
Auxo: A Scalable and Efficient Graph Stream Summarization
Structure

Zhiguo Jiang

Huazhong University of Science and

Technology

Wuhan, 430074, China

jiangzg@hust.edu.cn

Hanhua Chen

Huazhong University of Science and

Technology

Wuhan, 430074, China

chen@hust.edu.cn

Hai Jin

Huazhong University of Science and

Technology

Wuhan, 430074, China

hjin@hust.edu.cn

ABSTRACT
A graph stream refers to a continuous stream of edges, forming a

huge and fast-evolving graph. The vast volume and high update

speed of a graph stream bring stringent requirements for the data

management structure, including sublinear space cost, computation-

efficient operation support, and scalability of the structure. Existing

designs summarize a graph stream by leveraging a hash-based

compressed matrix and representing an edge using its fingerprint

to achieve practical storage for a graph stream with a known upper

bound of data volume. However, they fail to support the dynamically

extending of graph streams.

In this paper, we propose Auxo, a scalable structure to support

space/time efficient summarization of dynamic graph streams. Auxo

is built on a proposed novel prefix embedded tree (PET) which lever-

ages binary logarithmic search and common binary prefixes embed-

ding to provide an efficient and scalable tree structure. PET reduces

the item insert/query time from 𝑂 (|𝐸 |) to 𝑂 (𝑙𝑜𝑔|𝐸 |) as well as re-
ducing the total storage cost by a 𝑙𝑜𝑔 |𝐸 | scale, where |𝐸 | is the size
of the edge set in a graph stream. To further improve the memory

utilization of PET during scaling, we propose a proportional PET

structure that extends a higher level in a proportionally incremental

style. We conduct comprehensive experiments on large-scale real-

world datasets to evaluate the performance of this design. Results

show that Auxo significantly reduces the insert and query time by

one to two orders of magnitude compared to the state of the arts.

Meanwhile, Auxo achieves efficiently and economically structure

scaling with an average memory utilization of over 80%.

PVLDB Reference Format:
Zhiguo Jiang, Hanhua Chen, and Hai Jin. Auxo: A Scalable and Efficient

Graph Stream Summarization Structure. PVLDB, 16(6): 1386 - 1398, 2023.

doi:10.14778/3583140.3583154

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/CGCL-codes/Auxo.

∗
All the authors are with National Engineering Research Center for Big Data Technol-

ogy and System, Services Computing Technology and System Lab, Cluster and Grid

Computing Lab, School of Computer Science and Technology, Huazhong University

of Science and Technology, Wuhan, 430074, China. Hanhua Chen is the corresponding

author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.

doi:10.14778/3583140.3583154

1 INTRODUCTION
A graph stream [8, 11, 12, 21, 25, 26, 34] represents a continu-

ous sequence of items, where each item is defined as a triplet

𝑒𝑖 = (< 𝑠𝑖 , 𝑑𝑖 >;𝑤𝑖 ; 𝑡𝑖), indicating an edge 𝑠𝑖 → 𝑑𝑖 with a weight

value 𝑤𝑖 appears at time instance 𝑡𝑖 . A specific edge can repeat-

edly occur at different time instants with varying weights, and

we can accumulate the weight values. The continuously coming

edges form a dynamically extending graph 𝐺 (𝑉 , 𝐸), representing
continuing interconnections or interactions among entities [6]. The

graph stream data model can be widely used in emerging big data

applications such as close contact identification in the anti-virus

campaign [10], financial fraud detection in transaction systems [21],

and user-behavior graph analysis [13].

However, storing a graph stream is a challenging issue. First,

the data volume of a graph stream in real-world applications can

be extraordinarily huge. Hence, a storage scheme should incur

only sublinear storage costs. For example, Tencent’s health code

scan [35] can generate more than one billion records every day,

making long-term COVID-19 spreading pattern analysis difficult.

Large ISPs can transmit 10
9
packets per hour per router [14], rais-

ing great challenges for cyber security monitoring. It is clear that

exactly storing such huge graph stream data is difficult. Second, to

cope with a continuously produced graph stream, a storage scheme

should be able to scale with the increase of the dataset. It is infeasi-

ble for a system with a pre-defined capacity to store a graph stream

with a dynamically increasing volume.

Graph stream summarization structures have attracted many

recent research efforts [2, 7, 8, 12, 18, 22, 34]. Existing designs

can be classified into two types, hash-based and MDL (Minimum
Description Length) based (MDL [28] states that given a model

family𝑀𝐹 and the data 𝐷 needs to be compressed, the best model

𝑀 ∈ MF minimizes 𝐿(𝑀) + 𝐿(𝐷 |𝑀), where 𝐿(𝑀) and 𝐿(𝐷 |𝑀)
indicate the length to describe 𝑀 and the length of the encoded

data 𝐷 , respectively.)

Hash-based graph stream summarizations represent the original

graph stream with a hash-based compressed matrix and denote

the items using their Boolean labels, achieving an approximate

and practical storage scheme with sublinear memory cost. Tang

et al. propose TCM [34], which leverages an 𝑚 × 𝑚 size preset

compressed matrix𝑀 to store the items of a graph stream. It uses

a hash function ℎ(·) with range value [0,𝑚) to map an item of a

graph stream to a corresponding bucket in𝑀 . For a coming item

of edge 𝑠𝑖 → 𝑑𝑖 , TCM adds its associated weight 𝑤𝑖 to the value

stored in the bucket 𝑀 [ℎ(𝑠𝑖), ℎ(𝑑𝑖)] (Nodes with the same hash

value are merged). TCM can support both boolean queries (e.g.,

whether there exists an edge 𝑥 → 𝑦) and aggregation queries (e.g.,

1386

https://doi.org/10.14778/3583140.3583154
https://github.com/CGCL-codes/Auxo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583154
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1: Memory
cost increase

Figure 2: Query la-
tency increase

Figure 3: Utiliza-
tion fluctuation

returning the aggregated weight of all the edges having 𝑥 as the

source node by adding up the weight values of theℎ(𝑥)𝑡ℎ column of

𝑀). However, TCM suffers from poor query accuracy due to hashing

collisions. To improve accuracy, Gou et al. propose GSS [12], which
stores the weight value of an inserted edge into the associated

bucket with its fingerprint. When an occupied bucket encounters

another coming edge with a different fingerprint, GSS stores its

weight and fingerprint in an extra buffer out of 𝑀 . GSS further

relies on a square hashing scheme to allocate multiple candidate

buckets in𝑀 for each edge to reduce the size of the extra buffer. In

a word, although existing hash-based size-predefined graph stream

summarization designs achieve sublinear storage cost and fast edge

updating speed, their structures do not scale facing real-world graph

streams where edges arrive continuously with unknown bounds.

MDL-based graph stream summarizations, such as MoSSo [18]

and SGS [22], utilize MDL to measure the space cost of the summa-

rized graph and move nodes between supernodes to reduce MDL

as every edge arrives. Those structures are scalable but inefficient,

especially for fast-updating and large-scale graph streams. First,

MDL-based strategies are much more computation costly than the

hash-based scheme. Second, they still use traditional data structures

like adjacency list to store the summarized graph, which may bring

prohibitively high memory cost.

All in all, existing graph stream summarization structures are

either with poor scalability or time/space inefficient when facing

large-scale and fast-updating graph streams. How to design an

efficient and scalable graph stream summarization scheme is a

nontrivial and unsolved problem.

A straightforward way to extend a hash-based graph stream

summarization structure is to extend a new building block of com-

pressed matrix whenever the structure is full. However, such a

scheme raises linearly increasing computation and memory costs

when the graph stream scales. The overhead can be prohibitively

high for extraordinarily large-scale datasets, making the structure

unscalable in practice. In Figures. 1 and 2, we conduct experiments

to evaluate the performance of GSS [12], the state-of-the-art graph

stream summarization structure, following the linearly expanding

scheme. In the experiment, when an initial GSS compressed matrix

𝑀0 is full (i.e., all the candidate buckets of an inserting edge are

occupied), we generate a new empty building block (i.e., a new

homogeneous compressed matrix 𝑀1) link it to 𝑀0. Newly coming

edges are inserted into 𝑀1 until 𝑀1 is full and 𝑀2 is created. In

this way, we achieve a chain-style structure based on GSS (we call

it GSS_Chain for short). In the experiment, we use the dataset of

the hyperlink network in the UK domain for the United Kingdom

(2007) [3], which contains 105 million nodes and 3.3 billion edges.

Figures 1 and 2 plot the memory cost and the query latency for

different queries over GSS_Chain as the edges are inserted. Fig-

ure 1 shows the memory cost of GSS_Chain increases linearly with

the volume of a graph stream. Figure 2 plots latency for different

queries. We can see GSS_Chain needs nearly ten seconds to process

a node-in flow query (obtaining the aggregated weight of a node’s

in-going edges). The results reveal that a chain-style extending

structure can raise prohibitively high memory and computation

costs in the presence of large-scale graph streams.

To solve the problem, we propose Auxo, a scalable and efficient

structure for graph stream summarization. Two factors contribute

to the efficiency of Auxo. First, Auxo proposes a novel prefix em-
bedded tree (PET) which extends new building blocks in a tree-style

to achieve logarithmic computation cost for insert/query process-

ing. Moreover, PET embeds the prefix information inside the tree.

Thus, in all the extended building blocks on the 𝑖th level of the

tree, Auxo can omit an 𝑖-bit prefix for every inserted fingerprint

without sacrificing query accuracy. Based on PET, Auxo achieves a

scalable structure and reduces the insert/query time from𝑂 (|𝐸 |) to
𝑂 (𝑙𝑜𝑔|𝐸 |) as well as saving the memory cost by

𝑙𝑜𝑔2𝑛−2
𝑏

, where 𝑛 is

the number of the storage block and 𝑏 is the size of a storage cell.

Second, to improve the memory utilization of PET, we propose a

proportionally incremental strategy to expand PET by exploiting

the principle of proportional sequence. Figure 3 shows that the

memory utilization of basic PET can fluctuate at every moment

when expanding a new level for the increasing graph stream. Our

proposed incremental expanding scheme decomposes the exponen-

tially expanding of a new level into a proportionally incremental

sequence, avoiding the under-utilization of memory.

We conduct comprehensive experiments on large-scale real-

world datasets to evaluate this design. The results show that Auxo

reduces the time of insert and query by one to two orders of mag-

nitude compared to state-of-the-art designs.

All in all, the contributions of this work are threefold:

• We propose a novel prefix embedded tree (PET), with which

we design a scalable graph stream summarization struc-

ture called Auxo. Auxo achieves logarithmic time for item

insert/query as well as saving
𝑙𝑜𝑔2𝑛−2

𝑏
of the storage space.

• We further propose a novel proportionally incremental

strategy for PET by exploiting the principle of proportional

sequence and the strategy greatly improves the memory

utilization of Auxo.

• Experimental results show that Auxo significantly reduces

insert/query time as well as improves memory utilization

compared to state-of-the-art designs.

The rest of this paper is organized as follows. Section 2 reviews

the related work. Section 3 presents the design of Auxo. Section 4

theoretically analyzes the structure. Section 5 evaluates the perfor-

mance. Section 6 concludes this work and discusses future work.

2 RELATEDWORK
Graph stream summarization [2, 7, 8, 12, 18, 22, 34] have attracted

many recent research efforts. According to the node merging strat-

egy, existing designs can be classified into two categories, hash-

based [7, 8, 12, 34] and MDL-based [18, 22].

Hash-based graph stream summarizations represent items of

a graph stream by their fingerprints and leverage a hash-based

compressed matrix for storage, achieving memory/computation

1387

efficient approximate graph stream management with slight accu-

racy loss. Tang et al. propose TCM [34], which sketches a graph

stream using an𝑚×𝑚 hash-based compressed matrix𝑀 to achieve

approximate graph stream management with sublinear memory

cost. Specifically, for an edge 𝑠𝑖 → 𝑑𝑖 , TCM maps 𝑠𝑖 and 𝑑𝑖 with

a hash function ℎ(·) into the range [0,𝑚) and adds the weight

value associated with 𝑒𝑖 (i. e.,𝑤𝑖) to the value stored in the bucket

𝑀 [ℎ(𝑠𝑖), ℎ(𝑑𝑖)]. TCM can support boolean queries as well as aggre-

gation queries. For example, one can obtain the accumulated weight

of edge 𝑠𝑖 → 𝑑𝑖 by returning the value stored in 𝑀 [ℎ(𝑠𝑖), ℎ(𝑑𝑖)].
The result can be over-estimated due to hash collision. Dmatrix [17]

integrates TCM with the representative key reservation and ma-

jority voting technology to improve accuracy. To manage graph

streams whose nodes and edges have labels, SBG [16] allocates dif-

ferent compressed matrices to store edges with different labels and

designs a priority rule and evicting strategy to reduce hash collision.

Song et al. propose LGS [32], which divides the compressed matrix

into multiple areas to indicate the node labels and utilizes prime

numbers to indicate the edge labels. However, such schemes are

variants of TCM and thus suffer from poor query accuracy.

To address the problem of accuracy in TCM, Gou et al. pro-
pose GSS [12], which stores an 𝑓 -bit fingerprint 𝜉𝑣 (i.e., a hash

value) for each node 𝑣 with the weight in the compressed ma-

trix. Formally, GSS consists of an 𝑚 × 𝑚 compressed matrix 𝑀

and an adjacency list as an extra buffer. When inserting an item

𝑒𝑖 = (< 𝑠𝑖 , 𝑑𝑖 >;𝑤𝑖 ; 𝑡𝑖), GSS respectively computes the fingerprints

for 𝑠𝑖 and𝑑𝑖 (i.e., < 𝜉𝑠𝑖 , 𝜉𝑑𝑖 >), and stores them together with𝑤𝑖 into

𝑀 [ℎ(𝑠𝑖), ℎ(𝑑𝑖)]. If two edges with different fingerprint pairs collide

in the same bucket, GSS stores the newcomer in the buffer. To avoid

a large scale buffer, GSS improves the utilization of𝑀 by generat-

ing a sequence of hash addresses {ℎ1 (𝑠𝑖/𝑑𝑖), ℎ2 (𝑠𝑖/𝑑𝑖), ..., ℎ𝑟 (𝑠𝑖/𝑑𝑖)}
from the original hash address ℎ(𝑠𝑖/𝑑𝑖) using linear congruence

method [20]. Then, a sample of buckets {𝑀 [ℎ𝑘 (𝑠𝑖), ℎ 𝑗 (𝑑𝑖)] |1 ≤
𝑘 ≤ 𝑟, 1 ≤ 𝑗 ≤ 𝑟 } is chosen as the candidate buckets for 𝑠𝑖 → 𝑑𝑖 .

GSS records < 𝜉𝑠𝑖 , 𝜉𝑑𝑖 ,𝑤𝑖 , 𝑖𝑑𝑥𝑝𝑎𝑖𝑟 > in an empty candidate bucket,

where 𝑖𝑑𝑥𝑝𝑎𝑖𝑟 represents the indexes of the candidate bucket (for

𝑀 [ℎ𝑘 (𝑠𝑖), ℎ 𝑗 (𝑑𝑖)], 𝑖𝑑𝑥𝑝𝑎𝑖𝑟 = (𝑘, 𝑗)). However, if all the candidate
buckets are occupied, GSS inserts the leftover edges into the buffer.

For a large-scale graph stream with edges arriving continuously

and volume unpredictably, linearly increasing large buffer causes a

prohibitively memory cost and insertion latency.

To support efficient temporal range queries for graph streams

(e.g., whether the edge 𝑥 → 𝑦 appeared between temporal range

[𝑡, 𝑡 + 𝐿)), Chen et al. propose Horae [8] which maintains 𝑙𝑜𝑔|𝑇 |
identical compressedmatrices with different time granularity where

|𝑇 | denotes the length of the temporal range. When inserting an

edge, Horae embeds the prefix information of the binary timestamp

into the fingerprint to indicate the time granularity (Horae’s way

of embedding is using the concatenation of the node label and the

prefix of the binary timestamp to generate the fingerprint). Thus, an

edge should be inserted into all the 𝑙𝑜𝑔 |𝑇 | compressed matrices, and

for a compressed matrix with coarser time granularity, a shorter

prefix is embedded. When evaluating a temporal range query with

length 𝐿, Horae decomposes the temporal range into at most 𝑙𝑜𝑔𝐿

subranges with different granularity and queries the result from

the compressed matrix with the corresponding time granularity. As

𝑇 increases, Horae builds compressed matrices with coarser time

Table 1: Comparison of existing work
Data

structure

Main

idea

Hash

based

Lossy Time, Space cost

Accuracy

guarantee

Scalable

TCM

Compressed

matrix

! ! 𝑂(1), 𝑂 (|𝐸 |) 𝑒
− |𝐸 |
𝑚2 #

GSS

Fingerprint

reducing error

! ! 𝑂(1), 𝑂 (|𝐸 |) 𝑒
− |𝐸 |

4
𝑓 𝑚2 #

Scube

Dynamiclly

space allocating

! ! 𝑂(1), 𝑂 (|𝐸 |) 𝑒
− |𝐸 |

4
𝑓 𝑚2 #

Horae

Range binary

decomposition

! ! 𝑂 (𝑙𝑜𝑔|𝑇 |), 𝑂 (|𝐸 |𝑙𝑜𝑔|𝑇 |) 𝑒
− |𝐸 |

4
𝑓 𝑚2

“!”

MoSSo

Moving nodes

reducing MDL

𝑂 (∑𝑑𝑒𝑔(𝑣)), 𝑂 (|𝐸 |) \ !

SGS

Constraining

affected nodes

𝑂 (∑𝑑𝑒𝑔(𝑣)), 𝑂 (|𝐸 |) \ !

GS4

Similarity based

node clustering

! 𝑂 (|𝑉 |3), 𝑂 (|𝐸 |) # !

Auxo

Prefix

embedded tree

! ! 𝑂 (𝑙𝑜𝑔|𝐸 |), 𝑂 (|𝐸 | (1 − 𝑙𝑜𝑔|𝐸 |)) 𝑒
− |𝐸 |

4
𝑓 𝑚2 !

granularity to maintain the efficiency of the temporal range queries

and copies the whole previously inserted graph stream into the

newly created matrix for data integrity. However, Horae is still an

unscalable structure from the perspective of graph stream volume

increasing, while the purpose of Horae’s scaling is to maintain the

efficiency of the time range queries. Horae maintains 𝑙𝑜𝑔|𝑇 | com-

pressedmatrices and inserts every single edge into each compressed

matrix. However, each compressed matrix is still unscalable with

edges inserted continuously. Therefore, the space cost of Horae is

|𝐸 |𝑙𝑜𝑔 |𝑇 | (the space cost of Auxo is |𝐸 | (1 − 𝑙𝑜𝑔|𝐸 |)). For insertion,
Horae has a time cost of 𝑙𝑜𝑔 |𝑇 | (the time cost of Auxo is 𝑙𝑜𝑔|𝐸 |). To
efficiently manage graph stream summarization with skewed node

degree, Chen et al. propose Scube [7] which designs an efficient

probabilistic counting scheme for identifying high-degree nodes

and allocates more buckets for them.

MDL-based graph stream summarization schemes utilize MDL

to measure the memory cost of the summarized graph and merge

nodes with heuristic strategies to reduce the space cost. Ko et al. pro-
pose MoSSo [18] for lossless graph stream summarization. MoSSo

summarizes the original graph into a graph of supernodes (𝐿(𝑀) in
MDL) and two edge correction sets for recovery (𝐿(𝐷 |𝑀) in MDL).

For each edge update, MoSSo moves the nodes between supernodes

to reduce MDL. To improve the summarization quality caused by

parameter selection of MoSSo, Ma et al. propose SGS [22], which
constrains the affected nodes within the 2-hop neighbors of the in-

serted nodes. Ashraf Payaman et al. propose GS4 [2] to summarize

a graph stream by node clustering based on both the structure and

semantics in a time window and update the summarization if the re-

sults are significantly different between two consecutive windows.

Compared with the hash-based strategy, MDL-based node merging

strategies still utilize traditional data structures like adjacency list

to store the summarized result which may bring prohibitively high

memory costs and take much more computing cost for updating an

edge when facing a large-scale graph stream. Table 1 summarizes

recent efforts of graph stream summarization from the perspectives

of the main idea, time/space costs, accuracy, scalability, etc. To

the best of our knowledge, Auxo is the first scalable graph stream

summarization structure with both time and space efficiency.

1388

Figure 4: Architecture of Auxo

Other related work focuses on dynamic graph summarization.

Shah et al. propose TimeCrunch [29] to find coherent, temporal

patterns in a dynamic graph and utilize MDL to minimize the mem-

ory cost. Tsalouchidou et al. [36] treat the adjacency matrix of

each timestamp as a tensor and summarize the tensors in the cur-

rent time window by clustering and update the summarized result

in an incremental way. Pensieve [37] proposes a skewness-aware

multi-version dynamic graph management system, which lever-

ages a differentiated storage scheme to cope with high degree

vertices and low degree vertices separately. Other efforts man-

age graph streams for specific applications such as event detec-

tion [1, 21, 25, 27] and monitoring the characteristic attributes of

graph streams [11, 30, 33].

3 AUXO DESIGN
Figure 4 shows the architecture of Auxo which contains a hash

address allocator, a summarization storage structure, a PET exten-

der, and the graph query interface. Whenever inserting an edge,

the hash address allocator generates the addresses of the candidate

buckets and the fingerprints of the edge. Then, Auxo queries the

Main tree (a PET) to find whether it has stored the edge before. If

not, it inserts the edge into the Deputy tree (an auxiliary structure

helps the Main tree to extend a new level in a proportional way).

Once the building block on the Deputy tree are full, the PET ex-

tender extends it to scale the storage structure. Furthermore, if the

Deputy tree has been generated to the next level of the Main tree,

it relinks its last level to the Main tree. The graph query interface

integrates graph-related queries for various applications.

3.1 Overview
In this section, we first introduce the overview of Auxo and then

present the detailed design. Table 2 lists the notations we use. To

avoid the linearly increasing space/time costs in a chain-style scal-

ing structure, Auxo explores a computation and memory efficient

scheme for scaling the graph stream summarization. Specifically,

we propose a novel prefix embedded tree (PET) which improves the

efficiency of Auxo in two aspects: 1) PET omits a common binary

prefix of fingerprints by embedding the prefix information inside a

tree structure, and thus saves a significant amount of space costs;

2) PET leverages a logarithmic binary searching algorithm to re-

duce the computation costs for item insert and query. Moreover, we

design a proportionally incremental strategy for PET to improve

Auxo’s memory utilization, avoiding exponentially expanding.

Figure 5 illustrates our basic idea of PET using an example with

the GSS compressed matrix [12] as a building block. In the example,

the fingerprint length is five and the structure has two layers. The

first layer consists of one compressed matrix𝑀0 which stores the

pair of original five-bit fingerprints for an inserted edge. When𝑀0

Figure 5: An example with insight about PET
is full, the structure extends to the second layer, which includes four

compressed metrics:𝑀
0,0
1

,𝑀
0,1
1

,𝑀
1,0
1

, and𝑀
1,1
1

. When inserting a

newly coming edge 𝑠𝑖 → 𝑑𝑖 into the second layer, we first examine

the one-bit prefixes of the fingerprints 𝜉𝑠𝑖 and 𝜉𝑑𝑖 . There are four

cases including (0,0), (0, 1), (1, 0), and (1, 1). Our insight here is that

if the first bit prefixes of 𝜉𝑠𝑖 and 𝜉𝑑𝑖 are 0 and 1 respectively, we can

insert the fingerprints into𝑀
0,1
1

with the first bit prefixes omitted.

Hence, the lengths of the fingerprints stored in the second layer are

reduced from five to four. Similarly, if 𝜉𝑠𝑖 and 𝜉𝑑𝑖 both start with the

prefix “1”, we can insert 𝜉𝑠𝑖 and 𝜉𝑑𝑖 into𝑀
1,1
1

with the first one-bit

prefix omitted. In the same way, we can save the two-bit prefixes of

the fingerprints of the edges inserted into the third layer. Generally,

on layer 𝑖 , we can omit the 𝑖-bit prefixes of the fingerprints of

the inserted edges. Therefore, we can save a significant amount

of storage costs by embedding the prefix information in the tree

structure of PET. When querying an edge, we need to check only

one matrix on each level of PET according to its pair of prefixes.

Thus, the time cost for a query is in the logarithmic scale.

3.2 Prefix Embedded Tree
Prefix embedded tree (PET) aims at providing a scalable summariza-

tion framework for dynamically increasing graph streams. Given

a graph stream consisting of continuously coming edge items {(<
𝑠𝑖 , 𝑑𝑖 >;𝑤𝑖 ; 𝑡𝑖)}, we define the prefix embedded tree as follows.

Definition 1 (Prefix Embedded Tree). For a graph stream sum-
marization structure which identifies an edge 𝑠𝑖 → 𝑑𝑖 using a pair
of fingerprints <𝜉𝑠𝑖 , 𝜉𝑑𝑖 >, the prefix embedded tree scales the storage
building blocks in a 4-ary tree which has the following features.

Feature A: On level 𝑙 , PET has a number of 4
𝑙
storage building

blocks {𝑏𝑙𝑜𝑐𝑘0
𝑙
, ..., 𝑏𝑙𝑜𝑐𝑘4

𝑙−1
𝑙
}. Each building block consists of a set

of buckets and each bucket records the fingerprints pair of an edge.

Feature B: On level 𝑙 , an edge with fingerprint pairs 𝜉𝑠𝑖 and

𝜉𝑑𝑖 is stored in 𝑏𝑙𝑜𝑐𝑘
(𝜉𝑙𝑠𝑖 |𝜉

𝑙
𝑑𝑖
)

𝑙
, where 𝜉𝑙𝑣 represents the 𝑙-bit prefixes

of 𝜉𝑣 while the notation
′ |′ denotes the concatenation operation.

For example, on level 2, an edge with a pair of fingerprints (01101,

10011) is stored in 𝑏𝑙𝑜𝑐𝑘
01 |10
2

(also denoted as 𝑏𝑙𝑜𝑐𝑘0110
2

or 𝑏𝑙𝑜𝑐𝑘6
2
).

Feature C: On level 𝑙 , PET stores an edge’s fingerprint pairs

with their 𝑙-bit prefixes omitted, denoted as < 𝜉−𝑙𝑠𝑖 , 𝜉
−𝑙
𝑑𝑖

>. In the

above example, PET stores the prefixes omitted fingerprint pair

(101, 011) of the inserted edge in 𝑏𝑙𝑜𝑐𝑘
01 |10
2

.

Figure 6 illustrates the PET structure. The level 𝑖 of the PET

structure consists of 4
𝑖
storage building blocks. On level 0, PET con-

tains only one storage building block. When PET extends to level

one, it expands four storage building blocks, i.e., 𝑏𝑙𝑜𝑐𝑘
0 |0
1

, 𝑏𝑙𝑜𝑐𝑘
0 |1
1

,

𝑏𝑙𝑜𝑐𝑘
1 |0
1

, 𝑏𝑙𝑜𝑐𝑘
1 |1
1

corresponding to the four cases of (𝜉1𝑠𝑖 |𝜉
1

𝑑𝑖
). On

level one, PET can omit the one-bit prefixes of the inserted fin-

gerprints. Similarly, when PET extends to level 𝑖 , it expands 4𝑖

1389

Figure 6: Structure of PET

storage building blocks and omits the 𝑖-bit prefixes of the inserted

fingerprints. Formally, we have the following theorems about PET.

Theorem 1. An 𝑙-level PET reduces the memory cost by the ratio
with a lower bound of 𝑙−4/3

𝑓
, where 𝑓 is the length of a fingerprint.

Proof. Supposing a storage building block has a number of 𝜎

buckets, without omitting the prefix, the total memory cost of the 𝑙

levels of homogeneous storage building blocks is:

𝑀𝑜 =

𝑙−1∑︁
𝑖=0

2𝑓 𝜎4𝑖 = 2

𝑙−1∑︁
𝑖=0

4
𝑖 𝑓 𝜎 (1)

With the proposed PET design, the total amount of saved mem-

ory cost is computed by:

𝑀𝑠 =

𝑙−1∑︁
𝑖=0

2𝑖𝜎4𝑖 = 2

𝑙−1∑︁
𝑖=0

4
𝑖𝑖𝜎 (2)

Therefore, PET saves the memory cost by a ratio of𝑀𝑠/𝑀𝑜 :

𝑀𝑠

𝑀𝑜
=

4
𝑙 (𝑙 − 4/3) + 4/3

𝑓 (4𝑙 − 1)
>

𝑙 − 4/3
𝑓

(3)

Theorem 1 is thus proved.

According to the 4-ary tree structure, an 𝑙−level PET has a total

number of 𝑛 = 4
𝑙−1
3

storage building blocks. In real applications,

the number of building blocks 𝑛 is proportional to the size of the

edge set |𝐸 |. By simply varying Formula (3), we can see that PET

can save the memory cost by a 𝑙𝑜𝑔4 |𝐸 | scale. (We will give a more

comprehensive analysis in Section 4.3)

Theorem 2. Querying an edge with PET needs 𝑂 (𝑙𝑜𝑔4 |𝐸 |) time,
where |𝐸 | is the size of the edge set.

Proof. When querying an edge 𝑥 → 𝑦, PET first computes the

fingerprints 𝜉𝑥 and 𝜉𝑦 . Then, PET checks the fingerprints against

the structure level by level from the root to the leaf to find the

matched result. On level 𝑖 , PET uses the 𝑖-bit prefixes of 𝜉𝑥 and

Table 2: Notations in Auxo
Notations Description

𝐺 (𝑉 , 𝐸) the graph stream to be represented with 𝑉 and 𝐸

indicating the vertices set and the edge set

|𝑉 | size of the vertices set

|𝐸 | size of the edge set

𝑒𝑖 = (< 𝑠𝑖 , 𝑑𝑖 >;𝑤𝑖 ; 𝑡𝑖) the item of edge 𝑠𝑖 → 𝑑𝑖
with weight𝑤𝑖 and timestamp 𝑡𝑖

𝑓 length of the fingerprint

𝑏 size of the bucket on level 0 in Auxo

ℎ(𝑣) the original hash address of node 𝑣

< 𝜉𝑠𝑖 , 𝜉𝑑𝑖 > fingerprint pair of edge 𝑠𝑖 → 𝑑𝑖
𝑚 side width of the compressed matrix

𝑟 length of the hash address sequence

{ℎ𝑘 (𝑣) |1 ≤ 𝑘 ≤ 𝑟 } hash address sequence of node 𝑣

𝑝 number of the candidate buckets

𝑙 number of levels in Auxo

𝑛 number of compressed matrices allocated

𝛼 the load factor of the compressed matrix

𝜉−𝑖𝑣 fingerprint 𝜉𝑣 without the 𝑖-bit prefix

𝑀
𝑥,𝑦

𝑙
the compressed matrix storing the edges with

fingerprint prefix 𝑥 , 𝑦 for 𝜉𝑠𝑖 and 𝜉𝑑𝑖 on level 𝑙

𝜉𝑦 to locate the storage building block possibly hosting the edge.

Specifically, on level 0, PET checks 𝑏𝑙𝑜𝑐𝑘0; on level 1, it checks

𝑏𝑙𝑜𝑐𝑘
(𝜉1𝑥 |𝜉1𝑦)
1

; and generally on level 𝑖 , it checks 𝑏𝑙𝑜𝑐𝑘
(𝜉𝑖𝑥 |𝜉𝑖𝑦)
𝑖

. For a

𝑙-level PET, it checks 𝑙 blocks in the worst case. As aforementioned,

the time cost for querying an edge in a single building block is

constant by using a compressed matrix as a building block. At the

same time, the total number of building blocks on PET increases

linearly with |𝐸 |. Therefore, the PET’s 4-ary tree needs 𝑂 (𝑙𝑜𝑔4 |𝐸 |)
time for edge query processing. Theorem 2 is thus proved.

PET can naturally support a graph stream to extend to a more

general definition with a number of 𝑘 (𝑘 > 2) identifying Boolean

labels. Accordingly, we define a 𝑘-way PET (i.e., PET-𝑘) which

scales in a 2
𝑘
-ary tree. Formally, a PET-𝑘 with 𝑙 levels of storage

building blocks saves the memory cost by a ratio of
𝑙−1−1/(2𝑘−1)

𝑓
,

while it needs𝑂 (𝑙𝑜𝑔
2
𝑘 |𝐸 |) time for querying an edge. Table 3 shows

the time and memory costs reduced by PET-𝑘 with an example of

parameter settings 𝑙 = 12 and 𝑓 = 16. We can see that PET achieves

significant computation and memory reductions.

Table 3: Time and memory costs reduced by PET-𝑘
Number of Boolean labels 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5

Time reduced ratio 1 − 10−6 1 − 10−9 1 − 10−12 1 − 10−16
Memory reduced ratio 66.7% 67.9% 68.3% 68.5%

3.3 Proportionally Incremental Strategy
Theorems 1 and 2 show PET’s memory/computation efficiency.

However, the exponentially scaling of the basic PET can have un-

satisfied memory utilization whenever initializing a new level due

to the large fraction of unused buckets on the new level. Today,

many real-world applications deploy services across the cloud. Ac-

cording to the report on Cloud Adoption [23] in 2020, more than

88% of enterprises use the cloud in one form or another. For cloud

services, service providers typically charge based on the amount

of resources allocated and the length of service time. Many recent

efforts [15, 24, 31] focus on overcoming the challenge of reducing

resource usage cost while guaranteeing service quality. To improve

the memory efficiency of PET, we design a lazy expanding strategy

for PET that supports proportionally incremental extending.

The idea of the lazy expanding strategy is to make a proper

trade-off between memory utilization and time cost. Specifically,

the lazy expanding strategy organizes the building blocks of PET

into a binary tree structure and alternately embeds the prefixes

of 𝜉𝑑𝑖 and 𝜉𝑠𝑖 . A binary tree based structure achieves at least 50%

memory utilization in the worst case while still constraining the

query time in a logarithmic scale. Moreover, PET’s lazy expanding

strategy further explores proportionally incremental expanding by

exploiting the feature of the proportional sequence. Specifically,

we elaborate an auxiliary structure called Deputy tree to convert

the exponentially expanding of a new level into a proportionally

incremental sequence. We call the binary tree structure of the lazy

expanding PET the Main tree. We find that for the Main tree, the

numbers of building blocks vary as the sequence {1, 2, 4, ...} from

the root to the leaf level, forming a proportion sequence. Hence, a

Deputy tree can gradually construct the level 𝑖 from level 1.

1390

Figure 7: How the deputy tree extends a new level

Figure 7 shows how the lazy expanding PET uses the Deputy

tree to expand to level two. We use the notation𝑀
𝑥,𝑦

𝑙
to indicate

the compressed matrix based building block which stores the edge

with fingerprint prefix < 𝑥,𝑦 > for < 𝜉𝑠𝑖 , 𝜉𝑑𝑖 > on level 𝑙 (for

simplicity, in the following, we use the term “matrix” to stand for

“compressed matrix based building block” for short). The procedure

includes four phases. In phase 1, PET generates only one matrix

𝑀0 on the Deputy tree and inserts the upcoming edges into 𝑀0.

Once 𝑀0 is full, PET generates two new matrices 𝑀
∅,0
1

, 𝑀
∅,1
1

on

level 1 for the Deputy tree (here, the notation ∅ indicates no prefix

is embedded). Then, PET moves the items stored in 𝑀0 to 𝑀
∅,0
1

and 𝑀
∅,1
1

according to our prefix embedding scheme. After that,

PET releases the memory of𝑀0 and keeps the pointers as phase 2

shows. When level 1 is full, PET performs the same edge moving

and memory release operations in phase 3. When level 2 is full, PET

cuts off the level 2 of the Deputy tree and relinks it to the Main tree

as shown in phase 4. After that, PET constructs a new Deputy tree

with only one matrix𝑀0 for extending the Main tree’s next level.

The edge-moving operation is efficient because it is performed

with contiguous memory space and without edge relocation. When

extending to a higher level, the proportionally incremental style

of the Deputy tree achieves much better memory efficiency than

exponentially extending and we have the following Theorem 3.

Theorem 3. The lowest bucket utilization of a lazy expanding PET
with the proportionally incremental strategy is 0.75.

Proof. Considering a lazy expanding PET with 𝑙 levels (totally

2
𝑙 − 1 matrices) on the Main tree, when extending to the (𝑙 + 1)𝑡ℎ
level, the number of matrices on the Deputy tree gradually increases

as a proportional sequence {20, 21, ..., 2𝑙 }. It is not difficult to see

that the lowest bucket utilization happens when the Deputy tree

extends to a higher level, which is

𝐿𝐵𝑈 = min{1 − 2
𝑖−1

2
𝑙 − 1 + 2𝑖

} 𝑖 = 1, 2, ..., 𝑙

≈ 0.75 (4)

Theorem 3 is thus proved.

Figure 8 shows that the lowest bucket utilization of a lazy ex-

panding PET with the proportionally incremental strategy is 0.75,

which happens when a Deputy tree extends its last level. Figures 9

Figure 8: Bucket
utilization

Figure 9: Memory
utilization CDF

Figure 10: Average
memory utilization

Figure 11: Basic Auxo structure

and 10 plot the cumulative distribution function and the average

memory utilization of PET, lazy expanding PET, and lazy expanding

PET with proportionally incremental strategy, respectively. We can

see that the lazy expanding strategy improves the average mem-

ory utilization by 52% to 74% while the proportionally incremental

strategy improves the average memory utilization by 74% to 93%.

3.4 Auxo Structure Based on PET
A basic Auxo takes the advantage of the lazy expanding strategy.

Figure 11 shows an example of a basic Auxo.(the shaded buckets in-

dicate occupied while they are randomly distributed in the matrices

). Initially, Auxo has only one matrix 𝑀0 on level 0. For inserting

an edge, Auxo searches for an available empty candidate bucket

in 𝑀0. If succeed, Auxo inserts < 𝜉𝑠𝑖 , 𝜉𝑑𝑖 ,𝑤𝑖 , 𝑖𝑑𝑥𝑝𝑎𝑖𝑟 > into 𝑀0.

Otherwise, Auxo extends to level 1, which contains two matrices

𝑀
∅,0
1

and𝑀
∅,1
1

. Then, it checks the first bit of fingerprint 𝜉𝑑𝑖 . If 𝜉𝑑𝑖

starts with “0”, Auxo inserts < 𝜉𝑠𝑖 , 𝜉
−1
𝑑𝑖
,𝑤𝑖 , 𝑖𝑑𝑥𝑝𝑎𝑖𝑟 > into𝑀

∅,0
1

(𝜉−𝑖𝑣
denotes the fingerprint 𝜉𝑣 with the 𝑖-bit prefix omitted); otherwise,

it inserts the same record into𝑀
∅,1
1

. When all the matrices on level

1 are full, Auxo extends to level 2 with matrices 𝑀
0,0
2

, 𝑀
1,0
2

, 𝑀
0,1
2

,

and𝑀
1,1
2

. Then, it checks the first bits of 𝜉𝑑𝑖 and 𝜉𝑠𝑖 to determine

the matrix for inserting. Generally, whenever Auxo scales, it gener-

ates two children matrices on a higher level for each matrix on the

current level and embeds the next bit of the prefixes of fingerprints

𝜉𝑠𝑖 and 𝜉𝑑𝑖 alternately on the new level.

In Figure 11, we show an example of item insertion in Auxo.

Assume the edge has a fingerprint pair < 𝜉𝑠𝑖 , 𝜉𝑑𝑖 >=< 010, 011 >.

First, Auxo traverses the candidate buckets in𝑀0 with fingerprint

pair < 010, 011 >. If the insertion fails, as the fingerprint “011” starts

with “0”, Auxo checks𝑀
∅,0
1

with the fingerprint pair < 010, 11 >,

and then checks 𝑀
0,0
2

with fingerprint pair < 10, 11 >. If the in-

sertion in 𝑀
0,0
2

fails, Auxo extends to a higher level and inserts

the edge into𝑀
0,01
3

with fingerprint pair < 10, 1 >. Naturally, the

proportionally incremental strategy stated in Section 3.3 can be

applied to our basic Auxo design to improve memory utilization.

Thus, we achieve a design of the proportional Auxo. The extending

scheme of proportional Auxo is the same as Figure 7 shows.

3.5 Operations of Auxo
In this section, we present the operations of Auxo, including insert,

extend, edge query, and node query.

Insert. Algorithm 1 presents the operations of the insert. First,

Auxo checks the matrices on the Main tree from the root to a leaf

level by level according to the fingerprint prefix (lines 4-10). If the

Main tree has no matched item, Auxo further traverses the Deputy

tree (lines 11-28) from the root to the leaf until we reach𝐶𝑢𝑟𝑀 , the

1391

associated matrix on the leaf level. Then we check whether any item

matches in𝐶𝑢𝑟𝑀 . If Auxo finds a matched item, it accumulates the

weight value of the edge. Otherwise, it looks for an empty bucket for

inserting. Once the insertion in 𝐶𝑢𝑟𝑀 fails, if the Deputy tree has

expanded to the next level of the Main tree, Auxo cuts off the leaf

level of the Deputy tree and relinks it to the Main tree. Then, Auxo

constructs a new Deputy tree for insertion (lines 21-25). Otherwise,

it extends to the Deputy tree’s next level (line 27).

Figure 12 illustrates a running example for inserting an edge

𝑠𝑖 → 𝑑𝑖 with the weight value 𝑤𝑖 on the Main tree. Auxo first

computes fingerprint pair 𝐹 = < 𝜉𝑠𝑖 , 𝜉𝑑𝑖 > = < 101, 110 > and

the hash address sequence (ℎ𝑞(𝑠𝑖) = {0, 2}, ℎ𝑞(𝑑𝑖) = {0, 3}). Then,
Auxo checks 𝑀0 first. If no items in 𝑀0 match, Auxo continues

to check 𝑀
∅,1
1

as 𝜉𝑑𝑖 = 110 starts with “1” and then checks 𝑀
1,1
2

as 𝜉𝑠𝑖 = 101 starts with “1”. Figure 12 also shows the detailed

operations of Auxo on𝑀
∅,1
1

. Auxo cuts off the first bit of the 𝜉𝑑𝑖 as

Auxo embeds it on level one. Then, Auxo checks the two candidate

buckets 𝑀 [0, 0] and 𝑀 [2, 3]. Auxo checks 𝑀 [0, 0] and finds that

the index pair 𝐼 =< 1, 1 > matches while the cut fingerprint pair

𝐹 =< 101, 00 > does not match. Next, Auxo checks 𝑀 [2, 3] and
finds the fingerprint pair and the index pair both match those stored

in the bucket. This means Auxo has inserted this edge before and

therefore it accumulates the weight𝑤𝑖 .

Algorithm 1: Insert((< 𝑠𝑖 , 𝑑𝑖 >;𝑤𝑖 ; 𝑡𝑖))
Data: Edge 𝑠𝑖 → 𝑑𝑖 , with weight 𝑤𝑖 , timestamp 𝑡𝑖

1 𝐶𝑎𝑛𝑑𝑖𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠, 𝐼𝑛𝑑𝑒𝑥𝑃𝑎𝑖𝑟𝑠, 𝜉𝑠𝑖 , 𝜉𝑑𝑖 ←
𝑔𝑒𝑡𝐼𝑛𝑠𝑒𝑟𝑡𝐼𝑛𝑓 𝑜 (𝑠𝑖 , 𝑑𝑖) ;

2 𝑀𝑎𝑖𝑛𝐿𝑒𝑣𝑒𝑙, 𝐷𝑒𝑝𝑢𝑡𝑦𝐿𝑒𝑣𝑒𝑙 ← 0, 0;

3 𝑀𝑎𝑖𝑛𝑀𝑎𝑡𝑟𝑖𝑥, 𝐷𝑒𝑝𝑢𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 ← 𝑀𝑎𝑖𝑛𝑡𝑟𝑒𝑒, 𝐷𝑒𝑝𝑢𝑡𝑦𝑡𝑟𝑒𝑒 ;

4 while𝑀𝑎𝑖𝑛𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙 do
5 𝜉𝑐𝑢𝑟𝑠𝑖

, 𝜉𝑐𝑢𝑟
𝑑𝑖

= 𝑔𝑒𝑡𝑃𝑟𝑒 𝑓 𝑖𝑥𝐶𝑢𝑡 (𝜉𝑠𝑖 , 𝜉𝑑𝑖 , 𝑀𝑎𝑖𝑛𝐿𝑒𝑣𝑒𝑙) ;
6 for 𝑘 ← 0 𝑡𝑜 𝑝 do
7 𝑏𝑢𝑐𝑘𝑒𝑡𝐶𝑢𝑟 = 𝑀𝑎𝑖𝑛𝑀𝑎𝑡𝑟𝑖𝑥 .𝐵 (𝐶𝑎𝑛𝑑𝑖𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 (𝑘)) ;
8 if 𝜉𝑐𝑢𝑟𝑠𝑖

, 𝜉𝑐𝑢𝑟
𝑑𝑖

, 𝐼𝑛𝑑𝑒𝑥𝑝𝑎𝑖𝑟𝑠 (𝑘) 𝑚𝑎𝑡𝑐ℎ 𝑖𝑛 𝑏𝑢𝑐𝑘𝑒𝑡𝐶𝑢𝑟 then
9 accumulate the weight and return true;

10 𝑛𝑒𝑥𝑡𝐿𝑒𝑣𝑒𝑙 (𝜉𝑠𝑖 , 𝜉𝑑𝑖 , 𝑀𝑎𝑖𝑛𝑀𝑎𝑡𝑟𝑖𝑥,𝑀𝑎𝑖𝑛𝐿𝑒𝑣𝑒𝑙) ;
11 while 𝐷𝑒𝑝𝑢𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙 do
12 while 𝐷𝑒𝑝𝑢𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 𝑖𝑠 𝑣𝑖𝑟𝑡𝑢𝑎𝑙 do
13 𝑛𝑒𝑥𝑡𝐿𝑒𝑣𝑒𝑙 (𝜉𝑠𝑖 , 𝜉𝑑𝑖 , 𝐷𝑒𝑝𝑢𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥, 𝐷𝑒𝑝𝑢𝑡𝑦𝐿𝑒𝑣𝑒𝑙) ;
14 𝜉𝑐𝑢𝑟𝑠𝑖

, 𝜉𝑐𝑢𝑟
𝑑𝑖

= 𝑔𝑒𝑡𝑃𝑟𝑒 𝑓 𝑖𝑥𝐶𝑢𝑡 (𝜉𝑠𝑖 , 𝜉𝑑𝑖 , 𝐷𝑒𝑝𝑢𝑡𝑦𝐿𝑒𝑣𝑒𝑙) ;
15 for 𝑘 ← 0 𝑡𝑜 𝑝 do
16 𝑏𝑢𝑐𝑘𝑒𝑡𝐶𝑢𝑟 = 𝑀𝑎𝑖𝑛𝑀𝑎𝑡𝑟𝑖𝑥 .𝐵 (𝐶𝑎𝑛𝑑𝑖𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 (𝑘)) ;
17 if 𝜉𝑐𝑢𝑟𝑠𝑖

, 𝜉𝑐𝑢𝑟
𝑑𝑖

, 𝐼𝑛𝑑𝑒𝑥𝑝𝑎𝑖𝑟𝑠 (𝑘) 𝑚𝑎𝑡𝑐ℎ 𝑖𝑛 𝑏𝑢𝑐𝑘𝑒𝑡𝐶𝑢𝑟 then
18 accumulate the weight and return true;
19 if 𝑏𝑢𝑐𝑘𝑒𝑡𝐶𝑢𝑟 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 then
20 record 𝜉 , index, w and return true;
21 if 𝐷𝑒𝑝𝑢𝑡𝑦𝐿𝑒𝑣𝑒𝑙 𝑒𝑞𝑢𝑎𝑙𝑠 𝑀𝑎𝑖𝑛𝐿𝑒𝑣𝑒𝑙 + 1 then
22 𝑐𝑢𝑡𝐴𝑛𝑑𝑅𝑒𝑙𝑖𝑛𝑘 (𝑀𝑎𝑖𝑛𝐿𝑒𝑣𝑒𝑙, 𝐷𝑒𝑝𝑢𝑡𝑦𝐿𝑒𝑣𝑒𝑙) ;
23 𝐷𝑒𝑝𝑢𝑡𝑦𝑡𝑟𝑒𝑒 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑀𝑎𝑡𝑟𝑖𝑥 (𝑚, 0) ;
24 𝐷𝑒𝑝𝑢𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥 ← 𝐷𝑒𝑝𝑢𝑡𝑦𝑡𝑟𝑒𝑒 ;

25 𝐶𝑢𝑟𝐷𝑒𝑝𝑢𝑡𝑦𝐿𝑒𝑣𝑒𝑙 ← 0;

26 else
27 𝐸𝑥𝑡𝑒𝑛𝑑 (𝐷𝑒𝑝𝑢𝑡𝑦𝐿𝑒𝑣𝑒𝑙) ;
28 𝑛𝑒𝑥𝑡𝐿𝑒𝑣𝑒𝑙 (𝜉𝑠𝑖 , 𝜉𝑑𝑖 , 𝐷𝑒𝑝𝑢𝑡𝑦𝑀𝑎𝑡𝑟𝑖𝑥, 𝐷𝑒𝑝𝑢𝑡𝑦𝐿𝑒𝑣𝑒𝑙) ;

Figure 12: A running example of operations on the main tree

Extend. Algorithm 2 shows the operations of extend. When the

matrix block𝐶𝑢𝑟𝑀 expands, Auxo first generates two new children

matrix blocks, 𝑀0 and 𝑀1, with their children pointers initially

set to null and the fingerprint length is one bit shortened. Then,

Auxo sets the 𝑐ℎ𝑖𝑙𝑑0 and 𝑐ℎ𝑖𝑙𝑑1 pointers of 𝐶𝑢𝑟𝑀 to the addresses

of𝑀0 and𝑀1, respectively. Finally, Auxo moves the edges stored

in matrix 𝐶𝑢𝑟𝑀.𝐵 to matrices 𝑀0 .𝐵 and 𝑀1 .𝐵 according to their

fingerprint prefixes, and releases the memory of 𝐶𝑢𝑟𝑀.𝐵.

Edge Query. With a user-specified edge 𝑥 → 𝑦, the edge query

returns its accumulated weight. On the Main tree, Auxo checks only

one associated matrix on each level from the root to the leaf level

by level according to the fingerprint pair of 𝑥 → 𝑦. Auxo checks all

the candidate buckets in an associated matrix to match the index

pair and the fingerprint pair with the prefix omitted. If Auxo finds

a match item, it returns the stored weight value. If Auxo finds no

match in the Main tree, it searches the edge in the Deputy tree. As

the Deputy tree only has the leaf level of matrices, it only checks

one associated matrix. If it still fails, Auxo returns a negative result.

NodeQuery. Given a user-specified node 𝑥 , the node in(out)-flow
query obtains the aggregated weight of all the in(out)-going edges

of 𝑥 . We only describe the operation of the node out-flow query as

the node in-flow query involves similar operations. Algorithms 3

describe the detailed operation on the Main tree beginning at the

root matrix (the same for the Deputy tree). In the following, we

first present the operations of traversing all the matrices Auxo must

check. Then, we focus on the operations in a single matrix. First, we

take a closer look at each level of the Main tree to find the matrices

which Auxo needs to check, while the operations on the Deputy tree

are similar. Auxo starts with the root matrix𝑀0 on level 0. It is clear

that𝑀0 should be checked. As the level 1 embeds the first bit of the

destination node’s fingerprint. This means an edge having source

node 𝑥 can be stored in𝑀
∅,0
1

or𝑀
∅,1
1

. Therefore, the two matrices

on level 1 should be checked (like line 17 in Algorithm 3). For level

2, Auxo embeds the first bit of the source node’s fingerprint and it

only needs to check𝑀
0,0
2

and𝑀
0,1
2

, or𝑀
1,0
2

and𝑀
1,1
2

according to

the first bit of 𝜉𝑥 (like line 12−15 in Algorithm 3). Such a procedure

continues until Auxo finishes searching the last level of the Main

tree. According to the analysis of node query in Section 4.2, the

number of matrices we have to check for node query is 𝑂 (
√
𝑛)

where 𝑛 indicates the total number of matrix blocks.

Algorithm 2: Extend(𝐶𝑢𝑟𝐿𝑒𝑣𝑒𝑙)
1 for 𝑒𝑎𝑐ℎ 𝐶𝑢𝑟𝑀 𝑜𝑛 𝐶𝑢𝑟𝐿𝑒𝑣𝑒𝑙 do
2 𝑀0 𝑀1 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑀𝑎𝑡𝑟𝑖𝑥 (𝑚,𝐶𝑢𝑟𝐿𝑒𝑣𝑒𝑙) ;
3 𝑠𝑒𝑡 𝑀0 .𝑐ℎ𝑖𝑙𝑑0, 𝑀0 .𝑐ℎ𝑖𝑙𝑑1, 𝑀1 .𝑐ℎ𝑖𝑙𝑑0, 𝑀1 .𝑐ℎ𝑖𝑙𝑑1 𝑒𝑞𝑢𝑎𝑙 𝑛𝑢𝑙𝑙 ;

4 𝐶𝑢𝑟𝑀.𝑐ℎ𝑖𝑙𝑑0,𝐶𝑢𝑟𝑀.𝑐ℎ𝑖𝑙𝑑1 ← 𝑀0, 𝑀1;

5 𝑚𝑜𝑣𝑒𝐸𝑑𝑔𝑒𝑠 (𝐶𝑢𝑟𝑀,𝑀0, 𝑀1,𝐶𝑢𝑟𝐿𝑒𝑣𝑒𝑙) ;
6 𝑑𝑒𝑙𝑒𝑡𝑒 𝐶𝑢𝑟𝑀.𝐵;

1392

Algorithm 3: NORecurs(𝐶𝑢𝑟𝑀, 𝜉𝑣, 𝑅𝑜𝑤𝐴𝑑𝑑𝑟𝑠, 𝐶𝑢𝑟𝑙𝑒𝑣𝑒𝑙)
1 𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 ← 0;

2 if 𝐶𝑢𝑟𝑀 𝑖𝑠 𝑛𝑢𝑙𝑙 then
3 𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 ;

4 if 𝐶𝑢𝑟𝑀 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 then
5 for 𝑖 ← 0 𝑡𝑜 𝑟 do
6 for 𝑗 ← 0 𝑡𝑜 𝑚 do
7 𝐶𝑢𝑟𝑏𝑢𝑐𝑘𝑒𝑡 = 𝐶𝑢𝑟𝑀.𝐵 (𝑅𝑜𝑤𝐴𝑑𝑑𝑟𝑠 [𝑖] ·𝑚 + 𝑗) ;
8 if 𝜉𝑣, 𝑖 𝑚𝑎𝑡𝑐ℎ 𝑖𝑛 𝐶𝑢𝑟𝑏𝑢𝑐𝑘𝑒𝑡 then
9 𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 ← 𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 +𝐶𝑢𝑟𝑏𝑢𝑐𝑘𝑒𝑡 .𝑤;

10 𝐶𝑢𝑟𝑙𝑒𝑣𝑒𝑙 ← 𝐶𝑢𝑟𝑙𝑒𝑣𝑒𝑙 + 1;
11 if 𝐶𝑢𝑟𝑙𝑒𝑣𝑒𝑙 − 1 𝑖𝑠 𝑜𝑑𝑑 then
12 if 𝜉𝑣 𝑠𝑡𝑎𝑟𝑡𝑠 𝑤𝑖𝑡ℎ ′0′ then
13 𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 +

𝑁𝑂𝑅𝑒𝑐𝑢𝑟𝑠 (𝐶𝑢𝑟𝑀.𝑐ℎ𝑖𝑙𝑑0, 𝜉𝑣, 𝑅𝑜𝑤𝐴𝑑𝑑𝑟𝑠, 𝐶𝑢𝑟𝑙𝑒𝑣𝑒𝑙) ;
14 else
15 𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 +

𝑁𝑂𝑅𝑒𝑐𝑢𝑟𝑠 (𝐶𝑢𝑟𝑀.𝑐ℎ𝑖𝑙𝑑1, 𝜉𝑣, 𝑅𝑜𝑤𝐴𝑑𝑑𝑟𝑠, 𝐶𝑢𝑟𝑙𝑒𝑣𝑒𝑙) ;
16 else
17 𝑟𝑒𝑡𝑢𝑟𝑛 𝑅𝑒𝑠𝑊𝑒𝑖𝑔ℎ𝑡 +

𝑁𝑂𝑅𝑒𝑐𝑢𝑟𝑠 (𝐶𝑢𝑟𝑀.𝑐ℎ𝑖𝑙𝑑0, 𝜉𝑣, 𝑅𝑜𝑤𝐴𝑑𝑑𝑟𝑠, 𝐶𝑢𝑟𝑙𝑒𝑣𝑒𝑙) +
𝑁𝑂𝑅𝑒𝑐𝑢𝑟𝑠 (𝐶𝑢𝑟𝑀.𝑐ℎ𝑖𝑙𝑑1, 𝜉𝑣, 𝑅𝑜𝑤𝐴𝑑𝑑𝑟𝑠, 𝐶𝑢𝑟𝑙𝑒𝑣𝑒𝑙) ;

Based on Figure 12, we give a simple example for node out-flow

query. First, Auxo calculates the fingerprint 𝜉𝑥 = 101 and the hash

address sequence ℎ𝑞(𝑥) = {0, 2}. Auxo first checks 𝑀0. As level

1 embeds the first bit of the destination node’s fingerprint, Auxo

needs to check 𝑀
∅,0
1

and 𝑀
∅,1
1

on level 1. For level 2, since Auxo

embeds the first bit of the source node’s fingerprint, it only has

to check 𝑀
1,0
2

and 𝑀
1,1
2

as 𝜉𝑥 = 110 starts with “1”, and so forth

to the leaf level. In a single matrix, Auxo needs to check all the

lines or columns of buckets corresponding to the hash address

sequence (lines 6-13 in Algorithm 3). Consider the matrix𝑀
∅,1
1

on

level one for example in Figure 12. As level one embeds the first bit

of the fingerprint of the destination node, for a node out-flow query,

no prefix should be omitted. Then, according to the hash address

sequence ℎ𝑞(𝑥) = {0, 2}, we check the line 0 and 2 of the matrix

𝑀
∅,1
1

with index “1” and “2”, respectively. In bucket𝑀 [0, 0], we find
the fingerprint “101” and the index “1” both match those stored in

the bucket. Thus, we should accumulate the weight value of two

stored in the bucket. The same situation happens in bucket𝑀 [2, 3].
As the other buckets do not match the index and the fingerprint,

we return six as the accumulated weight in𝑀
∅,1
1

.

4 ANALYSIS
4.1 Accuracy Analysis
According to GSS [12], the weights of any two edges 𝑠1 → 𝑑1 and

𝑠2 → 𝑑2 are summarized if and only if 𝐻 (𝑠1) = 𝐻 (𝑠2)
∧
𝐻 (𝑑1) =

𝐻 (𝑑2), where 𝐻 (𝑣) = (ℎ(𝑣) ∗ 2𝑓) + 𝜉𝑣 . We can see that 𝐻 (𝑣) has a
range value of 𝑟𝑎𝑛𝑔𝑒 (𝐻) =𝑚 · 2𝑓 .

Theorem 4. Auxo guarantees the relative error of the edge query
as 𝑃{[˜𝑓 (𝑠, 𝑑) − 𝑓 (𝑠, 𝑑)]/𝑤 > 𝜁 } ≤ |𝐸 |

𝜁 ·𝑟𝑎𝑛𝑔𝑒2 (𝐻) , where
˜𝑓 (𝑠, 𝑑) is the

queried result; 𝑓 (𝑠, 𝑑) is the ground truth;𝑤 is the average weight of
edges, and |𝐸 | is the size of the edge set in the graph stream.

Proof. Considering a graph stream with |𝐸 | distinct edges and
accumulated weight 𝑤 (𝑠,𝑑) for each edge 𝑠 → 𝑑 . We use the vari-

able 𝑋𝑠1,𝑑1 to denote the summarized weight stored in the bucket

which records edge 𝑠1 → 𝑑1. According to GSS [12], we obtain the

expectation of 𝑋𝑠1,𝑑1 as below

𝐸 (𝑋𝑠1,𝑑1) ≤ 1/𝑟𝑎𝑛𝑔𝑒2 (𝐻) ·
∑︁

(𝑠2,𝑑2) ∈𝐸
𝑤 (𝑠2,𝑑2) (5)

Let 𝛽 =
∑
𝑤 (𝑠2,𝑑2) , (𝑠2, 𝑑2) ∈ 𝐸, according to the Markov inequal-

ity and Eq. (5), we obtain

𝑃{ ˜𝑓 (𝑠, 𝑑) > 𝑓 (𝑠, 𝑑) + 𝜂} = 𝑃{𝑓 (𝑠, 𝑑) + 𝑋𝑠,𝑑 > 𝑓 (𝑠, 𝑑) + 𝜂}

≤ 𝛽

𝜂 · 𝑟𝑎𝑛𝑔𝑒2 (𝐻)
(6)

We assume that the edges in the graph stream have an average

weight of𝑤 . Let 𝜁 = 𝜂/𝑤 , we obtain 𝑃{[˜𝑓 (𝑠, 𝑑) − 𝑓 (𝑠, 𝑑)]/𝑤 > 𝜁 } ≤
|𝐸 |

𝜁 ·𝑟𝑎𝑛𝑔𝑒2 (𝐻) . Thus proved. The accuracy analysis of the node query

is similar to that of the edge query accuracy. It is clear Auxo and

GSS_Chain have the same accuracy if they have the same matrix

width and fingerprint length (i.e., the same 𝑟𝑎𝑛𝑔𝑒 (𝐻)).

4.2 Time Cost Analysis
Insert and Edge Query. Theorem 2 shows the time cost for an

Auxo to insert/query an edge is𝑂 (𝑙𝑜𝑔 |𝐸 |). For a proportional Auxo,
when inserting an edge, we may have to extend a full block. We

show that this will not block the query operation and the amortized

time complexity of insertion is still 𝑂 (𝑙𝑜𝑔 |𝐸 |).
Whenever extending a full block𝑀 , we generate two children

blocks, i.e.,𝑀0 and𝑀1, and free𝑀 after the edge moving operation

finish. Thus, we can still query the result from𝑀 . For edge inser-

tion, we assume that when inserting an edge, the average time of

traversing a matrix is 𝜏 ; when extending a block, the average time

of moving an edge is 𝜄 (𝜄 << 𝜏), while a matrix contains an average

number of 𝑛𝑎 distinct edges. Considering an 𝑙−level proportional
Auxo with 𝑛 = 2

𝑙 − 1 blocks and a graph stream with no duplicated

edges, we can decompose the time of constructing the 𝑙𝑡ℎ level into

the time of the inserting edges 𝐼𝑇𝑙 and the time of moving edges

𝑀𝑇𝑙 . We have 𝐼𝑇𝑙 ≤ (𝑛𝑎𝑙𝜏 +𝑛𝑎𝑙𝜏 +2𝑛𝑎𝑙𝜏 + ...+2𝑙−2𝑙𝑛𝑎𝜏) = 2
𝑙−1𝑙𝑛𝑎𝜏 ,

and𝑀𝑇𝑙 = (𝑛𝑎𝜄 + 2𝑛𝑎𝜄 + ... + 2𝑙−2𝑛𝑎𝜄) = (2𝑙−1 − 1)𝑛𝑎𝜄.
Thus, the amortized time of constructing the 𝑙𝑡ℎ level of a pro-

portional Auxo is computed by Eq.(7),

𝐴𝑇𝑙 = (𝐼𝑇𝑙 +𝑀𝑇𝑙)/2𝑙−1𝑛𝑎
≤ 𝑙𝜏 + (2𝑙−1 − 1)𝜄/2𝑙−1 (7)

Therefore, the amortized time complexity of constructing the 𝑙𝑡ℎ
level of a proportional Auxo is 𝑂 (𝑙𝜏) = 𝑂 (𝑙𝑜𝑔𝑛) = 𝑂 (𝑙𝑜𝑔|𝐸 |).

Node Query. According to GSS [12], the time cost of the node

query is 𝑂 (𝑟𝑚) in a single matrix, where 𝑟 is the length of the

hash address sequence, and𝑚 is the side width of the matrix. For

GSS_Chain with 𝑛 matrics, the time cost is 𝑂 (𝑛𝑟𝑚) for the node
query.We use the notations𝑁𝑂𝑖 to quantify the number of matrices

Auxo checks on level 𝑖 for node out-flow query. On level 0, Auxo

has only one matrix and 𝑁𝑂0 = 1. Considering the matrices at

level 𝑖 (𝑖 > 0), if Auxo embeds the next bit of the source node’s

fingerprint, we have 𝑁𝑂𝑖 = 𝑁𝑂𝑖−1. Conversely, we have 𝑁𝑂𝑖 =

1393

Table 4: Time consumption reduced by Auxo
levels 𝑙 = 4 𝑙 = 5 𝑙 = 6 𝑙 = 7 𝑙 = 8 𝑙 = 9

Insert/edge query 0.73 0.84 0.90 0.94 0.97 0.98

Node out-flow query 0.40 0.58 0.67 0.77 0.82 0.91

Node in-flow query 0.60 0.68 0.78 0.83 0.88 0.94

2𝑁𝑂𝑖−1. Therefore, 𝑁𝑂𝑖 can be computed by Eq. (8).

𝑁𝑂𝑖 = 2
⌈𝑖/2⌉

(8)

We use 𝑁𝑂 to denote the total number of matrices that should

be checked for the node out-flow query. Thus, we have

𝑁𝑂 =

𝑙−1∑︁
𝑖=0

𝑁𝑂𝑖 =

{
4 · 2𝑘 − 3, 𝑙 = 2𝑘,

6 · 2𝑘 − 3, 𝑙 = 2𝑘 + 1.
𝑘 = 0, 1, 2, ... (9)

Since an Auxo with 2𝑘 levels has 𝑛 = 2
2𝑘 − 1 matrices, the

time cost for node out-flow query is 𝑂 (𝑟𝑚
√
𝑛), which can also be

computed by𝑂 (𝑟𝑚
√︃
|𝐸 |
𝛼𝑚2
) = 𝑂 (𝑟

√︁
|𝐸 |). Due to symmetry, the node

in-flow query has the same time cost of 𝑂 (𝑟
√︁
|𝐸 |). Eq. (8) shows

the number of matrices Auxo needs to check on level 𝑙 for the

node query. When extending level 𝑙 , Auxo extends level 𝑙 at once,

while proportional Auxo extends from level 0 to level 𝑙 utilizing

the Deputy tree. Therefore, the proportional Auxo always has less

number of matrices to check on the last level of the Deputy tree

and achieves better performance for node query.

Table 4 shows the time cost reduced by Auxo compared to

GSS_Chain for different queries. Auxo reduces a large ratio of

computation cost, especially for large-scale graph streams.

4.3 Memory Cost Analysis
It is clear that for an Auxo with 𝑙 levels, the total memory cost is

computed by Eq.(10),

𝑀𝐴 = 𝑚2𝑏 (2𝑙 − 1) −
𝑙−1∑︁
𝑖=0

𝑚2𝑖2𝑖

= 𝑚2 [𝑏 (2𝑙 − 1) − 2𝑙 (𝑙 − 2) − 2] (10)

In Eq. (10), the variable 𝑏 denotes the size of a bucket on level 0.

Assuming the matrices have an average load factor of 𝛼 , we obtain

𝑙 = 𝑙𝑜𝑔2
|𝐸 |
𝑚2𝛼

and we can get the space complexity𝑂 (|𝐸 | (1−𝑙𝑜𝑔 |𝐸 |)).
In contrast, a GSS_Chain with 2

𝑙 −1 matrices consumes𝑚2𝑏 (2𝑙 −1)
bits of memory. We can see that a full Auxo with 𝑙 levels saves the

memory cost by a ratio of
2
𝑙 (𝑙−2)−2
𝑏 (2𝑙−1) ≈

𝑙−2
𝑏

=
𝑙𝑜𝑔2𝑛−2

𝑏
= [𝑙𝑜𝑔2 |𝐸 | −

𝑙𝑜𝑔2 (4𝑚2𝛼)]/𝑏 of the space cost.

According to Eq. (4), a proportional Auxo with 𝑙 levels on the

Main tree has the worst bucket utilization of 0.75 when extend-

ing the (𝑙 + 1)𝑡ℎ level on the Deputy tree. The memory cost of

the proportional Auxo is shown in Eq. (10), while the memory

cost for GSS_Chain is at least 𝑀𝐺 = 0.75𝑚2𝑏 (2𝑙 − 1). Thus, we
have 𝑀𝐺 − 𝑀𝐴 ≈ 𝑚2

2
𝑙 (𝑙 − 2 − 0.25𝑏). When 𝑙 > 0.25𝑏 + 2 (

|𝐸 | > 𝑚2𝛼2(0.25𝑏+2) , equally), the proportional Auxo consumes

less memory than GSS_Chain, even in the worst case.

4.4 Load Factor Analysis
As we have aforementioned, in each matrix, Auxo allocates 𝑝 can-

didate buckets for an edge to improve the bucket utilization of

the matrix. A high load factor is important before we scale Auxo.

Considering a single matrix, we use 𝑞𝑖 to denote the probability

Figure 13: The expectation of load factor

that the 𝑖𝑡ℎ edge can be inserted successfully. We can obtain 𝑞𝑖 as

𝑞𝑖 = 𝑞𝑖−1 [1 − (
𝑖 − 1
𝑚2
)𝑝], 𝑖 = 1, 2, ...,𝑚2 + 1; 𝑞0 = 1 (11)

The matrix has a load factor of (𝑖 − 1)/𝑚2
if and only if the

(𝑖 − 1)𝑡ℎ edge is inserted successfully, while the insertion of the

𝑖𝑡ℎ edges can fail with the probability of 𝑞𝑖−1 − 𝑞𝑖 . Therefore, the
expectation of load factor 𝐸 (𝛼) is computed by Eq.(12),

𝐸 (𝛼) =

𝑚2∑︁
𝑖=1

𝑖

𝑚2
[𝑞𝑖 − 𝑞𝑖+1] (12)

Combining Eqs. (11) and (12), we can achieve 𝐸 (𝛼). Figure 13
shows the theoretical 𝐸 (𝛼) with different matrix sizes and numbers

of candidate buckets when we fix the length of the hash address

sequence at 𝑟 = 16. For all the matrix sizes, when the numbers

of the candidate bucket 𝑝 increase from 16 to 80, the load factors

increase to 80% and all reach nearly 90% when 𝑝 = 128.

5 PERFORMANCE EVALUATION
5.1 Experiment Setups
We have implemented Auxo and made the source code publicly

available. We also implement the baseline scheme GSS_Chain over

the open-sourced code of the state-of-the-art GSS design [12]. We

obtain the source codes of other related work including Scube [7],

Horae [8], MoSSo [18], SGS [22], and GS4 [2], with which we com-

pare the performance of Auxo with those of all of the baseline

schemes. We conduct all the experiments on a machine with a

16-core 2.4GHz Xeon CPU, 64GB RAM, and 1TB HDD.

In the experiments, we use three types of datasets including

hyperlink network, social network, and IP network. To guarantee

the fairness of comparison and well evaluate the scaling efficiency

of the structures, we collect five large-scale graph stream datasets

from real world systems which cover three categories.

1) Friendster [19]: This is the friendship network of the online

social site Friendster, where nodes represent users and a directed

edge denotes that a user adds another user to his or her friend list.

The dataset contains 68 million nodes and 2.6 billion edges.

2)UK-2002 [19]: This is the hyperlink network of the UK domain

for the United Kingdom in 2002 with 18.5 million nodes and 262

million edges.

3)Delicious-ui [19]: It is a bipartite networkwhere source nodes
represent users while destination nodes represent URLs. An edge

means a user tagged an URL. This network has 34.6 million nodes

and 301 million edges.

4) Caida [5]: This dataset contains anonymous passive traffic

traces on high-speed Internet backbone links in Chicago in February

2015 for ten minutes. Nodes represent IP addresses, and a weighted

1394

(a) Friendster (b) UK-2002 (c) Delicious-ui (d) Caida (e) DBLP

Figure 14: The per edge insertion time with different graph stream volume

(a) Friendster (b) UK-2002 (c) Delicious-ui (d) Caida (e) DBLP

Figure 15: The edge query time with different graph stream volume

edge measures the size of the data packet. The dataset contains 2.1

million nodes and 403 million edges.

5) DBLP [19]: This is a network of collaboration collected from

the DBLP computer science bibliography where nodes represent

researchers, and edges represent paper co-authorship. The dataset

includes 16.7 million nodes and 30 million edges.

For parameter setting of GSS_Chain and Auxo, according to

Theorem 4, we set the fingerprint length to guarantee the edge

query accuracy satisfying 𝑃{[˜𝑓 (𝑠, 𝑑) − 𝑓 (𝑠, 𝑑)]/𝑤 > 0.01} ≤ 0.01.

Then, we choose the length of the hash address sequence 𝑟 and the

number of candidate buckets 𝑝 by Eq. (12). For other structures, we

follow the recommended parameter settings. We vary the volume

of the inserted edges and compare their performance. We use the

Blizzard hash algorithm and generate a 64-bit hash value ℎ𝑎𝑠ℎ(𝑣).
The fingerprint 𝜉𝑣 and the origin hash address ℎ(𝑣) are computed

as 𝜉𝑣 = ℎ𝑎𝑠ℎ(𝑣)%2𝑓 , ℎ(𝑣) = ⌊ℎ𝑎𝑠ℎ (𝑣)
2
𝑓 ⌋%𝑚.

5.2 Metrics
Time-Accumulated AllocatedMemory (TAM)measures the over-

all memory overhead for a graph stream summarization structure

that scales with time. For a time range [𝑇0,𝑇1], we use 𝐴𝑀 (𝑡) to
denote the allocated memory for the structure at time instance 𝑡 .

We define 𝑇𝐴𝑀 =
∫ 𝑇1
𝑇0

𝐴𝑀 (𝑡) 𝑑𝑡 as the integral of the allocated

memory over time. In cloud services, service providers typically

charge based on the amount of resources allocated and the length

of the service time. Therefore, TAM directly reflects the overall

memory overhead of a scalable graph stream summarization.

Average Relative Error (ARE) measures the accuracy of aggre-

gation queries (e.g., edge/node query). It is clear for these queries,

the results can be over-estimated. For a set of aggregation queries

𝑄 = {𝑞1, 𝑞2, ..., 𝑞𝑛} sized 𝑛, we let 𝑓 (𝑞𝑖) and ˜𝑓 (𝑞𝑖) represent the
ground truth and the queried result, respectively. Then, we define

the relative error 𝑅𝐸 (𝑞𝑖) of 𝑞𝑖 as 𝑅𝐸 (𝑞𝑖) =
˜𝑓 (𝑞𝑖)−𝑓 (𝑞𝑖)

𝑓 (𝑞𝑖) and the aver-

age relative error 𝐴𝑅𝐸 (𝑄) of query set 𝑄 as 𝐴𝑅𝐸 (𝑄) =
∑𝑛

𝑖=1 𝑅𝐸 (𝑞𝑖)
𝑛 .

According to the compressed matrix structure of GSS [12], with

edge/node query, we can build a sketched graph stream with the

topology structure preserved. Therefore, Auxo can support more

graph topology-related queries. In the experiment, we evaluate

Auxo with the reachability query [38] and triangle counting [4, 9].

True Negative Recall measures the precision of the reachabil-

ity query. Given a node pair (𝑠, 𝑑), the reachability query returns

whether there is a path from 𝑠 to 𝑑 . It is clear that GSS_Chain and

Auxo have no false negatives (i.e., if 𝑑 is reachable from 𝑠 in the

graph stream, Auxo definitely returns true; otherwise, it may return

true with a small possibility). For a set of reachability queries and all

the node pairs are unreachable. The true negative recall is defined

as the ratio of node pairs reported as unreachable.

5.3 Results
We conduct six groups of experiments to examine our design. First,

we evaluate the execution time of different operations and the mem-

ory cost of Auxo, GSS_Chain, and Scube [7]. Second, we compare

Auxo with other scalable graph stream summarization structures

like Horae [8], MoSSo [18], SGS [22], and GS4 [2]. Third, we test

the accuracy for different queries as well as the load factor of the

matrices. Fourth, we evaluate two compound graph algorithms

on the graph stream summarization structures. Fifth, we examine

parallel optimizations for Auxo to further accelerate the speed of

operations. Finally, we utilize a large-scale real-world graph stream

as a case study to evaluate the efficiency and effectiveness of Auxo.

For simplicity, in the following, we use “Auxo_pro” to represent

“the proportional Auxo” for short.

When an insertion fails, Scube [7] does not scale but allocates

more candidate buckets for an edge. Hence, we follow the chaining

style to scale the Scube structure. Once the load factor of the current

compressed matrix reaches 85%, we append another Scube block (a

compressed matrix with a degree estimator) and insert the edges

into the newly generated one. We call such a structure Scube_Chain.

Edge Insertion. Figure 14 shows that both Auxo and Auxo_pro

reduce the edge insertion time of GSS_Chain and Scube_Chain by

1395

(a) Friendster (b) UK-2002 (c) Delicious-ui (d) Caida (e) DBLP

Figure 16: The node in-flow query time with different graph stream volume

(a) Friendster (b) UK-2002 (c) Delicious-ui (d) Caida (e) DBLP

Figure 17: The node out-flow query time with different graph stream volume

one to two orders of magnitude over various scales of datasets. We

can get the same conclusion from the overall throughput reported

in Figure 18.

Edge Query. Figure 15 shows that both Auxo and Auxo_pro

reduce the edge query time by one to two orders of magnitude for

all the data sets compared with GSS_Chain and Scube_Chain.

Node Query. Figures 16 and 17 show the query time of node

query. For node in-flow query, both Auxo and Auxo_pro outperform

GSS_Chain and Scube_Chain, reducing the query time by about

one order of magnitude for different datasets. For node out-flow

query, Auxo and Scube_Chain achieve comparable performance,

both outperformance GSS_Chain. To further evaluate the time cost

of Auxo and Auxo_pro on node query, we examine the node query

latency whenever Auxo has just extended a new level on Delicious-

ui. Figure 19 shows that Auxo_pro reduces the node in(out)-flow

query latency of Auxo by at most 37% and 25% respectively.

Memory Cost and Memory Utilization. Table 5 shows the

total memory cost. Auxo_pro reduces 14% of the memory cost on

average compared to GSS_Chain while Scube costs much more

memory. It is worth noting that the Caida dataset has a large pro-

portion of duplicated edges. As for duplicate appeared edges, we

just accumulate the weights. Therefore, it cost much less memory

than expected. Figure 22 shows the normalized TAM and Auxo_pro

reduces the TAM of Auxo by a ratio of 34% on average. In cloud ser-

vice, it means a 34% reduction of cost on memory. Figure 23 shows

that Auxo_pro has a much higher average memory utilization (over

80%) compared to the basic Auxo (about 60%).

Comparison with Other Scalable Structures. We compare

Auxo with other scalable graph stream summarization structures

including Horae [8], MoSSo [18], and SGS [22]. In the experiment,

we mainly examine the update speed and space cost. Since Horae

scales as time stamp increasing, we set the time unit as one million

tuples. We set all the parameters as recommended. Figures 20 and 21

show the results on the UK-2002 dataset. Horae and Auxo achieve

nearly the same performance on update speed and are about two

orders of magnitude faster than MoSSo and SGS. Moreover, Auxo

Table 5: Total memory cost (𝐺)
Data sets Proportional Auxo GSS_Chain Scube_Chain

Friendster 13.07 15.68 29.11

UK-2002 1.52 1.7 2.9

Delicious-ui 0.51 0.62 1.27

Caida 0.045 0.051 0.153

DBLP 0.091 0.104 0.213

reduces the memory cost by more than one order of magnitude

compared to other structures. We do not show the result of GS4 [2]

here as it costs nearly 30 hours to summarize a graph stream with

an edge count of only 700, 000 which makes it not comparable.

Accuracy and Load Factor. As aforementioned in Section 4.1,

three data structures (GSS_Chain, Auxo, proportional Auxo) have

the same accuracy when we set the matrix’s side width and fin-

gerprint length to the same. Here, we set the fingerprint length

to 16, 20, and 24, respectively. Figures 24 and 25 show the ARE of

different queries as the graph stream’s volume scale. The results

show that we can guarantee accuracy by adjusting the length of the

fingerprint. We further examine the average load factor of all the

full matrices to compare with the theoretical analysis. We set the

initial matrix size to 100, 000 with 𝑟 = 16 and vary the number of

candidate buckets. Figure 26 shows the average load factors of the

three data structures. We can see that for all three data structures,

the experimental results are pretty close to the theoretical analysis.

Graph Queries. For the reachability query, we take 200 unreach-
able node pairs and run the BFS search to query the reachability.

Figure 27 shows that the true negative recall on dataset Caida is

pretty high, nearly 100% for different fingerprint lengths. Figure 28

shows the time cost for the reachability query. Auxo and Auxo_pro

both outperform GSS_Chain and Scube_Chain by nearly one order

of magnitude. In a graph, a triangle is a triple of three edges where

every two edges share a common node. We examine the accuracy of

Auxo on triangle counting query. Figure 29 shows that the relative

error of the triangle counting query on dataset DBLP is pretty low.

Parallel Optimization. It is clear that for Auxo, the operations
in different matrices are independent, and thus it can parallelize

1396

Figure 18: Overall
throughput (tuple/s)

Figure 19: Node query
time for various levels

Figure 20: Structures’
edge updating time

Figure 21: scalable
structures’ space cost

Figure 22: The normal-
ized TAM

Figure 23: The average
memory utilization

Figure 24: The ARE of
edge query for DBLP

Figure 25: The ARE of
node in-flow query

Figure 26: The average
matrices load factor

Figure 27: True nega-
tive recall

Figure 28: Time cost of
reachability query

Figure 29: Relative error
of triangle count

Figure 30: Time cost of
the parallelized insert

Figure 31: Structures’
updating time

Figure 32: Time cost of
node similarity query

the operation without any locks for edge query and node query,

etc. We parallelize the operations on Auxo and proportional Auxo

and take the insert query on the dataset Delicious-ui as examples.

Figures 30 show that Auxo further achieves about 3× speedup on

insert query with eight paralleling threads.

Case Study.We collect a large-scale hyperlink network graph

stream dataset of the United Kingdom in 2007. Unlike the dataset

UK-2002, UK-2007 [3] is a much large dataset containing 105 mil-

lion nodes and 3.3 billion edges. Figure 31 shows the insertion time

for different structures. We can see that both Auxo and the pro-

portional Auxo outperform GSS_Chain and Scube_Chain for one

to two orders of magnitude. We also examine the performance of

GSS (without chaining and inserting the edge into the buffer if the

compressed matrix is full) and it costs nearly an order of magni-

tude more time to insert an edge compared with Auxo in the case

of large-scale graph stream. Table 6 shows the memory cost. GSS

costs about six times greater memory than our design. Such a poor

performance of GSS is caused by its large buffer.

We also design a node-neighbor similarity experiment (which is

a critical metric in web-page clustering) to test the effectiveness of

Auxo. We use the Jaccard coefficient 𝐽 (𝑁𝑥 , 𝑁𝑦) = |𝑁𝑥 ∩𝑁𝑦 |/|𝑁𝑥 ∪
𝑁𝑦 | to measure the similarity of two sets, where 𝑁𝑣 indicates the

Table 6: Memory cost of UK-2007 (𝐺)
Proportional Auxo GSS_Chain Scube_Chain GSS

18.22 20.05 32.73 103.86

neighbor set of node 𝑣 . Here we consider node 𝑦 to be node 𝑥 ’s

neighbor if and only if there exists an edge 𝑥 → 𝑦 or 𝑦 → 𝑥 . Figure

32 shows Auxo takes less than 40 ms to conduct such a query on a

graph with a volume over 10
9
.

6 CONCLUSION AND FUTUREWORK
In this paper, we propose Auxo, a scalable and efficient structure for

graph stream summarization. Auxo designs a prefix embedded tree
(PET) framework and achieves good time/memory efficiency. Auxo

reduces the query time to 𝑙𝑜𝑔 |𝐸 | scale as well as saves the space
cost by

𝑙𝑜𝑔2𝑛−2
𝑏

. Furthermore, we propose a novel proportional in-

cremental strategy to improve memory utilization. Comprehensive

experiments on large-scale datasets show that Auxo reduces the

time costs of insertion, edge query, and node query by one to two

orders of magnitude compared to state-of-the-art designs. More-

over, Auxo achieves efficiently and economically structure scaling

with an average memory utilization of over 80%. In the next step,

we plan to explore two issues of a scalable graph stream summa-

rization structure, including accuracy guarantee as graph stream

volume increases continuously and the overflow of the counters

for the accumulated weights, especially in the presence of highly

duplicated edges in a graph stream.

ACKNOWLEDGMENTS
This research is supported in part byNSFC under grant No. 61972446

and Huawei Research Project No. TC20210702017.

1397

REFERENCES
[1] Charu C. Aggarwal, Yao Li, and Philip S. Yu. 2020. On Supervised Change

Detection in Graph Streams. In Proceedings of the 2020 SIAM International
Conference on Data Mining (SDM ’20). SIAM, Ohio, USA, May 7-9, 2020, 7–9.

https://doi.org/10.1137/1.9781611976236.33

[2] Nosratali Ashrafi-Payaman, Mohammadreza Kangavari, Saeid Hosseini, and

Amir Mohammad Fander. 2021. GS4: Graph stream summarization based on

both the structure and semantics. J. Supercomput. 77, 3 (2021), 2713–2733. https:

//doi.org/10.1007/s11227-020-03290-2

[3] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004.

UbiCrawler: a scalable fully distributed Web crawler. Softw. Pract. Exp. 34, 8
(2004), 711–726. https://doi.org/10.1002/spe.587

[4] Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. 2013. How Hard

Is Counting Triangles in the Streaming Model?. In Proceedings of the 40th In-
ternational Colloquium on Automata, Languages and Programming (ICALP ’13).
Springer, Riga, Latvia, July 8-12, 2013, 244–254. https://doi.org/10.1007/978-3-

642-39206-1_21

[5] CAIDA. 2022. Anonymized Internet Traces 2015. The University of California.

Retrieved 28 April, 2022 from https://catalog.caida.org/details/dataset/passive_

2015_pcap

[6] Hanhua Chen, Hai Jin, and Shaoliang Wu. 2016. Minimizing Inter-Server Com-

munications by Exploiting Self-Similarity in Online Social Networks. IEEE Trans.
Parallel Distributed Syst. 27, 4 (2016), 1116–1130. https://doi.org/10.1109/TPDS.

2015.2427155

[7] Ming Chen, Renxiang Zhou, Hanhua Chen, and Hai Jin. 2022. Scube: Efficient

Summarization for Skewed Graph Streams. In Proceedings of the 42nd IEEE Inter-
national Conference on Distributed Computing Systems (ICDCS ’22). IEEE, Bologna,
Italy, July 10-13, 2022, 100–110. https://doi.org/10.1109/ICDCS54860.2022.00019

[8] Ming Chen, Renxiang Zhou, Hanhua Chen, Jiang Xiao, Hai Jin, and Bo Li. 2022.

Horae: A Graph Stream Summarization Structure for Efficient Temporal Range

Query. In Proceedings of the 38th IEEE International Conference on Data Engi-
neering (ICDE ’22). IEEE, Kuala Lumpur, Malaysia, May 9-12, 2022, 2792–2804.

https://doi.org/10.1109/ICDE53745.2022.00254

[9] Michael Elkin. 2011. Streaming and fully dynamic centralized algorithms for

constructing and maintaining sparse spanners. ACM Trans. Algorithms 7, 2
(2011), 20:1–20:17. https://doi.org/10.1145/1921659.1921666

[10] Neha Ghoshon. 2020. COVID-19: What Is Asymptomatic Transmission? This
Is How You Could Be Spreading It! Greynium Information Technologies Pvt.

Ltd. Retrieved 7 April, 2022 from https://www.boldsky.com/health/wellness/

asymptomatic-transmission-of-covid-19-132748.html

[11] Xiangyang Gou and Lei Zou. 2021. Sliding Window-based Approximate Triangle

Counting over Streaming Graphs with Duplicate Edges. In Proceedings of the
2021 International Conference on Management of Data (SIGMOD ’21). ACM, Xi’an,

Shaanxi, China, June 20-25, 2021, 645–657. https://doi.org/10.1145/3448016.

3452800

[12] Xiangyang Gou, Lei Zou, Chenxingyu Zhao, and Tong Yang. 2019. Fast and Ac-

curate Graph Stream Summarization. In Proceedings of the 35th IEEE International
Conference on Data Engineering (ICDE ’19). IEEE, Macao, China, April 8-11, 2019,

1118–1129. https://doi.org/10.1109/ICDE.2019.00103

[13] Huawei GTS. 2023. Telecom-graph. DataFountain. Retrieved 12 February, 2023

from https://www.datafountain.cn/datasets/6847

[14] Sudipto Guha and Andrew McGregor. 2012. Graph Synopses, Sketches, and

Streams: A Survey. Proc. VLDB Endow. 5, 12 (2012), 2030–2031. https://doi.org/

10.14778/2367502.2367570

[15] Abdul Hameed, Alireza Khoshkbarforoushha, Rajiv Ranjan, Prem Prakash

Jayaraman, Joanna Kolodziej, Pavan Balaji, Sherali Zeadally, Qutaibah Mar-

wan Malluhi, Nikos Tziritas, Abhinav Vishnu, Samee U. Khan, and Albert Y.

Zomaya. 2016. A survey and taxonomy on energy efficient resource alloca-

tion techniques for cloud computing systems. Computing 98, 7 (2016), 751–774.

https://doi.org/10.1007/s00607-014-0407-8

[16] Mohamed S. Hassan, Bruno Ribeiro, and Walid G. Aref. 2018. SBG-sketch: a self-

balanced sketch for labeled-graph stream summarization. In Proceedings of the
30th International Conference on Scientific and Statistical Database Management
(SSDBM ’18). ACM, Bozen-Bolzano, Italy, July 09-11, 2018, 3:1–3:12. https:

//doi.org/10.1145/3221269.3223030

[17] Changsheng Hou, Bingnan Hou, Tongqing Zhou, and Zhiping Cai. 2021. DMatrix:

Toward fast and accurate queries in graph stream. Comput. Networks 198 (2021),
108403. https://doi.org/10.1016/j.comnet.2021.108403

[18] Jihoon Ko, Yunbum Kook, and Kijung Shin. 2020. Incremental Lossless Graph

Summarization. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (SIGKDD ’20). ACM, Virtual Event, CA, USA, August

23-27, 2020, 317–327. https://doi.org/10.1145/3394486.3403074

[19] Jerome Kunegis. 2013. KONECT: the Koblenz network collection. In Proceedings
of the 22nd International World Wide Web Conference (WWW ’13). ACM, Rio de

Janeiro, Brazil, May 13-17, 2013, 1343–1350. https://doi.org/10.1145/2487788.

2488173

[20] Pierre L’Ecuyer. 1999. Tables of linear congruential generators of different

sizes and good lattice structure. Math. Comput. 68, 225 (1999), 249–260. https:

//doi.org/10.1090/S0025-5718-99-00996-5

[21] Youhuan Li, Lei Zou, M. Tamer Özsu, and Dongyan Zhao. 2019. Time Constrained

Continuous Subgraph Search Over Streaming Graphs. In Proceedings of the 35th
IEEE International Conference on Data Engineering (ICDE ’19). IEEE, Macao, China,

April 8-11, 2019, 1082–1093. https://doi.org/10.1109/ICDE.2019.00100

[22] Ziyi Ma, Jianye Yang, Kenli Li, Yuling Liu, Xu Zhou, and Yikun Hu. 2021. A

Parameter-Free Approach for Lossless Streaming Graph Summarization. In Pro-
ceedings of the 26th International Conference on Database Systems for Advanced
Applications (DASFAA ’21). Springer, Taipei, Taiwan, April 11-14, 2021, 385–393.
https://doi.org/10.1007/978-3-030-73194-6_26

[23] Roger Magoulas and Steve Swoyer. 2020. Cloud Adoption in 2020. O’Reilly

Media, Inc. Retrieved May 19, 2022 from https://www.oreilly.com/radar/cloud-

adoption-in-2020/

[24] Sunilkumar S. Manvi and Gopal Krishna Shyam. 2014. Resource management for

Infrastructure as a Service (IaaS) in cloud computing: A survey. J. Netw. Comput.
Appl. 41 (2014), 424–440. https://doi.org/10.1016/j.jnca.2013.10.004

[25] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. 2020. Regular Path Query

Evaluation on Streaming Graphs. In Proceedings of the 2020 International Confer-
ence on Management of Data (SIGMOD ’20). ACM, online conference, June 14-19,

2020, 1415–1430. https://doi.org/10.1145/3318464.3389733

[26] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. 2022. Evaluating Complex

Queries on Streaming Graphs. In Proceedings of the 38th IEEE International Con-
ference on Data Engineering (ICDE ’22). IEEE, Kuala Lumpur, Malaysia, May 9-12,

2022, 272–285. https://doi.org/10.1109/ICDE53745.2022.00025

[27] Ramesh Paudel and William Eberle. 2020. An Approach For Concept Drift

Detection in a Graph Stream Using Discriminative Subgraphs. ACM Trans.
Knowl. Discov. Data 14, 6 (2020), 70:1–70:25. https://doi.org/10.1145/3406243

[28] Jorma Rissanen. 1978. Modeling by shortest data description. Autom. 14, 5 (1978),
465–471. https://doi.org/10.1016/0005-1098(78)90005-5

[29] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.

2015. TimeCrunch: Interpretable Dynamic Graph Summarization. In Proceedings
of the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining5 (SIGKDD ’15). ACM, Sydney, NSW, August 10-13, 2015, 1055–1064.

https://doi.org/10.1145/2783258.2783321

[30] Aida Sheshbolouki and M. Tamer Özsu. 2022. sGrapp: Butterfly Approximation

in Streaming Graphs. ACM Trans. Knowl. Discov. Data 16, 4 (2022), 76:1–76:43.
https://doi.org/10.1145/3495011

[31] Sukhpal Singh and Inderveer Chana. 2016. Cloud resource provisioning: survey,

status and future research directions. Knowl. Inf. Syst. 49, 3 (2016), 1005–1069.
https://doi.org/10.1007/s10115-016-0922-3

[32] Chunyao Song, Tingjian Ge, Yao Ge, Haowen Zhang, and Xiaojie Yuan. 2019.

Labeled graph sketches: Keeping up with real-time graph streams. Inf. Sci. 503
(2019), 469–492. https://doi.org/10.1016/j.ins.2019.07.019

[33] Lorenzo De Stefani, Erisa Terolli, and Eli Upfal. 2021. Tiered Sampling: An

Efficient Method for Counting Sparse Motifs in Massive Graph Streams. ACM
Trans. Knowl. Discov. Data 15, 5 (2021), 79:1–79:52. https://doi.org/10.1145/

3441299

[34] Nan Tang, Qing Chen, and Prasenjit Mitra. 2016. Graph Stream Summarization:

From Big Bang to Big Crunch. In Proceedings of the 2016 International Conference
on Management of Data (SIGMOD ’16). ACM, Francisco, CA, USA, June 26-July

01, 2016, 1481–1496. https://doi.org/10.1145/2882903.2915223

[35] Tencent. 2021. Tencent Health Code statistics. (2021). Tencent. Retrieved Novem-

ber 15, 2022 from https://www.tencent.com/zh-cn/business/health-code.html

[36] Ioanna Tsalouchidou, Francesco Bonchi, Gianmarco De Francisci Morales, and

Ricardo Baeza-Yates. 2020. Scalable Dynamic Graph Summarization. IEEE Trans.
Knowl. Data Eng. 32, 2 (2020), 360–373. https://doi.org/10.1109/TKDE.2018.

2884471

[37] Tangwei Ying, Hanhua Chen, and Hai Jin. 2020. Pensieve: Skewness-Aware

Version Switching for Efficient Graph Processing. In Proceedings of the 2020
International Conference on Management of Data (SIGMOD ’20). ACM, online

conference, June 14-19, 2020, 699–713. https://doi.org/10.1145/3318464.3380590

[38] Andy Diwen Zhu, Wenqing Lin, SiboWang, and Xiaokui Xiao. 2014. Reachability

queries on large dynamic graphs: a total order approach. In Proceedings of the 2014
International Conference on Management of Data (SIGMOD ’14). ACM, Snowbird,

UT, USA, June 22-27, 2014, 1323–1334. https://doi.org/10.1145/2588555.2612181

1398

https://doi.org/10.1137/1.9781611976236.33
https://doi.org/10.1007/s11227-020-03290-2
https://doi.org/10.1007/s11227-020-03290-2
https://doi.org/10.1002/spe.587
https://doi.org/10.1007/978-3-642-39206-1_21
https://doi.org/10.1007/978-3-642-39206-1_21
https://catalog.caida.org/details/dataset/passive_2015_pcap
https://catalog.caida.org/details/dataset/passive_2015_pcap
https://doi.org/10.1109/TPDS.2015.2427155
https://doi.org/10.1109/TPDS.2015.2427155
https://doi.org/10.1109/ICDCS54860.2022.00019
https://doi.org/10.1109/ICDE53745.2022.00254
https://doi.org/10.1145/1921659.1921666
https://www.boldsky.com/health/wellness/asymptomatic-transmission-of-covid-19-132748.html
https://www.boldsky.com/health/wellness/asymptomatic-transmission-of-covid-19-132748.html
https://doi.org/10.1145/3448016.3452800
https://doi.org/10.1145/3448016.3452800
https://doi.org/10.1109/ICDE.2019.00103
https://www.datafountain.cn/datasets/6847
https://doi.org/10.14778/2367502.2367570
https://doi.org/10.14778/2367502.2367570
https://doi.org/10.1007/s00607-014-0407-8
https://doi.org/10.1145/3221269.3223030
https://doi.org/10.1145/3221269.3223030
https://doi.org/10.1016/j.comnet.2021.108403
https://doi.org/10.1145/3394486.3403074
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1090/S0025-5718-99-00996-5
https://doi.org/10.1090/S0025-5718-99-00996-5
https://doi.org/10.1109/ICDE.2019.00100
https://doi.org/10.1007/978-3-030-73194-6_26
https://www.oreilly.com/radar/cloud-adoption-in-2020/
https://www.oreilly.com/radar/cloud-adoption-in-2020/
https://doi.org/10.1016/j.jnca.2013.10.004
https://doi.org/10.1145/3318464.3389733
https://doi.org/10.1109/ICDE53745.2022.00025
https://doi.org/10.1145/3406243
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1145/2783258.2783321
https://doi.org/10.1145/3495011
https://doi.org/10.1007/s10115-016-0922-3
https://doi.org/10.1016/j.ins.2019.07.019
https://doi.org/10.1145/3441299
https://doi.org/10.1145/3441299
https://doi.org/10.1145/2882903.2915223
https://www.tencent.com/zh-cn/business/health-code.html
https://doi.org/10.1109/TKDE.2018.2884471
https://doi.org/10.1109/TKDE.2018.2884471
https://doi.org/10.1145/3318464.3380590
https://doi.org/10.1145/2588555.2612181

	Abstract
	1 Introduction
	2 Related Work
	3 Auxo Design
	3.1 Overview
	3.2 Prefix Embedded Tree
	3.3 Proportionally Incremental Strategy
	3.4 Auxo Structure Based on PET
	3.5 Operations of Auxo

	4 ANALYSIS
	4.1 Accuracy Analysis
	4.2 Time Cost Analysis
	4.3 Memory Cost Analysis
	4.4 Load Factor Analysis

	5 PERFORMANCE EVALUATION
	5.1 Experiment Setups
	5.2 Metrics
	5.3 Results

	6 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

