns, so the speedup of memory-efficient
processing approaches 15×, matching the profiling in Section 2.2.

We also evaluate Liebig’s law fetch. Without it, we uniformly
fetch blocks from all buckets (e.g., 𝑏11 will be in the third fetch
instead of 𝑏21 in Figure 5), and keep data inside the enclave until
fully aggregated. This results in larger memory footprints. Liebig’s
law fetch contributes 1.3×, 1.8×, 1.6×, 3.1×, 1.8×, 3.8× speedups
to KM, Dij, MM, PR, TCl, TCo, respectively. Other benchmarks do not
involve shuffle. The speedup mostly depends on the data distribu-
tion. More precisely, it depends on the distribution of intermediate
results after narrow computation. Without sorting in Liebig’s law
fetch, during shuffle read we will fetch unsorted arrays. That is, the
data items with the same key are everywhere, so when aggregating
them, there would be many cache misses. We observe that cache
misses mostly occur in the hashmap/btreemap structures, which
are used for aggregation.

8 RELATEDWORK

There is a large amount of prior work integrating Intel SGX with
data analytics frameworks for security. Platforms like SCONE [3],
Graphene [75], SGX-LKL [56], and Occlum [69] allowed unmodified
applications to run in enclaves, as convenient ways to build SGX-
based secure data analytic systems. For example, SGX-Spark [59, 76]
ported JVM into enclaves using SGX-LKL. SGX-PySpark [40] used
SCONE to port partial JVM and also built a CPython/PyPy inter-
preter. However, both of them had a large TCB and might suffer
from the security and performance issues discussed in Section 2.3.
Others have built Spark or Hadoop-like secure frameworks without
porting JVM. VC3 [63] built an in-enclave MapReduce engine, and

Opaque [88] re-implemented Spark operators, both using C/C++.
Without JVM, the TCBs of these two frameworks were small, and
both of them assumed powerful threat models that ensure confi-
dentiality and integrity against malicious attackers. VC3 provided
region self-integrity invariants to avoid unexpected information
leakage due to unsafe memory reads and writes. Opaque proposed
oblivious relational operators to prevent access pattern leakage.
However, none of the above work has comprehensively considered
the performance issues associated with the limited cache/EPC ca-
pacities, the domain switch cost due to encryption and serialization,
and the poor scalability. Flare leverages a better abstraction para-
digm and various memory-efficient performance optimizations.

Apart from Spark or Hadoop, other proposals brought secu-
rity into relational databases [5, 16, 52, 57], key-value stores [37,
72], and other workloads (e.g., SGX-BigMatrix for matrix compu-
tations [67]). Some of them also guaranteed obliviousness [16,
52]. SGX-BigMatrix had a blocking mechanism similar to sub-
partitioning in Flare. ShieldStore [37] added a customized memory
allocator inside enclave to support allocating untrusted memory
without repetitive OCALLs.

In hybrid cloud scenarios, there is an opportunity to partition
data into sensitive parts running on private clouds and non-sensitive
parts on public clouds. Following this direction, Sedic [85] and SEM-
ROD [55] built MapReduce-like frameworks, and [51] focused on
joint query processing on the two types of data. Flare splits the
code framework rather than the data, and thus is orthogonal.

Other TEEs like AMD-SEV [66] allow us to put Spark directly
into enclaves, similar to the SGX libOS integration. This approach
simplifies framework development with no need to separate compo-
nents. Thus shadow operators and fusion are no longer necessary.
However, it still suffers from larger TCB, larger memory footprints,
lack of execution integrity, no obliviousness, and (likely) allocation
scalability issues, which are resolved by FLARE. Besides, to pursue
ultimate performance, we believe enclave models like SGX are still
a good choice free of unnecessary code encryption.

9 CONCLUSIONS

We developed Flare as a distributed data analytics framework
supporting confidential and verifiable computing with Intel SGX.
Flare carefully separates the functionalities between the trusted
and untrusted domains. In order to achieve both rich functionalities
and high performance, Flare uses a novel abstraction paradigm
called shadow operators, as well as various memory-efficient opti-
mizations for data footprints and allocation scalability. With these
improvements, Flare achieves 3.0× to 176.1× speedups over the
state-of-the-art secure baseline, and only incurs up to 8.8× slow-
down over the insecure system even on large datasets.
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