
Cloud Analytics Benchmark
Alexander van Renen

Friedrich-Alexander-Universität Erlangen-Nürnberg
alexander.van.renen@fau.de

Viktor Leis
Technische Universität München

leis@in.tum.de

ABSTRACT
The cloud facilitates the transition to a service-oriented perspective.
This affects cloud-native data management in general, and data
analytics in particular. Instead of managing a multi-node database
cluster on-premise, end users simply send queries to a managed
cloud data warehouse and receive results. While this is obviously
very attractive for end users, database system architects still have
to engineer systems for this new service model. There are currently
many competing architectures ranging from self-hosted (Presto,
PostgreSQL), over managed (Snowflake, Amazon Redshift) to query-
as-a-service (Amazon Athena, Google BigQuery) offerings. Bench-
marking these architectural approaches is currently difficult, and it
is not even clear what the metrics for a comparison should be.

To overcome these challenges, we first analyze a real-world
query trace from Snowflake and compare its properties to that of
TPC-H and TPC-DS. Doing so, we identify important differences
that distinguish traditional benchmarks from real-world cloud data
warehouse workloads. Based on this analysis, we propose the Cloud
Analytics Benchmark (CAB). By incorporating workload fluctua-
tions and multi-tenancy, CAB allows evaluating different designs
in terms of user-centered metrics such as cost and performance.

PVLDB Reference Format:
Alexander van Renen and Viktor Leis. Cloud Analytics Benchmark. PVLDB,
16(6): 1413 - 1425, 2023.
doi:10.14778/3583140.3583156

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/alexandervanrenen/cab.

1 INTRODUCTION
Cloud is Taking Over. Over the previous decade, the cloud [4]
has transitioned from a promising niche topic to the standard way
of deploying systems. In particular, cloud-native data warehousing
and analytics has become a major growth area, with systems such
as Snowflake, Amazon Redshift, Databricks, and Google BigQuery
enjoying great success. However, it is probably fair to say that most
of the research and development behind these cloud-native systems
occurred in industry, and most academic database systems research
still does not consider the implications of the epochal transition to
the cloud.
Cloud isDifferent.The cloud environment differs from on premise
deployments in some important respects. Most cloud-native data

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583156

warehouse services run on virtual compute instances hosted by
public cloud providers such as Amazon EC2, Microsoft Azure vir-
tual machines, or Google Compute Engine (GCE). Systems like
Lambada [25] or Starling [26] build on top of function-as-a-service
offerings. Either way, these resources can be dynamically scaled
to intermittent workloads in very short time periods (minutes or
even seconds). In principle, a perfectly-scalable and elastic database
system could use twice the compute resources to cut the query time
in half – thus escaping the traditional computer science tradeoff
between hardware cost and runtime. Obviously, such a perfectly-
scaling data warehouse is theoretical, but it illustrates the point that
in the cloud we have to rethink our understanding of the relation
between performance, compute resources, and cost [12]. The tra-
ditional goal of optimizing runtime while assuming a fixed, given
hardware is not sufficient anymore.
Cloud Architectures. The cloud landscape has led to a variety
of different data warehouse architectures [31] and pricing models.
These approaches can be classified along the following spectrum:
(1) Customers can rent compute resources (i.e., virtual machines)
themselves and host their database systems of choice. (2) Companies
are offering hosted data warehouse services, such as Snowflake or
Amazon Redshift. (3) There are fully-managed services like Google
BigQuery and Amazon Athena that fully embrace the query-as-a-
service model. Generally speaking, there is a clear trend towards
more integrated “serverless” services.
Benchmarking Challenges.Despite the significant differences be-
tween the on-premise world and the cloud, academics [31] as well as
practitioners usually rely on pre-cloud era benchmarks like TPC-H
or TPC-DS when comparing cloud analytics systems [6, 14, 36].
While those benchmarks have served us well in the past, they fall
short in capturing the opportunities and challenges of cloud data
warehouses [2, 13, 24]. They evaluate the performance of a query
engine for a particular workload on a given hardware, enabling us
to determine which cloud data warehouse has the superior query
engine. While a fast query engine is definitely desirable, it hardly
provides any direct customer value in an environment where hard-
ware resource can virtually be scaled indefinitely. Thus, we need to
view the query engine as one component of a larger system: Unlike
with an on-premise deployment, a cloud data warehouse service
should manage the hardware – ideally automatically adapting to
the current workload. Moreover, cloud data warehouses are not
used by a single customer, but by multiple customers at the same
time (multi-tenancy).
Snowflake Dataset to the Rescue. Cloud-native database systems
research in academia remains difficult and therefore still relatively
rare. One reason is that it is not clear how to operationalize the
abstract cloud challenges suggested above into a concrete research
program. In other words, since most academics do not have access
to real-world cloud workloads, research remains stuck in the on-
premise world. The goal of this paper is to overcome this problem.

1413

https://doi.org/10.14778/3583140.3583156
https://github.com/alexandervanrenen/cab
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583156
https://www.acm.org/publications/policies/artifact-review-and-badging-current


S3

CPU1 CPU8
N2N1

N4 N3

Node #1

…

DRAM

SSD

VW 1 (4 nodes)

N2N1

N4 N3

VW 2 (8 nodes)

N6N5

N7 N8N1

VW 2 (1 node)

DB1 DB2 DB3

Customer 2Customer 1

Control Plane
access/tx-control, query compilation, scheduling

caching

Figure 1: Snowflake Architecture: Customers can rent any num-
ber of virtual warehouses (VWs) to process databases stored in S3.

To do this, we rely on real-world telemetry dataset released by
Snowflake, one of the most prominent cloud data warehouses. The
workload contains performance statistics for all Snowflake queries
over a 2-week period in 2018.
Contributions. The first contribution of the paper is to analyze the
Snowflake dataset and compare it with well-known OLAP bench-
marks from the TPC. We identify important workload differences,
including a higher ratio of data manipulation language (DML) state-
ments and a much higher variance of table and query sizes. Based
on this analysis, our second contribution is a new benchmark for a
cloud data warehousing called Cloud Analytics Benchmark (CAB).
For pragmatical reasons, CAB is derived from TPC-H, but adds
crucial dimensions such as elasticity, multi-tenancy, and the cloud-
specific query characteristics. We propose CAB as a new cloud data
warehouse benchmark focusing on monetary workload cost and
query latency. From an academic perspective, we argue that such a
benchmark is essential to (1) enable a fair and realistic comparison
of existing cloud data warehouses and (2) provide a cloud-specific
optimization goal for designing new systems and architectures.

2 BACKGROUND: SNOWFLAKEWORKLOAD
In this section, we describe the architecture of the Snowflake data
warehouse platform and give an overview of the Snowset – a dataset
with detailed profiling information of the Snowflake platform.

2.1 Snowflake
Snowflake is a data warehousing product offering analytical data
management as a service [7]. Customers can rent virtual warehouses
(VWs), which are dedicated compute clusters that run on public
cloud instances. Snowflake is able to run on three of the major
public cloud vendors (Amazon’s AWS, Google’s GCP, Microsoft’s
Azure). The number of nodes used in a VW can be configured in
powers of two by the customer and earlier work [20] suggests that
on AWS VWs currently consist of the relatively small c5d.2xlarge
instances (8 vCPUs, 16GB DRAM, and one 200GB NVMe SSD).

Snowflake deploys a disaggregated storage architecture (cf. Fig-
ure 1) where all persistent data is stored on Amazon’s Simple Stor-
age Service (S3), a scalable object store accessed through a REST-like
web API, and loaded into VWs on demand for query processing.
The persistent data is organized in logical databases and Snowflake
allows for an 𝑛:𝑚 mapping between VWs and databases (in fact,
database access can be shared between customers and is even sold
on an internal marketplace). To improve query performance, each
node uses its local DRAM and SSD as a write-through cache for
persistent data. This ephemeral cache is also used for intermediate
data and can spill over to S3 (data is never written to other nodes).
To further reduce the amount of data that needs to be fetched from
S3, Snowflake offers zone map-based pruning for table scans. In
addition, a partitioning key can be specified for each table, which
can reduce network communication during distributed joins and
aggregations. While partitioning can improve query performance,
we opted to forego manual optimization in our experiments. In
Snowflake, all meta information about databases, partitions, and
queries are stored in an OLTP database (FoundationDB), which is
also drives transaction isolation (read committed) and atomicity [8].

2.2 Snowset
In 2020, Snowflake released the so called Snowset dataset [34], which
contains statistics about ≈ 69 million queries that were run during
a two-week period on the Snowflake platform on AWS in Febru-
ary/March 2018. To the best of our knowledge, Snowset is the
first publicly available dataset on real-world, large-scale data ware-
housing. It also offers profound insights into a major cloud-native
software-as-a-service offering. Due to obvious privacy concerns,
the Snowset does not contain any user data or SQL code, but many
per-query runtime metrics as summarized in following table:

Meta queryId, warehouseId, databaseId
Platform warehouseSize, coresPerServer, usedServers
Timing start, end, duration, scheduling

compilation, controlPlane, execution
Data {read, write} × {persistent, interm.}

× {bytes, requests} × {S3, cache}
CPU Time user, system
Profiling {read, write} × {persistent, interm.} × {s3, cache}
Profiling CPU × {IDL, busy}, mutex, setup, teardown, . . .
Profiling Scan, Join, Agg., Sort, DML, . . .

A 2020 NSDI paper by Vuppalapati et al. [35] analyzed the
Snowset from a networking and systems perspective, deriving inter-
esting resource utilization and management insights. The findings
by Vuppalapati et al. relevant for our research are:
▶ In terms of query counts, the Snowset workload consists of
many read/write queries (≈59%) compared to read-only (≈28%)
and write-only ones (≈13 %). They have classified this surprisingly
high amount of read/write queries as ETL-style data transformation
jobs that are performed within the data warehouse, due to many
of those queries reading roughly as many bytes as they write (i.e.,
read_bytes÷write_bytes = 1±0.1 for≈61.2 % of read/write queries).
▶ When looking at query arrival rates over time, the Snowset
often exhibits an oscillating pattern, where more read-only queries
arrive during working hours on weekdays. This effect is much

1414



Figure 2: Workload Profile: First row: density function of the duration, CPU time, and read bytes per query as well as the database size per
customer. Second row: weight density function by query importance (its value form the x-axis). Example: in the CPU time plot, we multiply each
query by its consumed CPU time (i.e., a query that takes 100 s of CPU time is 100 times more important than one that only takes 1 s).

less pronounced for read/write queries and non-existent for write-
only queries; their arrival rate remain at a constant (noisy) level
throughout the week. This suggests that the ETL process is mostly
automated while analytical queries are more user driven (manual
inputs and tool generated). While this holds for the workload as a
whole, our results suggest that all three query types vary over time
for individual customers (cf. Section 4).
▶ They observe a similar behavior for resource utilization: The fluc-
tuating resource demands of individual customers mostly average
out in a system-wide view for CPU, Memory, Network TX, and
Network RX to an average of 51 %, 19 %, 11 %, and 32 % respectively.
▶ The average cache-hit ratios is between 60% and 80%, even
though the cache is much smaller than the database (0.1 % on aver-
age), suggesting temporal and spatial skew in the workloads.

In addition to these points, the Snowset has many insights for
database researchers that have not yet been mined and discussed in
the literature. In the next to sections, we therefore expand this inves-
tigation of the Snowset focusing on SQL workload characteristics,
multi-tendency aspects, and elasticity concerns.

3 REAL-WORLD DATAWAREHOUSING
The TPC-H and TPC-DS benchmarks are the de facto standard for
measuring data warehouse performance [10]. The Snowset gives us
the opportunity to compare these artificial workloads with a real-
world trace of actual customer workloads. To this end, we measured
the TPC-H (sf = 100, size = 100GB) and TPC-DS (sf = 100, size =
100GB) benchmark on a commercially available Snowflake instance
(“STANDARD” edition) in late 2021. We performed one full run of
all TPC-H and TPC-DS queries including the data refresh functions
on a freshly loaded dataset without any manual tuning. Throughout
this section, we compare our experimental results with the tracing
information in the Snowset. We find that in comparison with the
TPC workloads, cloud data warehouse workloads have much more
variety (in terms of data size, database size, and query duration), are
less join heavy (which suggests more denormalized schemas), and
perform more complex data manipulation (hinting at an in-data-
warehouse ETL process and an incremental work flow, where query
results are stored and reused). This section focuses on general data
warehousing workload insights, whereas cloud-specific aspects are
discussed in Section 4.

3.1 Query Profile
We explore the dataset in a top-down manner, starting with high-
level characteristics: In Figure 2, we show the time it took to answer
each query (Duration), the used CPU resources (CPU Time), and the
number of bytes that were scanned (Read Size). Lastly, we show an
approximation of the database sizes (Active DB Size). The TPC-H
and TPC-DS numbers were measured on a single Snowflake node.
Duration.We can see that even in a data warehouse scenario most
queries complete within a few seconds (median = 2.2 s). In fact,
there are just around 2M (2.8%) queries that run longer than one
minute and only 6 K (0.0086 %) queries run longer than an hour. This
shows that while there are large analytical queries, they are rare.
However, as shown in the second row, these long-running queries
are very impactful regarding the overall time. In comparison with
the TPC-DS and especially the TPC-H numbers, we can see that the
real life workload is much more diverse, due to the large number
of heterogeneous queries. In addition, the Snowset contains many
smaller queries than the TPC workloads, yet the most time is still
spent in long-running queries. Lastly, Snowflake queries require at
least 100ms to finish, probably due to scheduling overheads in the
control plane. This may indicate that ultra low latency is less of a
concern for data warehouse applications.
CPU Time.We define the CPU time of a query as the total amount
of time that was spent processing on all involved CPU cores to
answer it (there are no TPC numbers in this plot, as these numbers
are only available in the Snowset). For most queries, the CPU time
is even shorter than the duration (median = 870ms), because of
intra-query parallelization and the fact that the initialization and
scheduling is not part of the processing. However, there is a large
number of CPU-intensive analytical queries: Around 4M (5.9%)
queries require more than a minute of CPU time and 190K (0.3 %)
burn through more than an hour of CPU time. Considering the total
CPU resources spent in the Snowflake cluster (second row), we can
see that the long-running queries, while less numerous, use up the
majority of the resources. This shows that (1) there are very big
queries, (2) Snowflake can efficiently scale out, and (3) scale-out
is essential for reasonable query response times in a cloud data
warehouse environment.
Read Size. Lastly, each query has a scanBytes metric, which logs
how many bytes the query scanned. It is not specified whether

1415



0%

25%

50%

75%

100%

Sno
w
se

t

All Read-only Read/write Write-only

1
 N

o
d

e
1

6
 N

o
d

e
s

Sno
w
se

t

TPC
-H

TPC
-D

S

Sno
w
se

t

TPC
-H

TPC
-D

S

Sno
w
se

t

TPC
-H

TPC
-D

S

Sno
w
se

t

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Scan + Filter
Aggregation

Join
Sort

Bloom Filter
Projection

External Scan
DML

Other

Figure 3: Operator Distribution: Comparing the profiled operator
distribution in the Snowset with TPC-H and TPC-DS (SF = 100).

the number includes compression or pruning. However, it gives
a rough estimate for the involved data sizes: Most queries only
touch a few megabytes of data (median = 5.3MB), likely due to the
many short running queries. But there are also 55 K queries (0.1 %)
which read multiple terabyte (≥ 1 TB) of data, with the largest
query consuming 453 TB.
Active DB Size. We can use the amount of data read by a query
to estimate the size of the database it is running on. When looking
at the largest query for each database, we can get a rough picture
of the stored datasets in Snowflake: A database where the largest
query reads 𝑥 bytes probably contains at least 𝑥 bytes. Compared to
the TPC workloads, a cloud database service has to accommodate
many different database sizes.

3.2 Operator Distribution
All queries in the Snowset have profiling information on how much
time was spent in each operator. Given the absence of actual SQL
code, we can use this information to approximate how a typical
cloud data warehouse workload looks like (cf. Figure 3).
Scans. Overall (left-most column), queries in the Snowset spend
around 50% of their time in scan and filter operators. This is even
more pronounced when looking at all read-only queries where the
scan and filter operators account for 44.5% in the Snowset and
around 84% in the TPC benchmarks on a single node cluster. In
comparison, Hyrise, a single node columnar in-memory database
engine with only light-weight compression, spends less than 10%
of their processing time in scans [10] during the TPC-H benchmark.
This is likely due to more heavyweight compression, data encryp-
tion [9], and the disaggregated storage architecture of cloud data
warehouses where much data has to be read over the network from
a remote storage service (e.g., Amazon’s S3). Hence, caching and
pruning techniques [19, 23] are crucial for performance.
Scale-out Behavior. In the Snowset queries (All), the operator
distribution on 1 node and on a 16 node cluster is similar (except for
a slightly higher DML load on 1 node). In the TPC benchmarks, we
observe amuch lower scan fractionwhenmoving from a single node
(above 80%) to a 16 node cluster (around 50%) with a significant
performance increase (TPC-H: 179 s→72 s, TPC-DS: 1352 s→354 s).
This is likely due to our fixed workload (sf = 100), which appears

Table 1: Query Access Type: Showing how many and how much
time is spend on which types of queries in the Snowset.

Query Type Count Ratio CPU Time Ratio
Read/write 57.6 % 71.6 %
Read-only 29.3 % 23.2 %
Write-only 13.2 % 5.1 %

more suited to a small cluster as it experiences a similar scan fraction
as Snowset queries on the same cluster size. We do not observe
this effect in the Snowset: suggesting that the workload changes
between different cluster sizes, which means that customers adjust
the warehouse size depending on their workload size.
Aggregation. In addition, joins account for roughly the same
amount of time as aggregation in the Snowset independent of the
cluster size. In contrast, joins are much more dominant in the dis-
tributed TPC benchmarks (which utilize a normalized database
schema, which might not be the case in many data science applica-
tions). This suggests that either (a) the type of aggregation queries
in the Snowset does not scale well (large cardinality) while the
ones in the TPC queries do (low cardinality) or (b) the type of join
queries in the TPC benchmark do not scale well, possibly due to
ineffective bloom filters (which are used more in the Snowset).
Data Manipulation.We observe that, compared to the TPC bench-
marks, a larger amount of time is spent on data manipulation in the
Snowset. In particular, the single-node configuration spends ≈25 %
of its time in the DML operator. When drilling down on update
queries (i.e., queries that modify the database: read/write), we can
observe that those queries in the Snowset have a similar profile
than that of read-only queries: A lot of time is spent on scan, join,
projection, and aggregation. In contrast, the TPC-H and TPC-DS
update queries are mainly performing data manipulation. This sug-
gests that the Snowset update queries are much more complex.
In addition, as suggested in the original Snowset publication [35],
more than half of all queries in the Snowset perform some write
operations in the database (cf. Table 1).

In total, ≈70% of queries perform updates. One possible expla-
nation would be that data scientists are using a more iterative
workflow, where the results of one query are saved and reused in
the next query (similar to the interactive nature found in data-frame
based data exploration in python).

3.3 Spilling
Next, we investigate larger-than-main-memory queries (i.e., queries
that spill to disk or S3) and distributed queries (i.e., queries that use
network to exchange data). We show the number of queries (Query
Count), the used CPU resources (CPU Time), and the total duration
of the queries (Duration):

Spilling Net. Exchange

In-memory SSD S3 Network

Query Count 95.5% 4.3% 0.2% 48.1%
CPU Time 55.8% 32.7% 11.6% 95.9%
Duration 80.6% 16.8% 2.7% 67.8%

1416



Table 2: Query Statistics: Showing key metrics for queries aggregated by the consumed CPU time (“mat” indicated how much data was
materialized and “net” is the amount of data exchanged between compute nodes for distributed queries).

CPU-Time
bucket

Count
[%]

CPU time
[%]

Avg(read)
[GB]

Avg(write)
[GB]

Avg(mat)
[GB]

Any(mat)
[%]

Avg(net)
[GB]

Any(net)
[%]

Avg(time)
[s]

Avg(servers)
[s]

<1 s 52.42 0.2 0 0 0 0.4 0 30.1 0.8 2.1
<10 s 31.69 1.3 0.1 0 0 6.9 0.01 61.0 2.6 5.8

<1 min 9.97 2.7 0.6 0.1 0.01 12.7 0.07 77.6 6.6 7.6
<10 min 4.65 9.2 4.6 0.3 0.10 9.3 0.85 86.0 23.7 7.7

<1 h 0.98 15.0 26.0 2.2 2.66 27.4 6.56 93.7 105.4 10.2
<10 h 0.25 26.1 159.2 11.7 28.36 49.3 39.47 97.0 439.0 15.3

>=10 h 0.02 45.6 1990.6 215.8 726.24 52.5 497.53 99.4 2717.2 32.2

The left-hand side of the table (labeled Spilling) distinguishes
three query types: quires that do not spill (In-memory), queries that
spill only to SSD (SSD), and queries that spill to S3 (S3). While most
queries do not require spilling, out-of-memory processing is still
important. While only 4.5 % of queries do not fit into main memory,
they account for 44.3 % of used CPU resources. Thus, external sort,
join, and aggregation are essential for data warehouses.

The right part of the table (labeled Net. Exchange) shows the
ratios of queries that exchange intermediate data over the network
(i.e., distributed query processing). While half of the queries, do not
send data over the network, the vast majority of CPU resources are
spent on distributed queries (95 %).

3.4 Query Statistics
Lastly, we can group the Snowset queries by the amount of CPU
time they require and investigate respective resource utilization
(cf. Table 2). In alignment with Figure 2, we observe that most
CPU resource (45.6%) are spent on very few very large queries.
Those also are almost always run on a cluster of machines and read
terabytes of data. Interestingly, only around 50% of them need to
materialize intermediate results. However, once such a query starts
materializing, it materializes large amounts of intermediate results
(hundreds of gigabytes). Suggesting two types of resource intensive
queries: with and without the need for intermediate results. While
most queries (≈84 %) fall in the smaller buckets with less than 10 s
of CPU time, they do not account for a significant amount of used
resources: only 1.5 % of the total required CPU time of the workload.

3.5 Lessons Learned
From our analysis of the Snowset, we obtained the following find-
ings and research goals:
▶ Scan and filter operations are a large portion of the load on
the data warehouse (50 %). Techniques for effective pruning, data
partitioning, lightweight indexing, compression, and data transfer
have the potential to greatly improve performance.
▶ DML is an essential part of data warehouse applications and goes
beyond simple data loading queries. The iterative working style
might make very read-optimized data layouts difficult.
▶ Out-of-memory processing is required in cloud data warehouses:
44.3 % of CPU resources are spent on those queries.
▶ Distributed queries are frequent and impactful. This makes effi-
cient data exchange algorithms and bloom filters crucial.

4 CLOUDWORKLOAD CHARACTERISTICS
The traditional TPC OLAP benchmarks use a single database of one
adjustable given size, fairly similar queries, and are executed in one
burst (all queries are run back-to-back). This may be reasonable
for testing the performance of a query engine, but it falls short
in evaluating a cloud data warehouse service: Different customers
have varying needs in terms of database size (multi tenancy), query
complexity, and query arrival times (elasticity). In addition, indi-
vidual queries can differ greatly in their hardware requirements: a
non-time critical data loading job can be run on a single machine
with little memory, a computationally-complex query can use a
machine with many CPU cores, and large queries can provision
a cluster with high network bandwidth. Unlike a pre-provisioned
(on-premise) data warehouse, a cloud data warehouse service is
able to adjust its hardware resources to current and specific work-
load demands (cost efficiency). A cloud data warehouse benchmark
needs to capture these aspects. Using the Snowset, we illustrate the
vast variety in resource demands of different customers over time.

Figure 4 depicts the used CPU hours over a single day (Monday,
22nd Feb 2018) for All virtual warehouses (VWs), the five largest
VWs in terms of spent CPU hours (L1-L5), and five medium-sized
VWs (R1-R5) that were pseudo randomly selected. In addition, Ta-
ble 3 shows key statistics of these VWs and a per-query breakdown.

Over the two-week period, all Snowflake customers consumed
5411 CPU hours on average per hour. Assuming a c5d.2xlarge in-
stance with 8 CPU cores was used and a perfect utilization (in prac-
tice Snowflake reported 51 % [35]), this would require 677 instances
running on average. The actual workload, however, is not as con-
stant and varies by as much as 3.4× between the lowest valley and
the highest peak (Figure 4: All). In addition, when looking at in-
dividual customers, we can observe even more drastic changes in
the workload over time: Several customers have “spiky” workloads,
where queries are only run in short bursts. For example, L2, L3, and
R1 are only used once a day. Others, like R3 run jobs on a periodic
pattern, like once an hour. This can lead to load spikes over the
system. There are also VWs that are always active, but with noisy
workload like L1, L4, or R2 which can vary by over an order of
magnitude throughout the day.

The type of work that is performed in any given warehouse
also differs greatly. Some warehouses, like L2 and L3 appear to
be loading large amounts of data once a day: Each day, they first
perform some write-only queries (data load) and then transform the
data with some read/write queries. Other warehouses (not shown),

1417



Table 3: Warehouse Usage for all (All), the five largest (L1-L5), and five random (R1-R5) warehouses for a single day (Monday 22nd Feb
2018). The last row shows the usage for the entire dataset (2 weeks).

All queries of the customer Per query
Query
count

CPU
[h]

Read
[GB]

Write
[GB]

Network
[GB]

CPU
[h]

Read
[GB]

Write
[GB]

Network
[GB]

Node
count

Duration
[s]

L1 26 335 8258 540 925 2094 21 180 0.31 20.5 0.1 0.8 32 17.3
L2 28 5492 35 476 25 863 20 196.15 1267 923.7 0.7 128 815.4
L3 35 3562 44 484 13 404 62 808 101.78 1271 383 1794.5 128 454.4
L4 75 066 2944 74 198 8301 12 990 0.04 1 0.1 0.2 16 13.5
L5 1706 2741 44 224 57 2922 1.61 25.9 0 1.7 32 36.1
R1 2123 1710 81 930 3219 51 430 0.81 38.6 1.5 24.2 64 82.9
R2 10 992 878 8130 9488 209 0.08 0.7 0.9 0 4 26.3
R3 3454 892 7411 7383 8812 0.26 2.1 2.1 2.6 16 23.6
R4 18 897 362 16 583 844 7696 0.02 0.9 0 0.4 4 9.3
R5 100 3 296 10 45 0.03 3 0.1 0.5 2 20
Total Day 138 736 26 842 853 659 70 662 168 111 0.19 6.2 0.5 1.2 17.4 16.5
2 Weeks 69 182 074 1 736 788 98 305 381 8 194 235 22 613 812 0.03 1.4 0.1 0.3 5.6 10.6

All R1 R2 R3 R4 R5

L1 L2 L3 L4 L5

0
0
:0

0
0
6
:0

0
1
2
:0

0
1
8
:0

0
0
0
:0

0

0
0
:0

0
0
6
:0

0
1
2
:0

0
1
8
:0

0
0
0
:0

0

0
0
:0

0
0
6
:0

0
1
2
:0

0
1
8
:0

0
0
0
:0

0

0
0
:0

0
0
6
:0

0
1
2
:0

0
1
8
:0

0
0
0
:0

0

0
0
:0

0
0
6
:0

0
1
2
:0

0
1
8
:0

0
0
0
:0

0

0
0
:0

0
0
6
:0

0
1
2
:0

0
1
8
:0

0
0
0
:0

0

0

10

20

30

0.0

0.2

0.4

0.6

0

10

20

30

40

50

0

1

2

3

4

0

50

100

0

3

6

9

0

40

80

120

160

0

5

10

15

0

25

50

75

100

125

0

25

50

75

100

0

200

400

600

800

C
P

U
 H

o
u

rs

Query Types

Read-only

Read/write

Write-only

Figure 4: Warehouses over Time: Showing the activity for all warehouses (All), 5 large warehouses (L1-L5), and 5 random ones (R1-R5). One
data point per 10min) for a single day (Monday 22nd Feb 2018).

connect to the same database and perform analytical (read-only and
read-write) work. Further, we can observe warehouses that perform
mostly read-only queries (L1 or R5) and others where read/write
queries dominate (L4, L5, and R1-R3).

The total amount of work performed per warehouse varies
greatly: A small number of large warehouses require tens of thou-
sands of CPU hours, while the majority only uses 100-1000 hours
within the two-week period. In addition, all five large warehouses
(L1-L5) have a comparable number of CPU hours. However, L2 and
L3 perform only a few huge queries (in terms of CPU time and
touched bytes), while the others do thousands of smaller queries.

In summary, the workloads of individual customers are very
heterogeneous across all dimensions and vary in intensity over
the day. In particular, the workload size, query arrival rate and
composition changes. The same warehouses are often used for the
same tasks throughout their lifetime.

5 CLOUD ANALYTICS BENCHMARK
As discussed in the previous two sections, cloud data warehouse
services face different challenges compared to those of a single
on-premise database system. Therefore, we propose the Cloud Ana-
lytics Benchmark (CAB) for evaluating multi-tenant data analytics
services – focusing on latency and monetary cost of user workloads.

5.1 Benchmark Basics
Based on TPC-H. CAB uses the same database schema as the
TPC-H benchmark and queries derived from the original 22 query
templates (plus insert + delete streams). We chose TPC-H as a
foundation of CAB for the following reasons. First, we are not aware
of any real-world data warehousing benchmark, and for obvious
reasons the Snowset only includes telemetry data rather than the
actual customer data and queries. Second, synthetic benchmarks

1418



such as TPC-H can be scaled to arbitrary sizes. Third, TPC-H is
well-known [3] and widely-used for evaluating query engines. With
only 22 queries, it is also easier to implement than its larger cousin
TPC-DS, which consists of 99 more complex query templates. We
hope that these factors will lead to widespread adoption.
Multi-Tenancy. To model multi tenancy, CAB specifies multi-
ple databases with varying scale factors (instead of using a single
database with a given scale factor). Each database represents one
customer and is independent of other databases (no cross database
queries). CAB generates one query stream per database, which has
to be processed by the System Under Test (SUT). A query stream
consists of a specific mix of TPC-H queries and specifies the points
of time when each query starts (relative to workload start).
Arrival Times. The arrival times follow typical patterns observed
in the Snowset – exhibiting intermittency and therefore stressing
the elasticity of the SUT. All query streams are executed in parallel
against the SUT. It is the responsibility of the SUT to allocate re-
sources, schedule queries, and return query results. A run of CAB
always takes the same amount of time to execute, as queries are not
run back-to-back but start at specific times. Hence, CAB simulates
the work of a data warehouse service for a certain period (e.g., one
hour or one day).
Metrics. The goal of the SUT is to execute each query as fast as
possible while minimizing the cost ($) of the run. While there are
secondary systemmetrics such as security, encryption, durability or
reliability, the primary performance metrics of CAB are the query
latency and total (monetary) workload cost.
Driver. In the following, we detail the data generation, the input
parameter selection, and how CAB is to be executed. We provide a
software tool to generate the database definitions and query streams.
Similar to TPC-H, it is up to the user to implement a driver program
that runs the generated queries against their SUT. We provide the
driver program for Snowflake, which we use in Section 6, as an
example. Note that this benchmark specification is less rigid than,
for instance, the one of TPC-H. To ensure a fair competition, we
therefore encourage users of CAB to open source their benchmark
driver and configuration.

5.2 Benchmark Parameters & Metrics
There are four parameters to specify a CAB run:
(1) Execution time specifies the amount of time in hours that
the full run should take. To accurately simulate the elasticity, it
should be set to at least 1 hour. For longer experiments up to 24
hour periods can be used.
(2) CPU time is an abstract metric to specify the total amount
of CPU work in a run. The specified amount is divided across all
involved databases and filled up with TPC-H queries. We calibrated
the amount of time per TPC-H query to a single-node single-core
Snowflake cluster. While this number is tied to Snowflake (with
a specific hardware and software version), it serves as a ballpark
number to be able to specify relative compute loads (e.g., a run with
8 CPU hours requires more compute than one with 5).
(3) Data size is the size in terabyte of the entire dataset across
all databases. The number of databases is derived from the data
size: for small runs with only 1 TB of data 20 databases are used,
otherwise CAB always uses 100 databases.

Table 4: Database Configuration Example: 20 generated tenants
for 10CPU hours and 1 TB of total data size.

Ten- Pat- Size Query CPU
ant tern [GB] Count [min]
0 2 1 16 0.0
1 3 1 20 0.0
2 5 1 108 0.3
3 1 1 987 9.2
4 3 2 160 2.8
5 1 3 561 15.2
6 2 4 160 7.0
7 2 5 24 0.0
8 1 7 2406 167.8
9 5 10 48 0.0

Ten- Pat- Size Query CPU
ant tern [GB] Count [min]
10 5 13 30 2.1
11 5 17 103 3.1
12 2 23 15 0.2
13 5 31 300 78.5
14 2 43 17 0.5
15 4 59 324 152.4
16 4 85 95 8.1
17 3 125 23 23.0
18 2 202 8 0.4
19 4 356 103 129.2

(4) SUT Lastly, the system under test (SUT) on which CAB is exe-
cuted needs to be described. This includes all available information
required to reproduce a CAB run on the SUT: Software, hardware,
cluster size, versions, editions, and pricing model.

The number of databases is derived from the data size: for small
runs with only 1 TB of data 20 databases are used, otherwise CAB
always uses 100 databases. For further comparability of benchmark
results, we urge users of CAB to scale input parameters using the
CAB-factor: A positive integer that describes the CPU time and
data size as follows:

cpu_time := CAB_factor × 10CPU hours
data_size := CAB_factor × 1 TB
database_count := if(CAB_factor==1): 20 else: 100

For example: CAB-4 would be a run with 40CPU hours and 4 TB,
which is roughly 2 % of what we observed in the Snowset.
Evaluation Metrics. Once all queries of a CAB run have finished,
the run can be considered completed. CAB focuses on two key
metrics that are used to compare among systems and configurations:
The distribution of query latencies (in the form of a box plot) and
the total cost of the CAB run in USD. The setup, schema creation,
loading of data, and tear down of resources shall not be included
in the cost as the purpose of CAB is measuring the running cost
of a cloud data warehouse. While further drill-down experiments
are encouraged, we argue that these two metrics are sufficient to
capture the most important user concerns, while being simple and
generic enough to easily compare CAB runs.

5.3 Database and Query Stream Generation
Database Generation. The CAB generator (CAB-gen) is an open
source tool [33] that can be used to generate the input for a bench-
mark run. As outlined before, a run consists of multiple databases
and one query stream for each database. CAB-gen first generates
the database sizes using a deterministic log-normal distribution
modeled after the one we observed in the Snowset (cf. Figure 2
“Active DB Size”). Given the small number of samples (e.g., 20 or
100), we over-sample from the desired distribution and then take
average values to avoid extreme cases and thus make runs with
different CAB-factors more comparable. Further, we clamp the dis-
tribution to values within two standard derivations. As most of the
compute time is spent in the larger databases (cf. Table 2), CAB only

1419



Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

0:00 6:00 12:00 18:00 24:00 0:00 6:00 12:00 18:00 24:00 0:00 6:00 12:00 18:00 24:00 0:00 6:00 12:00 18:00 24:00 0:00 6:00 12:00 18:00 24:00

Time of Day

Q
u

e
ry

 A
rr

iv
a

ls

Figure 5: Generated Patterns: The benchmark generates query arrival times according to one of these five patterns. Each one is randomly
generated and has a certain variance (e.g., the number of spikes and their position in pattern 2 can vary).

generates databases of at least 1 GB. The mean of the log-normal
distribution is adjusted so that the total data size over all databases
adds up to the specified data size. Moreover, each database is as-
signed a portion of the total CPU time depending on its data size.
The CPU time for a given data size is log-normal distributed and
follows the ones we observed in the Snowset. It may vary by several
orders of magnitude for a particular database size (as demonstrated
in Table 3), but in general larger databases use more CPU time
(cf. Table 2). Further details can be found in the source code [33].
We show a sample in Table 4.
Query Stream Generation. Once the CPU time per database is
determined, CAB-gen needs to generate query arrival times for
each database. To do so, the run is split up into a number of dis-
crete time slots (e.g., 100). Each slot is assigned a certain fraction of
the database’s CPU time following a larger pattern. To find those
patterns we manually categorized the top 100 warehouses in the
Snowset into five arrival time patterns as shown in Figure 5.We gen-
erate these pattern by combining several random functions over the
time window (details can be found in CAB’s implementation [33]).
Each database is assigned a random pattern independent of its data
size: Pattern 1: Constant usage with sinus-based variations, pos-
sibly representing a user facing application (e.g., busy dashboard).
Pattern 2: Several short bursts throughout the run. Simulating in-
teractive use and testing the warehouse’s ability to quickly spin up
and tear down. Pattern 3:One large burst, e.g., a daily maintenance
job. Due to all the CAB query stream’s work happening in this short
period this also tests for scalability of the system. Pattern 4: A
mostly-constant load with negative (12:00) or positive (16:30) out-
liers. Those outliers are common in the Snowset. They can be caused
by user-side daily maintenance and represent an opportunity to
save cost in the idle window. Pattern 5: A regularly-running job
starting at specific times (e.g., full hour), stressing elasticity while
being predictable. Repetitive workloads of this pattern could fairly
easily be predicted.
Arrival Time Generation. Within each slot, we use an expo-
nential distribution to determine the time between two events
(modeling a Poisson point process): 𝑃 (𝑥 |𝜆) = 𝜆𝑒−𝜆𝑥 . Where 𝜆 is
the expected time between two events. This distribution is com-
monly used to model the time between two random events in the
real world. Compared to uniformly distributed arrival times, this
generates more realistic arrival patters with random burst and idle
phases. Queries are randomly chosen from the database’s query
pool (read/write, read-only, or write-only). CAB-gen estimates the

time for a given query using the database’s data size and the type
of query. In addition, to the arrival time, CAB-gen also generates
input parameters for the queries.

5.4 Query Pool
CAB uses the same queries as the TPC-H benchmark with a number
of modification to adjust it to the findings motivated in Section 3.
First, CAB includes the two TPC-H maintenance functions that
are supposed to be run after each run of the 22 analytical TPC-
H queries. However, in the original TPC-H benchmark these two
refresh functions require files containing new tuples and the keys
of tuples to be deleted. The inserts and deletes are designed in
such a way that the total number of tuples in the database remains
constant. This is achieved by leaving gaps in the key space and
cycling tuples through those gaps: Out of 32 possible keys only
8 are used (i.e., initially only key 0-8 are used withing the first
32 possible keys). Each refresh function call updates 0.1% of the
orders and lineitem table. Therefore, after 1’000 refresh functions
all keys have been increased by 8. Given that all non-key attributes
are independent in TPC-H, CAB can simply reuse the data: it first
inserts a copy of 0.1% of the data with a key incremented by 8 and
then deletes the old ones. This removes the requirement to have
insert and update files during benchmark execution, which is an
issue due to those files containing potentially 4 times the number
of rows of orders and lineitem.

5.5 Data Loading
To load the databases for a CAB run, the regular TPC-H data gen-
erator can be used, which allows generating the tables in smaller,
independent chunks. Thus, the load process can easily be done in
parallel using multiple machines and should thus scale well for
large scale factors. For instance, our sample implementation for
Snowflake was able to load 1 TB of data in less than a day using
the c5d.large AWS EC2 instance, which costs less than 1 $ for
24 hours when using spot pricing. One terabyte of TPC-H data in
csv format compresses to roughly 300GB using the ZSTD algorithm.
Storing this on AWS S3 for two days (1 day loading plus 1 day for
the benchmark run), costs around 10 cents assuming 5 $ per 1 TB
on S3. Therefore, loading and storing of the data should not incur a
large amount of cost.

Due to the update queries a benchmark runmodifies the database.
Hence, after each run, the database needs to be reset to the initial
state. This can be done with a simple update query included in the

1420



0

40

80

120

160

0 20 40 60

Benchmark Runtime [min]

Q
u

e
ry

 A
rr

iv
a

ls
 [

p
e

r 
1

m
in

]

Large (8 nodes)
≈ 20.80$/h

X-Large (16 nodes)
≈ 41.60$/h

Small (2 nodes)
≈ 5.20$/h

Medium (4 nodes)
≈ 10.40$/h

0 20 40 60 80 0 20 40 60 80

0

20

40

60

0

20

40

60

Benchmark Runtime [min]

L
o

a
d

running queued

24.6

683

6.4 8.3

2.9 3 3.9 4

Small
(2 nodes)
≈ 5.20$/h

Medium
(4 nodes)
≈ 10.40$/h

Large
(8 nodes)
≈ 20.80$/h

X-Large
(16 nodes)
≈ 41.60$/h

w
/o

 q
u

e
u

e

w
/ 
q

u
e

u
e

w
/o

 q
u

e
u

e

w
/ 
q

u
e

u
e

w
/o

 q
u

e
u

e

w
/ 
q

u
e

u
e

w
/o

 q
u

e
u

e

w
/ 
q

u
e

u
e

0.1

1

10

100

1000

Warehouse Performance

Q
u

e
ry

 L
a

te
n

c
y
 [

s
]

Figure 6: Shared Cluster Experiment: CAB with 1 TB and 10CPU hours (CAB-1) on a single Snowflake VW shared by all databases. We
vary the cluster size to determine the required node count for this workload. The numbers in the right most plot represent the median latencies.

CAB suite. Thus allowing multiple runs without the need to reload
the entire dataset.

5.6 Execution of a Run
Before the start of a CAB run, all databases have to be fully loaded
(and potentially reset to their initial state). There is no warm up
phase: data has to be cold initially. Query templates and query
streams may be loaded into memory ahead of time and be prepared
on the database server. All query streams have to start at the same
time and must be run in parallel. Each query is specified as a triple
consisting of the query id, its start time, and parameters. Once the
start time is reached, the query (or prepared statement id) with its
parameters may be sent to the data warehouse service. Before that
time, the query id and parameters have to be treated as unknown
(thus simulating user submitted queries). The query can be con-
sidered completed once all results are materialized and the query
processor has signaled the completion back to the driver. Note that
the results do not have to be sent back to the driver, it is sufficient
if they are materialized in a driver accessible location. As the CAB
is benchmarking a cloud database service, the network communi-
cation, queue time on the server, eventual resource allocation and
so on are all considered part of the query execution time from the
users point of view. Thus, the driver is required to record the time
from the query start till the completion for each query.

6 EVALUATION
Goals. In this section, we report experimental results using the
Cloud Analytics Benchmark (CAB) on several Snowflake config-
urations and a serverless data warehouse. Our goal is to demon-
strate how CAB can be used to compare and evaluate cloud data
warehouse service architectures and pinpoint opportunities for im-
provement. The two systems are used as an example platform to
highlight research questions and show the capabilities of CAB.
Setup. Our benchmark driver program is written in Javascript
(Node.js version 17.7.2). The driver is responsible for running one

query stream, hence a CAB run requires as many drivers as there are
query streams. Most of the driver program is system independent:
only a small adapter class is used to manage the connection details
for a specific data warehouse system. The driver program has small
resource requirements, as it only sends query string to the data
warehouse platform and logs query runtimes. We ran all drivers for
a particular benchmark run on a single EC2 instance (c5.large)
and measured no significant delays due to the driver. Each of our
drivers allows for at most 10 outstanding queries in order to avoid
overloading the system under test.
Snowflake. Our Snowflake experiments were conducted in early
2022 using the Snowflake online service (“STANDARD” edition),
running in AWS. Queries are sent to Snowflake via the official
snowflake-SDK [28] (version 1.6.7). The limit for concurrently-
running queries for each Snowflake warehouse is set to 32, the
maximum allowed value. However, we observe that each ware-
house only runs at most ≈6 queries concurrently. This is due to the
internal Snowflake scheduler, which estimates how many queries
a particular cluster can sustain at a time without over subscrip-
tion [29]. Note that in this section, we use the more generic term
cluster to refer to Snowflake’s VWs.
System X. System X is another cloud data warehouse service.
Unlike Snowflake, it operates as a serverless system: the user is not
renting compute resources but pays on a per query bases. Further,
the cluster automatically scales compute resources for the submitted
queries. Similar to Snowflake, the data is stored on a cloud storage
services such as S3 and has to be fetched for query processing.
Outline & Budget. We perform three kinds of experiments: (1)
We run CAB on a single Snowflake virtual warehouse of varying
size (i.e., number of compute nodes), demonstrating that static
deployments are challenged by varying loads. (2) We compare these
results with a CAB run where each database gets its ownwarehouse
and observe how large queries can benefit from shared resources. (3)
We compare the provisioned Snowflake offering to the serverless
System X showing large potential in terms of cost. In total, we
performed six CAB runs with cluster sizes ranging from 2 to 38

1421



Small
(2 nodes)

Medium
(4 nodes)

Large
(8 nodes)

X-Large
(16 nodes)

0 10 19 0 10 19 0 10 19 0 10 19
0

100

200

300

400

500

Warehouses

Q
u

e
ry

 L
a

te
n

c
y
 [

s
]

Figure 7: Shared Cluster Experiment: Running CAB with 1 TB
and 10CPU hours (CAB-1) on a single Snowflake warehouse shared
by all databases.

machines and used around 140CPU hours. These runs add up to
around 230 $ for Snowflake and 155 $ for System X, showing that
the cloud allows one to perform fairly large experiments within a
reasonable budget.

6.1 Experiment: Shared Cluster Size
Setup.We configure CAB to generate a workload with 1 TB of total
raw data size and 10 CPU hours split among 20 databases. This cor-
responds to a CAB-factor of 1 (i.e., CAB-1). The exact configuration
of each database can be found in Table 4. In this experiment, all
query streams are processed by one large shared Snowflake cluster
(VW). We perform four runs with a varying cluster size ranging
from 2 to 16 nodes. Note that this is not necessarily the intended
way to use Snowflake, because in Snowflake different tenants are
supposed to use different virtual warehouses. Nevertheless, this
setup lets us evaluate how well a statically-sized cluster can cope
with an elastic workload of multiple tenants.
Loading. The total data size, once loaded into Snowflake, is about
300GB after compression. We used a small EC2 instance (2 vCPUs)
to generate (tpch-gen), compress (zstd), and upload the data into
AWS S3 (6 hours). After that, we used a small (1 node) Snowflake
warehouse to copy the data from S3 into Snowflake tables (5 hours).
Note that the S3 storage should be located in the same region as
the Snowflake instance, to avoid network transfer costs. As loading
data is not part of the benchmark, the load numbers should be taken
as a rough estimate and could potentially be optimized. In fact, due
the scalability of the cloud and the parallel nature of the problem,
it should be possible to perform loads much quicker.
Query Arrival Rate. Each of the query streams (cf. Table 4) has its
own query arrival rate pattern. However, when all query streams
are put together, the large variations of individual streams average
out into a noisy, but rather stable, overall load on the system under
test. These combined arrival rates over the one-hour run are shown
in the left most plot of Figure 6. The overall load varies between 40
and 160 queries per minute (4×), while individual query streams
(especially pattern 2 or 3) have long stretches of time with no
queries. We observe a similar effect in the Snowset (cf. Figure 4),
where the overall load is rather stable over time while individual
customers may vary greatly.
Queuing Time. Snowflake keeps track on the average number of
queries queued and running in their warehouses. We show this

information in Figure 6 (center) for the four runs with different
warehouse sizes. First, we observe that the query arrival pattern is
reflected in the queuing times: the two spikes are visible. Second,
the larger the cluster, the less queuing is required. For instance,
a 2 node cluster is not enough to process 10 CPU hours of work
within an hour. In fact, it takes around 20min longer for all queries
to finish. Moving from 8 to 16 nodes, however, does not have a
significant impact anymore.
Query Latency. This diminished return when moving to 16 nodes
is also visible when looking at query latency (right-hand side of Fig-
ure 6): using a 16 node cluster does not provide any benefits for
the CAB-1 workload. In addition, the plot distinguishes between
the execution time (as reported by Snowflake) and overall runtime
including queuing (as measured by our driver). The 2 node cluster
appears to be at the edge of being oversubscribed, and we observe
long queuing delays. Going up to 4 nodes, both the execution and
the overall query latencies drop dramatically – with the median
runtimes dropping from 683 s to 8.3 s. Query latencies decrease fur-
ther (2×) when moving to an 8 node cluster. However, upgrading
to 16 nodes provides little benefit and query latency even increases
slightly. This is likely an artifact of Snowflake’s scheduler assigning
small queries too many resources.
Tenant Breakdown. Figure 7 shows the per tenant query latency
(including queuing) for the four runs (2, 4, 8, and 16 node clus-
ters). The small cluster is basically oversubscribed and almost all
clients experience huge latencies (the plot is cut off at 500 s). The
larger clusters distribute the queuing time evenly for the most part.
However, even in the 16 node cluster, query stream number 8 still
experiences higher latencies (roughly three times higher average
query latency than the other query streams). This particular stream
has the most queries and CPU time (cf. Table 4), which likely causes
more queuing time. As mentioned before, this multi-tenant scenario
may not be the intended way of using Snowflake. However, it high-
lights the scheduling challenges of a shared cluster architecture in
a multi-tenant scenario.

6.2 Experiment: Shared vs Per-tenant Clusters
Setup. In this set of experiments, we increase the workload size
to CAB-4, which corresponds to 4 TB of total raw data size and
40CPU hours split among 20 tenants. We compare two setups: (1)
One pool of fixed resources is used for all query streams (shared
cluster). This corresponds to the setup from the previous section,
where we determined that CAB-1 can be processed by a Snowflake
cluster (VW) with 8 nodes. Therefore, we use a 32 node cluster for
this CAB-4 experiment. (2) Each query stream is assigned its own
pool of resources (one cluster per tenant). We determine the size
of the warehouses per query stream proportionally to its required
CPU hours. In total, we use 38 nodes for the cluster per tenant setup.
However, due to the elasticity of many query streams, these ware-
houses can be suspended in periods of inactivity. To facilitate this
elasticity, we configure the Snowflake warehouses to automatically
shut down after 1min of inactivity.
Results. The query latencies of this run are shown in Figure 8. The
chart on the left-hand side shows the latency distribution for the
shared cluster (SC) and per tenant cluster (TC) modes. The other
two charts, show a per-tenant breakdown in logarithmic and linear

1422



35.1

1.4

1502

1.4

w/o queue w/ queue

SC TC SC TC
0.1

1

10

100

1000

Overview

Q
u

e
ry

 L
a

te
n

c
y
 [

s
]

SC TC

w
/o

 q
u

e
u

e
w

/ q
u

e
u

e

0 5 10 15 19 0 5 10 15 19

0.1

1

10

100

1000

0.1

1

10

100

1000

By Warehouse

SC TC

w
/o

 q
u

e
u

e
w

/ q
u

e
u

e

0 5 10 15 19 0 5 10 15 19

0

1000

2000

3000

0

1000

2000

3000

By Warehouse

Figure 8: Cloud Architecture Comparison: CAB-4 (4 TB and 40CPU hours). Comparing the performance of one large shared (32 node)
cluster for all databases (labeled as shared cluster: “SC”) with individually assigned clusters of varying sizes depending on the CPU load (39 node)
for each database (labeled as per tenant clusters: “TC”). In SC the cluster is running the whole time requiring 32 credits (≈ 83$/h), while the
individual clusters can occasionally shut down and only require 29 credits (≈ 72$/h).

Figure 9: Snowflake vs System X: Running CAB with 1 TB and
10CPU hours (CAB-1) on a single Snowflake warehouse and another
shared-everything cloud data warehouse service (“System X”).

scale. While the amount of compute resources and costs are similar
(32 and 38 nodes), we can observe that the latency is much worse
for the shared cluster, especially with queuing time. Furthermore,
the per-tenant breakdown shows that query steams with many
queries suffer in latency, as the cluster is occupied, and they do
not have dedicated resources. However, the large shared cluster is
faster in processing queries on the larger databases (i.e., the ones
with higher query stream ids). Overall, it is striking how bad the
SC approach performs, even though in comparison with CAB-1,
we simply quadrupled the workload and hardware resources. This
highlights the challenges of cluster sizing, and may indicate room
of improvement regarding scalability and scheduling.

6.3 Experiment: System Comparison
Setup. Let us now compare Snowflake with a serverless data ware-
house systems. Similar to the first experiment (Section 6.1), we use

CAB-1 (1 TB of data and 10CPU hours). We are using an 8 node
Snowflake cluster, as this size was easily able to handle the workload
as shown in Section 6.1. System X, as a serverless data warehouse
with per-query pricing, is a fully managed service with few config-
uration options. The goal is to compare a provisioned system with
one that was build as a serverless one from the ground up.
Results. The results of the full experiment are shown in the left-
hand side of Figure 9, labeled “full”. The significantly better query
performance (without considering the queuing time) in System X
might indicate a better internal resource usage, but could also be due
to better hardware or number of utilized nodes. The more relevant
metric for the user is the query time with queuing. Here, System
X performs similar in the median, but suffers from huge latency
spikes (up to 30min). This is due to query stream 8, which can
not be handled fast enough leading to increasing queue times and
causing the stream to only finish after 1 h and 20min. Consulting
the query stream configuration in Table 4, we observe that query
stream 8 has no unusual CPU load, but a lot more individual queries.
This might suggest a contention in the front-end of System X.

As a comparison we show the numbers without query stream
8 on the right side of the chart (Figure 9). System X is roughly
two times faster in the median for the remaining 19 query streams.
However, this comes at a cost: the full run in System X cost around
155 $ while Snowflake only causes 22.8 $ in provisioning cost.

7 RELATEDWORK
There is a large body of work [22] on benchmarking various as-
pects of the cloud such as Web 2.0 [30], data mining [1], No-SQL
databases [5, 16, 18], or cloud infrastructure itself [15, 21]. To limit
the scope of this section, we focus on those bodies of work that
are related to database management systems. Our Cloud Analytics
Benchmark (CAB) distinguishes itself by targeting cloud analytics
services, providing an easy to compare metric, and, most impor-
tantly, being built by using an actual query trace from an existing

1423



cloud data warehouse (i.e., the Snowset). This makes it represen-
tative of actual workloads while exercising important new cloud
metrics (elasticity and multi tenancy) and providing a clear user-
centric performance metric (i.e., latency and cost). In the following,
we first summarize several papers that call for new cloud bench-
marks and outline how CAB fulfills their requirement or why we
diverged from them. After that, we describe related cloud bench-
marks, outline how they differ from CAB, and motivate why we
felt that a new benchmark is necessary.

7.1 Calls for Cloud Benchmarks
There have been several papers pointing to the need for new data-
base benchmarks in the cloud area. Already in 2009, Binnig et al. [2]
argued that the TPC benchmarks are not sufficient and there needs
to be more focus on scalability, pay-per-use, and fault-tolerance.
CAB abstracts from the payment model of the data warehouse ser-
vice and is able to compare different models from a customers point
of view. Scalability is an inherent aspect of CAB: with growing
dataset, only a scalable query engine will avoid growing query
runtimes. And, lastly, while CAB does not explicitly test or eval-
uate fault-tolerance, we argue that a 24 h run involving multiple
databases and therefore a large number of physical machines re-
quires the system to provide a decent amount of fault-tolerance.
Any failures during the run will add to the latency and show up in
the tail latency of the experiments. Binnig et al. further argue for
a full-stack benchmark because different services across various
clouds offer unique guarantees but need to be comparable. They
believe that a user-centered benchmark will force systems to opti-
mize for the right metric: the user. We agree with this assessment
and designed CAB without any limiting requirements and focus
on core database features that are relevant for the users (i.e., query
processing). Since the publication of this work over a decade again,
the TPC has published a number of benchmarks targeting some of
these concerns, including the TPCx-BB which we discuss below.

Badir et al. [24] as well as Tosun et al. [13] identify many relevant
performance metrics for cloud systems (performance, cost, scalabil-
ity, elasticity, availability, cost-performance, cost-effectiveness, and
SLAs). Badir et al. propose the idea of an end-to-end benchmark
that simulates a Web 2.0 application. While we agree that all these
metrics are relevant, we believe that many of them are subsumed
in CAB’s primary metrics (latency and performance). In addition,
a Web 2.0 benchmark is only able to compare data warehouses as
part of a Web 2.0 deployment. However, data warehouses are often
used for other tasks and constitute a large enough piece of software
to warrant individual benchmark.

7.2 Comparison with other Benchmarks
Similar to our work, there have been a number of papers suggesting
extensions to existing TPC benchmarks. For instance, Szyperski
et al. [27], recognize the need for elasticity in the cloud and pro-
pose to add this to TPC benchmarks. They extend a Hadoop-based
benchmark (TPCx-BB) and model the query arrival rate based on
a real-world data from Cosmos DB. In contrast, our benchmark is
focused on analytical SQL database engines and instead of only a
single arrival pattern, our analysis found that five unique patterns.
Especially pattern 5 (cf. Figure 5), is known to be problematic due to

customers starting jobs at each full hour (e.g., cron jobs). In addition,
we take data refresh into account and model the multi tenancy of
cloud data warehouse services.

Other work [11, 17, 32] has focused on the scalability of cloud
services. They find that, in general, scale-up is preferable, in terms
of cost performance ratio, to scale-out. However, scale-out can
support greater elasticity. While the ability to scale (out and up) is
crucial for larger data warehouses and to support elasticity, it on
its own is only a building block for smart data warehouse services
that can adapt to the customers needs. Hence, these evaluations are
good at testing the scalability of various systems, but CAB evaluates
the elasticity of a cloud data warehouse in an end-to-end scenario.

8 CONCLUSION AND RESEARCH QUESTIONS
Conclusion. This paper provides a detailed analysis of a real-
world cloud analytics workload. Using these insights, we propose
the Cloud Analytics Benchmark (CAB), which captures the elastic-
ity and multi-tenancy of cloud workloads. CAB makes cloud data
warehouses comparable and gives database architects optimization
targets, thus hopefully guiding the design of future services.
Possible Extensions. As one of the next steps, CAB can be ex-
tended to more cloud data warehouses services. Using CAB, one
can more easily compare the performance/cost trade-off for various
providers and make a better decision. In addition, these results
can help to determine architectural trade-offs for cloud vendors
and highlight shortcomings in current deployments. Especially, the
simple way (only two metrics) of comparing the elasticity capabil-
ities of systems should be useful. Furthermore, CAB itself can be
extended. TPC-H as the query-provider of CAB could be exchanged
or extended to model the operator distribution of real cloud data
warehouses (cf. Figure 3) more accurately. An interesting aspect of
this work would to avoid overfitting to Snowflake’s particularities.
This might require profiling workloads in different query engines
and, therefore, access to more workloads or at least logs such as the
Snowset. Further, CAB could be extended with longer runs (weekly
load fluctuations), specialized tenants (ETL or ML jobs), or different
query patterns (more patterns and correlated load spikes).
Research Questions. Our initial experiments have already sur-
faced important research questions, such as: (1) In the evaluation,
we used a trial and error approach to determine that 8 nodes are
sufficient to run CAB-1. How can we automatically determine the
cluster size for a particular workload while minimizing the latency
of queries and cost for the customer at the same time? (2) Our eval-
uation has also shown that a shared resource pool can be beneficial
for large queries, but has lower performance for smaller customers
with many queries. What would be an optimal service model? (3)
What is the best computational substrate (e.g., instances, cloud
functions) for multi-tenant, intermittent cloud analytics? We hope
that CAB will help to answer these questions.

ACKNOWLEDGMENTS
Funded/Co-funded by the EuropeanUnion (ERC, CODAC, 101041375).
Views and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European Union or
the European Research Council. Neither the European Union nor
the granting authority can be held responsible for them.

1424



REFERENCES
[1] Collin Bennett, Robert L. Grossman, David Locke, Jonathan Seidman, and Steve

Vejcik. 2010. Malstone: towards a benchmark for analytics on large data clouds.
In KDD.

[2] Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. 2009. How
is the weather tomorrow?: towards a benchmark for the cloud. In DBTest.

[3] Peter A. Boncz, Thomas Neumann, and Orri Erling. 2013. TPC-H Analyzed:
Hidden Messages and Lessons Learned from an Influential Benchmark. In TPCTC.
61–76.

[4] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. 2009. Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility. Future Gener. Comput. Syst.
(2009).

[5] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz. 2011. The
case for evaluating mapreduce performance using workload suites. In IEEE
international symposium on modelling, analysis, and simulation of computer and
telecommunication systems.

[6] Benoit Dageville and Thierry Cruanes. Accessed: 2022-04-14. Industry Bench-
marks and Competing with Integrity. https://www.snowflake.com/blog/industry-
benchmarks-and-competing-with-integrity.

[7] Benoît Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In SIGMOD.

[8] Snowflake Documentation. Accessed: 2021-10-11. Snowflake Isolation
Level. https://web.archive.org/web/20211011014842/https://docs.snowflake.com/
en/sql-reference/transactions.html.

[9] Snowflake Documentation. Accessed: 2021-12-09. Snowflake Data Encryp-
tion. https://web.archive.org/web/20211209111258/https://docs.snowflake.com/
en/user-guide/security-encryption.html.

[10] Markus Dreseler, Martin Boissier, Tilmann Rabl, and Matthias Uflacker. 2020.
Quantifying TPC-H Choke Points and Their Optimizations. VLDB (2020).

[11] Michael Ferdman, Almutaz Adileh, Yusuf Onur Koçberber, Stavros Volos, Moham-
mad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. In ASPLOS 2012, London, UK, March
3-7, 2012.

[12] Daniela Florescu and Donald Kossmann. 2009. Rethinking cost and performance
of database systems. SIGMOD Rec. (2009).

[13] Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl,
and Cafer Tosun. 2012. Benchmarking in the Cloud: What It Should, Can, and
Cannot Be. In TPCTC.

[14] George Fraser. Accessed: 2022-03-12. 2020 Cloud Data Warehouse Benchmark:
Redshift, Snowflake, Presto and BigQuery. https://www.fivetran.com/blog/
warehouse-benchmark.

[15] Simson Garfinkel. 2007. An evaluation of Amazon’s grid computing services:
EC2, S3, and SQS. (2007).

[16] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The Hi-
Bench benchmark suite: Characterization of the MapReduce-based data analysis.
In (ICDEW).

[17] Kai Hwang, Xiaoying Bai, Yue Shi, Muyang Li, Wen-Guang Chen, and Yongwei
Wu. 2016. Cloud Performance Modeling with Benchmark Evaluation of Elastic
Scaling Strategies. IEEE Trans. Parallel Distributed Syst. (2016).

[18] Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin-gyu Kim, Hyungsoo Jung, and
Heon Y Yeom. 2008. Mrbench: A benchmark for mapreduce framework. In IEEE
International Conference on Parallel and Distributed Systems.

[19] Andreas Kipf, Damian Chromejko, Alexander Hall, Peter A. Boncz, and David G.
Andersen. 2020. Cuckoo Index: A Lightweight Secondary Index Structure. VLDB
(2020).

[20] Viktor Leis and Maximilian Kuschewski. 2021. Towards Cost-Optimal Query
Processing in the Cloud. PVLDB (2021).

[21] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. 2010. CloudCmp:
comparing public cloud providers. In SIGCOMM.

[22] Zheng Li, Liam O’Brien, He Zhang, and Rainbow Cai. 2012. On a Catalogue of
Metrics for Evaluating Commercial Cloud Services. In GRID.

[23] Guido Moerkotte. 1998. Small Materialized Aggregates: A Light Weight Index
Structure for Data Warehousing. In VLDB.

[24] Rim Moussa and Hassan Badir. 2013. Data Warehouse Systems in the Cloud:
Rise to the Benchmarking Challenge. Int. J. Comput. Their Appl. (2013).

[25] Ingo Müller, Renato Marroquín, and Gustavo Alonso. 2020. Lambada: Interactive
Data Analytics on Cold Data Using Serverless Cloud Infrastructure. In SIGMOD.

[26] Matthew Perron, Raul Castro Fernandez, David J. DeWitt, and Samuel Madden.
2020. Starling: A Scalable Query Engine on Cloud Functions. In SIGMOD.

[27] Nicolás Poggi, Víctor Cuevas-Vicenttín, Josep Lluis Berral, Thomas Fenech,
Gonzalo Gómez, Davide Brini, Alejandro Montero, David Carrera, Umar Fa-
rooq Minhas, José A. Blakeley, Donald Kossmann, Raghu Ramakrishnan, and
Clemens A. Szyperski. 2019. Benchmarking Elastic Cloud Big Data Services
Under SLA Constraints. In TPCTC.

[28] Snowflake. Accessed: 2022-01-22. Snowflake SDK on NPM. https://www.npmjs.
com/package/snowflake-sdk.

[29] Snowflake. Accessed: 2022-04-15. Warehouse Concurrency and Statement
Timeout Parameters. https://community.snowflake.com/s/article/Warehouse-
Concurrency-and-Statement-Timeout-Parameters.

[30] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert
Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Patterson.
2008. Cloudstone: Multi-platform, multi-language benchmark and measurement
tools for web 2.0. In Proc. of CCA.

[31] Junjay Tan, Thanaa Ghanem, Matthew Perron, Xiangyao Yu, Michael Stone-
braker, David J. DeWitt, Marco Serafini, Ashraf Aboulnaga, and Tim Kraska.
2019. Choosing A Cloud DBMS: Architectures and Tradeoffs. PVLDB (2019).

[32] Wei-Tek Tsai, Yu Huang, and Qihong Shao. 2011. Testing the scalability of SaaS
applications. In SOCA.

[33] Alexander van Renen. Accessed: 2022-04-15. Cloud Analytics Benchmark (CAB).
https://github.com/alexandervanrenen/cab.

[34] Midhul Vuppalapati. Accessed: 2022-04-15. Snowflake dataset containing sta-
tistics for 70 million queries over 14 day period. https://github.com/resource-
disaggregation/snowset.

[35] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong, AshishMotivala,
and Thierry Cruanes. 2020. Building An Elastic Query Engine on Disaggregated
Storage. In USENIX NSDI.

[36] Reynold Xin andMostafa Mokhtar. Accessed: 2022-04-14. Databricks Sets Official
Data Warehousing Performance Record. https://databricks.com/blog/2021/11/
02/databricks-sets-official-data-warehousing-performance-record.html.

1425

https://www.snowflake.com/blog/industry-benchmarks-and-competing-with-integrity
https://www.snowflake.com/blog/industry-benchmarks-and-competing-with-integrity
https://web.archive.org/web/20211011014842/https://docs.snowflake.com/en/sql-reference/transactions.html
https://web.archive.org/web/20211011014842/https://docs.snowflake.com/en/sql-reference/transactions.html
https://web.archive.org/web/20211209111258/https://docs.snowflake.com/en/user-guide/security-encryption.html
https://web.archive.org/web/20211209111258/https://docs.snowflake.com/en/user-guide/security-encryption.html
https://www.fivetran.com/blog/warehouse-benchmark
https://www.fivetran.com/blog/warehouse-benchmark
https://www.npmjs.com/package/snowflake-sdk
https://www.npmjs.com/package/snowflake-sdk
https://community.snowflake.com/s/article/Warehouse-Concurrency-and-Statement-Timeout-Parameters
https://community.snowflake.com/s/article/Warehouse-Concurrency-and-Statement-Timeout-Parameters
https://github.com/alexandervanrenen/cab
https://github.com/resource-disaggregation/snowset
https://github.com/resource-disaggregation/snowset
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html
https://databricks.com/blog/2021/11/02/databricks-sets-official-data-warehousing-performance-record.html

	Abstract
	1 Introduction
	2 Background: Snowflake Workload
	2.1 Snowflake
	2.2 Snowset

	3 Real-World Data Warehousing
	3.1 Query Profile
	3.2 Operator Distribution
	3.3 Spilling
	3.4 Query Statistics
	3.5 Lessons Learned

	4 Cloud Workload Characteristics
	5 Cloud Analytics Benchmark
	5.1 Benchmark Basics
	5.2 Benchmark Parameters & Metrics
	5.3 Database and Query Stream Generation
	5.4 Query Pool
	5.5 Data Loading
	5.6 Execution of a Run

	6 Evaluation
	6.1 Experiment: Shared Cluster Size
	6.2 Experiment: Shared vs Per-tenant Clusters
	6.3 Experiment: System Comparison

	7 Related Work
	7.1 Calls for Cloud Benchmarks
	7.2 Comparison with other Benchmarks

	8 Conclusion and Research Questions
	Acknowledgments
	References

