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ABSTRACT
Seasonal-trend decomposition is one of the most fundamental con-
cepts in time series analysis that supports various downstream tasks,
including time series anomaly detection and forecasting. However,
existing decomposition methods rely on batch processing with a
time complexity of O(W ), whereW is the number of data points
within a time window. Therefore, they cannot always efficiently
support real-time analysis that demands low processing delay. To
address this challenge, we propose OneShotSTL, an efficient and
accurate algorithm that can decompose time series online with an
update time complexity of O(1). OneShotSTL is more than 1, 000
times faster than the batch methods, with accuracy comparable to
the best counterparts. Extensive experiments on real-world bench-
mark datasets for downstream time series anomaly detection and
forecasting tasks demonstrate that OneShotSTL is from 10 to over
1, 000 times faster than the state-of-the-art methods, while still
providing comparable or even better accuracy.
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1 INTRODUCTION
With the rapid advancement in data collection and storage tech-
niques, time series are witnessing an enormous increase in appli-
cations, especially in areas such as Internet-of-Things (IoT [21])
and IT Operations (AIOps [4]). For instance, cloud database sys-
tems collect large sets of metrics,including CPU usage and request
rate, to facilitate the monitoring of complex systems. Driven by
this trend, cloud companies (e.g., AWS Cloudwatch [2] and Alibaba
CloudMonitor [1]) have provided online services to improve the
observability of servers and applications for their users.

From an algorithmic perspective, real-time analysis tasks on
Time Series fall into either Anomaly Detection (TSAD) or Forecast-
ing (TSF). For a time series {y1,y2, ...,yt , ...}, at each time point t ,
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an online TSAD method outputs an anomaly score for the current
data yt , while an online TSF method predicts the future value of
data ŷt+i at time t + i for i > 0. The former is used to identify per-
formance issues of the system based on historical observations (e.g.,
through alerting or diagnosis), while the latter is to predict the fu-
ture to prevent such issues by taking certain actions in advance (e.g.,
by automatically scaling up the computation resources). The signif-
icant volume of data generated from large-scale systems, together
with the requirement of low service delays, impose great challenges
to TSAD and TSF, due to the online nature of the processing.

There have been a large number of TSAD [12, 14, 27, 38, 44]
and TSF [11, 29, 34, 35, 45, 47] methods proposed in the literature.
In this paper, we focus on an important class of algorithms based
on Seasonal-Trend Decomposition (STD). STD is one of the most
fundamental operations in time series analysis, which has been ex-
tensively studied and used in economics and finance [16, 19]. Many
studies have shown that STD methods are effective for TSAD [19,
40, 42] and TSF [18, 29], since very often practical time series data
exhibit trends and seasonal patterns [40]. However, most of the ex-
isting STDmethods, e.g., STL [16] and RobustSTL [40], are based on
batch processing, and thus essentially offline by nature, which does
not support incremental updates. The only exception is a recent
method OnlineSTL [28], which decomposes time series in an online
fashion by effectively utilizing the fast computation from explicit
mathematical closed-form expressions. Remarkably, OnlineSTL can
process more than 100 times faster than traditional STD methods.
However, only simple trend and seasonal filtering methods (e.g.,
tri-cube and exponential smoothing) are supported. Therefore, the
decomposition quality of OnlineSTL is worse than its full-fledged
batch counterparts, e.g., RobustSTL [40], which introduces l1-norm
regularizer. Moreover, although OnlineSTL is fast, its single update
complexity is still O(T ) with T being the length of the seasonal
period. Thus, its performance degrades with the increase of T .

To address the aforementioned challenges, in this paper, we
propose a new online STD algorithm, termed OneShotSTL, that
significantly accelerates the decomposition with an update com-
plexity ofO(1). The needed information from the past observations
to update the effect by observing a newly arrived data point is
characterized by a fixed number of state parameters of OneShot-
STL, whose values are carried forward as the online processing
keeps going. Thus, OneShotSTL processes each data point only
once. To achieve high accuracy, we adopt a l1-norm regularizer and
adaptively adjust the seasonal component in our online computa-
tion. Notably, OneShotSTL can yield accurate decomposition results
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Table 1: Comparison of different STD algorithms

Algorithm Batch or Trend Seasonality Online
Online Change Shifts Complexity

STL [16] Batch No No -
TATBS [18] Batch No No -
STR [19] Batch No No -
RobustSTL [40] Batch Yes Yes -
FastRobustSTL [42] Batch Yes Yes -
OnlineRobustSTL [7] Online Yes Yes O(T)
OnlineSTL [28] Online No No O(T)
OneShotSTL Online Yes Yes O(1)

comparable to RobustSTL [40] (the best batch method that we are
aware of in the literature) and in the meanwhile can greatly reduce
the processing time. Extensive experiments on both TSAD and TSF
tasks demonstrate the superior performance of OneShotSTL.
Contributions. This work makes the following contributions:
• To the best of our knowledge, the proposed OneShotSTL is
the first online STD method with an update complexity of
O(1), which significantly improves the existing ones (O(T )).
• OneShotSTL is ultra-fast in practice. It takes around 20µs
to process each data point on a typical commodity server
using a single CPU core, which is more than 1, 000 times
faster than the batch STD methods and 20 times faster than
OnlineSTL on datasets with a seasonal period of 12, 800.
• OneShotSTL is also accurate. Extensive experiments on bench-
mark datasets for TSAD and TSF show that OneShotSTL is
from 10 to more than 1, 000 times faster than the state-of-
the-art methods with comparable or even better accuracy.

2 PROBLEM SETTING AND RELATEDWORKS
Since our online STD framework is derived from the batch STD,
we formally introduce both the batch and the online STD problems.
We also review the related existing works in this area. Through-
out the paper, we use bold lowercase/capital letters to represent
vectors/matrices, respectively.

2.1 Batch STD
For batch processing, consider the following model with trend and
seasonality for a time series y ∈ RN of a finite batch size N :

yi = τi + si + ri , i = 1, 2, ...N , (1)

whereyi , τi , si and ri denote the observation, the decomposed trend,
seasonal and residual components at time point i , respectively. We
only consider the decomposition of data with a single seasonal
cycle of length T < N , which can be readily estimated by period
detection methods [41]. This can be easily extended to the case with
multiple seasons as shown in previous studies [40, 42]. In this paper,
we treat data with multiple seasons as a single seasonal sequence
with T being the longest seasonal period.

2.2 Online STD
For online processing, data points arrive in a streaming fashion,
denoted by {y1,y2, ...,yt , ...} where the sequence can be even un-
bounded. At time t , based on all the past observations {y1, ...,yt−1}
and the latest one yt , online methods only decompose yt into trend
τt , seasonal st and residual rt with yt = τt + st + rt . Similarly to

OnlineSTL [28], we divide the online processing into two phases, a
single offline initialization phase and a lasting online phase. For-
mally, at time t we observe {y1,y2, ...,yt0 ,yt0+1, ...,yt }. The first t0
points {y1, ...,yt0 } are used for initialization. The online process-
ing starts from time t0 + 1 and keeps computing τt , st and rt for
t > t0 by using only data points observed before t . The seasonal
cycle T , as a fixed parameter, can be estimated from {y1, ...,yt0 }

using a period detection method, e.g., [39, 41]. During the online
computation phase, as data points keep arriving, we observe new
seasonal periods, and each has its own cycle length Tc . These cy-
cle lengths are not necessarily equal. We assume that each Tc of
the underlying cycle lengths from the streaming data sequence,
although unknown, only slightly deviates from T . Specifically, Tc
can be an arbitrary integer value within a small interval decided
by a hyper-parameter H , i.e., Tc ∈ [T −H ,T +H ]. This assumption
prevents cycle lengths from varying drastically, e.g., Tc gradually
changing from 1000 to 2000 across multiple periods. A more general
treatment of the varying cycle lengths deserves a dedicated study
given the vast existing literature on this topic [33, 36, 39, 41].

2.3 Existing STD Methods
Batch STD has been extensively studied in economics and finance
for decades, with a variety of algorithms proposed in the literature
[16, 18, 19, 28, 40]. Among them, the most popular one is STL [16],
which adopts an alternating algorithm to estimate the trend and
seasonal components using LOESS (LOcal regrESSion) smoothing.
Later, TATBS [18] and STR [19] are proposed with confidence in-
tervals of the decomposition results. However, they need extensive
computations, especially for data with long seasonality. In addition,
these methods may encounter problems in handling complex pat-
terns, e.g., with abrupt changes of trend (see Figure 4) and seasonal-
ity shift (see Figure 3), which are common in metrics for monitoring
in AIOps. As a way to improve these issues, RobustSTL [40] and its
accelerated version FastRobustSTL [42] are proposed using l1-norm
trend filtering and non-local seasonal filtering.

All these batch methods can be used for the online setting on
a sliding window of lengthW > T that contains the most recent
data points. A common approach is to setW equal to the length of
a few seasonal cycles, e.g.,W = 4T . Thus, the time complexity of
these batch methods is at leastO(T ). However, as pointed out in the
recent paper OnlineSTL [28], most of these methods cannot always
be directly and efficiently utilized in real-time applications due to
long processing delays. OnlineSTL is the first online decomposition
algorithm that alternatively applies tri-cube (trend) and exponen-
tial smoothing (seasonal) filtering, which utilizes fast computation
from explicit mathematical closed-form expressions. OnlineSTL
focuses on speed and can process 10, 000 time series data points
per second using a single CPU core on a typical commodity server.
However, it sacrifices quality/accuracy by using simple trend and
seasonal filtering and cannot deal with complex patterns. More
importantly, the online update complexity of OnlineSTL and other
existing online algorithms, e.g., online RobustSTL [7, 42] (abbrevi-
ated as OnlineRobustSTL), is stillO(T ). Therefore, the performance
degrades as the length of the seasonality cycle increases.

We summarize the comparisons of batch and online STD meth-
ods in Table 1, including our proposed OneShotSTL. Note that
OneShotSTL is the only work with O(1) update complexity.
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OnlineBatch JointSTL
(Algorithm 1)

Modified JointSTL
(Algorithm 2)

OneShotSTL
(Algorithm 5)

Doolittle Factorization
(Algorithm 3)

OnlineDoolittle
(Algorithm 4)

Online

Accelerate

Figure 1: Roadmap of developing OneShotSTL algorithm.

3 MODEL
In this section, we begin with a new batch model formulation,
JointSTL (Algorithm 1), that derives seasonal and trend signals
simultaneously in Section 3.1. This batch framework is the starting
point for us to develop an efficient online algorithm. However,
requiring an online algorithm to exactly solve the batch JointSTL
problem is difficult. To this end, in Section 3.2, we introduce certain
approximations, which pave the road towards an online algorithm
by modifying JointSTL (Algorithm 2). Then, Section 3.3 presents
OneShotSTL (Algorithm 5) that provides exactly the same results
as Algorithm 2 but greatly accelerates the computation by using
an online Doolittle factorization algorithm (Algorithm 4) withO(1)
complexity. Last, we describe the method to handle seasonality
shift in Section 3.4. Figure 1 depicts the roadmap for developing
the OneShotSTL algorithm. To simplify the presentation, we first
consider the case H = 0 (i.e., Tc = T ) in Sections 3.1, 3.2, and
3.3. In this case, we may abuse the notation and use T and Tc
interchangeably. The general case when Tc can be any integer in
[T − H ,T + H ],H ≥ 1 is investigated in Section 3.4.

3.1 JointSTL for Batch Setting
Given a time seriesy ∈ RN and the input seasonal period parameter
T , we model the batch STD problem of JointSTL as follows:

min
τ ,s

(︄ N∑︂
t=1
(τt + st − yt )

2 +
N∑︂
t=T
(st − st−T )

2

+λ1

N∑︂
t=2
|τt − τt−1 | + λ2

N∑︂
t=3
|τt − 2τt−1 + τt−2 |

)︄ (2)

To improve robustness, the l1-norm is used on the first and second
order of differences on the trend components with λ1 and λ2 as
hyper-parameters to control the smoothness.

JointSTL can be seen as a simple extension of the famous l1
trend filtering [25]. In other words, it reduces to l1 trend filtering
by setting s = 0. To solve the optimization problem (2), we adopt
the Iteratively Reweighted Least Square (IRLS) [22] method, which
plays an important role in further extensions to the online setting.
Following the idea of IRLS [22], we introduce auxiliary variables
p ∈ RN−1, q ∈ RN−2 and rewrite Problem (2) as:

min
τ ,s ,p ,q

(︄ N∑︂
t=1
(τt + st − yt )

2 +
N∑︂
t=T
(st − st−T )

2

+ λ1

N∑︂
t=2

(︃
pt (τt − τt−1)

2 +
1
4
p−1
t

)︃
+λ2

N∑︂
t=3

(︃
qt (τt − 2τt−1 + τt−2)

2 +
1
4
q−1
t

)︃)︄ (3)

where pt and qt denotes the value of p and q at time t .

Algorithm 1: Batch JointSTL
Input: y ∈ RN , T , λ, maximum iterations I
Output: τ , s , r

1 p = q = 1;
2 for ( i = 0; i < I; i ++ )
3 Construct A and b based on Eq. (6);
4 Obtain x by solving the linear system Ax = b ;
5 τ = x 1:N ; s = x N :2N ; r = y − τ − s ;
6 Update p , q based on Eq. (4) and (5);

Problem (3) is equivalent to Problem (2) with respect to τ and s
when pt and qt are calculated as follows:

pt =
1

2 |τt − τt−1 |
(4)

qt =
1

2 |τt − 2τt−1 + τt−2 |
(5)

This can be simply proved by substituting Eq. (4) and (5) into Prob-
lem (3) to obtain Problem (2).

Problem (3) can be solved by alternating optimization, which is
shown in Algorithm 1. According to [13, 23] on IRLS, Algorithm 1
converges to a global optimum of Problem (2). When τ and s are
fixed, the update rules are shown in Eq. (4) and (5). When p and q
are fixed, we concatenate τ and s to get x = [τ ; s] and substitute it
into Problem (3), resulting in a least square problemwith its optimal
solution determined by a linear system Ax = b where

A = B1
T B1 + B2

T B2 + λ1(p · B3)
T B3 + λ2(q · B4)

T B4

b = B1
Ty

B1 =

⎡⎢⎢⎢⎢⎢⎣
1
. . .

1

1
. . .

1

⎤⎥⎥⎥⎥⎥⎦ ∈ RN×2N

B2 =

⎡⎢⎢⎢⎢⎢⎣0
−1 · · · 1

. . .
. . .

−1 · · · 1

⎤⎥⎥⎥⎥⎥⎦ ∈ R(N−T )×2N

B3 =

⎡⎢⎢⎢⎢⎢⎣
1 −1
. . .

. . .

1 −1
0
⎤⎥⎥⎥⎥⎥⎦ ∈ R(N−1)×2N

B4 =

⎡⎢⎢⎢⎢⎢⎣
1 −2 1
. . .

. . .
. . .

1 −2 1
0
⎤⎥⎥⎥⎥⎥⎦ ∈ R(N−2)×2N

(6)

In Problem (2), we use the squared l2-norm in the first two terms
for the residual and seasonal components. In principle, they can
be replaced by the l1-norm as in RobustSTL. However, using the
squared l2-norm for the first term (residual) and l1-norm for the
trend terms is consistent with the classic l1 trend filtering [25] and
also our practical evaluations show more robust results with (2).

3.2 Modified JointSTL for Online Setting
Problem (2) and Algorithm 1 are designed for the batch setting. In
this section, we modify them to adapt to the online setting.
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For the online setting, the whole data processing procedure con-
sists of an initialization phase and an online updating phase. Specif-
ically, for a data sequence {y1,y2, ...,yt0 ,yt0+1, ...,yt }, the first t0
data points {y1,y2, ...,yt0 } are used for initialization, t0 ≥W , e.g.,
W = 4T with T being the longest seasonality period as in On-
lineSTL. We can apply a batch model, e.g., STL, processing on
{y1,y2, ...,yt0 } and obtain {τ1, τ2, ..., τt0 } and {s1, s2, ..., st0 }. There-
fore, when decomposing the first data point t0 + 1 in the online
phase, we already have the seasonal component of the previous data
points. Further, after each online decomposition, we can always
keep the most recent period of the seasonal component in a sliding
window. We name the seasonal buffer as v ∈ RT and initialize
it with v = [st0−T , ..., st0 ]

T . Then we modify the second term of
Problem (2) on seasonal component and rewrite the problem as:

min
τ ,s

⎛⎜⎝
t0+M∑︂
j=t0+1

(︁
τj + sj − yj

)︁2
+

t0+M∑︂
j=t0+1

(︁
sj −vj%T

)︁2

+λ1

t0+M∑︂
j=t0+1

|︁|︁τj − τj−1
|︁|︁ + λ2

t0+M∑︂
j=t0+1

|︁|︁τj − 2τj−1 + τj−2
|︁|︁⎞⎟⎠

(7)

where for each newly arrived data point yt at timestamp t = t0+M ,
we decompose all the yj into τj and sj for j ∈ [t0 + 1, t0 +M] but
only output the last decomposition result τt0+M and st0+M .

Similarly, we can introduce auxiliary variables p ∈ RM and q ∈
RM and use IRLS [22] for solving Problem (7). The update rules of
pt and qt are the same as Eq. (4) and (5). But whenp andq are fixed,
we solve a different linear system to derive τ and s . Specifically,
we concatenate τ and s to form x = {τt0+1, st0+1, ..., τt0+M , st0+M }.
The optimal x is the solution of a linear system Ax = b, satisfying

A = C1
TC1 +C2

TC2 + λ1(p ·C3)
TC3 + λ2(q ·C4)

TC4

b = C1
Ty +C2

Tu,where u = [vT , ...,vT ]T ∈ RM

C1 =

⎡⎢⎢⎢⎢⎢⎣
1 1

. . .

1 1

⎤⎥⎥⎥⎥⎥⎦ ∈ RM×2M

C2 =

⎡⎢⎢⎢⎢⎢⎣
0 1

. . .

0 1

⎤⎥⎥⎥⎥⎥⎦ ∈ RM×2M

C3 =

⎡⎢⎢⎢⎢⎢⎣
1 0 −1
. . .

. . .
. . .

1 0 −1

⎤⎥⎥⎥⎥⎥⎦ ∈ R(M−1)×2M

C4 =

⎡⎢⎢⎢⎢⎢⎣
1 0 −2 0 1
. . .

. . .
. . .

. . .
. . .

1 0 −2 0 1

⎤⎥⎥⎥⎥⎥⎦ ∈ R(M−2)×2M

(8)

However, the above method still solves a batch problem. More-
over, it is difficult to derive an efficient online algorithm based on it.
Note that, in the online setting, we target the decomposition of the
newly arrived data point. Thus, we modify JointSTL for the online
setting that can well approximate the last decomposition, as shown
in Algorithm 2.

During the initialization phase of Algorithm 2, we use STL or
JointSTL on {y1, ...,yt0 } and set v as introduced before. Then we

Algorithm 2:Modified Batch JointSTL for online setting
//Initialization phase
Input: y1, ...,yt0 , T , λ, maximum iterations I

1 Obtain τ , s, r by STL or JointSTL; Setv = [st0−T , ..., st0 ];
2 p0 = q0 = [1]; pi = qi = [], for i ∈ [1, I ];

//Online phase
Input: y = {y1,y2, ...,yt }, T , λ, I
Output: τt , st , rt

3 for ( i = 0; i < I; i ++ )
4 Construct A and b based on Eq. (8) using pi ,qi ;
5 Obtain x by solving the linear system Ax = b;
6 τt = x−2; st = x−1; rt = yt − τt − st ;
7 Update pt and qt based on Eq. (4) and (5);
8 pi+1 = [pi+1,pt ];qi+1 = [qi+1,qt ];
9 p0 = [p0, 1];q0 = [q0, 1];

10 vt%T = st ;

set p = pi and q = qi for the i-th iteration, which will be used for
constructing A and b in Eq. (8). Because, during the online phase,
we have different vectors of pi and qi updated using Eq. (4) and (5)
for each iteration i . Unlike JointSTL which updates the whole vector
of p and q, while decomposing yt , we only append pi and qi with
the latest pt and qt calculated from the decomposition of τt and st
for iteration i . Finally, we output the decomposition results from
the last iteration. In practice (see experiments in Section 5), we find
that this approximation provides sufficiently good decomposition.

However, Algorithm 2 is still unrealistic since for each time
point t = t0 +M , one needs to solve a linear systemAx = b in each
iteration of Algorithm 2 (lines 4-8), where A ∈ R2M×2M and its
size is increasing while processing more data points online. Recall
that in the online setting, at time point t , one only needs to par-
tially solve Ax = b and outputs the latest decomposition τt and st .
Moreover, from Eq. (8) we can see that A is a symmetric banded
matrix with constant bandwidth of 9 in regardless of the growing
of M and the values of p and q, since C1

TC1, C2
TC2, C3

TC3 and
C4

TC4 are all banded matrices with constant bandwidth of 3, 3, 5
and 9, respectively, for any M ≥ 5. Therefore, the linear system
Ax = b can be efficiently solved using Cholesky/Doolittle factor-
ization and Gaussian elimination. The crux of the matter is that
the Cholesky/Doolittle factorization and the forward substitution
of Gaussian elimination can be made online. Specifically, at each
time point and for each iteration of Algorithm 2, we only need to
conduct the first few steps of the backward substitution and output
the last two elements of x , i.e., τt and st . Following this idea, we
propose OneShotSTL detailed in the next section.

3.3 OneShotSTL Aglorithm
This section presents the online symmetric Doolittle factorization
algorithm with O(1) update complexity to accelerate Algorithm 2,
which leads to the full OneShotSTL algorithm.

3.3.1 Online SymmetricDoolittle Factorization. For each time
point t , Algorithm 2 needs to sequentially solve I different linear sys-
tems of Ax = b, where I is a configured parameter on the number
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of iterations. Note that this number I is prefixed and independent
of the input data size, e.g., I = 8. The reason is that the optimization
of Problem (7) using Algorithm 2 based on IRLS usually converges
very fast [22]. Therefore, we only need a few iterations to obtain
satisfactory results (see experiments in Section 5). This algorithm
has two steps. The first step is to initialize the first iteration, and
the second step is to repeat the rest I − 1 iterations based on the
result from the previous iteration.

Algorithm 3: Symmetric Doolittle Factorization
Input: A ∈ RM×M

Output: L ∈ RM×M , D ∈ RM×M

1 for ( k = 1; k < M; k ++ )
2 Lkk = 1;
3 Dkk = Akk −

∑︁k−1
i=1 Dii · L2

ki ;
4 for ( j = k + 1; j < M; j ++ )
5 Lk j = 0;
6 Ljk = (Ajk −

∑︁k−1
i=1 Lji · Dii · Lki ) / Dkk ;

At time point t = t0 +M , we can construct At ∈ R2M×2M using
Eq. (8) withp = q = 1 for the first iteration of Algorithm 2. Similarly,
for the next time point t + 1, we can construct At+1. Interestingly,
some sub-matrices of At and At+1 are identical. Figure 2 shows
two examples of At and At+1 withM = 5 andM = 6, respectively.
As can be seen from the figure, we can split each matrix into 4 parts
according to dashed lines. The top-left sub-matrices ofAt andAt+1

are identical, and the top-right/bottom-left sub-matrices of At and
At+1 are also the same after appending rows and columns of zeros.
The only differences lie in the bottom-right sub-matrix in the red
box, whereAo ∈ R4×4 ofAt is replaced byA∗ ∈ R6×6 ofAt+1. One
can easily verify that the same situation occurs for anyM ≥ 5.

(a) At (M = 5), Ao ∈ R4×4 (b) At+1 (M = 6), A∗ ∈ R6×6

Figure 2: Example of A with p=q=1 and λ1 = λ2 = 1.

Next, we show that the common parts of At and At+1 from
adjacent timestamps can be utilized for online processing. Firstly,
we can adopt Symmetric Doolittle Factorization (SDF) shown in
Algorithm 3 to factorize A = LDLT , where D is a diagonal matrix
and L is a lower triangular matrix. Then, while factorizing At =

LtDt Lt
T using SDF, we can buffer the latest Lt and Dt before

processing Ao (Figure 2(a)). Further, we can continue to process
A∗ (Figure 2(b)) for time point t + 1 while factorizing At+1 since
the top-left parts of Lt+1 and Dt+1 are the same with Lt and Dt .
Lastly, thanks to the fact that A is a banded matrix of length 9, we
only need to buffer sub-matrices of L and D with a size of R10×10

since the others are either 0 or not used in the computation.
The complete OnlineDoolittle algorithm for partially solving

Ax = b online is presented in Algorithm 4, including the forward

Algorithm 4: OnlineDoolittle
Input: A∗ ∈ R6×6, b∗ ∈ R6, (Lo ∈ R8×4, Do ∈ R4×4 and bo ∈ R4

are needed for the first call)
Output: τt , st , rt

1 Lo , Do and bo are initialized for the first call and updated online;
2 L̄ = zeros(10, 10); L̄1:8,1:4 = Lo ;
3 D̄ = zeros(10, 10); D̄1:4,1:4 = Do ;
4 b̄ = [bo ;b∗];
5 for ( k = 5; k ≤ 10; k ++ )
6 L̄kk = 1;
7 D̄kk = A∗k−4,k−4 −

∑︁k
i=k−4 D̄ii · L̄

2
ki ;

8 b̄k = −
∑︁k
i=k−4 L̄ki · b̄i ; //Forward substitution part1

9 for ( j = k + 1; j ≤ 10; j ++ )
10 L̄jk = (A∗j−4,k−4 −

∑︁4
i=k−4 L̄ji · D̄ii · L̄ki ) / D̄kk ;

11 for ( j = 5; j ≤ 10; j ++ )
12 for ( i = j + 1; i < j + 5; i ++ )
13 b̄i -= L̄i j · b̄ j ; //Forward substitution part2

14 for ( j = 10; j ≤ 5; j - - )
15 for ( i = j + 1; i ≤ 10; i ++ )
16 b̄i -= D̄ii · L̄ji · b̄ j ; //Backward substitution

17 Lo = L̄3:10,3:6; Do = D̄3:6,3:6; bo = b̄ 3:6;
18 τt = b̄9; st = b̄10; rt = yt − τt − st ;

and backward substitutions of Gaussian elimination that can be
modified with the same principle. Note that OnlineDoolittle is al-
most the same as the original SDF (Algorithm 3), where we keep
updating the most recent Lo , Do and bo with the factorization and
the forward/backward substitutions conducted online. Finally, it
outputs the decomposition result of τt and st for each timestamp
t . The number of calculations needed in Algorithm 4 is always a
constant, and thus its runtime complexity is O(1).

Next, we show that OnlineDoolittle algorithm can also be used
for partially solving Ax = b for the i-th iteration of Algorithm 2.
To construct A and b using Eq. (8) for iteration i , we need pi−1

and qi−1 updated from the previous iteration. Note that we only
append pt and qt at each time point t calculated in iteration i − 1
to pi−1 and qi−1. Therefore, the values of p1:t−1 and q1:t−1 for all
the previous timestamps are fixed while processing time point t
at iteration i . Thus, the At and At+1 from adjacent timestamps
for iteration i also share the same property, as shown in Figure 2.
Then, we can build a linear system with growing A and b for each
iteration, whose construction depends on the results of the previous
iteration. Eventually, they can be partially solved online using the
OnlineDoolittle algorithm to obtain the final decomposition results.

3.3.2 OneShotSTL algorithm details. Combining all the ingre-
dients introduced before, we have the complete OneShotSTL al-
gorithm, shown in Algorithm 5. It solves the same problem as
Algorithm 2 in an online fashion. During the initialization phase,
we conduct STL or batch JointSTL on the existing data to obtain one
period of seasonal componentv . During the online phase, at time
point t OneShotSTL processes a new observation yt and outputs
the decomposition results τt and st . Specifically, for each iteration
i , it sequentially updates pt and qt using τt and st from previous
iterations and constructs A∗ and b∗ as in Figure 2 using Eq. (8).
Then, each iteration incrementally applies the symmetric Doolittle
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Algorithm 5: OneShotSTL
//Initialization phase
Input: y1, ..., yt0 , T , λ, maximum iterations I

1 M = 0; Obtain τ , s , r by STL or JointSTL; Set v = [st0−T , ..., st0 ];
2 p0 = q0 = [1]; p i = qi = [], for i ∈ [1, I ];

//Online phase
Input: yt , t , n, λ, I
Output: τt , st , rt

3 for ( i = 0; i < I; i++ )
4 Construct A∗ and b∗ as in Figure 2 using Eq. (8);
5 τt , st , rt = OnlineDoolittlei (A∗, b∗);
6 Update pt and qt using Eq. (4) and (5);
7 p i+1 = [p i+1, pt ];qi+1 = [qi+1, qt ];
8 p0 = [p0, 1];q0 = [q0, 1];
9 vt%T = st ;

factorization using A∗ and b∗ with OnlineDolittle in Algorithm 4,
denoted as OnlineDolittlei for iteration i . Finally, we output the
decomposition result τt and st from the last iteration and update
the corresponding value inv with the decomposed seasonal st .

The time complexity of OnlineDolittle (Algorithm 4) is O(1).
Thus, the worst-case online update complexity of OneShotSTL is
O(I ), where I is the maximum number of iterations. Note that I is a
fixed constant, independent of the problem size, implying that the
online update complexity of OneShotSTL is O(1). In practice, it is
the main factor that affects the speed of OneShotSTL. But, a small
value, e.g., I = 8, is sufficient to produce satisfactory results; see
experiments in Section 5).

3.4 Handle Seasonality Shift
In this section, we handle the case of seasonality shift when the
underlying Tc can be any integer in [T − H ,T + H ],H ≥ 1.

T T

Time
T

!!
"!%#$∆!

"!%#
∆"

No Shift

Seasonality Shift

#

Figure 3: Seasonality Shift of ∆t time points.

Figure 3 depicts an example of seasonality shift of ∆t time points,
which happens commonly in the metric monitoring applications
of AIOps. The blue line represents the ground truth of 2 periods
of seasonal component of a time series data. From time point t
there is a shift of ∆t time points. The red dashed line represents the
imaginary data if there is no shift. For simplicity, until time point t
we assume v equals the first seasonal period in Figure 3. Clearly,
OneShotSTL in Algorithm 5 will not decompose it well after time
point t , since vt%T is significantly different from the ground truth
st . If we know ∆t , we can replace (st −vt%T ) in Problem (7) with
(st −vt%T+∆t ) to tackle the seasonality shift issue. However, we
do not know the correct ∆t for each time point t in practice.

To solve this problem, we first use the hyper-parameterH to form
neighborhoods E with all possible ∆t within H , e.g., E = {0} for

Algorithm 6: NSigma
Input: rt , n
Output: isAnomaly, score

1 isAnomaly = False;
2 if not initialized then
3 sum = sumSquared = count = 0;
4 if count > 0 then
5 mean = sum / count; std = sqrt(sumSquared / count - mean2);
6 score = abs(rt - mean) / std;
7 if score > n then
8 isAnomaly = True;
9 count += 1; sum += rt ; sumSquared += r 2

t ;

H = 0 and E = {−1, 0, 1} for H = 1. Further, we observe that when
a seasonality shift happens, there will be a spike anomaly point
in the decomposed residual rt . Therefore, we monitor the residual
rt and use the streaming NSigma algorithm shown in Algorithm
6 to detect whether there is an anomaly in rt for each time point
t . In Algorithm 6, n is an input parameter indicating the level of
abnormal, e.g., n = 5. Once we found an anomaly, we repeat lines
3 − 8 of Algorithm 5 for each ∆t ∈ E that is used to construct A∗

and b∗ (line 4). Then we pick ∆t with the smallest absolute value
of rt and output the corresponding τt and st . This method gives
the most accurate decomposition results in our simulations.

With the above method to handle seasonality shift, the com-
putation complexity of OneShotSTL is O(I · H ), where H is the
prefixed parameter that indicates the maximum variations allowed
for the cycle length shift, e.g., H = 20. Since both I and H are fixed
constant, independent of each period length Tc , implying that the
online update complexity of OneShotSTL is still O(1). Moreover,
it also does not affect the speed of OneShotSTL much in practice
since anomalies (e.g., with n > 5) in the residual signal are rare
(e.g., usually less than 1%).

4 EXTENSION FOR DOWNSTREAM TASKS
OneShotSTL and other online STD methods can be easily extended
for downstream tasks of online TSAD and TSF as follows:

(1) Univariate TSAD: For an unbounded time series, at each
time point t , an online TSAD method observes all the his-
torical data {y1,y2, ...,yt } and outputs an anomaly score for
yt . OnlineSTL and OneShotSTL can be extended to online
TSADmethods by combining with streaming NSigma shown
in Algorithm 6. Besides the decomposition results, they can
output anomaly scores using NSigma on the decomposed
residual signals.

(2) Univariate TSF: Similarly, an online TSF method observes
{y1, ...,yt } at time point t and makes an i-step prediction for
the future value of data ŷt+i at time point t + i . Seasonal sig-
nals are periodical, thus we can use them for long-sequence
forecasting. We adopt a simple method where we buffer
the most recent decomposed trend (τt−1) and one period
of seasonal signals (v) during online decomposition. Then,
to make an i-step prediction at timestamp t , we simply use
ŷt+i = τt−1+vt%T+i whereT is the period length. The same
method applies to OnlineSTL.
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Figure 4: Synthetic and Real-world datasets for the evaluation of STD quality.

5 EXPERIMENTS
We conduct comprehensive experiments to evaluate OneShotSTL in
comparisonwith othermethods. After introducing the experimental
setting, we evaluate the decomposition accuracy and the scalability,
followed by comparison on downstream TSAD and TSF tasks.

5.1 Experimental Settings
5.1.1 Datasets. Three sets of datasets are used for evaluation.

1. Synthetic and Real-world STD datasets.We generate two
synthetic datasets (Syn1 and Syn2) and use two real-world datasets
(Real1 and Real2) as shown in Figure 4. These two real-world
datasets are on the request rates of some internal APIs on Alibaba
Cloud Database systems. The red lines in Figure 4 (a) and (b) show
the ground truth of the trend signals of the synthetic datasets. Syn1
and Syn2 are designed for cases with abrupt trend changes and
seasonality shifts, respectively. In Syn2 there are 4 periods shifted
by 10 data points which are not visually distinguishable. Due to the
limited space, we present the details of generating the synthetic
datasets in the supplementary material [10]. For the two real-world
datasets, Real1 exhibits an abrupt change of the trend and Real2
contains observable noises with weak seasonality.

2. Univariate TSADdatasets.Weevaluate the univariate TSAD
task using the TSB-UAD benchmark [31]. There are over 2000 real-
world time series in the TSB-UAD benchmark with anomalies la-
beled by domain experts. Among them, the most famous one is the
KDD CUP 2021 (KDD21) TSAD competition dataset [17] consists of
250 univariate time series. For details of these datasets please refer
to [31]. For KDD21, IOPS, NASA-MSL and NASA-SMAP datasets,
we use the train part of the data for initialization. For the rest of
the datasets, we use the first 3000 data points for initialization.

3. Univariate TSF datasets. We evaluate the TSF task on six
real-world datasets (ETT, Electricity, Exchange, Traffic, Weather,
and Illness) from Informer [45] which have been extensively used to
benchmark long sequence TSF by recentworks, e.g., FEDformer [47]
and FiLM [46]. We follow the same experimental settings as these
methods with forecasting lengths of {24, 36, 48, 60} for Illness and
{96, 192, 336, 720} for the rest. The train, validation, and test split-
ting details can be found in [45] and are publicly available [5].

5.1.2 ComparisonMethods. We compare OneShotSTL with the
state-of-the-art STD, TSAD, and TSF baseline methods.

1. STD Baselines. We compare OneShotSTL with two batch
STD methods (STL [16] and RobustSTL [40, 42]) and two online
methods (OnlineSTL [28] and OnlineRobustSTL [7, 42]). For the
online setting, STL and RobustSTL can also be used on the sliding
window of the most recent data points, which are named Window-
STL and Window-RobustSTL. We use the public Java implementa-
tion of STL [6] and implement OnlineSTL and OneShotSTL in Java.
For RobustSTL we use the Python implementation that is publicly
available in package SREWorks [7].

2. TSAD Baselines. We compare with matrix profile-based
methods NormA [14], STOMPI [44], SAND [15], and DAMP [27],
which show state-of-the-art performance for univariate time series
anomaly detection on the TSB-UAD benchmark. NormA is a batch
TSAD method, while STOMPI, SAND, and DAMP are online TSAD
methods. A batch method reads all the data of a time series and out-
put an anomaly score for each data point, while an online method
uses the training data for initialization and update the model during
online detection. Further, we compare with deep learning-based
TSAD methods including, LSTM [32], USAD [12] and TranAD [38].
USAD and TranAD are recent methods designed for fast training.
We use the Python implementation of LSTM, NormA, and SAND
from the TSB-UAD benchmark [31]. For USAD and TranAD we
use the publicly available Python code provided by the authors
from [20] and [37] respectively. For STOMPI we use the code from
stumpy [26] Python package. Damp is implemented in Matlab and
is publicly available [43].

3. TSF Baselines. We have selected six TSF methods for com-
parison, including ARIMA [11], DeepAR [34], NBEATS [29], In-
former [45], FEDformer [47], and FiLM [46]. ARIMA is a traditional
statistical method and the last five are deep learning-based methods,
including the most recent ones ( e.g., FEDformer and FiLM) with
state-of-the-art forecasting accuracies on the evaluated datasets. For
ARIMA we use the implementation from statsforecast [9] Python
package. For DeepAR and NBEATS, we use the code from pytorch-
forecasting [8]. For Informer [45], FEDformer [47] and FiLM [46], we
use the Python codes from the authors, which are publicly available.

5.1.3 EvaluationMetrics. We also have multiple evaluation met-
rics for different time series analysis tasks.

1. Decomposition Metric. We adopt the Mean Absolute Er-
ror (MAE) between the decomposed and the ground truth signals
for synthetic datasets to evaluate the decomposition quality. Fur-
ther, we show the visualization of the decomposed signals for both
synthetic and real-world STD datasets.

2. Univariate TSADMetric. Recently, there are studies arguing
that the traditional evaluation metrics (e.g., Precision, Recall, and
AUC) of TSADmethods are too sensitive to the noisy labels [24, 30].
Therefore, we use a recently proposed evaluation method VUS-
ROC [30] (also from the authors of TSB-UAD) for evaluations.
VUS-ROC has been shown to be more robust against noisy labels
than other TSAD evaluation metrics [30]. Moreover, on KDD21
dataset [17] we use the score function from the KDD CUP 2021
TSAD competition for evaluation. Since there is only one anomaly
event for each time series in KDD21 datasets, it just checks whether
the top-ranked anomaly point is among the neighborhood of the
labeled anomaly event.

3. Univariate TSF Metric.We adopt the MAE between the real
and the predicted values in the test set for the evaluation of the
forecasting task.
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Figure 5: Comparison of decomposition results on Syn1 ((a)-(d)) and Syn2 ((e)-(h)).

5.1.4 Hyper-parameters setting. All STD and TSAD methods
(except the deep learning methods) need the period length T as the
input. For synthetic datasets, we use the ground truth valueT = 500
for Syn1 andT = 250 for Syn2. For real-world datasets, we use the
find_length function from TSB-UAD package [3] to detectT , which
is based on auto-correlation.

1. STD Methods Setting. STL does not need any other hyper-
parameters. RobustSTL needs a dozen of them and we use the
authors-recommended default values [7]. We set α = 0.7 for On-
lineSTL as the authors suggested [28]. The key hyper-parameters
for OneShotSTL are the λ1 and λ2 which control the smoothness
of the decomposed trend. We always set them the same with λ =
λ1 = λ2 and tune λ as follows. On the training data, we perform
STL and OneShotSTL with λ ∈ {100, 101, ..., 104}. Then we pick up
the one that is the closest (the smallest MAE) to the results from
STL. We set the seasonality shift window H = 20, the maximum
iteration I = 8 and n = 5 for NSigma, if not otherwise specified.

2. TSAD Methods Setting.We use the hyper-parameters sug-
gested by the authors, which usually are the default ones. For meth-
ods implemented in TSB-UAD, their default hyper-parameters have
already been used for the evaluation in the TSB-UAD benchmark
paper [31].

3. TSF Methods Setting. For Informer, FEDformer, and FiLM,
we use the hyper-parameters that have already been extensively
tuned on the evaluated datasets by the authors. For Arima, we use
the parameter-free AutoArima from statsforecast [9] package. For
DeepAR and NBEATS, hyper-parameters of the initial learning rate
and hidden sizes are tuned on the validation sets by following the

instructions [8]. For OnlineSTL and OneShotSTL, we tune α and
λ1 and λ2 using the validation sets respectively.

5.1.5 Hardware and setting. All experiments of NSigma, DAMP,
OnlineSTL, and OneShotSTL are performed on a Macbook Pro 2018
with 4 CPU cores (Intel Core i5) and 16 GiB memories. Experiments
for the other methods are conducted on Alibaba cloud where an
ECS (ecs.gn6e, 48 CPU cores, 368 GiB memories, NVIDIA V100×4
GPU cards) is used. For all the deep learning-based methods, an
NVIDIA V100 GPU card is used for efficient training and testing.

5.2 How accurate is OneShotSTL?
Wefirst compare the quality of the decomposition fromOneShotSTL
with the previous STD methods. Figure 5 depicts the decomposi-
tion results on Syn1 (from (a) to (d)) and Syn2 (from (e) to (h))
respectively. As can be seen from sub-figures (a) to (d), OnlineSTL
and OnlineRobustSTL output too smooth trend on Syn1 and fail
to recover the ground truth signal of trend, while OneShotSTL
successfully handles such cases. Further, OnlineSTL fails to handle
seasonality shift on Syn2 and outputs significantly different trend
and residual signals. In comparison, OneShotSTL can deal with
such cases perfectly as the batch method RobustSTL. Moreover,
Table 2 depicts the MAE between the ground truth signals and
the decomposed signals from both batch and online methods. As
can be seen, RobustSTL and OneShotSTL (shown in bold) are the
best-performing batch and online methods respectively on both
synthetic datasets. Their MAE scores are quite close, which are
significantly better than all the other comparisons.
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Figure 6: Visualization of decomposition results on Real1 ((a)-(d)) and Real2 ((e)-(h)) datasets.

Table 2: Decomposition comparison on synthetic datasets

Data Type Algorithm Trend Seasonal Residual
(MAE) (MAE) (MAE))

Syn1

Batch STL 0.134 0.015 0.144
RobustSTL 0.004 0.013 0.016

Online

Window-STL 0.134 0.092 0.174
OnlineSTL 0.104 0.023 0.093
Window-RobustSTL 0.045 0.018 0.046
OnlineRobustSTL 0.131 0.033 0.123
OneShotSTL 0.007 0.014 0.019

Syn2

Batch STL 0.084 0.433 0.505
RobustSTL 0.004 0.004 0.004

Online

Window-STL 0.084 0.313 0.313
OnlineSTL 0.225 0.374 0.571
Window-RobustSTL 0.032 0.031 0.006
OnlineRobustSTL 0.037 0.031 0.013
OneShotSTL 0.004 0.013 0.013

Next, we visualize the decomposed signals of real-world datasets
Real1 and Real2 in Figure 6 (a) to (d) and (e) to (h) respectively.
As can be seen from the sub-figures (a) to (d) of Figure 6, the de-
composed trend signal of Real1 from OneShotSTL is closer to that
from RobustSTL, which can better discover the abrupt change of
the trend than OnlineSTL and OnlineRobustSTL. Further, from the
results of Real2 in sub-figures (e) to (h) of Figure 6 we can see that
there are strong variations of the decomposed trend signals from
OnlineSTL and OnlineRobustSTL. These may increase the possibil-
ity of false alarms for anomaly detection on the decomposed trend
signal. In comparison, OneShotSTL can handle it better.

5.3 How Fast is OneShotSTL?
Next, we compare the efficiency of different STD methods. Remem-
ber that OneShotSTL is the only online method with O(1) update
complexity. All the other methods have an update complexity of
O(T ). Specifically, we build a new synthetic dataset of 200, 000
points by repeating Syn1. Please note that the runtime of all the
STD methods only depends on the size and period length T of the
input time series. Then we evaluate the decomposition methods
with different input T ∈ {100, 200, 400, 800, 1600, 3200, 6400, 12800}
and report the average latency of processing one data point. We
evaluate this range of T because, in the context of real-time metric
monitoring scenarios in AIOps, there is usually a daily or weekly
seasonality pattern. Then for minute data, the period length is 1, 440
and 10, 080 for the daily and weekly seasonality respectively.

The results are shown in Figure 7. All methods except OneShot-
STL scale linearly with the increase of T . OneShotSTL is the only
method with a constant latency (around 20µs) to process one data
point, which agrees with the theoretical analysis in Section 3. Ap-
proximately, it can process up to 50, 000 time series per second
using a single CPU core. OnlineSTL performs better when T < 800,
while OneShotSTL is faster when T > 800. When T = 12, 800,
OnlineSTL needs about 450µs to decompose one data point, which
is more than 20 times slower than OneShotSTL. The other three
methods Window-STL, Window-RobustSTL, and OnlineRobustSTL
are at least two orders of magnitude slower than OnlineSTL and
OneShotSTL. Therefore, in the following evaluation of the TSAD
and TSF tasks, we only include OnlineSTL and OneShotSTL.
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Table 3: Univariate TSAD Results (VUS-ROC) on sixteen datasets from TSB-UAD benchmark. A higher VUS-ROC indicates
better performance. The ranking of the method is shown in the bracket and the best results are shown in bold.

Method LSTM USAD TranAD NormA SAND STOMPI DAMP NSigma OnlineSTL OneShotSTL
Daphnet 0.476 (7) 0.653 (3) 0.548 (6) 0.462 (10) 0.594 (5) 0.465 (7) 0.475 (8) 0.605 (4) 0.696 (2) 0.735 (1)
Dodgers 0.743 (9) 0.872 (1) 0.768 (7) 0.815 (4) 0.788 (6) 0.794 (5) 0.630 (10) 0.825 (2) 0.756 (8) 0.819 (3)
ECG 0.745 (9) 0.936 (1) 0.759 (7) 0.935 (2) 0.884 (4) 0.891 (3) 0.864 (5) 0.715 (10) 0.754 (8) 0.767 (6)

Genesis 0.507 (10) 0.827 (1) 0.742 (4) 0.669 (5) 0.507 (9) 0.530 (8) 0.644 (7) 0.823 (2) 0.666 (6) 0.762 (3)
GHL 0.627 (8) 0.913 (1) 0.831 (4) 0.759 (5) 0.727 (7) 0.603 (9) 0.553 (10) 0.732 (6) 0.866 (3) 0.872 (2)
IOPS 0.743 (3) 0.740 (5) 0.690 (6) 0.503 (9) 0.487 (10) 0.550 (8) 0.616 (7) 0.774 (1) 0.741 (4) 0.749 (2)
MGAB 0.683 (2) 0.628 (10) 0.647 (4) 0.628 (9) 0.637 (5) 0.628 (8) 0.731 (1) 0.665 (3) 0.634 (6) 0.628 (7)
MITDB 0.613 (10) 0.745 (5) 0.667 (8) 0.824 (1) 0.792 (2) 0.746 (4) 0.773 (3) 0.671 (7) 0.664 (9) 0.685 (6)
NAB 0.510 (10) 0.631 (1) 0.551 (6) 0.580 (4) 0.519 (9) 0.520 (8) 0.540 (7) 0.570 (5) 0.584 (3) 0.590 (2)

NASA-MSL 0.613 (8) 0.699 (1) 0.650 (6) 0.645 (7) 0.695 (3) 0.606 (10) 0.609 (9) 0.694 (5) 0.696 (2) 0.688 (5)
NASA-SMAP 0.642 (8) 0.711 (4) 0.551 (10) 0.818 (1) 0.800 (2) 0.711 (3) 0.665 (6) 0.642 (7) 0.601 (9) 0.666 (5)
Occupancy 0.532 (6) 0.421 (7) 0.845 (2) 0.626 (5) 0.254 (10) 0.399 (9) 0.408 (8) 0.770 (4) 0.855 (1) 0.840 (3)
Opportunity 0.564 (6) 0.481 (7) 0.454 (8) 0.808 (1) 0.777 (2) 0.767 (3) 0.707 (4) 0.586 (5) 0.418 (9) 0.404 (10)
SensorScope 0.546 (10) 0.555 (8) 0.573 (7) 0.632 (4) 0.551 (9) 0.587 (6) 0.609 (5) 0.668 (2) 0.646 (3) 0.672 (1)

SMD 0.606 (6) 0.697 (4) 0.699 (3) 0.612 (9) 0.580 (10) 0.622 (8) 0.635 (7) 0.680 (5) 0.732 (2) 0.749 (1)
SVDB 0.650 (7) 0.731 (5) 0.647 (10) 0.924 (1) 0.896 (2) 0.830 (3) 0.815 (4) 0.649 (8) 0.647 (9) 0.690 (6)
YAHOO 0.768 (6) 0.626 (9) 0.677 (8) 0.915 (1) 0.895 (2) 0.544 (10) 0.810 (4) 0.761 (7) 0.833 (3) 0.796 (5)

Avg. VUS-ROC 0.624 (10) 0.698 (3) 0.664 (7) 0.713 (1) 0.669 (6) 0.634 (9) 0.652 (8) 0.695 (4) 0.693 (5) 0.713 (1)
Avg. Rank 7.35 (10) 4.29 (2) 6.23 (8) 4.58 (3) 5.70 (6) 6.70 (9) 6.17 (7) 4.82 (4) 5.11 (5) 4.00 (1)

Avg. Time (sec) 13995 s (9) 7465 s (8) 545 s (4) 1164 s (5) 23601 s (10) 3689 s (6) 5298 s (7) 2 s (1) 61 s (2) 160 s (3)

Figure 7: Comparison of average latency per data point with
different input ofT ∈ {100, 200, 400, 800, 1600, 3200, 6400, 12800}.

5.4 How do the methods compare in TSAD?
In this subsection, we apply STD methods to the TSAD task and
compare them with the corresponding state-of-the-art methods.

Firstly, we evaluate seventeen datasets from the TSB-UAD bench-
mark with results shown in Table 3. The average VUS-ROC score
from a dataset is displayed in each row of the table, along with the
method’s ranking, which is indicated in brackets. The average VUS-
ROC, ranking, and execution time for all seventeen datasets are
shown in the table’s last three rows. The table shows that OneShot-
STL surpasses majority of the comparison methods with an average
VUS-ROC of 0.713 and an average ranking of 4.00. The table also
demonstrates that no particular approach consistently outperforms
the others. Specifically, USAD, NormA and OneShotSTL perform
the best on 6, 5, and 3 datasets, respectively. Notably, we also ob-
serve that these three approaches are low-ranked algorithms on
other datasets. OneShotSTL is higher in both the average ranking
and the VUS-ROC score than the other methods because it performs
consistently across various datasets. Surprisingly, simple NSigma

Table 4: Univariate TSAD Results on KDD21 datasets
Data Type Method Score Time

KDD21

Deep
LSTM 0.460 1842 min
USAD 0.168 54 min
TranAD 0.196 54 min

MP

NormA 0.500 24 min
STOMPI 0.360 68 min
SAND 0.388 13534 min
DAMP 0.512 384 min

STD
NSigma 0.132 < 0.1 min
OnlineSTL 0.268 4.3 min
OneShotSTL 0.288 7.5 min

STD+MP
NSigma+DAMP 0.324 4.7 min
OnlineSTL+DAMP 0.408 7.2 min
OneShotSTL+DAMP 0.508 9.5 min

provides competitive results with an average VUS-ROC score of
0.695, which outperforms many sophisticated methods like SAND
(0.669) and DAMP (0.652). Furthermore, NSigma is also the fastest
method with an average runtime of only 2 seconds followed by
OnlineSTL (61 seconds) and OneShotSTL (160 seconds). The other
methods take thousands or even tens of thousands of seconds to
complete.

Next, we evaluate KDD21 dataset. The average accuracy across
250 time series and total time for training/testing are shown in
Table 4. LSTM provides good accuracy of 0.460, but its runtime
(1842 minutes) is significantly longer than the other methods except
SAND (13534 minutes). The other two deep learning-based methods
are faster, but they do not perform well on KDD21 datasets in terms
of accuracy. Online TSAD method DAMP performs the best with
an accuracy of 0.512. However, DAMP takes 384 minutes (around 6
hours) to finish detecting all the datasets. Further, OnlineSTL and
OneShotSTL can significantly improve the results of NSigma (0.132)
to 0.268 and 0.288 respectively. However, their accuracies are still
significantly worse than DAMP. This is because STD methods can
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Table 5: Univariate TSF results (MAE) on six datasets with forecasting lengths {96, 192, 336, 720} ({24, 36, 48, 60} for Illness). The
ranking of the method is shown in the bracket and the best results are highlighted in bold.

Method FiLM FEDformer Informer NBEATS DeepAR AutoArima OnlineSTL OneShotSTL

ETTm2

96 0.189 (1) 0.189 (1) 0.225 (5) 0.201 (3) 0.942 (8) 0.379 (7) 0.375 (6) 0.211 (4)
192 0.233 (1) 0.245 (3) 0.283 (5) 0.248 (4) 0.993 (8) 0.419 (7) 0.391 (6) 0.244 (2)
336 0.274 (2) 0.279 (4) 0.336 (5) 0.274 (2) 0.442 (8) 0.437 (7) 0.419 (6) 0.273 (1)
720 0.323 (2) 0.325 (3) 0.435 (4) 0.468 (6) 1.028 (8) 0.475 (7) 0.452 (5) 0.321 (1)

Electricity

96 0.247 (1) 0.370 (3) 0.538 (5) 0.387 (4) 0.641 (6) 0.898 (7) 1.031 (8) 0.331 (2)
192 0.258 (1) 0.386 (3) 0.558 (5) 0.458 (4) 0.698 (6) 0.925 (7) 1.013 (8) 0.355 (2)
336 0.283 (1) 0.431 (3) 0.613 (5) 0.494 (4) 0.747 (6) 1.013 (7) 1.037 (8) 0.389 (2)
720 0.341 (1) 0.484 (4) 0.682 (5) 0.483 (3) 0.796 (6) 1.096 (8) 1.070 (7) 0.444 (2)

Exchange

96 0.259 (4) 0.284 (5) 0.615 (8) 0.358 (6) 0.597 (7) 0.241 (1) 0.241 (1) 0.252 (3)
192 0.352 (4) 0.420 (7) 0.912 (8) 0.387 (5) 0.419 (6) 0.321 (1) 0.327 (2) 0.334 (3)
336 0.461 (4) 0.511 (5) 0.984 (8) 0.652 (6) 0.920 (7) 0.432 (1) 0.433 (2) 0.436 (3)
720 0.708 (4) 0.832 (6) 1.072 (7) 1.114 (8) 0.710 (5) 0.681 (3) 0.626 (2) 0.624 (1)

Traffic

96 0.215 (3) 0.263 (4) 0.353 (5) 0.206 (2) 0.614 (6) 1.036 (7) 1.465 (8) 0.181 (1)
192 0.199 (2) 0.265 (4) 0.376 (5) 0.211 (3) 0.992 (6) 1.101 (7) 1.461 (8) 0.181 (1)
336 0.212 (3) 0.266 (4) 0.387 (5) 0.209 (2) 1.105 (6) 1.138 (7) 1.470 (8) 0.182 (1)
720 0.252 (3) 0.286 (4) 0.436 (5) 0.243 (2) 1.166 (6) 1.213 (7) 1.461 (8) 0.199 (1)

Weather

96 0.026 (4) 0.046 (7) 0.044 (6) 0.022 (1) 0.059 (8) 0.025 (3) 0.031 (5) 0.024 (2)
192 0.029 (4) 0.059 (8) 0.040 (6) 0.026 (2) 0.047 (7) 0.028 (3) 0.032 (5) 0.025 (1)
336 0.030 (2) 0.050 (8) 0.049 (7) 0.031 (3) 0.035 (6) 0.031 (3) 0.033 (5) 0.026 (1)
720 0.037 (5) 0.091 (8) 0.042 (7) 0.033 (2) 0.033 (2) 0.035 (4) 0.037 (6) 0.030 (1)

Illness

24 0.538 (2) 0.629 (3) 2.050 (8) 0.467 (1) 0.726 (5) 0.821 (6) 0.917 (7) 0.682 (4)
36 0.481 (1) 0.604 (3) 1.916 (8) 0.519 (2) 0.810 (5) 0.928 (7) 0.840 (6) 0.757 (4)
48 0.584 (1) 0.699 (3) 1.846 (8) 0.678 (2) 0.861 (6) 0.941 (7) 0.843 (5) 0.773 (4)
60 0.644 (1) 0.828 (4) 2.057 (8) 0.773 (2) 0.873 (5) 0.913 (6) 0.963 (7) 0.826 (3)

Avg. MAE 0.308 (1) 0.368 (3) 0.702 (7) 0.373 (4) 0.677 (6) 0.647 (5) 0.707 (8) 0.337 (2)
Avg. Ranking 2.37 (2) 4.45 (4) 6.16 (7) 3.29 (3) 6.20 (8) 5.41 (5) 5.79 (6) 2.08 (1)
Avg. Time (sec) 7860 s (7) 2110 s (5) 2003 s (4) 790 s (3) 4709 s (6) 8779 s (8) 0.3 s (1) 0.3 s (1)

only handle seasonal patterns but the KDD21 dataset contains non-
seasonal patterns. But OnlineSTL and OneShotSTL are much faster
than DAMP. Therefore, we further integrate them with DAMP by
using them as a pre-filtering step. For each time series, we filter the
top-ranked 1% of testing points by the STD methods and give them
to DAMP for detection. By doing this, OneShotSTL can reduce the
computation time of DAMP from 384 minutes to 9.5 minutes (more
than 40 times faster) with negligible loss of accuracy (from 0.512 to
0.508). Meanwhile, we can observe that OneShotSTL outperforms
OnlineSTL (0.408) while being used as filtering for DAMP.

Based on the above results, we conclude that OneShotSTL out-
performs OnlineSTL for TSAD tasks by providing better detection
accuracies in most cases. Moreover, OneShotSTL and matrix profile-
based methods perform well on different datasets of the TSB-UAD
benchmark, but OneShotSTL is from 10 to 100 times faster.

5.5 How do the methods compare in TSF?
In this subsection, we apply STD methods to the TSF task and
compare them with the corresponding state-of-the-art methods.

Table 5 depicts the performance of 8 comparison methods on
6 benchmark datasets with forecasting length {96, 192, 336, 720}
({24, 36, 48, 60} for Illness). Each row of the table shows the predic-
tion errors (measured by MAE) and the ranking of each method
for each setting is shown in the bracket with the best results high-
lighted in bold. The last 3 rows of the table represent the average
MAE, ranking and execution time (including both training and
testing time) across all the settings. First, we can see from the table

that, regarding prediction error, FiLM and OneShotSTL are the top-
two performers with average MAE of 0.308 and 0.337 respectively,
followed by FEDformer (0.368) and NBEATS (0.373). In terms of
average ranking, OneShotSTL is the best method with an average
ranking of 2.08, followed by FiLM (2.37), NBEATS (3.29), and FED-
former (4.45). Specifically, OneShotSTL performs better on datasets
with strong seasonality (ETTm2, Electricity, Traffic, and Weather)
and predicts relatively worse on Exchange and Illness with weak or
no seasonality. Furthermore, STD methods have great advantages
in speed over comparison TSF methods. The average runtime of On-
lineSTL and OneShotSTL is less than 1 second using a single CPU
core on a commodity machine, while the processing time for deep
learning-based methods is from hundreds to thousands of seconds
using an NVIDIA V100 GPU (more than 1000 times slower).

In summary, the forecasting accuracies of OneShotSTL are com-
parable to the state-of-the-art deep learning method FiLM on the
evaluated datasets. Meanwhile, its runtime is more than 1000 times
faster than the non-STD methods.

5.6 Ablation Study of OneShotSTL
In this subsection, we make ablation studies on three input param-
eters of OneShotSTL: periodicity length T , maximum seasonality
shift length H , and number of iterations I .

Firstly, we investigate how the errors in estimatingT can impact
the final performance. Remember that T is automatically discov-
ered during the initialization phase of OneShotSTL. Thus, we use
different values of ∆T = {0, 5, 10, 15, 20} and apply T ← T + ∆T as
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Figure 8: Ablation Study of hyper-parametersT and H of OneShotSTL on TSAD task. We add noise toT by ∆T ∈ {0, 5, 10, 15, 20}.
Y-axis represents the accuracy and VUS-ROC scores (higher the better).
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Figure 9: Ablation Study of hyper-parameters T and H of OneShotSTL on TSF task. We add noise to T by ∆T ∈ {0, 5, 10, 15, 20}.
Y-axis represents the MAE (lower the better).
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Figure 10: Ablation Study of hyper-parameter I of OneShotSTL on TSF task. Y-axis represents the MAE (lower the better).

the periodicity length parameter. Meanwhile, for each dataset, we
compare OneShotSTL with a seasonality shift window ofH = 0 and
H = 20 respectively. Figure 8 shows the performance of OneShot-
STL with different ∆T on four TSAD datasets. As can be seen from
Figure 8, in all cases, OneShotSTL performs better with H = 20.
Moreover, the performance of OneShotSTL degrades with the in-
crease of ∆T for all four datasets. However, on KDD21 the score of
OneShotSTL drops quickly immediately after ∆T = 5, while on the
other three datasets the performance of OneShotSTL drops slowly.
Further, we evaluate the impact of T on TSF tasks in the same way,
with the results shown in Figure 9. From the figure, we can see that
the prediction error of OneShotSTL significantly increases on all
datasets for both cases with H = 0 and H = 20. This is probably
because we can only correct Tc by searching for the optimal value
within [T − H ,T + H ], which works for TSAD tasks since we only
target on the newly arrived data point. However, for TSF tasks,
since we cannot correct the future Tc , and thus just use T directly
to forecast the future data (ŷt+i = τt−1 +vt%T+i in Section 4).

Next, we evaluate the impact of input parameter I for OneShot-
STL. Figure 10 shows the MAE of OneShotSTL with I = 8 and
I = 1 using different forecasting steps with the same H = 20. Due
to limited space, we omit the results of the ablation study of I on
TSAD tasks, where we get similar observations. From Figure 10, we
can see that with I = 8 OneShotSTL more often produces lower pre-
diction errors than that with I = 1. Specifically, on ETTm2 datasets,
the margin is large, while on the other three datasets we observe
minor improvements with I = 8. In general, setting a larger I will
improve the quality of decomposition, but sacrifice the speed.

6 CONCLUSION
In this work, we propose an accurate and efficient online STD al-
gorithm OneShotSTL that can decompose time series online with
an update complexity of O(1). It can significantly reduce the pro-
cessing time complexity of the existing methods that often require
O(T ), e.g., OnlineSTL [28]. Resultantly, the online update time of a
single time point using OneShotSTL is more than 1, 000 times faster
than the batch STD methods, with accuracy comparable with the
best counterparts, e.g., RobustSTL [40]. Extensive experiments on
real-world benchmark datasets for downstream tasks, e.g., TSAD
and TSF problems, demonstrate that OneShotSTL can be ranging
from 10 to more than 1000 times faster than the state-of-the-art
TSAD and TSF methods while still providing comparable or even
better results.

The method has its limitations. The proposed OneShotSTL as-
sumes the underlying Tc ∈ [T − H ,T + H ] for two constants T and
H . This may not hold especially when Tc drastically varies across
multiple cycles. Adaptively detecting the seasonal cycle Tc online
would be of great importance for the online STD problem. In addi-
tion, handling missing points or irregularly sampled time series is
crucial in practice, which cannot be handled by most of the current
STD methods. In the future, we plan to explore the potentials of
OneShotSTL for TSF tasks since decomposed trend and seasonal
signals could help long sequence forecasting when combined with
other techniques. Moreover, integrating OneShotSTL with matrix
profile-based methods for online TSAD tasks is also an interesting
direction. All these lead to the future research directions of the
online STD problem.
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