
Online Schema Evolution is (Almost) Free for Snapshot Databases
Tianxun Hu

Simon Fraser University

tha110@sfu.ca

Tianzheng Wang

Simon Fraser University

tzwang@sfu.ca

Qingqing Zhou

Tencent Inc.

hewanzhou@tencent.com

ABSTRACT
Modern database applications often change their schemas to keep

up with the changing requirements. However, support for online

and transactional schema evolution remains challenging in exist-

ing database systems. Specifically, prior work often takes ad hoc

approaches to schema evolution with “patches” applied to existing

systems, leading to many corner cases and often incomplete func-

tionality. Applications therefore often have to carefully schedule

downtimes for schema changes, sacrificing availability.

This paper presents Tesseract, a new approach to online and

transactional schema evolution without the aforementioned draw-

backs. We design Tesseract based on a key observation: in widely

used multi-versioned database systems, schema evolution can be

modeled as data modification operations that change the entire

table, i.e., data-definition-as-modification (DDaM). This allows us

to support schema almost “for free” by leveraging the concurrency

control protocol. By simple tweaks to existing snapshot isolation

protocols, on a 40-core server we show that under a variety of

workloads, Tesseract is able to provide online, transactional schema

evolution without service downtime, and retain high application

performance when schema evolution is in progress.

PVLDB Reference Format:
Tianxun Hu, Tianzheng Wang, and Qingqing Zhou. Online Schema

Evolution is (Almost) Free for Snapshot Databases. PVLDB, 16(2): 140 - 153,

2022.

doi:10.14778/3565816.3565818

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/sfu-dis/tesseract.

1 INTRODUCTION
Multi-versioned concurrency control (MVCC) has been widely

adopted by open-source and commercial systems to provide high

performance for various database applications. The main benefit is

that under MVCC, readers may be allowed to proceed even if there

are concurrent and conflicting writers [3, 58]. Almost all the main-

stream relational database systems—For example, MySQL [40], Post-

greSQL [52], SQL Server [33] and Oracle [41]—implement MVCC to

offer snapshot isolation (SI) or repeatable read as the default or rec-

ommended isolation level. Many in-memory MVCC protocols have

also been proposed to well leverage the abundant parallelism and

memory available in modern servers [7, 11, 12, 22, 29, 31, 39, 55].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 2 ISSN 2150-8097.

doi:10.14778/3565816.3565818

In addition to high performance for forward processing, modern

database applications also require graceful handling of schema evo-

lution to satisfy new requirements, e.g., adding columns, creating

tables from existing data and changing constraints. This is typi-

cally done with data definition language (DDL) statements such as

CREATE TABLE...AS, CREATE INDEX and ALTER TABLE. Internally,
the DBMS handles DDL statements by updating database metadata

to store the new schema, and examining (e.g., against newly added

constraints) and migrating existing table data to conform to the new

schema. Data verification and migration during schema evolution

can incur massive data movement that may block concurrent data

manipulation language (DML) statements. It was common for early

systems to necessitate service downtime or maintenance windows

for schema evolution [43], often during “quiet hours.” With con-

tinuous deployment and integration becoming a norm, however,

schema evolution can happen quite frequently (e.g., several times

a week), requiring reduced or no service downtime and robust er-

ror handling with little DBA intervention [10, 42, 43]. This in turn

requires DDL statements be executed in a way that is (1) online

without blocking concurrent data accesses and (2) transactional

such that in case a DDL statement fails (e.g., attempting to convert

VARCHAR that contain “illegal” characters to INT) the operation can

be safely rolled back to leave the database in a consistent state.

1.1 Ad hoc Schema Evolution in MVCC Systems
There have been some attempts to support online and transactional

schema evolution in single- and multi-versioned systems [4, 9, 32,

35, 38, 43, 47], but they still fall short in two aspects.

First, existing solutions expose many special, corner cases that

need to be carefully handled by OLTP engine and application de-

velopers. For example, MySQL does not offer transactional DDL,

not all the operations are online/atomic, and concurrent DML is

often forbidden [36, 37]. In case a transaction includes any DDL

statements, the transaction will be silently committed, posing cor-

rectness risks for applications [6]. Some recent work [4] allows

DDL operations to be completed lazily without migrating data right

away (by doing it in the background), but is limited to compati-

ble schema changes; in case the change introduces incompatibility

(e.g., the previous data type conversion case), the user then has to

examine the column content in advance to decide whether the DDL

statement should be issued as once the metadata (schema) change is

done, it is difficult or impossible to be rolled back as a newer version

of the application may have already started to use the new schema,

leaving certain data being dropped or unavailable. Handling these

special cases significantly complicates system design. Moreover,

the special cases may change as the DBMS itself is continuously

upgraded, further complicating application design.

Second, past solutions often strongly rely on specific DBMS

features, some of which are in essence database applications them-

selves. This may limit the functionality and performance of schema

140

https://doi.org/10.14778/3565816.3565818
https://github.com/sfu-dis/tesseract
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565816.3565818
https://www.acm.org/publications/policies/artifact-review-and-badging-current

evolution. For example, some systems rely on views [4] and trig-

gers [47] which present performance bottlenecks as they use table-

level locking that forbids concurrent updates. If a system does not

implement the required features or deviates from the required be-

haviors, the efficiency of DDL operations can be negatively affected.

Overall, we observe that the key reason for these issues is DDL

support is often an after-thought instead of a first-class citizen that

is considered at database engine design time. In other words, they

are ad hoc solutions with “patches” applied gradually to the DBMS.

Also, there is relatively less attention from academia and (in part as

a result) real systems often provide inadequate support, making ap-

plication developers handle DDL operations “in the trenches” (e.g.,

with external third-party tools [38]) and often describe DDL opera-

tions as “dicey” and “dangerous” [50]. Consequently, application

developers often try their best to avoid DDL operations, limiting

application functionality and end-user experience.

1.2 Tesseract: Data-Definition-as-Manipulation
This paper presents Tesseract, a new approach to non-blocking

and transactional schema evolution in MVCC systems without the

aforementioned limitations.

Tesseract provides native support for online and transactional

schema evolution by directly adapting the concurrency control (CC)

protocol in MVCC database engines. This is enabled by leveraging

two very simple but useful observations: (1) Conceptually, transac-

tional DDL operations can be modeled by “normal” transactions of

DML statements that modify the schema and (sometimes option-

ally) entire tables involved. (2) In MVCC systems—thanks to their

built-in versioning support—schemas can be stored as versioned

data records and be used to participate concurrency control in ways

similar to “normal” data accesses for determining table data vis-

ibility. When combined, these observations allow us to devise a

data-definition-as-manipulation (DDaM) approach that supports

online and transactional DDL almost “for free” by slightly tweak-

ing the underlying SI protocol within the database engine, without

having to rely on additional features such as views and triggers.

Like classic catalog management designs [44], Tesseract asso-

ciates each table (or other resources, such as a database) with a

schema record which is stored in a catalog table which in turn

has a predefined schema (e.g., table name, constraints, etc.). Us-

ing the system’s built-in versioned storage support, such schema

records are also multi-versioned. This allows us to implement DDL

operations as simple as (1) appending a new schema version via

standard record update routines and (2) finishing data verification

and migration, both in a single transaction that follows the commit

and rollback processes of the underlying CC protocol. To access a

table, the DML transactions simply follows the standard SI proto-

col to read the table’s schema record version that is visible to the

transaction. The schema version record then dictates which data

record versions should be accessed by the transaction.

DDaM is straightforward in concept, but realizing it requires

careful considerations. Specifically, DDL transactions can be very

long by accessing entire tables, and so could block the progress

of other transactions, or be aborted due to frequent conflicts with

concurrent transactions. It also adds prohibitively high footprint

tracking overhead for writes if we were to follow the SI protocol

naively. Moreover, concurrent DDL and DML operations must be

handled with care to ensure that logically, a DML transaction with

work done based on an older schema version never commits after

a newer schema has been installed (otherwise subsequent reads

would interpret the old content based on a new schema version,

leading to potentially wrong results). To this end, in later sections,

we propose a relaxed DDaM design that further adapts the SI pro-

tocol to allow more concurrency and reduce unnecessary aborts.

Relaxed DDaM is the key for Tesseract to achieve online schema

evolution without sacrificing much for DML operations.

Although we focus on MVCC in this paper, single-versioned

systems could adopt Tesseract if extra (but straightforward) steps

are taken to support versioned schema; we discuss possible solu-

tions later. Tesseract can also work with existing lazy migration

approaches [4] to support instant deployment of compatible schema

changes, which we demonstrate in later sections.

We have implemented and integrated Tesseract with ERMIA [22],

a main-memory MVCC database engine, as its schema management

and evolution solution. Following past work, we use several rep-

resentative schema evolution workloads to evaluate Tesseract. On

a 40-core server, compared to prior approaches, Tesseract allows

the system to evolve database schemas without service downtime

or significantly impacting application performance. As we show

in detail later, we often observe only up to ∼10% of drop for DML

operations with DDL operations that involve heavyweight data

copying such as adding a column eagerly.

1.3 Contributions and Paper Organization
This paper makes four contributions. 1 We make the key observa-

tion that schema evolution can be models as modifying entire tables,

to unify DDL and DML handling and propose a simple but useful

data-definition-as-manipulation (DDaM) approach for transactional

and non-blocking DDL operations. 2 We show how simple tweaks

can be applied to common snapshot isolation protocols to easily

and natively support transactional and non-blocking DDL without

ad hoc “patches.” 3 Based on DDaM, we build Tesseract to show

DDaM’s feasibility and address challenges brought by DDaM. 4

We compile a comprehensive set of schema evolution benchmarks

to evaluate Tesseract and related work. Tesseract is open-source at

https://github.com/sfu-dis/tesseract.
Next, we start with the necessary background in Section 2, and

give the basic idea and simple tweaks needed for SI to handle DDL

natively in Sections 3–4. Section 5 then describes Tesseract in detail

and addresses the challenges of DDaM. We cover evaluation in

Section 6 and related work in Section 7, before Section 8 concludes.

2 MVCC BACKGROUND
In this section, we give the necessary background on MVCC and

clarify the assumptions we make throughout the paper.

2.1 Database Model
Following past and recent work on memory-optimized MVCC [7,

11, 12, 22, 31, 55], we adopt the MVCC model described by Adya [1]

where the database consists of a set of records, each of which is

represented by a sequence of totally-ordered versions. An update

then appends a new version to the sequence and delete is modeled as

141

https://github.com/sfu-dis/tesseract

a special case of update that appends a tombstone version. Similarly,

inserting a record is treated as an update that appends the first valid

version for the record. To read a record, the transaction picks a

version that is visible to it depending on the isolation level used

(described later). To facilitate this, the system maintains a central

counter usually implemented as a 64-bit integer [11, 22]. Upon

start (or accessing the first record), the transaction reads the global

counter to obtain a begin timestamp. Upon commit, the transaction

atomically increments the global counter (e.g., using the atomic

fetch-add or compare-and-swap instruction [20]) to obtain a commit
timestamp which indicates the transaction’s commit order, and is

stamped on every version it created. If a version carries a greater

commit timestamp, it is created more recently in logical time.

With such a database model, the transaction can pick a visible

version based on the set isolation level. Under snapshot isolation

(SI) [3], when reading a record, the transaction always “sees” the lat-

est version that was created before its begin timestamp. To update

a record, the transaction must be able to see the latest version (i.e.,

having a begin timestamp that is greater than the latest version’s cre-

ation timestamp). Under read committed (RC), however, the trans-

action always reads the latest version, regardless of its begin times-

tamp. In both cases, transactions follow the first-updater/committer-

wins protocol [13]: if there is already an uncommitted new version

appended to a record by transaction𝑇 , then subsequent transactions

trying to update/delete the same record must abort. That is, only

one uncommitted version is allowed per record. In the rest of this pa-

per, we focus on snapshot isolation as it leverages multi-versioning

and is widely used and supported in both research prototypes and

complete systems [5, 7, 11, 12, 22, 26, 31, 39, 41, 52, 59].

2.2 MVCC/SI in Practice and Assumptions
Different implementations exist for the above database model [58].

Without losing generality, we describe the approach taken by ER-

MIA [22], a memory-optimized database engine; our implementa-

tion is based upon it. Each record is uniquely identified by a record

ID (RID) that does not change throughout the lifetime of the record,

and a collection of records (each of which consists of a sequence

of versions) form a table; based on the specific design, record ver-

sions could be managed by DBMS-managed heap pages and table

spaces, or by a memory allocator in the heap. In either case, a table

is represented by an in-memory indirection array (also known as

the “mapping table” in some systems [11, 28, 30]) that is indexed

by RIDs. Figure 1 describes the idea. Each indirection array entry

represents a record and contains a pointer to the latest version of

the record. Each version also includes a next pointer to the next

older version of the record, forming a version chain in old-to-new

order [58]. Transactions traverse version chains to locate the desir-

able version to use. To update a record, the transaction generates

a new version and atomically inserts it at the head of the version

chain, typically by performing a compare-and-swap (CAS) oper-

ation on the indirection array entry (with the “new value” being

a pointer to the new version, and the “old value” being the entry

value it observed upon starting this update). If the CAS succeeded,

then the transaction proceeds with its next steps; otherwise, the

transaction will abort (and be retried if desired) because a newer

version was already installed by a different transaction.

In-memory version
chain:

V2 V1

Per-table
Indirection array

RID Where?

0

1

.

V2 V1 ……

Persistent storage

…

Indexes
keys → RIDs

Figure 1: Multi-versioning using indirection. Each table is
represented by an indirection array indexed by record IDs
(RIDs); each indirection array entry points to a chain of ver-
sions of the record. Indexes map keys to RIDs.

During forward processing, each transaction keeps track of its

footprint by maintaining a write set and optionally a read set. Upon

commit, the transaction first conducts a pre-commit phase to ac-

quire a timestamp from the central counter and then stamps each

new version generated with the commit timestamp, followed by a

post-commit phase that persists log records before returning results

to the client. The pre-commit phase in essence commits the transac-

tion in-memory. Therefore, for isolation levels higher than RC and

SI, additional checks (e.g., phantom protection and serializability)

may be performed before post-commit starts. If the transaction

does not survive checks before post-commit, it must be aborted.

To avoid log I/O becoming a bottleneck, some systems adopt

pipelined commit [21] to decouple log I/O from the commit path,

where transactions are queued on a central (or partitioned) com-

mit queue that is monitored by commit/flush thread(s). After pre-

commit the worker thread passes the transaction to the commit

queue and continues to handle subsequent requests. Once the log

records are flushed, the transaction is removed from the commit

queue and considered to be fully committed. In memory-optimized

systems, thanks to the fact that the entire working set is in-memory,

undo logging is typically not required. Therefore, transactions only

needs to generate and persist redo logs (i.e., new versions), leading

to redo-only logging. However, we note that Tesseract does not

depend on whether redo-only or redo-undo logging is used; we

only require the availability of replaying log records (described

later), which is available in almost all the targeted systems.

3 TESSERACT OVERVIEW
The crux of DDaM is to model DDL operations as DML operations

that modify entire tables. Certain DDL operations, such as column

format conversion from INT to FLOAT, fit directly with this idea,

while others may present different requirements. In this section,

we give an overview of Tesseract, by first categorizing the DDL

operations to show how different DDL operations can be mapped

to DML operations, and then show how the standard SI protocol

can be extended with DDaM.

3.1 Categorizing DDL Operations
A schema evolution transaction can include a wide range of DDL

operations, however, reminiscent of the steal vs. flush decisions in

buffer management [44], they largely fall under two dimensions: (1)

whether the operation requires actual data copying/modification,

142

Table 1: Examples of DDL operations, categorized by whether
they involve copying and/or verifying existing table data.
Note that certain operations may appear in more than one
category depending on system design (e.g., ADD COLUMN).

Copy No Copy

Verify MODIFY COLUMN ADD CONSTRAINT
CREATE INDEX SET NOT NULL

No Verify CREATE..AS..SELECT CREATE/DROP TABLE
CREATE INDEX ADD/DROP COLUMN

and (2) whether the change is limited to verification, i.e., a read-

only pass over the table data. We respectively refer to these two

dimensions as copy and verify. A DDL operation then may involve

either, both, or none of the two (which indicates the DDL change is

limited to the metadata, i.e., “the schema” itself).

Table 1 summarizes several common examples; we omit exhaus-

tive summaries and focus on the common operations to describe the

idea and show experiments later. Operations like changing column

data type (e.g., from INT to FLOAT using MODIFY COLUMN) involve
both “copy” and “verify” as the system needs to scan the table data

to ensure the new and old column formats are compatible and then

convert it to the new format. In case an incompatible change is de-

tected while the data is being transformed, the DDL operation must

be aborted. Certain operations involve only the “verify” dimension.

For example, to add a non-NULL constraint to an existing column,

one needs to ensure that the entire column does not have NULL
values; otherwise the operation is aborted. Similarly, for operations

like creating new columns by joining existing tables using CREATE
... AS ... SELECT ... or creating new indexes, the system

only needs to generate the new table data or index, without having

to verify data types. Finally, it is noticeable that whether a DDL

operation involves copy or verify also depends on the underlying

system’s design and implementation. For example, operations like

creating/deleting entire tables could be performed without copy

nor verify, by only changing the system catalog (thus listed as no-

copy, no-verify in Table 1). Similarly, adding new columns based

on a default value could fall under the same category, if the system

supports lazy DDL operations: the DDL transaction only needs to

modify the table schema to include this new column, along with a

function pointer that fills the default value for the field when the

data is accesses by subsequent DML transactions.

3.2 Schema Versioning
Following classic approaches [44], like “normal” records, a table’s

schema information is maintained by a “schema record” in a system-

wide catalog table which in turn is a normal relational table but

with a predefined schema. Under DDaM, this implies that each

table is associated with a schema record that defines its structure

(e.g., data types, columns, and constraints). Figure 2(top) depicts

the idea based on the design in Section 2.2. As shown in the figure,

the catalog is also represented by an indirection array, and each

record in the catalog table is in fact a schema that is also multi-

versioned using a version chain. Each schema version also carries a

commit timestamp for visibility, along with other information such

RID Where?

0

1

.

Catalog table

RID Where?

0

1

.

Data under schema version S2

Schema version S2

- Commit TS: 500
- Columns . . .

S2V2 . . .

Schema version S1

- Commit TS: 100
- Columns . . .

T1: begin TS = 600 T2: begin TS = 200

RID Where?

0

1

.

S1V2 . . .

Data under schema version S1

Figure 2: Schema multi-versioning in Tesseract. Schemas are
multi-versioned in the same way as table data. Each RID in
the catalog uniquely identifies a table. Data under different
schema versions is represented by separate indirection ar-
rays; this is not necessary for basic DDaM designs (Section 4)
but can extract more concurrency (Section 5). To access a
record, the data and schema versions must match: transac-
tions (1) pick the latest visible schema, and (2) read the latest
record version that conforms to the schema version.

as the list of columns, constraints and access paths to the data that

conforms to it. The schema record’s RID also uniquely identifies a

data table, i.e., it also serves as the table’s unique ID. This way, to

access a record, a transaction needs to access a catalog version and

the corresponding data version, both subjecting to visibility rules

under SI, which we describe next.

3.3 Transactional DDL and DML Operations
A transaction in Tesseract can include a mix of DML (data record

accesses) and DDL (schema evolution) operations. Although the

latter in Tesseract are realized using DML operations, for clarity

we still refer to them as DDL operations. Next we describe from a

high level how Tesseract performs DDL and DML operations.

DML operations still follow the normal SI protocol to pick the

suitable version but must ensure the data and schema versions are

consistent. As Figure 2 shows, when transaction𝑇 1 attempts to read

a record with RID 1 in Table 1, it visits the catalog table to obtain

the schema version, 𝑆2, which has a commit timestamp (TS) of 500

that is earlier than𝑇 1’s begin TS (600). Then,𝑇 1 uses the schema to

access/interpret the latest visible version (𝑆2𝑉2). However, 𝑇 2 must

use 𝑆1 and 𝑆1𝑉2 because 𝑆2 was created after 𝑇 2 began at TS=200.

Updates are handled similarly, but the protocol should ensure

(1) the latest record version and (2) the latest schema version are

visible to the transaction. The second requirement reflects the key

of DDaM: if a concurrent DDL operation has installed a newer

schema version but is yet to commit before the DML transaction

commits, then the concurrent DDLmay be updating the entire table,

causing write-write-conflicts and thus aborting either transaction.

If the update commits later than the concurrent DDL transaction

(but assuming the old schema), the new record version would be

stamped a TS greater than the (soon-to-commit) new schema. This

143

will cause later reads to wrongly interpret an older record version

using a newer schema, hence must be forbidden.

DDL operations, as we have briefly mentioned, will participate

concurrency control just like normal DML transactions, by updat-

ing schema records using standard SI protocols, followed by any

needed DML operations to transform/verify the table content. The

key is that they must carefully handle interactions with DML op-

erations (as described above) and at the same time, leverage the

available parallelism in modern multicore CPUs to accelerate the

data migration/verification process for it to not become a bottleneck.

We provide detailed solutions next.

4 DATA-DEFINITION-AS-MODIFICATION
We begin with a basic DDaM design that demonstrates how DDaM

can easily enable online and transactional schema evolution; Sec-

tion 5 then proposes more efficient approaches on top of the basic

design. A straightforward approach to DDaM is to model schema

accesses as data record accesses by strictly following the generic SI

protocols for DML operations. To set the stage, we first review the

generic SI protocols, followed by the detailed protocols.

4.1 Generic SI Protocols
Based on the high-level ideas in Section 2, Algorithm 1 shows the

concrete steps. The vanilla SI protocols are prefixed with generic_
(lines 3–20). In the algorithm (and subsequent ones), we denote

tables using indirection arrays indexed by RIDs as described pre-

viously. Then, an array entry table[rid] stores a pointer to the

latest version on the version chain (following the new-to-old or-

der [58]) for the tuple identified by rid. As shown by lines 3–8 of

Algorithm 1, the accessing transaction traverses the version chain

to find the latest visible record version along with whether it is

the latest. Updating a record as shown by lines 10–20 works by (1)

ensuring the transaction can see the latest version (lines 11–13),

(2) chaining current head version after the new version (line 16)

and (3) issuing a CAS to install a pointer to the new version on the

indirection array entry (line 17). If the CAS succeeded, the update

is recorded in the write set for commit (described later).

4.2 Basic Data-Definition-as-Modification
With the generic SI protocols, reading a schema record is the same

as classic approaches that store the catalog as a table, by using

generic_read to obtain a visible schema record version (lines 22–

23 in Algorithm 1). Here, table IDs are used as “RIDs” in the schema

table as we described in Section 3.2.

Schema Operations. Under DDaM, the process of evolving

a schema requires two steps. First, we update the schema record

itself following normal SI protocols: if the latest schema version

is not visible to the issuing transaction, it will abort (lines 27–28

of Algorithm 1). After the new schema record version is success-

fully installed, but before the transaction commits, the transaction

proceeds to the data migrate phase (if needed) at line 31 which

can involve the copy and/or verify actions (Section 3.1) done by

generic_read and generic_write. Unlike Figure 2 which in fact

shows the “final” Tesseract design (Section 5), the basic DDaM pro-

tocol being discussed here does not require a separate indirection

Algorithm 1 Vanilla SI protocols for record accesses and schema

operations under basic DDaM using the vanilla protocols.

1 global: catalog # global schema table

3 def generic_read(t, table, rid):

Traverse the data version chain

5 foreach v in table[rid]:

if v.commit_ts < t.begin_ts:

7 return {<v, is_latest(v)}

return nil

9

def generic_write(t, table, rid, new_v):

11 v = table[rid]

if v.commit_ts > t.begin_ts:

13 return false

15 # Try to install the new version

new_v.next = v # link new and old versions

17 success = CAS(&table[rid], v, new_v)

if success == true:

19 t.write_set.add(table.id, rid)

return success

21

def ddam_get_schema(t, table):

23 return = generic_read(t, catalog, table.id)

25 def ddam_update_schema(t, table, new_schema):

Perform a normal write to install the new schema

27 if !generic_write(t, catalog, table.id, new_schema)

return false

29

migrate data (details in Sec. 4.2-4.3)

31 if !migrate(t, table, new_schema):

return false

array per schema version. Rather, we continue to use a single in-

direction array per table, which allows data record versions under

different schema versions to co-exist in the same version chain;

this keeps the design simple but can cause more aborts, which we

address in Section 5. After data migration, we proceed to the com-

mit phase (described later). Note that both protocols for reading

and updating a schema record are wrapped within a transaction

context, so they also follow the all-or-nothing atomicity guarantees

provided by the engine, enabling transactional schema evolution.

Data Record Accesses. Reading or updating a normal data

record in a table is straightforward with simple additions of schema

accesses before the actual record accesses. Since inserts and deletes

are modeled as special cases of updates (Section 2.1), we do not

repeat them here. Algorithm 2 shows the full protocol with schema-

related steps highlighted. As Section 3.3 describes, to read or write

a table record, the only addition to the vanilla SI protocol is to con-

sider the schema version that is visible to the accessing transaction

(lines 3–5). Moreover, for write operations, each transaction will

also maintain a schema set that records all the schema versions

144

Algorithm 2 Tuple read/write and transaction commit protocols

under basic DDaM; DDL-related operations are shaded.

def ddam_read(t, table, rid):

2 # Get the schema record version

{schema, unused} = ddam_get_schema(t, table)

4 if schema == nil:

return false

6 return generic_read(t, table, rid)

8 def ddam_write(t, table, rid, new_v):

Ensure both the latest schema and data are visible

10 {schema, is_latest} = ddam_get_schema(t, table)

if schema == nil or !is_latest:

12 return false

14 success = generic_write(t, table, rid, new_v)

if success == true:

16 t.schema_set.add(schema) # record schema access

return success

18

def ddam_commit(t):

20 t.commit_ts = atomic_fetch_add(ts_counter)

22 # Check if the schema matches commit ts

foreach s in schema_set:

24 latest = schema_table[s.table_id]

if latest != s: # a newer schema was added

26 return false

28 # Passed checks, finish the commit

foreach v in write_set:

30 v.commit_ts = t.commit_ts

... same as vanilla SI (persist logs and clean up)...

32 return true

used by the transaction (lines 15–16). This is necessary for ensuring

commit-time verification, described next.

Commit Protocol. After all record accesses are done, the trans-

action uses ddam_commit shown in Algorithm 2 (lines 19–32) to

attempt to commit. Like the vanilla SI protocol, the transaction

starts by acquiring a commit timestamp (line 20). It iterates over

the schema set to verify that for each updated record, the schema

version used by the transaction at the time of the update is still

the latest at commit time. Note that under SI schema versions for

read records are not tracked here. Then, we continue to finalize

the new records (including new versions generated as a result of

both DDL and DML operations) with the transaction’s commit TS

at lines 29–31. This is exactly the same as vanilla SI protocols.

4.3 Issues with Basic DDaM
By strictly applying the SI protocol, basic DDaM can easily enable

online and transactional DDL operations without ad hoc designs.

However, strictly following the SI protocol is a double-edged sword

that can make DDaM impractical.

t1 t2 t3

T3: ALTER TABLE … Table 1

T1: UPDATE … Table 1 T2: UPDATE … Table 1

UPDATE … Table 2

write-write conflicts

(a) Basic data-definition-as-modification

(no conflicts)

(b) Relaxed data-definition-as-modification

t1 t2 t2+n tpre t3

T3: ALTER TABLE … Table 1

T1: UPDATE … Table 1 T2: UPDATE … Table 1

UPDATE … Table 2

out-of-place updates

(no conflicts)

CDC

Figure 3: Basic DDaM (a) strictly follows generic SI proto-
cols to easily realize DDL operations, but limits concurrency,
causing frequent aborts. Relaxed DDaM (b) allows more con-
currency by allowing the new schema to become visible early
and pre-committing and verifying concurrent DML transac-
tions while a conflicting DDL transaction is in progress.

We observe several issues with basic DDaM. 1 DDL transac-

tions are often heavy-weight, long-running transactions as they

may incur full-table scans and migration. As Figure 3(a) shows, a

long-running DDL transaction may cause other concurrent DML

transactions to abort due to write-write conflicts. Note that by defi-

nition, transactions that do not conflict with the DDL transaction

can proceed in parallel and commit as usual, e.g., the top blue trans-

action in Figure 3(a). 2 The DDL transaction itself may get aborted

if an earlier concurrent transaction modified a record that happened

to be visited later by the DDL transaction. This will waste a lot of

useful work done by the DDL and/or DML transactions. Following

the first-committer/updater-wins protocol [13] it becomes pure

“luck” for schema evolution transactions to successfully commit,

as verified by our experiments in Section 6. 3 Finally, relying on

the generic SI protocol means write operations done during data

migration will also be tracked. This in turn imposes non-trivial

overhead of maintaining a (very large) write set, slowing down

commit speed. We address these issues next.

5 TESSERACTWITH RELAXED DDAM
We observe basic DDaM’s issues are largely due to the fact that

the generic SI protocol admits very little concurrency among write

transactions. First, as mentioned earlier, the DDL transaction can

race with a concurrent DML operation to install new versions on

the target table using one indirection array, causing aborts upon

write-write conflicts. Second, by default a transaction is served by

145

one thread, leading to long conflict windows due to the limited

compute capability of a single CPU core. The large write set further

exacerbates the situation.We therefore solve the problem by finding

ways to (1) allow more concurrent (write) transactions to commit,

and (2) increase parallelism while reducing transaction metadata

tracking complexity to eventually shorten the conflict window.

Tesseract reaches these goals with relaxed DDaM. Figure 3(b)

illustrates the high-level design, which includes (1) an out-of-place

migration mechanism, (2) a conflict resolution scheme and (3) re-

laxed snapshots that still providing the same SI isolation level.

5.1 Out-of-Place Migration
Migrating data constitutes the bulk of a DDL transaction if “copy”

is needed (e.g., for compatible format conversion). Contrary to basic

DDaM in Figure 3(a), relaxed DDaM creates a new indirection array

to store new records generated as a result of the DDL operation.

This has been shown in Figure 2 where each schema record version

also includes a reference to the corresponding indirection array.

Until the DDL operation finishes, the new indirection array remains

invisible to other transactions. As a result, concurrent DML transac-

tions such as 𝑇 1 and 𝑇 2 in Figure 3(b) continue to use the original

indirection array to perform reads and writes, without being aware

of concurrent DDL operations. These DML transactions are allowed

to proceed and pre-commit internally. For correctness, however,

they will not be finalized until the concurrent DDL operation is

concluded. We enforce this using pipelined commit [21] mentioned

in Section 2.2. In essence, we relax SI’s write-write conflict handling

protocol to allow more “tentative” writes and defer conflict resolu-

tion to a later time via change data capture (Section 5.2). Specifically,

in Figure 3(b),𝑇 1 will be added onto a commit queue (which can be

a global figure or partitioned to avoid becoming a bottleneck) and

wait. The underlying thread that was handling 𝑇 1 can now switch

to handle the next request, without blocking.

Meanwhile, DDL transactions, like 𝑇3 in Figure 3(b), migrate

table data by scanning through the original indirection array using

multiple threads. For each record scanned, the DDL transaction (1)

transforms the record according to the new schema, and (2) installs

the new record version in the new indirection array. While the

migration is in-progress, in addition to updates, concurrent DML

transactions may also add new records to the original indirection

array, potentially increasing the amount of data that has to be

scanned. To bound the amount of work done during the scan pass,

the DDL transaction captures the size (𝑆) of the indirection array

upon start, and only scans up to 𝑆 records in the table. The [𝑡2, 𝑡𝑝𝑟𝑒]
period in Figure 3(b) indicates this “scan-transform-install” pass.

Since the DDL transaction is the only transaction that can access

the new indirection array, the installation step is guaranteed to

succeed. However, the transformation step may fail if the intended

schema evolution is incompatible with existing data (e.g., to convert

a FLOAT column to INT, but the data has decimal points). In this

case, the DDL transaction will abort, with all the allocated resources

(new record version chains and indirection array, which were never

visible to other transactions) reclaimed.
1

1
Alternatively, the user may specify resolution approaches in advance, for example,

by omitting all the decimal places during the FLOAT to INT conversion. This can avoid

the DDL to abort and is orthogonal to our design.

5.2 Change Data Capture
After the table is scanned at time 𝑡𝑝𝑟𝑒 in Figure 3(b), the systemmay

have accumulated a series of updates based on the original schema

version done by concurrent DML transactions. These updates must

be examined and transformed to use the new schema by the DDL

transaction. We introduce a change data capture (CDC) phase in

Tesseract for this purpose; some systems have been using CDC [25],

and Tesseract adapts it for relaxed DDaM. In case of incompatible

changes between the update and the new schema, either the DDL or

the DML transaction can be aborted, depending on the application’s

need. If it is desirable to abort the DDL transaction despite wasting

much data migration work (e.g., the significant portion of the appli-

cation code still prefers the old schema), after the “violating” DML

transaction commits, subsequent DDL transactions attempting the

same change will be aborted as it is incompatible with existing

data. In some cases, however, it may be desirable to to abort the

violating DML transactions if they are a small stale portion of the

application that should conclude soon anyway. Note that aborting

the DML transactions is possible because of pipelined commit, but

any dependent transactions must also be aborted, causing cascading

aborts. Handling cascading aborts may require tracking transac-

tion dependencies, adding extra overhead. Alternatively, one could

leverage commit pipelining to avoid tracking dependencies, by sim-

ply aborting all the transactions pre-committed after the violating

DML transaction. But this may cause innocent transactions to be

aborted. Therefore, although our current implementation aborts

the DDL transaction, in practice, such tradeoff decisions should be

made by considering the application’s property.

The speed of the CDC phase is critical: if there is too much work,

DML transactions intending to use the new schema will wait for a

long time, increasing transaction latency. We solve this problem by

(1) bounding the amount of CDC work and (2) introducing more

concurrency and parallelism for CDC. The CDC phase normally

starts after the scan phase, when the DDL transaction has acquired

a pre-commit timestamp (𝑡𝑝𝑟𝑒). The DDL transaction then makes

the new schema visible but puts it in a special “pending” state. This

way, any new transaction started after 𝑡𝑝𝑟𝑒 should start to use the

new schema, thus avoiding new CDC work of data transformation;

we discuss the potential of allowing DML transactions under the

new schema to use the new indirection array before CDC finishes

in Section 5.3. The DDL transaction then continues the CDC phase

to scan the log to discover concurrent updates pre-committed up to

𝑡𝑝𝑟𝑒 . To facilitate this, the scan phase upon start records the current

log sequence number which will be used as the starting point of

the CDC phase. The end of the CDC phase, i.e., 𝑡3 in Figure 3(b),

then marks the completion of the schema evolution transaction,

unblocking any depending transactions.

With bounded work for CDC, to accelerate the CDC phase itself,

we (1) assign multiple threads for CDC, and (2) more importantly,

allow CDC to start before the scan phase finishes to shorten the

CDC phase. The CDC phase could therefore overlap with the scan

phase, but the DDL transaction still pre-commits (i.e., make the new

schema visible but pending) only after the scan phase has concluded.

Consequently, a CDC thread may conflict with a scan thread of

the same DDL transaction. Such conflicts are handled similarly to

the SI protocol: both the CDC and scan threads must use a CAS

146

instruction to install new records while observing version ordering

such that a version is installed to the version chain only if it is the

latest (i.e., the head version is older).

5.3 Relaxed Snapshots
Under basic DDaM, the DDL transaction blindly follows the generic

SI protocols to participate in concurrency control, migrating the

latest visible version based on its own snapshot defined by its begin

timestamp. This snapshot can easily become stale as other con-

current transactions proceed with the original indirection array,

putting much pressure on CDC later for conflict resolution. Out-of-

place migration using a dedicated indirection array further allows

us to relax and simplify the SI protocol for both the scan and CDC

phases. Instead of strictly following SI protocol by using DDL trans-

action’s begin timestamp to read each record, we allow the DDL

transaction to always directly migrate the latest committed ver-

sion of each record during the scan phase. The newly transformed

version on the new indirection array inherits the original record’s

commit timestamp. This way, the DDL transaction is allowed to

migrate versions as fresh as possible, and in fact does not need to

maintain a write set for the new versions as the records are marked

as committed immediately after migration, greatly reducing meta-

data tracking overhead of DDL transactions. At a first glance, this

design violates the property that a record version always carries

a more recent timestamp than its corresponding schema version

(Section 4). However, this is correct thanks to the use of a separate

indirection array for data migration. First, the newly migrated ver-

sions remain invisible until the DDL transaction is fully committed

(i.e., after the CDC phase is completed). Second and more impor-

tantly, the new indirection array will replace the original one after

the schema evolution process finishes. Therefore, any transaction

started after the DDL transaction has pre-committed will be using

the new indirection array.
2
This in turn means there is only one

valid, candidate version that is visible to these transactions. It is

then safe to stamp the newly transformed version with the original,

smaller timestamps, in exchange for faster DDL commit without

having to traverse the write set like the original SI protocol does.

To further reduce blocking caused by CDC, we allow eligible

DML transactions to directly proceed without waiting for the DDL

transaction to finish. Note if the DDL transaction is related to

constraint checking, then all DML transactions should wait the DDL

transaction to complete. If the DDL data migration only involves

copy operations, DML transactions with blind writes (updates and

inserts) on target records can proceed no matter whether those

records have been migrated or not. For DML transactions with

reads, it is possible to proceed when target records have already

been migrated. We identify such records by performing a overlap

check: Upon accessing a data record, the transaction simply takes a

“sneak peak” of the migrated record on the new indirection array. If

such a record does not exist or the record has a commit timestamp

that is greater than the one on the original indirection array, then

the DML transaction intending to update the record should abort.

The reason is that the former case indicates the record is yet to be

migrated, while the latter indicates that another DML transaction

2
Pending existing accesses to finish. This can be achieved by an epoch-based memory

management scheme or reference count, which many systems already implement.

has already updated the record but again is yet to be migrated.

Otherwise, if the new indirection array carries a newer version, the

DML transaction is allowed to access the record, but is subject to

commit pipelining and abort in case the DDL transaction aborts.

5.4 Discussions
Compared to basic DDaM, relaxed DDaM extracts more concur-

rency by allowing tentative updates from concurrent transactions.

These concurrent transactions could cause (heavyweight) DDL op-

erations to abort, however, in practice such cases are very rare.

Moreover, as we use more threads to perform DDL operations in

parallel to accelerate DDL operations, if the compute resource is on

a fixed budget, such cases will be even rarer given most CPU cycles

would be put to performing DDL operations, giving higher priority

to schema evolution. We thus believe this is a reasonable tradeoff.

Since Tesseract targets snapshot databases, we have focused on

SI. DDL transactions in Tesseract participate concurrency control

like “normal” DML transactions, so anomalies under SI [3, 14] may

also manifest during schema evolution. It is up to the application to

carefully analyze the workload and orchestrate concurrent accesses

to avoid anomalies, which is the same as what was previously done

if the system does not guarantee serializability [13]. Tesseract does

not change this behavior, which (as a side benefit) allows application

developers to transparently include schema evolution in workload

analysis, without taking DDL operations as a special case.

Some systems [4] evolve schemas lazily: once the schema is up-

dated, it becomes visible (committed), while data migration happens

in the background or on demand upon record accesses. Tesseract is

compatible with and can adopt this approach by further relaxing

DDaM to allow early visibility of the new schema, yet without us-

ing additional application-level data structures. Nevertheless, with

lazy evolution Tesseract will also exhibit the disadvantages seen in

other systems. For example, incompatible schema changes could

be committed without verification, leaving a diverged database re-

quiring manual investigation by the DBA or application developer.

Some DDL operations are eager in essence where lazy evolution

would not help (e.g., range index creation mandates the entire DDL

operation to finish before any range query can be admitted to avoid

missing records). Tesseract directly supports such cases.

Finally, by supporting schema evolution as part of the CC pro-

tocol, DDaM and Tesseract make schema evolution much more

lightweight. In particular, many existing approaches conduct DDL

operations as an “add-ons” using external DBMS features such as

triggers [38], i.e., the evolution transaction itself is a user applica-

tion, leading to high resource consumption. For example, sometimes

secondary indexes are still rebuilt, although the indexed column

did not change. Tesseract avoids such resource wastes and certain

designs of Tesseract could also be implemented at the application

level (e.g., index reusing). Given the wide use of existing solutions,

application developers may gradually adopt Tesseract features (e.g.,

multi-versioned schemas and index reusing, even in the application-

level) for a smooth transition.

6 EVALUATION
In this section, we empirically evaluate Tesseract using microbench-

marks and variants of standard benchmarks. We compare Tesseract

147

with popular existing approaches and through experiments, we

explore the following aspects.

• DDaM and Tesseract support non-blocking transactional schema

evolution natively, including a wide range of DDL operations.

• Tesseractmitigate the drawbacks of traditional ad hoc approaches

to schema evolution.

• Relaxed DDaM can extract much more concurrency among trans-

actions, compared to basic DDaM.

6.1 Experimental Setup
We perform experiments on a dual-socket server with two 20-core

Intel Xeon Gold 6242R CPUs clocked at 3.10GHz. The server has 40

physical cores (80 hyperthreads) in total and 375GB main memory,

and runs Ubuntu 20.04 with Linux kernel 5.8. Worker threads are

pinned to physical cores. Unless otherwise specified, we leverage

both sockets on the server and observe per-second throughput. All

the code is compiled with Clang 10 with all the optimizations.

Implementation. We implemented Tesseract in ERMIA [22],

an open-source main-memory optimized database engine; our im-

plementation is available at https://github.com/sfu-dis/tesseract.
ERMIA already implements snapshot isolation using indirection

arrays but did not feature any DDL-related functionality. That is,

all the schema information was hard-coded in C++ without a SQL

layer. For our evaluation, we implemented a simple catalog man-

ager in ERMIA which is an ordinary table backed by an indirection

array like other tables, as described in Section 3.2. On top of these,

we then implemented a set of benchmarks (described later) using

ERMIA’s C++ interface to perform both DDL and DML transactions.

As ERMIA is an main-memory engine, all the table data is stored

in DRAM. Following previous work [22, 24, 54, 56], we also store

log records in DRAM-backed tmpfs to stress the system by ruling

out the impact of storage I/O.

Approaches under Comparison.We run experiments under

the following approaches, which are all implemented in ERMIA:

• NoDDL: Vanilla ERMIA without any DDL functionality. We use it

to show the upper bound.

• Blocking: Baseline approach that implements table-level lock-

ing for schema consistency. DML transactions which do not

intend to evolve schemas acquire the lock in reader mode, while

DDL transactions acquire the lock in writer mode. The lock is

implemented using pthread_rwlock_t [19].

• Lazy: A lazy migration modeled after BullFrog [4] that imple-

ments DDL functionality at the user level and only updates

schema records in DDL transactions, with data migration done

in the background or on demand.

• Tesseract: Tesseract with relaxed DDaM described in Section 5.

• Tesseract-Lazy: Same as Tesseract but adapts lazy data mi-

gration at the engine level to enable optimizations such as index

reuse mentioned in Section 5.4.

We have also tested a variant that uses basic DDaM described in

Section 4. However, we observed that almost no DDL transaction

can ever commit when data migration is involved. We therefore do

not show it in the rest of this section for brevity.

Methodology and Metrics. Since schema evolution transac-

tions are typically heavyweight, for each workload, we issue one

DDL transaction. We then focus on and report the throughput of

DML transactions under various workloads and each of the afore-

mentioned approaches. We focus on the per-second throughput

over a period of time, to highlight the impact of concurrent schema

evolution on DML transactions.

6.2 Benchmarks
We use both microbenchmarks and variants of the TPC-C [53]

benchmark in our experiments.

Microbenchmarks.Webase on thewidely used YCSB [8] bench-

marks to devise microbenchmarks to stress test the approaches

under evaluation. All the transactions are performed on a single

table of three 8-byte integer columns that is preloaded with 100

million records. By default, our YCSB implementation includes

DML transactions that uniform randomly picks two records to

read, and eight records to update. In addition, we introduce two

new DDL operations that can be included by a DDL transaction:

AddColumn and AddConstraint. The former adds another 8-byte

column to the database table, and the latter adds a constraint to

limit the values from the third column to be less a random number.

AddColumn evaluates the underlying system’s behavior when han-

dling schema evolution that involves copying/transforming data,

whereas AddConstraint stresses “verify” operations as defined by

Section 3.1. We then devise three schema evolution transactions

that respectively issue (1) only AddColumn (2) AddConstraint and

(3) both operations.

The benchmark starts with threads keep issuing and finishing

DML transactions. Then after a certain period of time, we issue a

DDL transaction to perform one of the aforementioned operations.

We tuned the number of threads used for DDL operations and

unless otherwise specified, we allocate eight threads for the DDL

transaction (three for scanning and five for CDC in Tesseract)
and 30 threads for DML transactions.

TPC-C with Schema Evolution (TPC-CD). The TPC-C bench-

mark [53] models a warehouse wholesale operation and has been

the standard benchmark for OLTP. However, all of its five trans-

actions focused on DML operations. To evaluate Tesseract under

real OLTP workloads, we therefore follow previous work [4, 34]

to extend TPC-C with a set of DDL operations. We refer to the

extended TPC-C benchmark as TPC-CD.
Same as in the microbenchmarks, we start the benchmark by

running the original TPC-C mix, and after two seconds, we start a

DDL transaction to perform one of the following operations:

• AddColumn: Add a column ol_tax in the order_line table with
a default value of 0.1.

• AddConstraint: For the order_line table, add a constraint to

require 1 ≤ ol_number ≤ o_ol_cnt.
• AddColumnWithConstraint: In addition to AddColumn, also add

a constraint to require ol_amount ≥ 0.

• SplitTable: Split the customer table into two, one containing

private customer information such as credit, payment and bal-

ance, and the other containing public customer information like

state, city, street, etc.

• Preaggregate: Sum up values in the order_line table where

order_line.ol_w_id = oorder.o_w_id, order_line.ol_d_id =
oorder.o_d_id and order_line.ol_o_id = oorder.o_id. The
results are added as a new column in the oorder table.

148

https://github.com/sfu-dis/tesseract

• JoinTable: Join the stock and order_line tables. This opti-

mizes the StockLevel transaction which reads stock after scan-
ning the order_line table to get out-of-stock items.

• CreateIndex: Create a primary index for the order_line table.

By default, we use a scale factor of 50 (except for SplitTable

which uses 200 warehouses). Like the microbenchmarks, we tuned

the number of DDL and DML threads to respectively use 30 and

eight threads for DML and DDL transactions (except for JoinTable
which uses 24 DML threads and 16 DDL threads). Out of the eight

DDL threads, three are allocated to the scan phase, and the remain-

ing five are allocated for CDC work.

6.3 Performance under Schema Evolution
Our first set of experiments use the microbenchmarks to focus on

DDL and DML operations themselves without interference from

application logic. As mentioned earlier, we report the per-second

throughput for DML transactions while a DDL transaction is run-

ning to observe the impact of schema evolution.

Copy-Only AddColumn.We first examine the results when the

concurrent DDL transaction runs AddColumnwhich involvesmainly

data copying during migration. As Figures 4(top) shows, all the

variants start with a small, constant gap with NoDDL until two sec-

onds later, when we start the DDL transaction. This gap shows

the amount of overhead of accessing schema information on the

normal record read/write paths. After the schema evolution trans-

action started, Tesseract maintains its performance when schema

evolution is in progress, although with a slight drop of up to ∼10%.
It fully resumes peak performance after the DDL operation is done

at around 12-13 seconds. All the other variants exhibit significant

drops during schema evolution. Blocking showed practically zero

throughput for five seconds because the DDL transaction has ex-

clusive access to the entire table during schema evolution. Its peak

performance is also only around 50% of the other approaches due to

pessimistic locking overheads. Lazy performs slightly better with a

shorter period of significant drop, but continues to incur high over-

head for the next 5-6 seconds. The reason is that although it allows

the schema update to complete quickly, subsequent DML accesses

must then perform data migration if the background threads have

not yet migrated the target records. Lazy also builds schema evolu-

tion outside the engine and rebuilds new tables and indexes, fur-

ther reducing performance. This is in contrast to Tesseract-Lazy
which implements Lazy at the engine level and can reuse indexes.

Verify-Only AddConstraint and Mixed DDL. Out of the eval-
uated approaches, only Blocking and Tesseract can support DDL

operations that require verification. Lazy and Tesseract-Lazy al-

low the schema update to be committed immediately but cannot

guarantee full correctness without manual intervention in case of

incompatible schema changes. We therefore only show results for

Blocking and Tesseract in experiments involving verification.

The middle and bottom of Figure 4 respectively show the result

when the concurrent DDL transaction runs the AddConstraint op-
eration and both operations. Similar to the results obtained earlier

for AddColumn, here we observe also Tesseract is able to maintain

high performance while schema evolution is in progress, whereas

Blocking inevitably incurs near-zero throughput for the period of

schema evolution time since it forbids any DML operations.

5 10 15 20
Seconds

0.0

0.5

1.0

1.5

2.0

2.5

M
ill

io
n

TP
S NoDDL

Blocking
Lazy
Tesseract
Tesseract-Lazy

1 2 3 4 5 6 7 8 9 10
Seconds

0.0

0.5

1.0

1.5

2.0

2.5

M
ill

io
n

TP
S

NoDDL
Blocking
Tesseract

5 10 15 20
Seconds

0.0

0.5

1.0

1.5

2.0

2.5

M
ill

io
n

TP
S

NoDDL
Blocking
Tesseract

Figure 4: Microbenchmark throughput of DML transactions
with a concurrent DDL transaction running AddColumn (top),
AddConstraint (middle) and both (bottom).

5 10 15 20
Seconds

0.0

1.0

2.0

M
ill

io
n

TP
S

10M
50M
100M

Figure 5: Microbenchmark throughput with a concurrent
AddColumn DDL transaction under different table sizes.

Summary. The above results show that Tesseract is able to

maintain high performance when concurrent DDL operations are

in progress, without having to use ad hoc approaches. The results

were obtained under a particular table size and thread allocation

setup. Next, we explore the impact of these parameters using mi-

crobenchmarks.

6.4 Impact of Table Size
Now we examine how table sizes affect schema evolution perfor-

mance. Especially, for copy-dominant DDL operations, a larger

table would require more work to be put on migrating records.

We repeat the same AddColumn experiment done in Section 6.3

but vary table sizes to explore this effect. In Figure 5 we show the

throughput under different table sizes from 10 million to 100 million

with Tesseract. In general, larger table sizes cause Tesseract to

149

5 10 15 20
Seconds

0.0

1.0

2.0

M
ill

io
n

TP
S

3 CDC, 5 scan
4 CDC, 4 scan
5 CDC, 3 scan

Figure 6: Microbenchmark throughput with a concurrent
AddColumn DDL transaction.

drop slightly more and take longer to finish schema evolution, but

without significant impact like other protocols.

6.5 Impact of Worker Thread Allocation
Tesseract employs multiple threads for DDL operations, so it is

important to pick the right number of threads for scan and CDC

phases for DDL operations to complete quickly. In this experiment,

we again run the microbenchmark with the AddColumn transaction
but vary the number of CDC and scan threads. We keep the total

number of DDL threads to eight and vary the CDC/scan threads

between 3–5, so that the results are comparable to those reported

earlier. As Figure 6 shows, using more CDC threads clearly is the

key for Tesseract to maintain its high performance, since when

we have 3–4 CDC threads, it becomes hard to keep up with the

speed of concurrent DML threads.

Note that this result is obtained under a write-heavy DML work-

load (80% write), incurring a lot of potential conflicts for CDC to

resolve. Therefore, it is beneficial to employ more threads for CDC.

However, for read-intensive workloads, fewer CDC threads can be

assigned to leave more resources for processing DML transactions.

6.6 End-to-End TPC-CD Results
Nowwe run end-to-end TPC-CD experiments to explore the impact

of DDL operations on realistic workloads. We run the standard

TPC-C mix and start a DDL transaction of different types after two

seconds like in the microbenchmark experiments.

Copy-Only DDL Operations. We first explore the impact of

DDL operations that require mainly copying during migration. As

shown in Figure 7, overall the results showed similar trends to those

of the microbenchmarks. As expected, Blocking still incurs the

highest overhead among all the evaluated approaches. The gaps

between Tesseract and other non-blocking approaches become

smaller as more compute is involved in more realistic workloads.

Under AddColumn, Figure 7(a) shows that Tesseract allows smooth

migration but is slightly slower than Lazy due to the migration pro-

cess. However, Tesseract-Lazy performs better than Lazy, show-
ing the potential of Tesseract with lazy migration when the applica-

tion is sure the intended schema change is compatible with existing

data. For the remaining operations (SplitTable, Preaggregate
and JoinTable) we observe slightly higher or similar performance

for Tesseract compared to other state-of-the-art approaches.

DDL Operations with Verification. For verification-dominant

DDL operations, again we only compare Blocking and Tesseract
for fair comparison. We start with the CreateIndex benchmark in

1 2 3 4 5 6 7 8 9 10
Seconds

0.0

0.5

1.0

1.5

M
ill

io
n

TP
S

(a) Add column

1 2 3 4 5 6 7 8 9 10
Seconds

0.0

0.5

1.0

1.5

M
ill

io
n

TP
S

(b) Table split

1 2 3 4 5 6 7 8 9 10
Seconds

0.0

0.5

1.0

1.5

M
ill

io
n

TP
S

(c) Preaggregation

1 2 3 4 5 6 7 8 9 10
Seconds

0.0

0.5

1.0

1.5

M
ill

io
n

TP
S

(d) Table join

NoDDL Blocking Lazy Tesseract Tesseract-Lazy

Figure 7: Throughput of TPC-C DML transactions with
a concurrent DDL transaction that mainly migrates data
by copying. Most variants except Blocking exhibit in gen-
eral smooth transition. Without ad hoc implementations,
Tesseract matches the best-performing Lazy in AddColumn
and performs slightly better in other cases.

1 2 3 4 5 6 7 8 9 10
Seconds

0.0

0.5

1.0

1.5

M
ill

io
n

TP
S

NoDDL
Blocking
Tesseract

Figure 8: TPC-C throughput with a concurrent CreateIndex
DDL transaction.

Figure 8. In the beginning, the system is barely able to commit any

transaction because without the new index, transactions have to is-

sue a full table scan, leading to very low committed transactions per

second. After the index creation DDL transaction started the overall

TPC-C throughput started to rise quickly under both Blocking and
Tesseract. However, since Tesseract allows more concurrency

and uses relaxed DDaM to allow early data access concurrent with

CDC, it allows more transactions to commit compared to Blocking.
The AddConstraint and AddColumnWithConstraint benchmarks

in Figures 9–10 show similar trends, with the latter exhibiting a

larger gap between Blocking and Tesseract because its opera-

tions are more heavyweight.

150

1 2 3 4 5 6 7 8 9 10
Seconds

0.0

0.5

1.0

1.5

M
ill

io
n

TP
S

NoDDL
Blocking
Tesseract

Figure 9: TPC-C throughputwith a concurrent AddConstraint
DDL transaction.

1 2 3 4 5 6 7 8 9 10
Seconds

0.0

0.5

1.0

1.5

M
ill

io
n

TP
S

NoDDL
Blocking
Tesseract

Figure 10: TPC-C throughput with a concurrent DDL trans-
actions performing AddColumnWithConstraint.

7 RELATEDWORK
The idea of multi-versioned schema for non-blocking schema evolu-

tion is not new and has been discussed in object-oriented [2, 23, 27]

and relational [43, 47, 51] database systems. Compared to prior

work, Tesseract provides a general, “native” solution that leverages

generic SI protocols without relying on ad hoc designs.

Schema Versioning and Data Migration.With schema ver-

sioning [45], it is important to coordinate data migration such that

old and new transactions can co-exist and correspondingly use dif-

ferent schema versions. InVerDa [17, 18] allows co-existing schemas

in a system by generating delta code automatically. Changes to data

under old schemas are propagated as much as possible to conform

to new schemas; incompatible changes can be handled by generat-

ing “diffs.” Tesseract currently maintains a single lineage of data and

the application determines how incompatible changes are handled.

Tesseract can be combined with such approaches and can expose in-

terfaces for (read-only) queries of historical data by assigning older

read timestamps, because data under different schema versions uses

separate indirection arrays. BullFrog [4] migrates data lazily and

deploys the latest schema before migrating data on demand or in

the background. Compared to Tesseract, BullFrog relies on (thus is

limited by) the DBMS’s materialized view support, and is mostly

applicable to compatible schema changes as incompatible data can-

not be migrated at a later time when the new schema is already in

use. Similar to soft schema changes [47], Google F1 also allows non-

blocking DDL [43] using multi-versioning in distributed systems,

but limits the number of schemas to two to simplify maintenance.

Sheng [51] proposed a multi-phase lazy migration approach for

operations like adding columns, but constraint checking mandates

synchronous table scans. KVolve [49] also uses a lazy mechanism

for schema evolution, but does not support verification-based DDL

operations as constraints are not supported in its targeted systems.

DDL-Related DBMS Features. Some DBMS features are nec-

essary or can be helpful for schema evolution. For example, trig-

gers and sagas [15] were used by telecom database applications

to perform DDL operations [47]. While sagas can be used to run

long migration transactions as a set of short transactions, it is

harder to manage. Especially, rolling back involves applying multi-

ple compensating transactions, adding complexity. Similar to our

out-of-place migration design, Meta also uses triggers to propagate

concurrent writes to a shadow table, which replaces the original

table after all data have been migrated [38]. The deferred action

framework [60] can support non-blocking schema evolution by

registering and deferring them until a later time that is safe to per-

form DDL operations. Salzberg and Dimock [48] suggests to include

all operations in one reorganization transaction for consistency.

Wevers et al. [57] used TPC-C to examine the blocking behavior

of online schema evolution in MySQL, PostgreSQL and Oracle 11g.

Løland and Hvasshovd [32] leverage logging to support schema

evolution, but the approach is still based on locking which can limit

performance for snapshot databases and is limited in functionality

by supporting only full outer join and split transformations.

Query Rewriting and Languages. When the schema changes,

some systems rewrite user queries to work with a different schema.

PRIMA [35] is such a system, but it cannot handle the evolution of

integrity constraints. PRISM++ [9] provides better support for han-

dling integrity constraints. Tesseract currently does not use query

rewriting, but is orthogonal to and could be combined with such

techniques, for example, to allow querying complement provide

query answers based on multiple schema versions like PRIMA. An-

other significant line of work is to provide better query languages

for schema evolution [16, 46]. The aforementioned InVerDa [17]

system introduces the BiDEL language to generate schema evolu-

tion scripts. In comparison, Tesseract works at the OLTP engine

level and applications can focus on functionality and business logic.

8 CONCLUSION
Transactional and non-blocking schema evolution is an important

feature, but is often treated as an afterthought in DBMS design,

resulting in ad hoc solutions with extra complexity and sub-optimal

performance. In this paper, we advocate for native support for

schema evolutionwithin the OLTP engine, by adapting concurrency

control protocols. We observe that for snapshot isolation, schema

evolution is almost “for free” by modeling DDL operations as DML

operations that modify entire tables, leading to our data-definition-

as-modification (DDaM) principle. We then proposed Tesseract to

adapt snapshot isolation with relaxed DDaM to further allow more

concurrency and improve performance. Evaluation results show

that Tesseract can maintain high performance while heavyweight

DDL transactions are in progress while avoiding ad hoc approaches.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and associate editor for their

constructive feedback. We also thank Qingzhong Meng for discus-

sions and comments. This work is partially supported by an NSERC

Discovery Grant, Canada Foundation for Innovation John R. Evans

Leaders Fund and the B.C. Knowledge Development Fund.

151

REFERENCES
[1] Atul Adya. 1999. Weak Consistency: A Generalized Theory and Optimistic

Implementations for Distributed Transactions. PhD Thesis and Technical Report

MIT/LCS/TR-786.

[2] José Andany, Michel Léonard, and Carole Palisser. 1991. Management Of Schema

Evolution In Databases. In Proceedings of the 17th International Conference on
Very Large Data Bases (VLDB ’91). 161–170.

[3] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data (SIGMOD ’95).
1–10.

[4] Souvik Bhattacherjee, Gang Liao, Michael Hicks, and Daniel J. Abadi. 2021.

BullFrog: Online Schema Evolution via Lazy Evaluation. In Proceedings of the
2021 International Conference on Management of Data. 194–206.

[5] Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang

Lee, and Norman May. 2014. Distributed Snapshot Isolation: Global Transactions

Pay Globally, Local Transactions Pay Locally. The VLDB Journal 23, 6 (Dec. 2014),
987–1011.

[6] Josh Branchaud. 2017. MySQL Has Transactions, Sorta. Retrieved August 1,

2022 from https://hashrocket.com/blog/posts/mysql-has-transactions-sorta
[7] Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2009. Serializable Isolation

for Snapshot Databases. ACM Trans. Database Syst. 34, 4, Article 20 (Dec. 2009),
42 pages.

[8] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[9] Carlo A. Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2010. Update

Rewriting and Integrity Constraint Maintenance in a Schema Evolution Support

System: PRISM++. PVLDB 4, 2 (Nov. 2010), 117–128.

[10] Julien Danjou. 2019. Why You Should Care That Your SQL DDL is Transactional.

Retrieved August 1, 2022 from https://julien.danjou.info/why-you-should-care-
that-your-sql-ddl-is-transactional

[11] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,

Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s

Memory-Optimized OLTP Engine. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’13). 1243–1254.

[12] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion

Concurrency Control. PVLDB 8, 11 (July 2015), 1190–1201.

[13] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis

Shasha. 2005. Making Snapshot Isolation Serializable. ACM Trans. Database Syst.
30, 2 (June 2005), 492–528.

[14] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. 2004. A Read-Only Transaction

Anomaly under Snapshot Isolation. SIGMOD Rec. 33, 3 (Sept. 2004), 12–14.
[15] Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proceedings of the 1987

ACM SIGMOD International Conference on Management of Data (SIGMOD ’87).
249–259.

[16] Kai Herrmann, Hannes Voigt, Andreas Behrend, and Wolfgang Lehner. 2015.

CoDEL–a relationally complete language for database evolution. In East European
Conference on Advances in Databases and Information Systems. Springer, 63–76.

[17] Kai Herrmann, Hannes Voigt, Andreas Behrend, Jonas Rausch, and Wolfgang

Lehner. 2017. Living in parallel realities: Co-existing schema versions with

a bidirectional database evolution language. In Proceedings of the 2017 ACM
International Conference on Management of Data. 1101–1116.

[18] Kai Herrmann, Hannes Voigt, Torben Bach Pedersen, and Wolfgang Lehner. 2018.

Multi-Schema-Version Data Management: Data Independence in the Twenty-

First Century. The VLDB Journal 27, 4 (aug 2018), 547–571.
[19] IEEE and The Open Group. 2016. The Open Group Base Specifications Issue 7,

IEEE Std 1003.1. (2016).

[20] Intel Corporation. 2016. Intel 64 and IA-32 Architectures Software Developer

Manuals. (Oct. 2016).

[21] Ryan Johnson, Ippokratis Pandis, Radu Stoica, Manos Athanassoulis, and Anas-

tasia Ailamaki. 2010. Aether: A Scalable Approach to Logging. PVLDB 3, 1 (Sept.

2010), 681–692.

[22] Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.

ERMIA: Fast memory-optimized database system for heterogeneous workloads.

In Proceedings of the 2016 International Conference on Management of Data. 1675–
1687.

[23] Won Kim and Hong-Tai Chou. 1988. Versions of Schema for Object-Oriented

Databases. In Proceedings of the 14th International Conference on Very Large Data
Bases (VLDB ’88). 148–159.

[24] Hideaki Kimura. 2015. FOEDUS: OLTP Engine for a Thousand Cores andNVRAM.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’15). 691–706.

[25] Martin Kleppmann. 2017. Designing Data-Intensive Applications. O’Reilly.
[26] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M.

Patel, and Mike Zwilling. 2011. High-Performance Concurrency Control Mecha-

nisms for Main-Memory Databases. PVLDB 5, 4 (Dec. 2011), 298–309.

[27] S. Lautemann. 1997. A propagation mechanism for populated schema versions.

In 2013 IEEE 29th International Conference on Data Engineering (ICDE). 67.
[28] Justin Levandoski, David Lomet, and Sudipta Sengupta. 2013. LLAMA: ACache/S-

torage Subsystem for Modern Hardware. PVLDB 6, 10 (aug 2013), 877–888.

[29] Justin Levandoski, David Lomet, Sudipta Sengupta, Ryan Stutsman, and Rui

Wang. 2015. High Performance Transactions in Deuteronomy. In Conference on
Innovative Data Systems Research (CIDR).

[30] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A

B-Tree for New Hardware Platforms. In Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013) (ICDE ’13). 302–313.

[31] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. 2017. Cicada:

Dependably Fast Multi-Core In-Memory Transactions. In Proceedings of the 2017
ACM International Conference on Management of Data (SIGMOD ’17). 21–35.

[32] Jørgen Løland and Svein-Olaf Hvasshovd. 2006. Online, Non-blocking Relational

Schema Changes. In Advances in Database Technology - EDBT 2006. 405–422.
[33] Microsoft. 2017. Transaction Isolation Levels. In Microsoft SQL Documenta-

tion. Retrieved August 1, 2022 from https://docs.microsoft.com/en-us/sql/t-
sql/language-elements/transaction-isolation-levels?view=sql-server-ver15

[34] Mark Lukas Möller, Stefanie Scherzinger, Meike Klettke, and Uta Störl. 2020. Why

It Is Time for Yet Another Schema Evolution Benchmark - Visionary Paper. In

Advanced Information Systems Engineering - CAiSE Forum 2020, Grenoble, France,
June 8-12, 2020, Proceedings (Lecture Notes in Business Information Processing),
Vol. 386. 113–125.

[35] Hyun J. Moon, Carlo A. Curino, Alin Deutsch, Chien-Yi Hou, and Carlo Zaniolo.

2008. Managing and Querying Transaction-Time Databases under Schema

Evolution. PVLDB 1, 1 (Aug. 2008), 882–895.

[36] MySQL. 2022. Atomic Data Definition Statement Support. Retrieved August 1,

2022 from https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html
[37] MySQL. 2022. DDL in MySQL. Retrieved August 1, 2022 from https://dev.mysql.

com/doc/refman/8.0/en/innodb-online-ddl-operations.html/
[38] MySQL at Facebook. 2021. Online Schema Change for MySQL. Retrieved

August 1, 2022 from https://www.facebook.com/notes/10157508558976696/
[39] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. 2015. Fast Serializable

Multi-Version Concurrency Control for Main-Memory Database Systems. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’15). 677–689.

[40] Oracle. 2020. Consistent Nonlocking Reads. In MySQL 8.0 Reference Manual.
Chapter 15.7.2.3. Retrieved August 1, 2022 from https://dev.mysql.com/doc/
refman/8.0/en/innodb-consistent-read.html

[41] Oracle. 2020. Data Concurrency and Consistency. In Oracle Database Database
Concepts. Chapter 11. Retrieved August 1, 2022 from https://docs.oracle.com/
en/database/oracle/oracle-database/20/cncpt/database-concepts.pdf

[42] Dong Qiu, Bixin Li, and Zhendong Su. 2013. An Empirical Analysis of the Co-

Evolution of Schema and Code in Database Applications. In Proceedings of the
2013 9th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013).
125–135.

[43] Ian Rae, Eric Rollins, Jeff Shute, Sukhdeep Sodhi, and Radek Vingralek. 2013.

Online, Asynchronous Schema Change in F1. PVLDB 6, 11 (Aug. 2013), 1045–

1056.

[44] Raghu Ramakrishnan and Johannes Gehrke. 2003. Database Management Systems
(3 ed.). McGraw-Hill, Inc.

[45] John F. Roddick. 1992. Schema Evolution in Database Systems: An Annotated

Bibliography. SIGMOD Rec. 21, 4 (Dec. 1992), 35–40.
[46] John F Roddick. 1992. SQL/SE: A query language extension for databases sup-

porting schema evolution. ACM SIGMOD Record 21, 3 (1992), 10–16.

[47] M. Ronstrom. 2000. On-line schema update for a telecom database. In Proceedings
of 16th International Conference on Data Engineering (Cat. No.00CB37073). 329–
338.

[48] Betty Salzberg and Allyn Dimock. 1992. Principles of Transaction-Based On-Line

Reorganization. In Proceedings of the 18th International Conference on Very Large
Data Bases (VLDB ’92). 511–520.

[49] Karla Saur, Tudor Dumitraş, andMichael Hicks. 2016. Evolving NoSQL Databases

without Downtime. In IEEE International Conference on Software Maintenance
and Evolution (ICSME). 166–176.

[50] Tony Savor, Mitchell Douglas, Michael Gentili, Laurie Williams, Kent Beck, and

Michael Stumm. 2016. Continuous Deployment at Facebook and OANDA. In

2016 IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C). 21–30.

[51] Yangjun Sheng. 2019. Non-blocking Lazy Schema Changes in Multi-Version

Database Management Systems. CMUMS Thesis (2019). Retrieved August 1, 2022
from http://reports-archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-104.pdf

[52] The PostgreSQL Global Development Group. 2020. Transaction Isolation. In

PostgreSQL 12 Documentation. Chapter 13.2. Retrieved August 1, 2022 from

https://www.postgresql.org/docs/9.5/transaction-iso.html
[53] TPC. 2010. TPC Benchmark C (OLTP) Standard Specification, revision 5.11.

Retrieved August 1, 2022 from http://www.tpc.org/tpcc
[54] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

2013. Speedy Transactions in Multicore In-Memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).

152

https://hashrocket.com/blog/posts/mysql-has-transactions-sorta
https://julien.danjou.info/why-you-should-care-that-your-sql-ddl-is-transactional
https://julien.danjou.info/why-you-should-care-that-your-sql-ddl-is-transactional
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transaction-isolation-levels?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/t-sql/language-elements/transaction-isolation-levels?view=sql-server-ver15
https://dev.mysql.com/doc/refman/8.0/en/atomic-ddl.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html/
https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html/
https://www.facebook.com/notes/10157508558976696/
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-consistent-read.html
https://docs.oracle.com/en/database/oracle/oracle-database/20/cncpt/database-concepts.pdf
https://docs.oracle.com/en/database/oracle/oracle-database/20/cncpt/database-concepts.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2019/CMU-CS-19-104.pdf
https://www.postgresql.org/docs/9.5/transaction-iso.html
http://www.tpc.org/tpcc

18–32.

[55] Tianzheng Wang, Ryan Johnson, Alan Fekete, and Ippokratis Pandis. 2017. Effi-

ciently Making (Almost) Any Concurrency Control Mechanism Serializable. The
VLDB Journal 26, 4 (Aug. 2017), 537–562.

[56] Tianzheng Wang and Hideaki Kimura. 2016. Mostly-Optimistic Concurrency

Control for Highly Contended DynamicWorkloads on a Thousand Cores. PVLDB
10, 2 (Oct. 2016), 49–60.

[57] Lesley Wevers, Matthijs Hofstra, Menno Tammens, Marieke Huisman, and Mau-

rice Van Keulen. 2015. Analysis of the Blocking Behaviour of Schema Transfor-

mations in Relational Database Systems, Vol. 9282. 169–183.

[58] Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. 2017. An

Empirical Evaluation of In-Memory Multi-Version Concurrency Control. PVLDB

10, 7 (March 2017), 781–792.

[59] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of

a Myth: Distributed Transactions Can Scale. PVLDB 10, 6 (Feb. 2017), 685–696.

[60] Ling Zhang, Matthew Butrovich, Tianyu Li, Yash Nannapanei, Andrew Pavlo,

John Rollinson, Huanchen Zhang, Ambarish Balakumar, Daniel Biales, Ziqi Dong,

Emmanuel Eppinger, Jordi Gonzàlez, Wan Shen Lim, Jianqiao Liu, Prashanth

Menon, Soumil Mukherjee, Tanuj Nayak, Amadou Ngom, Jeff Niu, D. Patra,

P. Govind Raj, Stephanie Wang, Wuwen Wang, Yao-Tin Yu, and William Zhang.

2021. Everything is a Transaction: Unifying Logical Concurrency Control and

Physical Data Structure Maintenance in Database Management Systems. In

Conference on Innovative Data Systems Research (CIDR).

153

	ddl_Part1
	ddl_Part2-2

