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ABSTRACT
MVCC-based snapshot isolation promises that read queries can
proceed without interfering with concurrent writes. However, as
we show experimentally, in existing implementations a single long-
running query can easily cause transactional throughput to collapse.
Moreover, existing out-of-memory commit protocols fail to meet
the scalability needs of modern multi-core systems. In this paper,
we present three complementary techniques for robust and scalable
snapshot isolation in out-of-memory systems. First, we propose
a commit protocol that minimizes cross-thread communication
for better scalability, avoids touching the write set on commit,
and enables efficient fine-granular garbage collection. Second, we
introduce the Graveyard Index, an auxiliary data structure that
moves logically-deleted tuples out of the way of operational trans-
actions. Third, we present an adaptive version storage scheme that
enables fast garbage collection and improves scan performance
of frequently-modified tuples. All techniques are engineered to
scale well on multi-core processors, and together enable robust
performance for complex hybrid workloads.
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1 INTRODUCTION
MVCC.Despite the focus of many textbooks on Two-Phase Locking
(2PL) and single-version storage, today most widely-used database
systems rely on Multi-Version Concurrency Control (MVCC). For ex-
ample, this includes PostgreSQL, InnoDB, WiredTiger, Oracle, SQL
Server, Vertica, HANA, Snowflake, and Redshift. The distinguish-
ing idea of MVCC is to update tuples out-of-place and keep old
versions visible to concurrent transactions. MVCC naturally allows
implementing Snapshot Isolation (SI): with SI, read transactions can
proceed without acquiring read locks (2PL), without validating the
read/write sets (OCC), and without writing tuple access timestamps
(timestamp ordering). Indeed, without multiple versions and snap-
shotting, it is hard to imagine how large scans and updates can
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Figure 1: TPC-C performance collapses as long-running
OLAP query occurs after 10 seconds (1 OLTP, 1 OLAP thread)

coexist without constantly interfering. MVCC-based SI therefore
seems uniquely suitable for complex general-purpose workloads
comprising both transactional data modifications and long-running
analytical queries.
Challenges of ExistingMVCCDesigns.While snapshot isolation
seems promising for hybrid workloads, general-purpose Hybrid
Transaction/Analytical Processing (HTAP) in one system is still
uncommon. Most organizations split their operational database
from their data warehouse – even though both kinds of systems
usually implement MVCC. One reason for this is physical storage: a
row store is clearly more efficient for OLTP, and columnar storage
is better for analytics. However, there is also a second reason for the
split: current MVCC schemes are often unsuccessful in isolating the
two workload classes from each other. In other words, OLAP may
lead to performance collapse for OLTP and vice versa. Consider
Figure 1, which shows the normalized TPC-C performance over
time in three MVCC systems. Performance stays stable for 10s –
until a long-running OLAP query enters. Although the query in this
experiment does nothing and just sleeps – keeping the snapshot
open – it causes OLTP performance to collapse. This is obviously
unacceptable for mission-critical systems.
Commit Protocols for High-Performance Storage Engines.
Existing disk-based storage engines lack not only robustness but
also scalability. Common out-of-memory SI commit protocols, e.g.,
the ones used by PostgreSQL, InnoDB, and WiredTiger, construct a
snapshot using a vector of concurrent transaction IDs. This design
scales poorly with many threads as it has to fetch current trans-
action ID from other threads even if the transaction won’t read
versions written by them. It also leads to expensive visibility checks
that make fine-granular garbage collection expensive. Porting in-
memory commit protocols [16, 33, 39] into out-of-memory systems
is also not viable because touching the write set again on commit
can be expensive in out-of-memory workloads.
Goals. The goals of this work are to (i) prevent OLTP performance
from collapsing in the presence of long-running queries, (ii) ensure
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scalability on multi-core processors, (iii) support out-of-memory
workloads, and (iv) maintain the performance of long-running
queries. To achieve this, we had to rethink all facets of MVCC.
Contribution 1: SI Commit Protocol (OSIC). As the foundation
of our design, we present Ordered Snapshot Instant Commit (OSIC),
a commit protocol that brings the scalability and the cheap visibility
checks of in-memory protocols to out-of-memory storage engines.
OSIC achieves this through a fixed-size, per-thread data structure
called Commit Log.
Contribution 2: Graveyard Index. OLTP workloads that exhibit
a queue-like workload pattern such as TPC-C face performance
degradation in the presence of long-running queries, as is shown
in Figure 1. This happens due to the accumulation of logically-
deleted tuples in the queue index; these tuples are visible to the
long-running query and therefore cannot be garbage collected. To
solve this problem, we propose the Graveyard Index, an auxiliary
data structure that moves tombstones that are only visible to long-
running queries out of the way of operational transactions.
Contribution 3: Adaptive Version Storage. MVCC performance
crucially depends on where old versions are stored. In some situa-
tions, it is beneficial to have the most current version in the main
index and older versions in a separate structure. In other situations,
it would be better to keep all versions in the main index. We there-
fore propose an adaptive version storage scheme that automatically
makes this choice in a workload-driven fashion. The two storage
formats make garbage collection efficient and improve performance
robustness for scans of frequently-updated tuples.
System Integration. We integrated our design into LeanStore [5,
34], a high-performance storage engine optimized for multi-core
CPUs [6, 35] and NVMe SSDs [25]. We initially implemented an
MVCC scheme that is comparable to existing state-of-the-art ap-
proaches, achieving high performance on TPC-C alone. However,
as the LeanStore (Basic) line in Figure 1 shows, this is not robust
even in the presence of a simple long-running OLAP scan. The
design presented in this paper, in contrast, delivers robust and scal-
able performance in mixed and pure OLTP workloads. On a 64-core
server, LeanStore achieves ≈2 million TPC-C transactions per sec-
ond despite a concurrent long-running OLAP scan. The results were
achieved under snapshot isolation and with logging [27] enabled.

2 BACKGROUND AND MOTIVATION
The Promise. The main reason for the wide adoption of systems
with MVCC-based snapshot isolation is that they allow read op-
erations to proceed without acquiring any locks. In other words:
long-running read-only scan queries (e.g., a report computing the
yearly revenue) should not compromise the performance of opera-
tional latency-critical transactions (e.g., an incoming order).
The Reality. In practice, existing MVCC system fail to fulfill this
promise. The main problem is that update and delete operations cre-
ate new tuple versions that may be physically but not logically visi-
ble to other transactions. If a long-running transaction is in the sys-
tem, these tuple versions may “pile up” and cause additional, unnec-
essary work – which can only be solved using aggressive garbage
collection (GC). A number of recent papers therefore propose vari-
ants of precise (fine-grained, interval-based) GC [13, 29, 33]. How-
ever, while these approaches help for many workloads, they fail to

solve the problem in general. Indeed, even with fine-grained and
aggressive GC, challenging OLTP workloads such as TPC-C still
suffer from performance collapse when a long-running transaction
enters the system.
Performance Collapse. Consider the performance of a mixed
workload where one OLTP thread performs unmodified TPC-C
transactions and one OLAP thread simply opens a transaction (snap-
shot) and then sleeps. Figure 1 shows normalized performance re-
sults for three MVCC implementations. Once a long-running trans-
action enters the system, the TPC-C throughput quickly drops and
degrades over time. OLAP performance, as measured by the number
of logically-visible tuples scanned per second, also deteriorates. The
slope of the performance drop depends on the implemented garbage
collection aggressiveness and precision. Systems that only garbage
collect versions using a global minimum timestamp (high water-
mark) such as PostgreSQL, MySQL, and WiredTiger deteriorate
faster than systems with interval-based GC such as SAPHANA [33],
Steam [13], and vDriver [29]. In general, the performance of both
types of transactions drops because they start to encounter and
process index records that are not relevant to them because these
records are either already deleted, out-dated, or recently-inserted
but not yet visible to their snapshot.

2.1 Multi Version Storage
Indexes and Version Chains. Just like single-version systems,
MVCC systems often use B-Tree indexes. Each index maps the
user-specified attribute(s) to the version chain of the indexed tuple.
The version chain maintains at least all versions of the tuple that
might be required by any concurrent active transaction. The order
of versions in the chain differs between systems: newest to oldest
(N2O) order favors OLTP while oldest to newest (O2N) favors OLAP.
In the rest of the paper, we assume N2O order – prioritizing the
latency of operational transactions.
Full Copy vs. Delta.When a transaction updates a tuple, it inserts
a new version at the beginning of the chain. The version can be
either be a full copy or a delta that only contains the difference to the
previous version. For instance, if we update only one 8-byte integer
attribute in a 120-bytes tuple, we only have to mark the attribute
we update and store the 8-byte XOR between current and next
value. This, however, works only for updates that do not change
the tuple size and comes at the price of greater complexity and
less flexibility in manipulating the version chains. Readers cannot
jump over versions and have to apply deltas in the right order to
construct the correct version for their snapshot. Nevertheless, the
large space savings of deltas for large tuples make their complexity
worthwhile, and most modern designs therefore use deltas.
Tombstones.When a transaction deletes a key, it inserts a tomb-
stone in the version chain to mark the tuple as deleted for future
transactions. Once all concurrent transactions finish, the tuple be-
comes logically invisible for future transactions as well. Only at
this point can the tombstone be physically removed from the index.
Skipping Versions. Generally, both OLTP and OLAP transactions
rely on the same physical access paths. Therefore, on a low level, the
index operations return the same version chain to both. A version
chain that is relevant only to an old OLAP query – but totally
obsolete for newer transactions – remains in the index for both.
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Only after encountering a version chain, can a transaction use its
snapshot information to determine which versions to retrieve or if
this chain is even relevant to it, i.e., invisible in its snapshot. As we
describe in the following, this additional skipping work lies at the
heart of OLTP performance degradation.

2.2 OLTP Slowdown Analysis
Tombstone Skipping. OLTP performance crucially depends on
indexing. After creating an index, we expect it to provide logarith-
mic access time. In MVCC systems, this assumption does not hold
because of tombstones. Tombstones must remain in the index until
the system can ensure that no transaction sees the deleted tuples.
This can be become a problem in the presence of long-running
transactions: physically, index range scans (and similar operations
such as prefix lookups) return the same version chain to a long-
running OLAP and to a recent OLTP transaction. Thus, an OLTP
range scan has to skip these tombstones one by one.
The neworder Problem. The worst case happens when OLTP
transactions themselves create the tombstones they have to skip.
This might sound rare but is actually what happens in TPC-C in the
presence of a long-running query (as in the experiment in Figure 1).
The following figure illustrates where this happens in TPC-C:

1 2 31 2 3 … …
aer 2 delivery TXs

TPC-C Delivery TX: find and delete oldest neworder

OLAP may need tombstones that OLTP TXs have to skip

still the smallest key

TPC-C uses the neworder relation as a queue to store new orders
that have not yet been shipped. The delivery transaction performs
a range lookup on the neworder index to find the oldest order
that should be shipped next – with the index operation returing a
cursor to the smallest (leftmost) key and its version chain. From
there, the concurrency control layer takes control and moves the
cursor to the next right key one step at a time until it finds a
tuple that is visible in its snapshot. Initially, the first neworder key
the transaction encounters is a hit which results in a logarithmic
runtime for the prefix look up. But after the transaction deletes the
oldest neworder it has just found, it leaves a tombstone in the index
because a concurrent old transaction still requires it. In the next
delivery transaction, the prefix lookup will first encounter the very
tombstone that was created in the last invocation. As more new
orders are delivered and inserted in the index while the OLAP query
is still running, the number of tombstones that OLTP transactions
have to skip grows – leading to progressive deterioration.
Problem Generalization. The key takeaway is that the access
pattern to the neworder relation resembles a queue. Transactions
insert tuples at one end and remove them later on from the other. In
existing systems, every transactional workload with such a pattern
will face performance collapse when a long-running transaction
enters the system. Furthermore, this problem happens not just with
deletes but also with updates that change one of the key attributes
because updates of the index key are typically implemented as a
remove followed by an insert.

2.3 OLAP Slowdown Analysis
The warehouse Problem. There are also situations where concur-
rent OLTP transactions negatively impact the performance of OLAP.
The challenge is scanning tuples that concurrent OLTP transactions
update frequently. Because of the N2O version order, OLTP transac-
tions append new versions at the beginning of the chain – thereby
increasing the distance to the version visible to the query. In our
running TPC-C+Scan example we see this pattern with the ware-
house relation. The relation stores statistics (the balance attribute)
for every warehouse and is therefore updated very frequently. Prior
work [13, 33] has recognized and addressed this problem in main-
memory systems. An observation that helps to solve the problem
is that at any point in time, the number of different versions that
must exist cannot exceed the number of concurrent transactions in
the system. However, none of the existing out-of-memory systems
integrate these eager and precise techniques for reasons that we
explain in the following.

2.4 SI Commit Protocols
Commit Protocols. An important part of any MVCC scheme is
the mechanism for quickly determining which tuples are visible
to which transactions. The complexity and cost of such visibility
checks depend primarily on the commit protocol. The commit pro-
tocol defines the visibility rules as it is responsible for making a
transaction’s changes atomically visible to future transactions on
commit. It also has to guarantee the consistency of transaction
snapshots. Despite being such a crucial part of any MVCC imple-
mentation, the literature rarely describes out-of-memory commit
protocols in detail. In the following discussion, which is largely
based on careful reading of source code, we describe the two domi-
nant variants, highlighting their scalability characteristics, cost of
visibility checks, and garbage collection.
Out-of-Memory SI Commit Protocols. In WiredTiger [3], Post-
greSQL [47], and MySQL InnoDB [7], a transaction starts by draw-
ing a transaction ID (TXID) from a global atomic counter. Then,
it publishes its in-progress TXID using an atomic per-transaction
counter. A transaction T1’s snapshot is then created by building a
ReadView (RV) vector that holds the TXIDs of all concurrent trans-
actions that are smaller than T1’s TXID. If the system is running 10
transactions in parallel, then the RV will hold up to 10 TXIDs. Each
stored tuple holds the TXID of the transaction that wrote to it last
(plus a logical pointer to the previous version). A tuple is visible to
a transaction RV if the following two conditions (PostgreSQL also
needs an extra lookup in CLOG) hold: (i) Tuple’s TXID is not in the
RV, i.e., is not written by a concurrent transaction. (ii) Tuple’s TXID
is smaller than the maximum TXID in the RV, i.e., is not written by
a future transaction that started later. This protocol achieves instant
commits without touching the write set (all tuples that T1 modified)
again on commit. This is a decisive criterion for buffer-managed
systems because marking the tuples as committed would otherwise
require traversing the indexes again and/or paying the I/O cost for
possibly evicted page in steal systems. However, a visibility check
can cost up to #T of comparison where T is the number of con-
current threads or transactions. Cross-transaction visibility checks
cost even more because each comparison could result in a cache
miss. This makes any form of precise garbage collection costly in
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Table 1: Conceptual comparison of commit protocols

trad. DBMS∗ in-mem.DBMS∗∗ OSIC (LeanStore)

post-commit Θ(1) Θ(write set) Θ(1)
snapshotting Θ(𝑇 ) Θ(1) Ω(1),𝑂 (𝑇 log𝑇 )
visibility check Ω(1),𝑂 (𝑇 ) Θ(1) Θ(1)
memory usage Θ(𝑇 2) Θ(𝑇 ) Θ(𝑇 2)
(*) PostgreSQL/InnoDB/WiredTiger (**) Hekaton/HANA/Hyper

T = #Threads or #Concurrent Transactions

out-of-memory systems. Moreover, the cost of acquiring a snapshot
increases linearly with the number of concurrent transactions even
if the transactionwill only read tuples written by a single committed
transaction. This appears to be a known scalability limitation that,
for example, the PostgreSQL community has acknowledged [23].
In-Memory SI Commit Protocols. In main-memory DBMS like
HANA [33], Hekaton [16], Hyper [39], each transaction draws a
start timestamp from a global atomic counter. Each tuple stores the
start timestamp of the transaction that wrote to it until that trans-
action commits, but then replaces it with the commit timestamp.
At commit time, the transaction draws a commit timestamp from
the same global counter. A commit atomically marks the current
transaction as committed and publishes its commit timestamp us-
ing a central data structure. Consequently, it goes over its write
set and installs the commit timestamp. The visibility can then be
determined as follows. If the tuple already holds the commit times-
tamp, then it is visible iff the commit timestamp is smaller than
the reading transaction start timestamp. Otherwise, it checks the
status of the transaction that left its start timestamp in the tuple.
The other transaction could be either in-progress or committed but
has not managed to install the new timestamp in its write set. In
the former case, the tuple remains invisible. In the later case, one
has to read the commit timestamp from the central data structure
and compare it with the reading start timestamp. Oftentimes, the
commit timestamp is already installed and visibility checks will
only require cheap integer comparisons.
Best of Both Worlds Commit Protocol. Table 1 compares the
approaches in terms of the work done post-commit, building a
snapshot, visibility checks, and memory usage. In-memory proto-
cols outperform out-of-memory ones in every dimension except
for post-commit processing: (i) They build snapshots in constant
time regardless of the number of concurrent transactions; (ii) Visi-
bility checks are as cheap as two integer comparisons, so we can
efficiently implement precise garbage collection techniques. How-
ever, they require re-visiting all the tuples that the transaction
wrote to install the commit timestamp. In out-of-memory systems,
this requirement is prohibitively expensive. One has to traverse
the indexes again as virtual memory pointers may not be valid
in buffer-managed systems. And in steal systems, the pages may
already be evicted. In Section 3.1, we propose a commit protocol for
LeanStore that minimizes cross-thread communication (hence the
lower and upper bound) and brings cheap visibility checks without
touching the write set as in in-memory systems.

GLC, TSstart of each active transaction, Watermarks

FatTuple (enables PGC)

Commit Log: LCB(w, ts) = last TScommit before ts from worker w

per worker

Graveyard IndexMain Index
per used-defined index

Tombstone Index

move tombstones created by
 TSstart < LCB(oldest_oltp)

two storage options
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refresh OSIC
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GC
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Delta Index 
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Figure 2: System overview with the proposed techniques

3 ROBUST OUT-OF-MEMORY MVCC
Overview. Figure 2 shows an overview of the design and the pro-
posed techniques and data structures. The bottom of the figure
shows OSIC, an out-of-memory SI commit protocol that allows one
to efficiently determine which set of transactions is visible to con-
current OLTP and OLAP transactions and provides better threads
scalability by minimizing cross-thread communication while build-
ing its snapshot (Section 3.1). The top of the figure shows an auxil-
iary Graveyard Index that keeps tombstones away from the OLTP
hot access path (Section 3.2). In between, two complementary ver-
sion storage formats are shown that limit version chain length
while keeping garbage collection efficient (Section 3.3). Section 3.4
discusses durability and recovery, and Section 3.5 explains how all
components interact.
Underlying Storage Engine. Before we dive into the details of
each technique, let us shortly mention some assumptions. Our
scheme is geared towards out-of-memory buffer-managed engines
where relations and indexes are B-Trees. We also assume that the
write set of a transaction can be larger than main-memory (steal
configuration). Logging is distributed across threads, each having
its write ahead log [27].

3.1 Snapshot Ordering and Instant Commit
OSIC Overview. The Ordered Snapshot Instant Commit (OSIC) com-
mit protocol provides snapshot isolation. As in main-memory sys-
tems, an OSIC snapshot is determined by a single integer, namely
the start timestamp of the transaction. As in out-of-memory sys-
tems, transactions commit instantly without having to touch their
write sets a second time on commit. OSIC makes visibility checks
as cheap as a single integer comparison, and allows ordering trans-
actions according to their recentness using their start timestamps.
This enables efficient precise garbage collection in disk-based set-
tings. Moreover, OSIC only requires cross-thread communication
when reading recently committed tuples from another worker.
Preliminaries. In our design, every transaction draws two times-
tamps from the same Global Logical Clock (GLC): at the start
(TSstart ) and just before committing (TScommit ). The GLC is imple-
mented as an atomic 64-bit integer. Furthermore, we follow the first-
writer wins rule, which forces a transaction to abort if it attempts
to update a tuple for which the most recent version is invisible.
This rule results in recoverable schedules and provides snapshot
isolation without the need for a validation phase at commit. Worker
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threads process transactions in parallel. Each worker thread in our
system is assigned a unique and fixed Worker ID and processes
transactions one after another.𝑊 (Tx) denotes the worker ID of a
transaction Tx,𝑊 (𝑣) is the worker ID of the transaction that wrote
version 𝑣 , and #W is the total number of workers. Based on our
processing model, OSIC exploits the following important invariant:
Transitive Commit Invariant. If a transaction on worker 𝑤
committed before timestamp ts, then so did all transactions that
started before timestamp ts on worker𝑤 .
Snapshots. A Snapshot determines the set of committed transac-
tions whose versions are considered visible to the current trans-
action. This set is a function of the start timestamp TSstart and
does not change after the start timestamp was drawn. As in main-
memory systems, it includes all transactions that committed before
transaction start, i.e., Snapshot (ts) = {𝑇 |TScommit (𝑇 ) < ts}. OSIC
differs from other protocols in how it determines whether a version
is visible for a particular snapshot.
Write Set Stamping. While processing a transaction, we know
the start timestamp but not yet its commit timestamp. For future
transactions to determine whether the written version is visible,
in-memory systems [16, 32, 33, 39] install the commit timestamp
in the full write set while committing. When a transaction Tx reads
a version 𝑣 , it simply checks if TScommit (v) < TSstart (Tx). In out-
of-memory systems, this approach would result in a second index
traversal for every write operation because one cannot simply
dereference a pointer. Furthermore, the tuples might already have
been evicted to storage – e.g., occurring during bulk loading.
Indirection Approach. One approach to avoid write set stamping
would be to maintain an in-memory mapping data structure be-
tween the commit and start timestamps of every transaction. After
all, main-memory systems have to maintain something similar for
in-flight transactions until the commit timestamp is installed. A
read transaction would then retrieve the commit timestamp from
the shared map instead of reading it from the tuple. The down-
sides of this shared mapping data structure are additional memory
consumption and the potential contention on it.
OSIC Main Idea. Knowing the exact commit timestamp is, how-
ever, not the only way to determine whether the writing transaction
belongs to the reader snapshot. To decide whether a version is visi-
ble, we instead rely on the Transitive Commit Invariant. It is enough
to know the commit timestamp of the last completed transaction by
the same worker that wrote the version before we acquire the snap-
shot. More formally, let LCB(w, ts) (“Last Committed Before”) denote
the last commit timestamp by a transaction on worker𝑤 before a
given start timestamp ts. A version by worker𝑤 written by a trans-
action with TSstart = vts is visible to a snapshot with TSstart = ts
iff 𝐿𝐶𝐵(𝑤, ts) > 𝑣𝑡𝑠 . Consequently, to determine visibility for all
tuples and transactions all we have to do is maintain the LCB for
the start timestamp of every in-progress transaction. This reduces
the number of transactions we have to keep state for: from all trans-
actions to a maximum of #𝑊 2 where #W is the number of workers.
With this established, we implement a simple data structure called
Commit Log based on a fixed-size per-worker ordered array. It re-
tains the commit timestamps of recently committed transactions as
long as needed to answer LCB queries.

GLC TS 0

W1

W2

W3

1 2 3 4 5 6 7 8 9 10

Sc Cc Sf Cf

Sb Cb Cd

Sa Ca

Sd

CeSe

11

LCB(2,9)=4
d not visible in f

L: ()

L:

L:

()

()

(3)

(4)

(5)

(4)

(3) (3,8)

(5) (5,11)

(4,10)

LCB(1,9)=8
e visible in f

(8)
W1 cleans log

Figure 3: OSIC example. At each timestamp, a (S)tart or
(C)ommit happens at a worker𝑊𝑖 . TX f sees a,b,c,e but not d.

Example. In Figure 3, we illustrate our protocol through an exam-
ple with three workers (W1, W2, W3). Every increment of the clock
(GLC) corresponds to the start or commit timestamp of a transac-
tion that belongs to one of the workers. Whenever a transaction
commits, the processing worker inserts the commit timestamp in
its own commit log (L). Because the inserted timestamps are mono-
tonically increasing in each log, the worker simply appends the new
timestamp. Start timestamps are not needed in the commit log but
determine the snapshot. In the figure, the first three transactions
are trivial and just read an empty database. Transactions d and e
both include a, b, and c in their snapshot. Starting at timestamp 9,
transaction f includes all transactions from W1 that started before
LCB(1,9)=8 (a and e), but only b fromW2 because LCB(2,9)=4. Even
after d commits at timestamp 10, LCB(2,9) will return 4, ensuring
that d remains invisible for f. After d commits at timestamp 10, W1
can remove the entry 3 from its log because all future transactions
will include all transactions from W1 up to 8.
Synchronization and Correctness. Snapshots must include all
transactions with smaller commit timestamps and exclude the ones
with larger timestamps. Without correct synchronization, it could
happen that transaction f queries LCB(1,9) from W1 after e draws
8 from GLC but before e inserts it into its commit log. Thus, f
would miss e, an already committed transaction, in its snapshot.
To prevent race conditions and maintain scalability, each commit
log is protected by its own mutex. The committing transaction
exclusively locks its log before drawing the commit timestamp and
releases the lock only after inserting the commit timestamp. This
way, in our example, transaction f will have to wait on the W1
lock if e has drawn 8 but has not inserted it yet. Excluding future
transactions is guaranteed as well because the GLC assigns them
larger timestamps and LCB will skip the newly inserted one. In
our example in Figure 3, LCB(2,9) returns the same 4 excluding
transaction d whether we evaluate it at timestamp 9 or 10.
Minimizing Cross-Thread Communication. A snapshot’s visi-
bility is determined by its start timestamp. The LCB of otherworkers
will return the same value whether it is queried at the beginning of
the transaction or at a later point in time. Because evaluating LCB
is not for free due to cross-thread communication, it makes sense
to evaluate it for a certain worker only when we first encounter
a version written by that worker. In addition, the returned value
can be cached in case we read another version written by the same
worker. Listing 1 shows pseudo code for version visibility checks
under snapshot and read committed isolation.
Limiting The Commit Log Size. The maximum size of a commit
log is equal to the number of workers #W. Thus, before a transaction
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Listing 1: Pseudo Code for OSIC Tuple Visibility Check
w_i: current transaction worker id

tx_ts_start: current transaction start timestamp

sc: thread -local snapshot cache // init with zeros

[w_i -> (cache_ts_start , w_i_ts_commit )]

bool isVisible(tuple_w_i , tuple_ts_start)

if (tuple_w_i == w_i)

return true // workers see their own changes

if (read committed) // get latest snapshot

tx_ts_start = GLC.load()

if (sc[tuple_w_i ]. w_i_ts_commit > tuple_ts_start)

return true // cache hit

if (sc[tuple_w_i ]. cache_ts_start < tx_ts_start)

// compute LCB and update cache

last_commit_ts = LCB(tuple_w_i , tx_ts_start)

sc[tuple_w_i] = (tx_ts_start , last_commit_ts)

return sc[tuple_w_i ]. w_i_ts_commit > tuple_ts_start

TSstart
∞

OLTP TransactionsOLAP Transactions

newest_olap = 15 oldest_oltp = 200oldest_tx = 100

Dead Zone

Figure 4: Separate Watermarks for OLTP and OLAP

starts, it checks if it has enough space in its fixed-size commit log
for a new timestamp. If the log is full, we remove redundant entries,
keeping only entries that are the LCB of an active transaction,
which is implemented as follows. We collect the TSstart from all
concurrent threads, then we find and mark the LCB commit entry
in the full array for every collected timestamp. The remaining
unmarked entries can be then removed from the array. Because
OLTP transactions refresh their snapshot often, only few recent
commit log entries will remain. Using 8-byte timestamps, even with
1024 threads the total memory consumption of all commit logs will
not exceed 10242 ∗ 8 = 8MiB.
Separate High Watermarks for OLTP and OLAP. To speed up
garbage collection, most MVCC systems use a single high water-
mark that tracks the set of transactions that are visible to all active
transactions, i.e., the oldest snapshot. In our design and in many
main-memory systems, this watermark corresponds to the oldest
(smallest) TSstart of all current active transactions. While the single
high watermark technique is cheap and easy to implement, it is
imprecise and can only remove the tail of a version chain. However,
by distinguishing OLTP from OLAP transactions, we can gain more
pruning power using watermarks as is illustrated in Figure 4. When
a long-running OLAP query prevents the oldest_tx watermark from
advancing, the oldest_oltp likely keeps advancing, and we can use
it to identify deleted tuples (“tombstones”) that are not relevant for
future OLTP transactions. We will explain in more detail how to
use this idea in Section 3.2. Moreover, in Section 3.3 we use the gap
between (newest_olap, oldest_oltp) to prune versions in the middle
of a version chain using the vDriver Dead Zone [29] concept.
Cooperative GC using Worker LCB.We make the case for co-
operative GC where each worker removes the garbage it has cre-
ated. Using the watermarks, a worker w can remove all versions
created by w transactions that started before LCB(w, oldest_tx or
oldest_oltp). In the remaining sections, we discuss storage and GC
techniques that build on this idea. Hence, we will use the shortcut
LCB(ts) for LCB(w,ts) when w equals the same querying worker.

Visible to >= 1 OLTP TXsVisible only to OLAP TXs

31 2 4 5
Graveyard Index Main Index

Only OLAP TXs 
scan and merge

both indexes page-wise 

Move once invisible
to OLTP TXs

…

OLAP
OLTP GC

Figure 5: Moving deleted records only visible to long-running
transactions to Graveyard Index

Watermark Maintenance. Our current implementation assumes
that whether a transaction is OLTP or OLAP is determined by the
upper levels of the systems (i.e., the query optimizer) – although it
would also be possible to detect long-running transactions dynami-
cally. The frequency of watermark updates varies from system to
system. We opt for randomized and interleaved refreshing between
transactions: after each transaction, we refresh with a probability
of 1/#W . Each transaction publishes its TSstart in a shared global
array and uses the most significant bit in the timestamp as a flag
to distinguish OLTP from OLAP transactions. This way, a single
iteration over the timestamps in the array is enough to calculate all
the needed watermarks shown in Figure 4.

3.2 Graveyard Index for Robust OLTP
DeletionCreates Tombstones. In currentMVCC systems, all keys
that are visible to at least one transaction must remain in the index.
When a transaction deletes a key, it marks it as logically removed but
physically keeps the entry in the index for other transactions. We
call such “dead” entries tombstones. Tombstones are opaque to the
low-level index operations. Range lookups, for example, will return
the first physical entry in the index whether it is a tombstone or a
visible tuple. Only after the MVCC logic determines that the entry
is not visible, can it ask the index to proceed to the next candidate
entry. In the presence of long-running transactions, tombstones
can accumulate on the hot path of operational transactions, which,
as discussed in Section 2.2, can lead to performance degradation.
Observation About Tombstones. To solve the tombstone prob-
lem, we somehow have to bring the knowledge of tuple visibility
to the indexes. To find the definitely-visible tuples in one logarith-
mic search without any manual skipping, one would have to index
the begin and end timestamp beside the user-defined key using
multi-dimensional indexes. However, such indexes have significant
overhead and do not provide worst-case logarithmic bounds. In-
stead, we exploit the observation that tombstones are only visible to
long-running (OLAP) transactions, which see an old snapshot. Short
(OLTP) transactions, on the other hand, will refresh their snapshot
frequently and therefore do not have to see most tombstones.
Graveyard Index.We propose an auxiliary data structure called
Graveyard Index, which holds all tombstones that are not relevant to
OLTP anymore. Every user-defined index has an associated Grave-
yard Index with the same key(s). As Figure 5 illustrates, only long-
running OLAP transactions have to look into the Graveyard Index
to retrieve old tuples that are deleted from the perspective of re-
cent snapshots. Between transactions, worker threads move the
tombstone from the main index to the Graveyard Index once the
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Figure 6: Tracking tombstones for garbage collection

tombstone is not needed by any OLTP transaction. All known com-
mit protocols allow deriving such kind of information – however,
at different costs. With OSIC, a tombstone is moved whenever the
delete commit time falls behind the oldest_oltp timestamp. OLTP
transactions never query the Graveyard Index, which ensures that
the complexity of index operations remains logarithmic in the num-
ber of visible tuples. This is a crucial feature of our design that
makes OLTP performance robust and solves the neworder problem.
OLAP.OLAP queries must ensure that they are not missing any old
tuple versions that have been moved to the Graveyard Index. With
B+-Tree indexes, this can be implemented as follows. Whenever an
OLAP query enters a leaf page searching for a range of tuples, it
intersects this range with the upper and lower bound of the leaf
page it is scanning. The resulting range is then used to look for
possibly visible tuples that are reachable through tombstones that
were moved to the Graveyard Index. If relevant tombstones are
found, then tuples from the main index leaf and the Graveyard
Index must be merged and returned in the correct order. In practice,
in large table scans only a small fraction of the tuples will have been
deleted, and the Graveyard Indexwill usually return an empty result.
Nevertheless, merging incurs some overhead for OLAP queries, but
we argue that the robustness gained for operational transactions
makes this worthwhile for systems that prioritize OLTP latency.
Tombstone Tracking. To move tombstones to the Graveyard
Index and to remove them physically from all indexes when they
are not needed any longer, we have to keep tight track of their
locations. Therefore, in addition to the Graveyard Index, we need
an additional data structure that acts as a “todo list” that points
to the tombstones and bookmarks the TSstart of the transaction
that created the tombstone, i.e., deleted the tuple. For this purpose,
we use a per-worker append-optimized B+-Tree that we call the
Tombstone Index shown in Figure 6. To allow multiple tombstone
pointers per transaction, we make keys unique by concatenating
CommandID after TSstart in the key (not shown in the figure). Using
the oldest_tx and oldest_oltp watermarks described in Section 3.1,
we can find the tombstones that are not needed by any transaction
and the ones only needed by the active OLAP ones. In the former
case, we physically remove the tombstones from the main index
and the corresponding pointers in the Tombstone Index. In the
latter case, we move the tombstone from the main index to the
Graveyard Index. However, we keep the tombstone pointer until
the deleted version is not needed any more as in the former case.

3.3 Adaptive Version Storage and GC
Overview. We combine both off-row (Delta Index) and in-row
(FatTuple) version storage. The default is off-row storage where old
versions are stored in partitioned delta indexes using transaction
TSstart as a key. This effectively makes the Delta Index (and also

…

OLTP appends delta
reusing visibility markers as a logical pointer

latest value| WorkerID (2B) |TSstart (8B) | CommandID (2B) | #updates (1B) | since_oldest_tx (2B)

… …
Delta Index (Key = TSstart)

Main Index

ΔiΔi-1

GC) TSstart < LCB(oldest_tx): remove obsolete versions

estimates chain length

Example of a tuple in chained format
…

Figure 7: TX appends the before image to Delta Index

the Tombstone Index) a “per-thread GC todo list” and enables very
efficient delta appends and range garbage collection. When a tuple
is updated frequently, we automatically convert it to the in-row
FatTuples format that stores all tuple versions in the main index.
Inlining enables precise GC without risking random I/O to storage.
To achieve robustness and efficiency for complex workloads we
combine off-row with in-row storage and several kinds of GC.
Delta Index: Off-Row Versioning and Todo List. By default, the
main index only stores the most recent tuple version. Older versions
are stored in a per-worker-thread Delta Index, which serves as an
off-row version store as well as a todo list for garbage collection. As
Figure 7 illustrates, tuples in the default chaining format store some
metadata besides the latest committed value: WorkerID, TSstart
determines the visibility according to OSIC protocol rules shown in
Listing 1. Together with the CommandID, they form the Delta Index
key and act as a logical pointer to the delta entry for the previous
version. This makes all delta inserts append operations that can
be heavily optimized using pointers to the rightmost leaf. Delta
Index GC translates to an efficient key range delete. Each delta
entry also contains the same triple to point to its previous version
(i.e., deltas are chained). CommandID distinguishes between several
operations of a transaction and can be omitted in the Delta Index
by using WorkerID|TSstart |IndexID|Key as the key. The #updates
and since_oldest_tx fields are used to estimate the chain length as
we will show later in this section.
Detecting Long Version Chains. Our second storage format,
FatTuple, is only useful for tuples with long chains that cannot
be purged using the classical watermark method because of an
active long-running transaction. Hence, the chain length plays a
significant role in this design. Maintaining the exact chain length
counter for each tuple is not a viable option because it costs an
additional index traversal to update the counter for every delta we
remove from the Delta Index. A randomized approach can lead to
many false positives that we only recognize after having traversed
the whole chain and possibly hit evicted pages to find out the true
length. We propose the following heuristic to estimate the chain
length at the cost of 3 bytes per tuple. As shown in Figure 7, we store
two additional fields in each tuple to estimate the chain length. The
first field, #updates tracks the number of times we update the tuple
while the oldest transaction in the system has not changed. The
second field, since_oldest_tx stores the least significant two bytes
of the current oldest transaction TSstart . Whenever a transaction
updates a normal (chained) tuple, it checks whether the current
oldest transaction TSstart is still equal to since_oldest_tx. If it is the
case, then it increments the update counter. Otherwise, it resets it
to zero. When the counter exceeds the number of workers, then we
switch to FatTuple.
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FatTuple: Optimized Tuple Format for Hot Tuples. In the
conversion process, we follow the chain in the Delta Index and
append the required deltas to our inline format shown in Figure 8.
In FatTuple, all deltas are stored next to each other in a slotted page
similar format and directly in the main index at the same key but
with large enough payload size. This gives us fast random access to
deltas within the main index, which we need for efficient precise
garbage collection, especially when we have to merge deltas that
cover different attributes. Note that we only use the FatTuple format
for very hot tuples. This avoids index bloat, as (by definition) only a
small portion of the database can be hot. We implement on-demand
precise garbage collection (OPGC) that first prunes tuples in the
Dead Zones [29] maintained by the OSIC watermarks and only use
all possible Dead Zones, by fetching all concurrent start timestamps,
before having to enlarge the FatTuple. As we only write the TSstart
in the tuple, we take TSstart − 1 of the next version as the TScommit
of the version before. The resulting reduced accuracy is negligible
in practice for frequently-updated tuples.
Delta vs. Full Copy. So far, we have discussed deltas that only
work for updates that do not change the tuple size and touch only
few attributes. The full copy approach must also be implemented
for updates that actually replace the tuple and change its length.
To support such different-length updates in our design, we store
full copies in the Delta Index using the same mechanism. However,
in FatTuple, instead of storing the delta, we store a logical pointer
(which also includes the visibility information) to the full copy in
the Delta Index. Using only the version visibility information stored
inline, a precise GC algorithm can decide which versions to remove
without having to look into the version itself – as it would do to
merge the attributes in the delta case.
Decompose FatTuple at Page Eviction.With our default chained
tuple format, we tightly keep track of versions in Delta Index. The
system can always find them using index range scans and hence
they can be safely evicted to storage. With FatTuple, a version only
exists in-lined in the tuple. There is no external logical pointer to it
and the system does not bookmark FatTuples. This is a deliberate
design decision because FatTuples versions are usually short-lived.
However, workloads change over time and frequently-updated Fat-
Tuples may become cold. Blindly evicting FatTuples to storage can
lead to a garbage leak if the evicted FatTuple is never accessed again.
Thus, before we evict any page, we check whether it contains Fat-
Tuples and convert them to the chained format. This transforms
versions to Delta Index entries that will eventually be GCed.

3.4 Durability and Recovery
Logging. We separate recovery from versioning and use WAL
as the only source of truth after a crash. Although we store the
previous version in the Delta Index, we keep the before image in
the WAL entries. We also write the start and commit timestamp to

the WAL. This eliminates the durability requirement for Commit
Log, Graveyard Index, Tombstone Index, and Delta Index. Only the
page identifiers that the buffer manager allocated for the auxiliary
indexes are durable in order to truncate these indexes after a crash.
FatTuple changes must be logged and recovered just like any other
operation in the main indexes.
Recovery. After we determine the winning transactions in the first
recovery phase (analysis), we insert the commit timestamps for the
last committed transaction from every worker in its own Commit
Log. While applying the redo log, delete operations for winning
transactions remove the tombstones from the main index.
Transaction Abort. In our design, the Commit Log holds entries
only for successfully committed transactions. Otherwise, we would
not able to represent the set of committed transactions by a worker
using a single timestamp anymore because of the gaps caused by
aborts. Consequently, on abort, we revert all transaction changes
and recycle the same start timestamp for the next transaction.
Early Lock Release. In traditional systems, concurrency control
locks are only released after all WAL entries, including the commit,
are written and flushed to durable storage (hardened). Only then
the transaction is signaled as committed to the user. In skewed
workloads, this may lead to lock contention that limits scalability.
To avoid such log-induced lock contention, we implement the Early
Lock Release (ELR) [15, 28] technique. ELR releases the write lock
after inserting the commit timestamp in the Commit Log without
waiting until the logs are hardened. This way, we remove the log
flush latency from the critical path and reduce contention in skewed
workloads. To still preserve durability and recoverability, we have
to make sure that all transactions we read from are durable when
we signal the commit. This corresponds to having all WAL logs of
transactions with commit timestamp less than the current trans-
actions start timestamp hardened on storage. This is implemented
by introducing an additional atomic counter per worker thread
(“hardened_commit_ts”) that tracks the commit timestamp of the
latest transaction that got its WAL hardened. The minimum from
each worker thread is then tracked by a global watermark that is
used to check whether it is safe to signal the transaction after ELR.

3.5 Putting Everything Together
After describing the techniques individually, let us now go back to
Figure 2 and bring all pieces together.
Transaction Begin. A transaction (TX) starts by drawing a TSstart
from the Global Logical Clock. This start timestamp fixes the snap-
shot, i.e., the set of visible transactions. The TX publishes the times-
tamp and its type (OLAP or OLTP) in a global array, so it can be
used later to refresh watermarks. This finalizes the initialization
phase and now TX can start processing user commands.
Update Operation. If the updated key is found in the main index
then the TX has to check whether the current version v is visible.
If it is not visible, TX has to abort to prevent dirty writes [12].
Using the commit log of the worker that wrote the version, we
query 𝑞 = LCB(v.WorkerID, TX .TSstart ) and cache it to find the
latest visible transaction to us from that worker thread. The current
version is then visible if 𝑞 > 𝑣 .𝑇𝑆𝑠𝑡𝑎𝑟𝑡 . If the tuple is in the default
chained format, we then update the value and the chain-length
estimation counters accordingly. If the length exceeds a pre-defined
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threshold, e.g., number of workers, then we convert it to FatTuple.
Otherwise, TX proceeds normally and inserts the delta in its own
Delta Index. For FatTuple, TX appends the delta in the same index
entry and triggers precise garbage collection if the FatTuple is full
before enlarging it.
Transaction Commit.We first exclusively lock the worker thread
commit log to force other threads to wait before calling LCB on
our commit log until we finish committing. Then, we draw the
commit timestamp from the Global Logical Clock and insert it in
the commit log before we unlock it.
Garbage Collection. In our adaptive storage scheme, the GC tech-
niques adapt to the user workload at the tuple level. The methods
we use for deltas and tombstones of normal (chained) tuples differ
from the FatTuple ones. In Section 3.3, we have discussed GC in the
context of each storage format. Here, we list all the GC methods
we use according to the place where we execute them:
(1) GC Between Transactions: Using watermarks and commit
logs, we compute for every worker the set of transactions that
are visible to all active transactions and the ones visible only to
the OLTP transactions. This corresponds to LCB(oldest_tx) and
LCB(oldest_oltp), as shown in Figure 2. Then, we purge all update
deltas and tombstone pointers in Delta and Graveyard Indexes cre-
ated by globally-visible transactions.We also remove all tombstones
that the Graveyard Index entries pointed to from their main index.
The remaining tombstones in the range TSstart < LCB(oldest_oltp)
are only needed by OLAP transactions. Our Graveyard Index tech-
nique moves the latter tombstones from their relation’s main index
to their graveyard.
(2) GCWithin Transactions:When we update a tuple, we esti-
mate its current chain length. If it exceeds a pre-defined threshold,
we shorten the chain length using precise garbage collection as de-
scribed by vDriver [29] and then convert it to FatTuple. Subsequent
updates on the FatTuple follow an on-demand precise garbage col-
lection to keep the chain length short for robust OLAP scans.
(3) GC At Page Eviction: Versions in FatTuples are not tracked
by the Delta Index. Thus, we avoid evicting pages with FatTuples
because the workload may never touch the evicted FatTuples again,
and we would end up with garbage leak on storage. On eviction, we
convert FatTuples back to the default format and create Delta Index
entries for each version, so they eventually get garbage collected.

4 EVALUATION
Implementation. We took the open source implementation of
LeanStore [2], which had no transactions support, as a basis and im-
plemented three variants on top of it: LeanStore (Basic) uses the same
snapshotting and committing protocol used in well-known systems
like WiredTiger [3], PostgreSQL [1] and, MySQL InnoDB [7]. For
version storage, it uses our Delta Index to store versions off-row
and to maintain pointers to tombstones. However, it has no Grave-
yard, FatTuple, or precise garbage collection capabilities. LeanStore
(NoSteal) is almost the same as Basic but uses a no steal commit pro-
tocol that imitates main-memory protocols by writing the commit
timestamp into the write set after committing. LeanStore (Full) com-
bines all the techniques proposed in this paper (the OSIC protocol,
Delta Index version storage, the FatTuple format, and the Grave-
yard Index). Both variants interleave Garbage Collection between
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Figure 9: Graveyard technique stabilizes TPC-C with a long-
running transaction. (1 TPC-C thread, 1 scan thread)

transactions and do not use any background GC threads. We also
implemented per-thread write-ahead logging [27], group commit,
and Early Lock Release with dependency tracking [5]. The source
code is available: https://github.com/leanstore/leanstore/tree/mvcc.
Competitors.We compare againstWiredTiger in version 10.0.0 [3]
and PostgreSQL in version 12.9 [1]. For WiredTiger and LeanStore,
we use a C++ client and the same benchmark implementation. For
PostgreSQL, we use the JDBC-based client BenchBase [17, 40] and
its benchmark suite. Both competing systems take snapshots by
building a vector of all concurrent in-progress transaction IDs and
both rely only on highwatermark garbage collection.We configured
all systems to run in snapshot isolation mode.
Hardware. We ran all experiments on a single-socket server with
an AMD EPYC 7713 64-Core CPU (128 hardware threads) with
512 GB of DRAM. For storage, we use XFS file system on top of a
RAID-0 of ten 3.8 TB Samsung PM1733 SSDs.
TPC-C + Scan: OLTP Performance. We begin by evaluating
the robustness of operational transactions in mixed workloads.
In Figure 1, we show that TPC-C performance collapses when a
long-running transaction enters the system. In Figure 9, we run
the same experiment (1 TPC-C + 1 long-running OLAP thread),
but include the proposed techniques and show absolute numbers.
Because only two threads are involved in this experiment, varying
the commit protocol has little impact on performance – which we
later evaluate separately. We therefore merge the plot lines for (Ba-
sic/NoSteal/OSIC). Only by using the Graveyard Index, we manage
to retain a stable OLTP throughput. The small performance loss
after OLAP enters is due to the additional work that the OLTP
thread has to do to move tombstones from the main neworder index
to its Graveyard Index. FatTuple limits the version chain length
and thereby stabilizes OLAP performance but not OLTP. In the Full
variant, FatTuple improves the in-memory performance slightly
because it saves some Delta Index traversals for frequently-updated
tuples. However, as we will see in the out-of-memory TPC-C ex-
periment, the larger FatTuple payload can lead to higher page miss
rate and outweigh the benefit of less index traversals. Note that
LeanStore is not just much more robust than the competitors, even
at the start of the experiment its throughput is 2×/30× faster than
WiredTiger/PostgreSQL. We therefore omit the other systems from
the following experiments.
TPC-C + Scan: OLAP Robustness. We demonstrate the effective-
ness of the FatTuple optimization in retaining OLAP scan through-
put over frequently-updated tuples using a mixed workload of 10
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TPC-C threads and 1 OLAP thread. The analytical query scans
other tables (or just sleeps) for a varying number of seconds then
scans all tuples in the warehouse and district relations. This is an
extremely challenging workload because these two tables are up-
dated frequently by OLTP threads, and a longer delay means that
many versions accumulate. The scan throughput depending on the
starting time is shown in Figure 10. Scanning the two hot relations
while the snapshot is fresh (t=0) is very fast. Over time, the skewed
updates of TPC-C lead to longer chains that the OLAP transaction
has to traverse to reach the version it got assigned when it acquired
its snapshot. FatTuple mostly overcomes this issue by pruning un-
necessary versions in-between. There is still a small performance
gap between the ideal state (t=0) and what FatTuple delivers (t>0).
Because a FatTuple is larger than normal tuples, we can fit fewer
tuples on a single leaf and the OLAP scan has to traverse more
leaves. However, the alternative off-row versioning would require
traversing other trees and skipping invisible in-between versions
to retrieve older versions, causing very low OLAP performance.
TPC-C + Scan: Scalability.We evaluate the overhead and scala-
bility of our techniques by comparing the performance of TPC-C
alone (OLTP) vs. in parallel to a long-running OLAP query (HTAP).
We also compare against the Single Version implementation of
LeanStore and the NoSteal variant that installs the commit times-
tamp in the write set tuples as main-memory protocols do. We omit
HTAP configurations without the Graveyard Index because the
TPC-C performance would drop quickly as tombstones accumu-
late in the neworder table. The results in Figure 11 show that the
full variant (Graveyard and FatTuple) stabilizes performance while
achieving almost the same throughput as in the pure OLTP (OSIC)
case. With warehouse affinity (i.e., under very low contention), our
OSIC protocol does not have to look into the commit log of other
threads and hence performs better than the basic variant. With
cross warehouse transactions (i.e., under moderate contention), the
benefit of OSIC over the basic variant diminishes because OSIC
will have to look into the commit log of other threads anyway. The
variant with the NoSteal commit protocol is the slowest because it
requires 1.6×more index traversals than the OSIC or Basic protocol
to install the commit timestamp in the write set.
Out-of-Memory Breakdown. In the next experiment, we eval-
uate the impact of the proposed MVCC techniques on robustness
and performance using 1 TPC-C thread and 1 long-running OLAP
thread. We use a scale factor of 10 warehouses (no affinity) and a
small buffer pool that only fits half of the working set needed by a
single warehouse. Because the TPC-C performance deteriorates in
all variants without Graveyard, we show the average measurements
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results of the first five seconds. The following table shows the TPC-
C transaction rate, number of index traversals (op) per transaction,
I/O page reads per transaction, and the resulting robustness:

TX
/s

Index
Ops

Page
Read

robust
OLTP

robust
OLAP

OSIC 1,517↓ 24↑ 8.9↑ N N
OSIC+PGC [13] 1,253↓ 34↑ 10.9↑ N Y
OSIC+FatTuple 1,322↓ 23↑ 10.3↑ N Y
OSIC+Graveyard 1,531 26 8.9 Y N
Full 1,330 25 10.2 Y Y

(↓) Decrease over time (↑) Increase over time
The OSIC+PGC variant imitates the in-memory Steam [13] pre-
cise garbage collection technique in our buffer-managed system
LeanStore. PGC achieves OLAP robustness but at a high cost be-
cause of the IO and index traversal cost of jumping back and forth be-
tween the versions in the main index and Delta Entry. Our FatTuple
limits the length of version chains and stabilizes OLAP performance
at a lower cost. Most of the performance loss with FatTuple is due
to the larger values in the main index that lead to additional page
misses in the current LeanStore implementation. A better replace-
ment strategy could lead to better results. Enabling the Graveyard
technique does indeed cost us additional index traversals to move
the tombstones but not any additional page faults because the move
happens shortly after its creation. As a result, it stabilizes OLTP
performance and quickly outperforms the basis variant (OSIC) as
it saves us the ever-increasing number of tombstones that the de-
livery transaction would have to skip. We believe that robustness
and predictability is worth the performance cost of the full variant.
Note that in a pure OLTP workload, the full variant would deliver
the same performance as OSIC because Graveyard and FatTuple
are triggered only in the presence of a long-running transaction.
Bulk Loading. A common workload pattern is bulk loading: a
transaction inserts or updates large amount of data then commits. In
such a workload, stamping the commit timestamp in the write set is
waymore expensive than in short transactions because the write set
does not fit in the cache anymore. As the left-hand side of Figure 12
shows, when the buffer pool has just enough space to fit the entire
data set, NoSteal (main-memory) protocols causes 1.5× overhead.
When the data size exceeds the buffer pool, then the overhead of
in-memory protocols quickly exceeds 2× for the following reason.
Initially, the transaction can create new pages by consuming free
memory from the buffer pool and let the background threads handle
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eviction. However, the created pages are now evicted to storage
and the transaction now has to synchronously read the page first
from SSD before writing the commit timestamp.
Out-of-Memory Key/Value. Modern NVMe SSDs support mil-
lions of IOPS, but their read latency is still on the order of 100
microseconds. This means that to get good throughput one needs to
performmany concurrent transactions.We evaluate out-of-memory
scalability using a key/value random point lookup workload and
a large number concurrent short transactions. The results on the
right side of Figure 12 show that OSIC scales linearly and very
close to the single-version read uncommitted variant. With 400
threads, it is able to maintain 20 GiB/s read bandwidth from storage.
The classical commit protocol, on the other hand, struggles with
the high degree of concurrency. Its performance stops scaling and
starts to deteriorate at about 300 threads because of the increasing
number of L1-cache misses it has to pay to build its snapshot.
Deterministic Execution Under Contention. In our last exper-
iment, we compare non-deterministic with deterministic execution
under high contention. We use 10 threads and a highly skewed
workload with multiple key updates per transaction. We implement
a deterministic execution layer on top of LeanStore where the set
of keys that a transaction updates is known a priori at the start of
each transaction. The deterministic layer latches the B-Tree leaves
that contain the keys in ascending order before starting the transac-
tion. This makes the competing transactions gracefully wait on the
low-level synchronization mutexes, which effectively serializes the
transactions. As the following figure shows, under high contention
our non-deterministic approach suffers from a higher abort rate:
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91% abort - saving 2 cores

0K

200K

400K

1 2 3 4 5 6 7 8 9 10

Key updates per transaction

T
h
ro

u
g
h
p
u
t 
[t

xn
/s

]

LeanStore (deterministic)

LeanStore (OSIC/non-deterministic)

2.2x faster

3.7x faster

The resulting throughput is 2.2-3.7× slower than what the deter-
ministic model is able to achieve. In the non-deterministic model,
the more keys a transaction has to update, the more likely it is
to encounter a yet invisible latest version that forces it to abort.
Moreover, the deterministic approach occupies only 3 cores out
of 10 instead of 8 cores because threads are put to sleep in turn at
the mutexes instead of retrying aggressively. Replacing OSIC with
Basic or NoSteal protocol yields the same results.

5 RELATEDWORK
MVCC is a well-studied topic [8, 16, 18, 20, 22, 31, 32, 32, 45, 48, 50–
52], with much of the work focusing on peak performance.

5.1 Snapshot Isolation Commit Protocols
The PostgreSQL [1, 46] community acknowledged the limitations
of their current snapshotting protocol and proposed an alternative
based on Commit Sequence Number (CSN) [4]. CSN orders snap-
shots and commits to avoid constructing an array of in-progress
transaction IDs (XID). This is done using a central spooled ring
buffer that maps XID to CSN. However, this never made it into pro-
duction and remains an interesting proof of concept that reinforces
the need for better snapshotting protocols in disk-based systems.

To realize atomic commits, in-memory systems implement an
indirection that maintains the state of the transaction until it aborts
or installs the commit timestamp in the write set. SAP HANA [33]
uses a pointer from the written tuples to the in-memory transaction
state object. Hekaton [16, 32] uses a central hash table to store the
state (active, preparing to commit, committed, or aborted) and
possibly the commit timestamp for all in-flight transactions. Not
only can such a centralized data structure become a contention hot
spot, it cannot fully substitute touching the write set. Its size would
grow indefinitely as the system processes more transactions. OSIC,
in contrast, keeps the memory footprint bounded by exploiting
worker identifiers and the Transitive Commit Invariant.

Umbra [22] avoids re-timestamping for large write transactions
by extending Hyper [39] with an additional single-writer mode
that uses a central atomic counter to mark the bulk transaction as
committed for future transactions. Our design solves the problem
without restricting the concurrency of write transactions.

5.2 Garbage Tracking and Tombstones
NoisePage schedules garbage collection tasks to maintain its physi-
cal data structures using an in-memory Deferred Action Framework
(DAF) [53]. DAF tags tasks such as tombstone removal and obsolete
version cleaning by a timestamp and executes them once the small-
est start timestamp of active transactions is larger than the tagged
timestamp. Our Tombstone and Delta Index are based on similar
ideas. The difference is that we track the smallest start timestamp
of short-running OLTP and long-running OLAP separately and
trigger different actions depending on who still need the tombstone.
Moreover, we use buffer-managed B+-Trees that support range
queries to find ready-to-execute actions.

MySQL/InnoDB [7] stores versions in undo log records in buffer-
managed slotted pages. Tuples in the main index contain 7-bytes
logical pointers to previous versions. Once a transaction commits,
InnoDB appends pointers to all generated undo records to a His-
tory List, which is used a todo list by background purge threads.
Our Delta Index is more efficient as its key is part of the visibility
information (start timestamp and worker id) we store in the tuple.
Using B+-Tree range scan over Delta Index, we can find the obsolete
versions without having to maintain an additional todo list.

Umbra [22] uses per-page hash tables to link tuples with their
version chains. These tables are allocated outside the buffer pool
to avoid persisting temporary versions. This design has low in-
memory performance overhead but assumes that concurrent OLTP
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transactions fit entirely in memory – requiring additional budgeting
for the hash table memory consumption. For larger-than-memory
transactions, an additional optimization is needed to avoid phys-
ical memory allocation. Our design handles larger-than-memory
workloads transparently, relying solely on buffer-managed data
structures. We append versions in per-worker Delta Indexes built
on an optimized B+-Tree [5]. Large bulk loading transactions are
transparently handled by the replacement strategy. For short trans-
actions, older versions in indexes will get pruned before the buffer
manager evicts them and recent versions are accessed in near in-
memory performance.

5.3 Precise Garbage Collection
vDriver [29] is a version management architecture that brings pre-
cise garbage collection to disk-based systems. To identify obsolete
versions, vDriver uses the Dead Zone concept, which we also use
in FatTuple. Dead Zones are time ranges between the start of two
consecutive transactions. A version is considered dead and can be
reclaimed when its visibility starts and ends in one of the Dead
Zones. In Section 3.1, we propose maintaining a single global Dead
Zone between the newest OLAP and oldest OLTP which we use in
our FatTuple OPGC heuristic.

vDriver and its successor Diva [30] require substantial changes
in the storage scheme. Their Single In-row Remaining Off-row
(SIRO) versioning places the most recent and first oldest versions
in-row close to each other to accelerate recovery while pushing the
remaining versions to an off-row version store. The off-row storage
uses mixture of in-memory and buffer-managed data structures for
metadata maintenance and version clustering. Our FatTuple data
structure is a simpler and can be integrated into any system.

Themain-memory systemsHANA [33] andHyperwith Steam [13,
39] use a precise (interval-based) garbage collection technique for
purging all tuple versions that are not required by any transaction.
However, both rely on fast in-memory version chain traversal.

5.4 Alternative HTAP Techniques
In LeanStore, we use a unified row-store storage engine for HTAP
workloads. There is another body of work that examines column-
stores for HTAP [36, 44] or a combination of both [9, 24].

L-Store [44] proposes a lineage-based columnar storage format
for real-time analytics in an unified storage engine. OLTP transac-
tions append changes in write-optimized pages that L-Store consol-
idates into read-optimized pages for fast analytics in a contention-
free and transactional manner. While the L-Store format delivers
superior analytical performance, in the presence of a long-running
transaction it is still vulnerable to the performance anomalies that
this paper addresses: entries to dead RIDs will remain in the in-
dexes, slowing down OLTP; and without precise garbage collection
version chains can grow beyond need, slowing OLAP down. We
plan to investigate adopting the L-Store columnar format together
with our robustness techniques for better OLAP performance.

There are also systems with separate types of storage engines.
BatchDB [38] uses primary-secondary replica to isolate OLTP from
OLAP. It processes analytical queries in a batch on the same snap-
shot before applying recent changes from the OLTP primary to
reach a new snapshot. Long-running queries do not run on the

OLTP engines and tombstones will not accumulate on the hot path
eliminating the need for a Graveyard index. However, if more than
one snapshot is allowed to exist in the OLAP engine, then our
FatTuple approach becomes applicable to detect unnecessary long
version chains. The isolation achieved in this model comes at the
cost of keeping the analytics replicas in sync with the primary. Our
design keeps OLTP safe from degradation while maintaining all
data in a single storage engine.

Wildfire [10, 11] extends Spark with stateful engines that handle
both transactional and analytical queries. At a fixed interval, Wild-
fire stages data from the local SSDs of the transactional engines to
a shared file system, which is then accessed by dedicated stateless
analytical Spark engines. Analytical queries with strict freshness
requirements must run on the same stateful engines, jeopardizing
OLTP performance as shown in Section 2.2.
Deterministic Systems. LeanStore uses a cursor-oriented trans-
action model with no assumptions on the user workload. Deter-
ministic engines, on the other hand, exploit a priori knowledge of
read/write-sets to unlock more performance potential. BOHM [20]
determines the serialization order and creates the necessary ver-
sions for transactions prior to the execution phase. QueCC [42]
improves multi-core scalability by parallelizing the planning and
execution phases using thread-to-queue assignment and priority-
based planning. Unlike LeanStore, deterministic systems can make
their writes visible before committing [19]. What deterministic
approaches have in common is that they work on batches of trans-
actions. For short-running OLTP transactions, this constraint is
not a problem. OLAP queries, on the other hand, can take a long
time, in particular in out-of-memory systems such as LeanStore.
Thus, a single long-running OLAP query may effectively halt OLTP
processing for a long time. Multi-versioning in the mentioned de-
terministic schemes maintains the previous version only for trans-
actions within the same batch. This therefore does not solve the
performance problems of long-running, across-batch queries.
Serializability. In this paper, we only consider snapshot isolation.
While this is a relatively high isolation level – the default for most
production-grade systems is only read committed [14] – serializ-
ability would clearly be even better. Modular techniques such as
Serializable Snapshot Isolation [21, 41], Serial Safety Net [49], Pre-
cision Locking [39], Timestamp Range Conflict Detection [37], and
graph-based certifiers [26, 43] can be used on top of our design.

6 SUMMARY
We have shown that porting existing disk-based MVCC designs to
high-performance storage engines leads to limited scalability and
severe performance cliffs in mixed workloads. Designing a robust,
scalable, and efficient MVCC system for out-of-memory engines re-
quires rethinking the SI commit protocol, storage layer, and garbage
collection. The OSIC commit protocol provides cheap commits, scal-
able transaction processing, and enables precise garbage collection.
Together with an adaptive storage layer, our design leads to robust
performance on complex workloads.
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