
Efficient Distributed Transaction Processing in Heterogeneous
Networks

Qian Zhang∗
Renmin University of China
zhangqiangzq@ruc.edu.cn

Jingyao Li∗
Renmin University of China

li-jingyao@ruc.edu.cn

Hongyao Zhao∗
Renmin University of China
hongyaozhao@ruc.edu.cn

Quanqing Xu
OceanBase, Ant Group

xuquanqing.xqq@oceanbase.com

Wei Lu†
Renmin University of China

lu-wei@ruc.edu.cn

Jinliang Xiao
OceanBase, Ant Group

xiaoshi.xjl@oceanbase.com

Fusheng Han
OceanBase, Ant Group

yanran.hfs@oceanbase.com

Chuanhui Yang
OceanBase, Ant Group

rizhao.ych@oceanbase.com

Xiaoyong Du†
Renmin University of China

duyong@ruc.edu.cn

ABSTRACT
Countrywide and worldwide business, like gaming and social net-
works, drives the popularity of inter-data-center transactions. To
support inter-data-center transaction processing and data center
fault tolerance simultaneously, existing protocols suffer from sig-
nificant performance degradation due to high-latency and unsta-
ble networks. In this paper, we propose RedT, a novel distributed
transaction processing protocol that works in heterogeneous net-
works. In detail, nodes within a data center are inter-connected
via the RDMA-capable network and nodes across data centers are
inter-connected via TCP/IP networks. RedT extends two-phase com-
mit (2PC) by decomposing transactions into sub-transactions in
terms of the data center granularity, and proposing a pre-write-log
mechanism that is able to reduce the number of inter-data-center
round-trips from a maximal of 6 to 2. Extensive evaluation against
state-of-the-art protocols shows that RedT can achieve up to 1.57×
higher throughputs and 0.56× lower latency.

PVLDB Reference Format:
Qian Zhang, Jingyao Li, Hongyao Zhao, Quanqing Xu, Wei Lu, Jinliang
Xiao, Fusheng Han, Chuanhui Yang, and Xiaoyong Du. Efficient
Distributed Transaction Processing in Heterogeneous Networks. PVLDB,
16(6): 1372 - 1385, 2023.
doi:10.14778/3583140.3583153

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/dbiir/RedT/.

1 INTRODUCTION
Modern distributed database systems achieve scalability and avail-
ability by partitioning and replicating the data over multiple nodes.

∗These authors contributed equally to this work.
†Wei Lu and Xiaoyong Du are the corresponding authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583153

Each partition has one primary replica and multiple secondary repli-
cas. The consensus among replicas is guaranteed by Paxos [29] or
Raft [38]. The standard approach to processing a distributed trans-
action 𝑇 is called 2PC-Paxos that executes 𝑇 through three phases:
1) execution phase, 2) prepare phase, and 3) commit phase. In the ex-
ecution phase, the coordinator decomposes𝑇 into sub-transactions
that are distributed to the corresponding primary replicas (a.k.a.
participants). Once each primary replica completes local execution,
the coordinator follows 2PC to commit/abort the sub-transactions.
In the prepare phase, first, the coordinator notifies each primary
replica to check whether the sub-transaction is ready to commit;
then, every primary replica synchronizes writes in terms of redo
logs to the secondary replicas if the sub-transaction is ready to
commit, and sends a response to the coordinator after the synchro-
nization; subsequently, after receiving responses from all primary
replicas, the coordinator decides whether 𝑇 commits or aborts.
Before entering the commit phase, the coordinator synchronizes
its decision to coordinator backups to ensure the availability of
the decision in case of its failure. In the commit phase, the co-
ordinator first notifies all primary replicas to commit/abort the
sub-transactions, and each primary replica then synchronizes the
decision to its secondary replicas. 2PC-Paxos takes a maximum of 6
network round-trips, with 1 in the execution phase, 3 in the pre-
pare phase, and 2 in the commit phase. Note that, some network
round-trips can be neglected for read-only transactions.

There is an increasing trend to support inter-data-center (abbre-
viated as inter-DC) transaction processing and data center fault
tolerance simultaneously. On the one hand, the wisdom to facilitate
fast data delivery is geo-locality, i.e., storing clients’ data in the
nearby data center. Yet, the countrywide or worldwide business, e.g.,
e-commerce and gaming, requires to co-operate clients’ data across
data centers, and drives the popularity of inter-DC transactions,
each of which reads/writes primary replicas located in multiple data
centers. On the other hand, to achieve system availability that toler-
ates data center failures, replicas of the same partition are deployed
across data centers. Nevertheless, distributed transaction processing
suffers from severe performance degradation due to high-latency and
unstable networks. Compared with the intra-data-center (abbrevi-
ated as intra-DC) network that typically takes 70us ≲ RTT ≲ 1ms,
the inter-DC network has much higher latency, and is less stable.

1372

https://doi.org/10.14778/3583140.3583153
https://github.com/dbiir/RedT/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583153
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Figure 1(a) shows that the average round-trip time (abbreviated
as RTT, a latency metric) from Beijing to Hong Kong ranges from
a minimum of 40ms to a maximum of 183ms, and 13 packets are
lost. We implement 2PC-Paxos on distributed framework Deneva
[23], in which each partition is set to have one primary replica and
two secondary replicas. Replicas of the same partition are placed in
different data centers. Figure 1(b) plots the system throughput over
YCSB benchmark by varying the percentage of inter-DC transac-
tions. The throughput decreases by a factor of 33%, 44%, and 45%,
under the inter-DC latency of 20ms, 40ms, and 80ms, respectively.

To efficiently support inter-DC transaction processing and data
center fault tolerance simultaneously, a few works attempt to re-
duce either the number or the overhead of network round-trips.
TAPIR [63] and G-PAC [35] unite 2PC and consensus protocols in
a single framework to eliminate redundant coordination, reducing
the number of inter-DC round-trips from 6 to 3 in common cases.
MDCC [28] incorporates Fast Paxos [30] protocol so that the num-
ber of round-trips is reduced from 6 to 2 under some prerequisites,
e.g, in the absence of conflicts, while two additional round-trips
are required otherwise. Multi-level 2PC [37] reduces the number
of expensive inter-DC communications by layering participants,
but cannot reduce the number of inter-DC round-trips. Because
the inter-DC network could be a bottleneck, we aim to improve the
system performance by further reducing either the number or the
overhead of network round-trips.

Our research is motivated by the fact that in both academia and
industry, the widespread use of RDMA-capable networks has be-
come a reality. In academia, numerous works [6, 10, 14, 15, 54, 55, 58,
60] show that the performance of intra-DC distributed transaction
processing can be improved by orders of magnitude over RDMA-
capable networks. In industry, enterprises like Microsoft [21, 64],
IBM [5] and Alibaba [9, 20] have reported boosting their database
systems using RDMA-capable networks. Unfortunately, RDMA is
built on lossless networks, and is currently considered only suitable
for use in the local area networks (a.k.a. LAN) [64]. We realize het-
erogeneous networks are increasingly popular, where nodes within
the same data center are inter-connected via RDMA networks, and
nodes across multiple data centers are inter-connected via TCP/IP
networks. Hence, redesigning distributed transaction processing in
heterogeneous networks is of great necessity.

We propose RedT, an RDMA-enhanced distributed transaction
processing protocol with availability guarantees. Compared with
2PC-Paxos, RedT reduces the number of inter-DC round-trips from
a maximum of 6 to 2. Specifically, we design a pre-write-log mecha-
nism. In this mechanism, during the execution phase, every prima-
ry/secondary replica is required to perform concurrency control,
persist the redo logs, and send a commit/abort message to the co-
ordinator. After collecting messages from at least 3

4 replicas of
each partition, the coordinator makes a commit/abort decision of
the transaction, which is then propagated to every replica. After
receiving the decision, every primary/secondary replica persists
the commit/abort log, writes the data items if the transaction is
committed, and releases the locks. RedT eliminates the synchroniza-
tion of prepare messages from the coordinator to primary replicas,
redo/commit/abort logs from the primary replicas to secondary
replicas in the prepare/commit phase, and the transaction decision

100

101

102

103

104

105

106

 0 1 2 3 4 5

N
et

w
or

k
de

la
y

(u
s/

R
T

T
)

Day

inter-DC TCP/IP
intra-DC TCP/IP

RDMA RD,WR
packet loss

(a) Latency microbenchmark

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

% of inter-DC transactions

delay = 20ms/RTT
delay = 40ms/RTT
delay = 80ms/RTT

(b) Inter-DC transactions

Figure 1: Effect of the high-latency networks

among coordinator backups. Hence, RedT is able to reduce at most
4 inter-DC round-trips. Further, considering the network in which
nodes within the same data center are inter-connected via RDMA
networks, RedT selects one executor in each data center responsible
for concurrency control over all replicas of the same data center.
RedT achieves this by directly locking/unlocking/reading/writing
replicas in other nodes using RDMA verbs. From this perspective,
RedT extends sub-transactions from the replica granularity to the
data center granularity, leading to a lower coordination cost and
fewer inter-DC communications. Note that if we do not need to tol-
erate data center failures, for intra-DC transactions, RedT is reduced
to a complete RDMA-boosted method. We provide a detailed analy-
sis over the correctness of RedT to tolerate node failures and data
center failures. We also perform a quantitative analysis over RedT
and existing protocols to process different kinds of transactions, in
terms of the inter-DC round-trips as well as communications, and
show the advantages of RedT.

In summary, we make the following contributions:
• We present a novel distributed transaction processing protocol

RedT that works in heterogeneous networks. It achieves high
throughput and data center fault tolerance.

• We propose a pre-write-log mechanism that is able to reduce
the number of inter-DC round-trips from a maximum of 6 to
2. Further, we employ the RDMA-capable network to relax the
granularity from the replica to the data center, leading to a fewer
number of inter-DC communications.

• We conduct extensive evaluations to compare RedT and four
state-of-the-art protocols over YCSB and TPC-C benchmarks.
The results show that RedT can achieve up to 1.57× higher
throughputs and 0.56× lower latency.

2 PRELIMINARIES
2.1 Distributed Transaction Processing
As introduced in Section 1, the standard 2PC-Paxos takes a maxi-
mum of 6 network round-trips to process a distributed transaction.
Take transaction 𝑇 that consists of a write operation 𝑤 (𝑥) and a
read operation 𝑟 (𝑦) in Figure 2 for an example. The primary replica
of 𝑥/𝑦 locates in 𝐷𝐶1/𝐷𝐶2, respectively. 𝑥/𝑦 has one secondary
replica in 𝐷𝐶2/𝐷𝐶1, and another secondary replica in 𝐷𝐶3/𝐷𝐶3,
respectively. 𝑇 first takes one round-trip to access the primary
replica of 𝑥 and 𝑦 in 𝐷𝐶1 and 𝐷𝐶2 (labeled as ① in Figure 2). After
successful execution, 𝑇 notifies the primary replica of 𝑥 to commit
(②), synchronizes redo logs to 𝑥 ’s secondary replicas (③), and re-
sponds to the coordinator afterward. After collecting all responses

1373

Coordinator
Replica X

Execution
phase

Commit
phase

w(x)

T : w(x);r(y); commit;

log(x)

Prepare
phase

Replica Y

r(y)

commit(x)

commit(y)
Replica X
Replica Y

Replica Y
Replica X

(Primary)

(Primary)

log(x)

log(x)

Coordinator
backups

log(x)

log(x)

log(x)

① ②

③

④

⑤

⑥

Figure 2: Modern distributed transaction processing

and before entering the commit phase, 𝑇 synchronizes its decision
to the coordinator backups for fault tolerance (④). In the commit
phase, 𝑇 notifies the primary replica of 𝑥 and 𝑦 to commit (⑤), and
𝑥 synchronizes the decision to its secondary replicas (⑥).

2.2 RDMA
RDMA is a network feature that enables remote direct access to the
main memory of a remote data node without the involvement of
its CPU. Compared with traditional TCP/IP networks, RDMA can
be built on InfiniBand to enjoy the advantages of high-bandwidth
and low-latency. It also provides three properties to ensure high
performance. (1) Zero-copy property. Applications can perform
data transfers without the involvement of the network software
stack. Data is sent and received directly to the buffers without being
copied between the network layers. (2) Kernel bypass property.
Applications can perform data transfers directly from user space
without kernel involvement. (3) No CPU involvement property.
Applications can access remote memory without consuming any
CPU time in the remote machine. RDMA provides two categories
of verbs for programming: (1) one-sided RDMA verbs, including
READ,WRITE,WRITEWith Immediate, and two atomic operations:
FETCH-And-ADD (a.k.a. FAA) as well as COMPARE-And-SWAP
(a.k.a. CAS), and (2) two-sided RDMA verbs, including SEND and
RECEIVE. Programming using two-sided RDMA verbs can enjoy
zero-copy and kernel-passing properties, and one-sided RDMA
verbs can enjoy all three properties of RDMA. Note that, CAS and
FAA are confined to operating data of 64-bit size per invocation. As
a result, using a single CAS/FAA to operate data items and metadata
together may exceed the limitation of 64-bit size.

2.3 RDMA-based Transaction Processing
RDMA-based transaction processing is based on the shared-memory
architecture [15, 55, 58, 60]. As opposed to decomposing read/write
operations of a transaction into sub-transactions in distributed
databases, it follows the paradigm in the centralized databases to
process transactions without the involvement of 2PC. In RDMA-
based transaction processing, each node is equipped with multi-
ple executors, responsible for executing transactions, and a mem-
store, a shared-buffer used to manage data items and redo logs
for fault tolerance. Nodes are inter-connected via low-latency and
high-bandwidth featured RDMA networks. To process a distributed
transaction, each executor works like its counterpart in the cen-
tralized system and directly locks/unlocks/reads/writes data items

A
Node 1-1

D
Node 2-3

MemStore

Replica D

Replica C
RDMA-
friendly
Circular
Buffer

Coordinator

Executor

Txn Worker

TC
P/

IP
-b

as
ed

 W
id

e-
ar

ea
 N

et
w

or
k

RDMADC 1

B
Node 1-2 Node 1-3

C

A
Node 2-1

RDMADC 2

Node 2-2

B
C

Node 2-3

D

A
Node n-1

C

RDMADC n

B
Node n-2

D
Node n-3

Figure 3: An overview of the system architecture

stored on the remote nodes. Once all the read/write operations com-
plete, the executor writes the redo logs into the remote memstore if
necessary. The executor finally commits the transaction. Compared
with traditional distributed transaction processing under TCP/IP
networks, the performance of RDMA-based distributed transaction
processing can be improved by a factor of at least 20× [15, 53].

3 SYSTEM ARCHITECTURE
RedT is particularly designed for heterogeneous networks. An
overview of the system architecture is shown in Figure 3. Each
node is equipped with the following two kinds of components.

Multiple TxnWorkers. A TxnWorker is able to act as either an
executor or a coordinator. An executor executes sub-transactions
by directly locking/unlocking/reading/writing data items that lo-
cate in other nodes of the same data center using RDMA verbs. A
coordinator coordinates the execution of transactions.

MemStore. A MemStore is a pre-allocated RDMA-registered
memory for maintaining replicas of different partitions. Besides, it
maintains a circular buffer for logging. Any executors from other
nodes in the same data center can directly write logs to this buffer
via RDMA verbs. For performance, we assume MemStore is de-
ployed on Non-Volatile Memory (NVM) by default, as many other
works do [14, 27, 60, 62]. Otherwise, logs are persisted in the disk
before committing for durability.

In RedT, a distributed transaction 𝑇𝑖 is executed through two
phases: 1) execution phase, and 2) commit phase. In the execution
phase, we propose a pre-write-log mechanism, in which each pri-
mary/secondary replica involves performing concurrency control
and writing the redo logs. Similar to 2PC-Paxos, the coordinator
decomposes 𝑇𝑖 into multiple sub-transactions in terms of the data
center granularity. To simplify the discussion, we assume that a
partition in each data center has at most one replica (later we will
discuss how to handle the case without this assumption). A sub-
transaction consists of the reads/writes from/to replicas that locate
in the same data center. For example, in Figure 2, transaction 𝑇 is
decomposed into three sub-transactions, each of which consists
of two operations𝑤 (𝑥)𝑟 (𝑦) and locates in every data center. The
pre-write-log mechanism eliminates the prepare phase that syn-
chronizes the prepare messages from the coordinator to primary
replicas, redo logs from the primary replicas to secondary replicas,
and the transaction decision among coordinator backups.

1374

Figure 4: Data structure of the circular buffer

In each data center, one executor is selected to execute the sub-
transaction, and follows the paradigm in the centralized databases to
do concurrency control with a variant of two-phase locking protocol
(a.k.a. 2PL), called No-Wait [7]. To be specific, the executor directly
locks/reads/writes/unlocks data items that locate in other nodes of
the same data center using RDMA verbs. Any conflicts of the locks
on the same data items would cause the sub-transaction to abort.
If the sub-transaction is ready to commit, the executor first writes
the redo logs and then sends a commit message to the coordinator;
otherwise, if the sub-transaction is ready to abort, the executor
sends an abort message to the coordinator. In the commit phase,
the coordinator collects the messages from each executor. Following
the previous work [30], if more than 3

4 of replicas per partition have
the up-to-date data items that 𝑇𝑖 reads/writes and vote to commit,
the coordinator makes the commit decision, generates a commit
timestamp, and notifies each executor to commit. Otherwise, the
coordinator notifies each executor to abort. By doing this, RedT
tolerates replica failures of no more than 1

4 for any partition. We
shall discuss the correctness of the number 3

4 in Section 5.1.1. Note,
for the sub-transaction votes to abort but the transaction decides
to commit, the coordinator notifies its executor to re-write and
commit the log. After receiving the message from the coordinator,
each executor writes the data items if the coordinator decides to
commit, commits/aborts the log, and releases the locks. We shall
discuss the correctness in Section 4.2.2.

Discussion.We first discuss how to handle the case that mul-
tiple replicas of the same partition are deployed in the same data
center, i.e., we do not tolerate data center failures. Let 𝑛 be the
number of replicas per partition in this data center. We logically
split the replicas, that the transaction involves, into 𝑛 groups, each
of which takes one disjoint replica per partition. For each group in
the data center, we select one executor that follows the same logic,
as described before, to execute the sub-transaction in this group.
We then discuss the difference between RedT and other protocols.
In RedT, TAPIR [63] and G-PAC [35], the coordinator communi-
cates with primary and secondary replicas, separately, to eliminate
the synchronization of redo logs from the primary replicas to the
secondary replicas. As opposed to that in TAPIR and G-PAC, every
executor in RedT writes the redo logs directly to the replicas in the
execution phase, further eliminating the prepare messages from the
coordinator to the executors. For RedT and multi-level 2PC, they
both reduce the number of inter-DC communications by layering
the participants. As opposed to that in multi-level 2PC, RedT further
reduces the number of participants within the same data center to

Ti : ri(x);wi(y); commit;

Coordinator

Execution
phase

Commit
phase

（ EXE(Ti) ）

EXE(Ti)

EXE(Ti)

ri(x) wi(y) commitcommit log

ri(x) wi(y)

ri(x) wi(y)

commitcommit log

commitcommit log

log(y)

log(y)

log(y)

Figure 5: Inter-DC transaction processing

a single participant, and transforms the distributed sub-transaction
to the centralized sub-transaction using RDMA verbs.

4 TRANSACTION PROCESSING
In this section, we first introduce key data structures for concur-
rency control and logging. We then elaborate on how to do transac-
tion processing. Finally, we analyze the number of inter-DC round-
trips and communications.

4.1 Key Data Structures
To facilitate concurrency control, we propose an RDMA-friendly
hash table that is used to efficient retrieval data items located in
the other nodes of the same data center, as well as some auxiliary
information. To facilitate logging, we propose an RDMA-friendly
circular buffer that maintains redo logs only.

Data items and the auxiliary information. In each node, we
maintain a set of primary/secondary replicas in its MemStore. For
each data item 𝑥 , 𝑥 is associated with a latch 𝑥 .𝑙𝑎𝑡𝑐ℎ, a lock 𝑥 .𝑙𝑜𝑐𝑘 ,
a timestamp 𝑥 .𝑤𝑡𝑠 , and a list 𝑥 .𝑙𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟𝑠 of transactions that
acquire the lock. 𝑥 .𝑙𝑎𝑡𝑐ℎ is used to prevent 𝑥 from being modified
simultaneously by other transactions. Note 𝑥 .𝑙𝑜𝑐𝑘 is a compound
data object with two variables 𝑙𝑜𝑐𝑘𝑇𝑦𝑝𝑒 and 𝑙𝑜𝑐𝑘𝑁𝑢𝑚. The value
of 𝑥 .𝑙𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑇𝑦𝑝𝑒 is either 𝑁𝑈𝐿𝐿, or 𝐸𝑋 , or 𝑆𝐻 , meaning there is
either no lock, or an exclusive lock, or one/more shared locks on 𝑥 ,
respectively. 𝑥 .𝑙𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑁𝑢𝑚 represents howmany shared locks on
𝑥 are granted. To facilitate the implementation using RDMA verbs,
the size of list 𝑥 .𝑙𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟𝑠 is fixed. In this way, when the list is
full, any transaction that applies to acquire the lock on 𝑥 would
abort. If the transaction commits or aborts, it will be removed from
the list 𝑥 .𝑙𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟𝑠 . 𝑥 .𝑤𝑡𝑠 is the maximum commit timestamp of
transactions that have ever written 𝑥 . It is used for the coordina-
tor to check whether versions from different replicas of the same
partition are consistent.

RDMA-friendly hash table. To make direct access to each
data item 𝑥 in any replicas from other nodes in the same data
center using RDMA verbs, we follow [36] to build a special RDMA-
friendly hash table where each key is the primary key, 𝑥 .𝑃𝐾 , of 𝑥 ,
and its corresponding value is the address 𝑥 .𝑎𝑑𝑑𝑟 of 𝑥 in MemStore.
Using 𝑥 .𝑎𝑑𝑑𝑟 , we can issue RDMA verbs to fetch 𝑥 and its auxiliary
information. Given a primary key 𝑥 .𝑃𝐾 , it is theoretically shown
that, based on this hash table, it takes an average of 1.6 and a
maximum of 3 RDMA invocations to obtain 𝑥 .𝑎𝑑𝑑𝑟 [36].

RDMA-friendly circular buffer. We maintain a single RDMA-
friendly circular buffer in the MemStore of each node. It stores

1375

redo logs only. An executor in one node can directly write log
entries to the circular buffer of another node in the same data
center using RDMA verbs. An overview of the circular buffer is
shown in Figure 4. The buffer has a fixed number of slots, each of
which can contain one log entry. In our design, a write is modeled
as a change. a primary key 𝑥 .𝑃𝐾 of data item 𝑥 , 𝑠𝑖𝑧𝑒 and 𝑐𝑜𝑛𝑡𝑒𝑛𝑡
of the write. A log entry comprises 𝑡𝑖𝑑 , the ID of the transaction
𝑇 , the number 𝑐ℎ𝑎𝑛𝑔𝑒𝐶𝑛𝑡 of changes, the commit timestamp 𝑐𝑡𝑠 of
𝑇 , and the status 𝑠𝑡𝑎𝑡𝑢𝑠 of the transaction. To facilitate the writing
of logs, we maintain two variables head and tail for each circular
buffer. Because of the concurrent writes from different nodes, we
carefully design the logging algorithm, which will be elaborated
on in Section 4.2, to make sure the writes are safe.

Discussion. Note that, the circular buffer in our work is similar
to that in Active-Memory [62]. Yet, we have two differences. On
the one hand, Active-Memory uses undo log, while ours uses a redo
log. On the other hand, we employ a single circular buffer per node,
while Active-Memory employs a set of circular buffers per node
with each for a separate target node to be communicated. For this
reason, we can make better use of memory space, especially when
the workloads to nodes are skewed. As the cost, concurrent up-
dates to the buffer from multiple nodes could become an overhead.
To solve this problem, we make a careful design of our logging
algorithm, which will be discussed in Section 4.2.2.

4.2 Pre-Write-Log Mechanism
Thanks to the RDMA network, we present the pre-write-log mech-
anism, leveraging the shared-memory architecture to process sub-
transactions in each data center. Next, we elaborate on how to do
concurrency control and logging in each data center, respectively.

4.2.1 Concurrency Control. For brevity, given a data item 𝑥 , let
R𝑖𝑥 be the 𝑖-th replica, N(R𝑖𝑥) be the node that R𝑖𝑥 locates in, and
N(R𝑖𝑥) .𝐷𝐶 be the data center thatN(R𝑖𝑥) locates in. InN(R𝑖𝑥) .𝐷𝐶 ,
we select one executor 𝐸𝑋𝐸 (𝑇𝑖) to do concurrency control and
logging. The main idea of No-Wait using RDMA is as follows.

In the execution phase, before any read 𝑟𝑖 (𝑥) or write𝑤𝑖 (𝑥),
𝐸𝑋𝐸 (𝑇𝑖) first issues an RDMA verb, namely RDMA_CAS, to ac-
quire a 𝑙𝑎𝑡𝑐ℎ on 𝑥 from replica (R𝑖𝑥), which prevents 𝑥 from being
modified simultaneously by other transactions. If it fails to acquire
the latch,𝑇𝑖 aborts; otherwise, 𝐸𝑋𝐸 (𝑇𝑖) issues another RDMA verb,
namely RDMA_READ, to read 𝑥 .𝑙𝑜𝑐𝑘 which maintains all locks of
𝑥 . If there exists a conflict with 𝑇𝑖 on 𝑥 , 𝑇𝑖 aborts and releases the
latch on 𝑥 ; otherwise, 𝐸𝑋𝐸 (𝑇𝑖) acquires a new lock and releases the
latch on 𝑥 by issuing another RDMA verb, namely RDMA_WRITE
in the remote node. Upon the sub-transaction aborts, the executor
𝐸𝑋𝐸 (𝑇𝑖) replies the abort message to the coordinator. After the
accomplishment of all operations, the executor 𝐸𝑋𝐸 (𝑇𝑖) writes the
redo logs, and replies the commit message to the coordinator.

In the commit phase, the coordinator collects the commit/abort
messages from each executor 𝐸𝑋𝐸 (𝑇𝑖). If more than 3

4 replicas of
each partition have the up-to-date data items that 𝑇𝑖 reads/writes
and vote to commit, the coordinator makes the commit decision,
generates a commit timestamp, and notifies each executor to com-
mit the sub-transaction; otherwise, it makes the abort decision and
notifies each executor to abort the sub-transaction. The reason
why we check how many replicas have the up-to-date data items is

Algorithm 1: RedT’s data access functions
1 Function GetItemAddr(𝑥.𝑃𝐾):
2 return 𝑥.𝑎𝑑𝑑𝑟 ← ℎ𝑎𝑠ℎ𝑇𝑎𝑏𝑙𝑒 (𝑥.𝑃𝐾) ;
3 Function AcqLatch(𝑥.𝑎𝑑𝑑𝑟):
4 return 𝑅𝐷𝑀𝐴_𝐶𝐴𝑆 (𝑥.𝑎𝑑𝑑𝑟, 𝑥 .𝑙𝑎𝑡𝑐ℎ, 0, 1) ;
5 Function AcqLock(𝑥.𝑃𝐾,𝑇𝑖 , 𝑛𝑒𝑤𝐿𝑜𝑐𝑘):
6 𝑥.𝑎𝑑𝑑𝑟 ← 𝐺𝑒𝑡𝐼𝑡𝑒𝑚𝐴𝑑𝑑𝑟 (𝑥.𝑃𝐾) ;
7 while ¬𝐴𝑐𝑞𝐿𝑎𝑡𝑐ℎ (𝑥.𝑎𝑑𝑑𝑟) do goto line 7;
8 𝑥 ← 𝑅𝐷𝑀𝐴_𝑅𝐸𝐴𝐷 (𝑥.𝑎𝑑𝑑𝑟) ;
9 if 𝑐𝑜𝑛𝑓 𝑙𝑖𝑐𝑡 (𝑥.𝑙𝑜𝑐𝑘,𝑛𝑒𝑤𝐿𝑜𝑐𝑘) then
10 return 𝑅𝐷𝑀𝐴_𝐶𝐴𝑆 (𝑥.𝑎𝑑𝑑𝑟, 𝑥 .𝑙𝑎𝑡𝑐ℎ, 1, 0) ;
11 𝑥.𝑙𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑇 𝑦𝑝𝑒 ← 𝑛𝑒𝑤𝐿𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑇 𝑦𝑝𝑒 ;
12 𝑥.𝑙𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑁𝑢𝑚 ++;
13 𝑥.𝑙𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟𝑠 ← 𝑇𝑖 .𝑡𝑖𝑑 ∪ 𝑥.𝑙𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟𝑠 ;
14 𝑥.𝑙𝑎𝑡𝑐ℎ ← 0; return 𝑅𝐷𝑀𝐴_𝑊𝑅𝐼𝑇𝐸 (𝑥.𝑎𝑑𝑑𝑟, 𝑥) ;
15 Function RlsLock(𝑥.𝑃𝐾,𝑇𝑖 , 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒):
16 𝑥.𝑎𝑑𝑑𝑟 ← 𝐺𝑒𝑡𝐼𝑡𝑒𝑚𝐴𝑑𝑑𝑟 (𝑥.𝑃𝐾) ;
17 while ¬𝐴𝑐𝑞𝐿𝑎𝑡𝑐ℎ (𝑥.𝑎𝑑𝑑𝑟) do goto line 16;
18 𝑥 ← 𝑅𝐷𝑀𝐴_𝑅𝐸𝐴𝐷 (𝑥.𝑎𝑑𝑑𝑟) ;
19 𝑥.𝑙𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑁𝑢𝑚 - -;
20 𝑥.𝑙𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟𝑠 ← 𝑥.𝑙𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟𝑠 − 𝑇𝑖 .𝑡𝑖𝑑 ;
21 if 𝑥.𝑙𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑁𝑢𝑚 = 0 then 𝑥.𝑙𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑇 𝑦𝑝𝑒 ← 𝑁𝑈𝐿𝐿; ;
22 if 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒 ≠ 𝑁𝑈𝐿𝐿 and 𝑥.𝑤𝑡𝑠 < 𝑇𝑖 .𝑐𝑡𝑠 then
23 𝑥.𝑑𝑎𝑡𝑎 ← 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒 ; 𝑥.𝑤𝑡𝑠 ← 𝑇𝑖 .𝑐𝑡𝑠 ;

24 𝑥.𝑙𝑎𝑡𝑐ℎ ← 0; return 𝑅𝐷𝑀𝐴_𝑊𝑅𝐼𝑇𝐸 (𝑥.𝑎𝑑𝑑𝑟, 𝑥) ;
25 Function Read(𝑥.𝑃𝐾,𝑇𝑖):
26 𝑥.𝑎𝑑𝑑𝑟 ← 𝐺𝑒𝑡𝐼𝑡𝑒𝑚𝐴𝑑𝑑𝑟 (𝑥.𝑃𝐾) ;
27 𝑛𝑒𝑤𝐿𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑇 𝑦𝑝𝑒 ← 𝑆ℎ;
28 if ¬𝐴𝑐𝑞𝐿𝑜𝑐𝑘 (𝑥.𝑃𝐾,𝑇𝑖 , 𝑛𝑒𝑤𝐿𝑜𝑐𝑘) then 𝐴𝑏𝑜𝑟𝑡 𝑇𝑖 ;
29 𝑥 ← 𝑅𝐷𝑀𝐴_𝑅𝐸𝐴𝐷 (𝑥.𝑎𝑑𝑑𝑟) ;
30 𝑇𝑖 .𝑟𝑠 ← {𝑥 } ∪𝑇𝑖 .𝑟𝑠 ;
31 Function Write(𝑥.𝑃𝐾,𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒,𝑇𝑖):
32 𝑛𝑒𝑤𝐿𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑇 𝑦𝑝𝑒 ← 𝐸𝑥 ;
33 if ¬𝐴𝑐𝑞𝐿𝑜𝑐𝑘 (𝑥.𝑃𝐾,𝑇𝑖 , 𝑛𝑒𝑤𝐿𝑜𝑐𝑘) then 𝐴𝑏𝑜𝑟𝑡 𝑇𝑖 ;
34 𝑇𝑖 .𝑤𝑠 ← {𝑥 } ∪𝑇𝑖 .𝑤𝑠 ;
35 Function Commit(𝑇𝑖):
36 foreach 𝑘 ∈ 𝑇𝑖 .𝑟𝑠 do 𝑅𝑙𝑠𝐿𝑜𝑐𝑘 (𝑘.𝑃𝐾,𝑇𝑖 , 𝑁𝑈𝐿𝐿) ;
37 foreach 𝑘 ∈ 𝑇𝑖 .𝑤𝑠 do
38 𝑅𝑙𝑠𝐿𝑜𝑐𝑘 (𝑘.𝑃𝐾,𝑇𝑖 , 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒) ;

that due to the failure reasons, the minor portion of replicas may
not be updated by the latest commit transaction, causing the later
transactions to read the inconsistent data items. For each executor,
after receiving the message from the coordinator, it writes the com-
mit/abort log (discussed later), makes every write 𝑤𝑖 (𝑥) to each
replica once 𝑇𝑖 is decided to commit, and releases all the granted
locks if necessary.

For illustration purposes, we list some key functions in Algo-
rithm 1. Function GetItemAddr is used to obtain 𝑥 .𝑎𝑑𝑑𝑟 of 𝑥 by
taking primary key 𝑥 .𝑃𝐾 based on the RDMA-friendly hash ta-
ble (lines 1–2). Function AcqLatch is used to acquire a latch on
𝑥 to prevent 𝑥 from being modified by other transactions simul-
taneously (lines 3–4). Function AcqLock is used to acquire an ex-
clusive or shared lock on 𝑥 . After acquiring the latch on 𝑥 (line

1376

7), 𝐸𝑋𝐸 (𝑇𝑖) issues an 𝑅𝐷𝑀𝐴_𝑅𝐸𝐴𝐷 to obtain 𝑥 .𝑙𝑜𝑐𝑘 and checks
whether there is an conflict lock on 𝑥 (lines 8–9). If there is an ex-
clusive lock on 𝑥 , or 𝑇𝑖 attempts to acquire an exclusive lock while
𝑥 .𝑙𝑜𝑐𝑘.𝑙𝑜𝑐𝑘𝑇𝑦𝑝𝑒 = 𝑆ℎ, it fails (line 10); otherwise, 𝐸𝑋𝐸 (𝑇𝑖) updates
𝑥 .𝑙𝑜𝑐𝑘 and 𝑥 .𝑙𝑜𝑐𝑘𝑂𝑤𝑛𝑒𝑟𝑠 to acquire a new lock and releases the
latch by issuing 𝑅𝐷𝑀𝐴_𝑊𝑅𝐼𝑇𝐸 (lines 11–14). Following a reverse
logic of function AcqLock, function RlsLock is used to release the
remote lock and update the data item for write operations properly
(lines 15–24). Note that we follow Thomas write rule [48] to update
the data item (lines 22–23) with its correctness given in Section
4.2.2. Functions Read and Write are used to perform remote read
and write. For read, 𝐸𝑋𝐸 (𝑇𝑖) first tries to acquire a shared lock on
𝑥 using function AcqLock (line 28). If the lock is acquired, 𝐸𝑋𝐸 (𝑇𝑖)
issues another 𝑅𝐷𝑀𝐴_𝑅𝐸𝐴𝐷 to read 𝑥 and adds 𝑥 to the read set
𝑇𝑖 .𝑟𝑠 (lines 29–30). For write, 𝐸𝑋𝐸 (𝑇𝑖) uses function AcqLock to ac-
quire a remote exclusive lock on 𝑥 , and adds 𝑥 to the write set𝑇𝑖 .𝑤𝑠
if the lock is acquired (lines 33–34). Upon committing or aborting,
𝐸𝑋𝐸 (𝑇𝑖) sequentially releases the locks (lines 35–38).

4.2.2 Logging. Logging is performed in each data center to persist
the outcome of concurrency control and the data written by sub-
transactions. To do this, 𝐸𝑋𝐸 (𝑇𝑖) first performs redo log replication
to write redo logs to the log buffer in each data node contain-
ing corresponding replicas. Note that we ensure that the redo log
replication is finished before entering the commit phase. After re-
ceiving the commit request from the coordinator, 𝐸𝑋𝐸 (𝑇𝑖) then
triggers commit log replication to update the status of𝑇𝑖 to commit-
ted/aborted. Finally, each data node has a log replay thread to update
data items according to the persisted redo logs asynchronously.

Redo log replication. 𝐸𝑋𝐸 (𝑇𝑖) performs the concurrency con-
trol over each replica separately. After the accomplishment of lock-
ing/reading/writing over replicas, 𝐸𝑋𝐸 (𝑇𝑖) writes the redo logs to
RDMA-friendly circular buffers in MemStores of the nodes that
these replicas locate in using RDMA verbs. Take transaction𝑇𝑖 with
two operations 𝑟𝑖 (𝑥) and𝑤𝑖 (𝑦) in Figure 5 for an example. Because
𝐷𝐶1, 𝐷𝐶2, and 𝐷𝐶3 contain the replicas of 𝑥 and 𝑦, we then select
one executor in each data center to process the sub-transaction of𝑇𝑖 .
During the execution phase, first, the coordinator packs 𝑟𝑖 (𝑥) and
𝑤𝑖 (𝑦) into the sub-transaction, and sends it to 𝐸𝑋𝐸 (𝑇𝑖) for each
data center; second, 𝐸𝑋𝐸 (𝑇𝑖) performs the concurrency control
over the replicas, and writes the redo logs only to the nodes with
replicas to be written (highlighted in red of Figure 5), i.e., 𝐸𝑋𝐸 (𝑇𝑖)
in 𝐷𝐶1/𝐷𝐶2/𝐷𝐶3 writes the redo log of𝑤𝑖 (𝑦) to the circular buffer
in N(R1𝑦)/N(R2𝑦)/ N(R3𝑦) using RDMA verbs. If 𝐸𝑋𝐸 (𝑇𝑖) fails to
acquire the lock on a data item, it skips writing the redo logs. Finally,
𝐸𝑋𝐸 (𝑇𝑖) notifies the commit/abort messages to the coordinator.

We present how to directly write redo logs to other data nodes of
the data center using RDMA verbs in Algorithm 2. For each write
𝑤𝑖 (𝑥) in a write set𝑤𝑠 , 𝐸𝑋𝐸 (𝑇𝑖) builds a change 𝑐ℎ𝑔 for 𝑥 (line 11)
using function ConstructChange (lines 1–3). 𝐸𝑋𝐸 (𝑇𝑖) collects the
changes into a batch that is sent to the same node (lines 10–12).
For each node N in the data center, 𝐸𝑋𝐸 (𝑇𝑖) builds a log entry
𝑒𝑛𝑡 based on the changes 𝑐ℎ𝑔𝑠 [N], and writes 𝑒𝑛𝑡 directly to the
circular buffer ofN (lines 13–21). To do this, 𝐸𝑋𝐸 (𝑇𝑖) reads the tail
position of the target buffer by issuing an RDMA_FAA (line 15). If
the tail position exceeds the head position by one round, existing log
entries would be overwritten. To solve this problem, 𝐸𝑋𝐸 (𝑇𝑖) issues

Algorithm 2: RedT’s log write functions
1 Function ConstructChange(𝑥):
2 𝑐ℎ𝑔.𝑃𝐾←𝑥.𝑃𝐾 ; 𝑐ℎ𝑔.𝑠𝑖𝑧𝑒←𝑥.𝑠𝑖𝑧𝑒 ; 𝑐ℎ𝑔.𝑐𝑜𝑛𝑡𝑒𝑛𝑡←𝑥.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 ;
3 return chg;

4 Function ConstructEntry(𝑐ℎ𝑔𝑠, 𝑡𝑖𝑑, 𝑠𝑡𝑎𝑡𝑢𝑠):
5 foreach 𝑖 ∈ [0, 𝑐ℎ𝑔𝑠.𝑠𝑖𝑧𝑒) do 𝑒𝑛𝑡 .𝑐ℎ𝑎𝑛𝑔𝑒 [𝑖] ← 𝑐ℎ𝑔𝑠 [𝑖] ;
6 𝑒𝑛𝑡 .𝑐ℎ𝑎𝑛𝑔𝑒𝐶𝑛𝑡 ← 𝑐ℎ𝑔𝑠.𝑠𝑖𝑧𝑒 ;
7 𝑒𝑛𝑡 .𝑡𝑖𝑑 ← 𝑡𝑖𝑑 ; 𝑒𝑛𝑡 .𝑐𝑡𝑠 ← 0; 𝑒𝑛𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑠𝑡𝑎𝑡𝑢𝑠 ;
8 return ent;

9 Function WriteLog(𝑇𝑖 , 𝑤𝑠, 𝑖𝑠𝐴𝑐𝑡𝑖𝑣𝑒𝐸𝑥𝑒):
10 foreach 𝑥 ∈ 𝑤𝑠 do
11 𝑐ℎ𝑔← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐶ℎ𝑎𝑛𝑔𝑒 (𝑥) ;
12 𝑐ℎ𝑔𝑠 [N(R𝑠𝑥)] ← 𝑐ℎ𝑔𝑠 [N(R𝑠𝑥)] ∪ 𝑐ℎ𝑔;
13 foreach 𝑛𝑜𝑑𝑒 N and ¬𝑐ℎ𝑔𝑠 [N] .𝑒𝑚𝑝𝑡𝑦 () do
14 𝑒𝑛𝑡 ← 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐸𝑛𝑡𝑟𝑦 (𝑐ℎ𝑔𝑠 [N],𝑇𝑖 .𝑡𝑖𝑑, 𝐿𝑜𝑔𝑔𝑒𝑑) ;
15 𝑖𝑑𝑥 ← 𝑅𝐷𝑀𝐴_𝐹𝐴𝐴(N.𝑙𝑜𝑔𝐵𝑢𝑓 .𝑡𝑎𝑖𝑙 .𝑎𝑑𝑑𝑟, 1) ;
16 while 𝑖𝑑𝑥 − 𝑙𝑜𝑔𝐻𝑒𝑎𝑑 [N] ≥ 𝐵𝑈𝐹𝑆𝐼𝑍𝐸 do
17 ℎ𝑒𝑎𝑑_𝑎𝑑𝑑𝑟 ← N.𝑙𝑜𝑔𝐵𝑢𝑓 .ℎ𝑒𝑎𝑑.𝑎𝑑𝑑𝑟 ;
18 𝑙𝑜𝑔𝐻𝑒𝑎𝑑 [N]←𝑅𝐷𝑀𝐴_𝑅𝐸𝐴𝐷 (ℎ𝑒𝑎𝑑_𝑎𝑑𝑑𝑟) ;
19 𝑒𝑛𝑡_𝑎𝑑𝑑𝑟 ← N.𝑙𝑜𝑔𝐵𝑢𝑓 .𝑒𝑛𝑡𝑟𝑦 [𝑖𝑑𝑥 % 𝐵𝑈𝐹𝑆𝐼𝑍𝐸] .𝑎𝑑𝑑𝑟 ;
20 𝑅𝐷𝑀𝐴_𝑊𝑅𝐼𝑇𝐸 (𝑒𝑛𝑡_𝑎𝑑𝑑𝑟, 𝑒𝑛𝑡) ;
21 𝑇𝑖 .𝑙𝑜𝑔𝑆𝑒𝑡 ← 𝑇𝑖 .𝑙𝑜𝑔𝑆𝑒𝑡 ∪ ⟨𝑒𝑛𝑡_𝑎𝑑𝑑𝑟, 𝑒𝑛𝑡 ⟩;

22 Function CommitLog(𝑇𝑖):
23 foreach ⟨𝑒𝑛𝑡_𝑎𝑑𝑑𝑟, 𝑒𝑛𝑡 ⟩ ∈ 𝑇𝑖 .𝑙𝑜𝑔𝑆𝑒𝑡 do
24 𝑒𝑛𝑡 .𝑐𝑡𝑠 ← 𝑇𝑖 .𝑐𝑡𝑠 ; 𝑒𝑛𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝑇𝑖 .𝑠𝑡𝑎𝑡𝑢𝑠 ;
25 𝑅𝐷𝑀𝐴_𝑊𝑅𝐼𝑇𝐸 (𝑒𝑛𝑡_𝑎𝑑𝑑𝑟, 𝑒𝑛𝑡) ;

26 Function ReplayLog(N):
27 𝑚𝑜𝑣𝑒 ← 𝑡𝑟𝑢𝑒 ; ℎ ← N.𝑙𝑜𝑔𝐵𝑢𝑓 .ℎ𝑒𝑎𝑑 ;
28 𝑡 ←𝑚𝑖𝑛 (N.𝑙𝑜𝑔𝐵𝑢𝑓 .𝑡𝑎𝑖𝑙, ℎ + 𝐵𝑈𝐹𝑆𝐼𝑍𝐸) ;
29 foreach 𝑖𝑑𝑥 ∈ [ℎ, 𝑡) do
30 𝑒𝑛𝑡 ← N.𝑙𝑜𝑔𝐵𝑢𝑓 .𝑒𝑛𝑡𝑟𝑦 [𝑖𝑑𝑥 % 𝐵𝑈𝐹𝑆𝐼𝑍𝐸];
31 if 𝑒𝑛𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 then
32 Apply the changes of 𝑒𝑛𝑡 in node N locally;

33 if𝑒𝑛𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 =𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 𝑜𝑟 𝐴𝑏𝑜𝑟𝑡𝑒𝑑 𝑜𝑟 𝐹𝑙𝑢𝑠ℎ𝑒𝑑 then
34 𝑒𝑛𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠 ← 𝐹𝑙𝑢𝑠ℎ𝑒𝑑 ;
35 if𝑚𝑜𝑣𝑒 then
36 𝑒𝑛𝑡 .𝑠𝑡𝑎𝑡𝑢𝑠← 𝐼𝑛𝑖𝑡𝑒𝑑 ; ++N.𝑙𝑜𝑔𝐵𝑢𝑓 .ℎ𝑒𝑎𝑑 ;

37 else 𝑚𝑜𝑣𝑒 ← 𝑓 𝑎𝑙𝑠𝑒 ;

an RDMA_READ to fetch the head position, and if an overwrite
exists, 𝐸𝑋𝐸 (𝑇𝑖) continuously issues RDMA_READs to fetch the
head position until it is updated by the target node to make the tail
position safely writable (lines 16–18). Note that, concurrent reads to
the same buffer from different executors could happen. RDMA_FAA
guarantees the atomicity that concurrent reads can return different
tail positions. If the tail position is safely writable, 𝐸𝑋𝐸 (𝑇𝑖) issues
an RDMA_WRITE to write the log entry to the circular buffer
(lines 19–21). By realizing that directly writing the log entry to
the tail position without checking the head position is often safe,
we make an optimization to reduce the number of RDMA_READs
of head positions. we design a lazy check mechanism, in which
𝐸𝑋𝐸 (𝑇𝑖) maintains a local head position 𝑙𝑜𝑔𝐻𝑒𝑎𝑑 (lines 16–18).
Only if the tail position exceeds 𝑙𝑜𝑔𝐻𝑒𝑎𝑑 by one round, 𝐸𝑋𝐸 (𝑇𝑖)

1377

Table 1: A comparison of existing protocols with RedT in
terms of inter-DC communications and round-trips. 𝑇𝑛𝑒 is a
non-read-only inter-DC transaction, 𝑇𝑟𝑒 is a read-only inter-
DC transaction, 𝑇𝑛𝑎 is a non-read-only intra-DC transaction,
and𝑇𝑟𝑎 is a read-only intra-DC transaction. 𝐾 =

∑︁𝑛
𝑖=2 (𝑎𝑖 +𝑏𝑖).

of round-tripsProtocol Phase # of communications
𝑇𝑛𝑒 𝑇𝑟𝑒 𝑇𝑛𝑎 𝑇𝑟𝑎

2PC-
Paxos

exe 2𝐾 1 1 0 0
prep 2

∑︁𝑛
𝑖=2 𝑎𝑖+2𝑚

∑︁𝑛
𝑖=1 𝑎𝑖+2𝑀 2∼3 1 2 1

commit 2𝐾 + 2𝑚∑︁𝑛
𝑖=1 𝑎𝑖 2 1 1 0

EP-
Paxos

exe 2𝐾 + 2𝑚∑︁𝑛
𝑖=1 𝑎𝑖 + 2𝑀 3 2 2 1

commit 2𝐾 + 2𝑚∑︁𝑛
𝑖=1 𝑎𝑖 2 1 1 0

MDCC commit
2
∑︁𝑛
𝑖=2 (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖) 1 1 1 1

2𝐾 + 2𝑚∑︁𝑛
𝑖=1 (𝑎𝑖 + 𝑏𝑖) 2 2 1 1

TAPIR
/G-PAC

exe 2
∑︁𝑛
𝑖=2 (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖) 1 1 1 1

prep 2
∑︁𝑛
𝑖=2 (𝑎𝑖 + 𝑐𝑖) 1 0 1 0

commit 2
∑︁𝑛
𝑖=2 (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖) 1 1 1 1

RedT
exe 2(𝑛 − 1) 1 1 1 1

commit 2(𝑛 − 1) 1 1 1 1

then issues an RDMA_READ to read the head position and update
𝑙𝑜𝑔𝐻𝑒𝑎𝑑 properly (lines 17–18). Due to a later update of logs in the
commit phase, 𝐸𝑋𝐸 (𝑇𝑖) locally maintains all memory addresses of
log entries in other nodes (lines 21).

Commit log replication. After receiving the message from the
coordinator, each executor enters the commit phase. We first dis-
cuss the case when the coordinator decides to commit. If 𝐸𝑋𝐸 (𝑇𝑖)
votes to commit, it writes the commit log by updating 𝑐𝑡𝑠 and 𝑠𝑡𝑎𝑡𝑢𝑠
of the redo log to 𝑇𝑖 .𝑐𝑡𝑠 and 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 ; otherwise, 𝐸𝑋𝐸 (𝑇𝑖) modi-
fies the status of the sub-transaction from aborted to committed,
and follows the logic of function WriteLog to write a redo log by
setting 𝑐𝑡𝑠 = 𝑇𝑖 .𝑐𝑡𝑠 and 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 . We now discuss why
it is correct to directly modify the status of the sub-transaction.
Because the commit decision of 𝑇𝑖 indicates that 𝑇𝑖 still holds locks
on more than 3

4 of replicas for each partition, and we follow 2PL
to do concurrency control, for any concurrent transaction 𝑇𝑗 with
conflicts with 𝑇𝑖 , the serializable order between 𝑇𝑖 and 𝑇𝑗 is either
𝑇𝑗 → 𝑇𝑖 if 𝑇𝑗 has already committed or otherwise 𝑇𝑖 → 𝑇𝑗 . To help
write the data items in less than 1

4 of replicas that vote to abort,
we write the redo log to the circular buffers in the corresponding
data nodes and replay the logs asynchronously after the commit of
𝑇𝑖 . If (𝑇𝑗 → 𝑇𝑖) or (𝑇𝑖 → 𝑇𝑗 and 𝑇𝑗 has not committed), replaying
the log does not affect the correctness of𝑇𝑗 ; If𝑇𝑖 → 𝑇𝑗 and𝑇𝑗 have
committed, replaying the logs would overwrite the data items that
𝑇𝑗 writes. To solve this problem, we follow Thomas write rule to
apply all changes of 𝑇𝑖 . We then discuss the case when the coor-
dinator decides to abort. If 𝐸𝑋𝐸 (𝑇𝑖) votes to commit, it writes the
abort log by setting 𝑠𝑡𝑎𝑡𝑢𝑠 of the redo log to 𝐴𝑏𝑜𝑟𝑡𝑒𝑑 ; otherwise, it
returns. Details of commit log replication in each executor are given
in function CommitLog of Algorithm 2, which is self-explained.

Asynchronous redo log replay. Because data items in replicas
might not be updated even after the transaction commits due to
the node failures, to make them consistent with the other replicas,
we create a separate thread in each node that continuously scans

the circular buffer and replays redo logs for replicas if its status is
committed. In the 𝑅𝑒𝑝𝑙𝑎𝑦𝐿𝑜𝑔 function of Algorithm 2, we scan all
entries from head to tail in the local log buffer (lines 27–29). Once
encountering an entry with a𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 status, we follow Thomas
write rule to apply all changes (lines 31–32). That is, a change is
replayed on a data item 𝑥 only when the commit timestamp 𝑐𝑡𝑠
recorded in the entry is larger than 𝑥 .𝑤𝑡𝑠 , where 𝑥 .𝑤𝑡𝑠 is 𝑐𝑡𝑠 of
the last entry or transaction that modifies 𝑥 . Finally, we update the
status of each entry with 𝐴𝑏𝑜𝑟𝑡𝑒𝑑 or 𝐶𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑 to 𝐹𝑙𝑢𝑠ℎ𝑒𝑑 , and
if the head is movable and the entry of the head position can be
released for use, we set the status of the entry to 𝐼𝑛𝑖𝑡𝑒𝑑 and move
forward of the head by a slot (lines 33–36). The head cannot move
forward any further during this round of scan once encountering
an entry with the 𝐿𝑜𝑔𝑔𝑒𝑑 or 𝐼𝑛𝑖𝑡𝑒𝑑 status (line 37).

4.3 Analysis on Inter-DC Round-trips
Given a non-read-only inter-DC transaction 𝑇𝑛𝑒 , let DC(𝑇𝑛𝑒) be
the collection of data centers that𝑇𝑛𝑒 involves. For brevity, symbol𝑛
is set to the number of data centers inDC(𝑇𝑛𝑒), i.e.,𝑛 = |DC(𝑇𝑛𝑒) |,
𝑚 (𝑚 > 0) is the fixed number of secondary replicas per partition,
and𝑀 (𝑀 > 0) is the fixed number of backups for each coordinator.
In each 𝐷𝐶𝑖 ∈ DC(𝑇𝑛𝑒), suppose that 𝑇𝑛𝑒 writes/reads data items
to/from primary (secondary) replicas in a collection of 𝑎𝑖 (𝑐𝑖) /
𝑏𝑖 (𝑑𝑖) nodes , respectively. That is, 𝑎𝑖 = |{N (R𝑝𝑥) |𝑥 ∈ 𝑇𝑛𝑒 .𝑤𝑠}|,
𝑏𝑖 = |{N (R𝑝𝑥) |𝑥 ∈ 𝑇𝑛𝑒 .𝑟𝑠}|, 𝑐𝑖 = |{N (R𝑠𝑥) |𝑥 ∈ 𝑇𝑛𝑒 .𝑤𝑠}| and 𝑑𝑖 =
|{N (R𝑠𝑥) |𝑥 ∈ 𝑇𝑛𝑒 .𝑟𝑠}|. By default, if there are overlaps, nodes are
counted only once with the priority of 𝑎𝑖 ,𝑏𝑖 , 𝑐𝑖 , and𝑑𝑖 in descending
order. For illustration, let 𝐾 =

∑︁𝑛
𝑖=2 (𝑎𝑖 + 𝑏𝑖). Table 1 summarizes

the number of inter-DC communications and inter-DC round-trips
to process 𝑇𝑛𝑒 for RedT and other state-of-the-art protocols. To be
fair, all protocols are analyzed under serializability and use 2PL for
concurrency control. Without loss of generality, the coordinator of
𝑇𝑛𝑒 is assumed to locate in𝐷𝐶1 ∈ DC(𝑇𝑛𝑒). Compared with that of
inter-DC communications over TCP/IP network, the cost of intra-
DC communications using RDMA-capable networks is negligible
(see Figure 1(a)). Thus, we only take the former into account.

For 2PC-Paxos, there are 5 to 6 inter-DC round-trips in total
to process 𝑇𝑛𝑒 . We now step through the processing with refer-
ence to Figure 2. For round-trip ① in the execution (abbreviated
as exe) phase, 2𝐾 communications are required for the coordina-
tor to send/receive messages to/from the primary replicas. The
prepare (abbreviated as prep) phase takes a maximum of 3 round-
trips including ②, ③ and ④, for which 2

∑︁𝑛
𝑖=2 𝑎𝑖 , 2𝑚

∑︁𝑛
𝑖=1 𝑎𝑖 and

2𝑀 communications are required, respectively. For the special case
that all primary replicas in 𝑇𝑛𝑒 .𝑤𝑠 locate in 𝐷𝐶1, i.e.,

∑︁𝑛
𝑖=2 𝑎𝑖 = 0,

round-trip ② can be eliminated, resulting in only 2 inter-DC round-
trips in the prepare phase. Similarly, in the commit phase, pro-
cessing 𝑇𝑛𝑒 requires 2 inter-DC round-trips that are ⑤ and ⑥, and
2𝐾+2𝑚∑︁𝑛

𝑖=1 𝑎𝑖 communications in total, where 2𝐾 is the number of
communications that are used to release the locks on data items in
other nodes. As an optimization of the standard 2PC-Paxos protocol,
Early Prepare [46] reduces one potential round-trip by combining
the prepare phase with the execution phase. Early Prepare also
writes redo logs in the execution phase, as RedT does. However,
unlike Early Prepare, which runs sub-transactions in data node

1378

granularity, RedT runs sub-transactions in data center granular-
ity, and therefore achieves lower coordination overhead and fewer
inter-DC communications, which is verified in Table 2. Besides,
Early Prepare is proposed for systems without replication, while
RedT is designed for replicated systems. To make a fair comparison,
we extend it to the replicated system by introducing the standard
Paxos protocol for replication. We name this implementation EP-
Paxos for brevity, which requires 5 inter-DC round-trips in total to
process 𝑇𝑛𝑒 . As opposed to 2PC-Paxos, MDCC [28] tries to commit
𝑇𝑛𝑒 after the execution phase. In the absence of conflict or under the
assumption of commutative operations, MDCC can commit with
a single round-trip and 2

∑︁𝑛
𝑖=2 (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖) communications

by accessing all replicas directly. To be fair, we do not consider
the commutative optimization, and set MDCC under serializability.
In the case that any conflict exists, processing 𝑇𝑛𝑒 using MDCC
requires 2 additional network round-trips and 2𝐾 +2𝑚∑︁𝑛

𝑖=1 (𝑎𝑖 +𝑏𝑖)
communications, which are similar to that in the commit phase of
standard 2PC-Paxos. TAPIR [63] or G-PAC [35] requires 3 inter-DC
round-trips to process 𝑇𝑛𝑒 . In the execution phase, the coordinator
sends messages to all replicas involved in a single round-trip. In
the prepare phase, the coordinator directly replicates the redo logs
to the primary and secondary replicas. As a result, it requires 1
round-trip and at least 2

∑︁𝑛
𝑖=2 (𝑎𝑖 + 𝑐𝑖) communications. Similar to

the execution phase, in the commit phase, the coordinator needs
2
∑︁𝑛
𝑖=2 (𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 + 𝑑𝑖) communications with all replicas accessed

in other data centers in a single round-trip. RedT requires exactly 2
inter-DC round-trips. In the execution phase, the coordinator send-
s/receives messages to/from 𝐸𝑋𝐸 (𝑇𝑛𝑒) in other 𝑛−1 data centers in
1 round-trip. The coordinator then decides the committed/aborted
status of𝑇𝑛𝑒 locally by collecting the votes from themessages. In the
commit phase, the decision is sent to each 𝐸𝑋𝐸 (𝑇𝑛𝑒) in other 𝑛 − 1
data centers. After the decision is synchronized, each 𝐸𝑋𝐸 (𝑇𝑛𝑒)
notifies the coordinator with a total of 𝑛 − 1 communications.

We extend the analysis from 𝑇𝑛𝑒 to other three kinds of trans-
actions 𝑇𝑟𝑒 , 𝑇𝑛𝑎 and 𝑇𝑟𝑎 in Table 1. For read-only transactions 𝑇𝑟𝑒
and𝑇𝑟𝑎 , we have 𝑎𝑖 = 0 and 𝑐𝑖 = 0, for 1 ≤ 𝑖 ≤ 𝑛, meaning that it is
unnecessary to synchronize redo logs among writes. For intra-DC
transactions 𝑇𝑛𝑎 and 𝑇𝑟𝑎 , we have 𝑎𝑖 = 0 and 𝑏𝑖 = 0, for 2 ≤ 𝑖 ≤ 𝑛,
meaning that 𝐾 = 0 and it is unnecessary for the coordinator to
send messages to primary replicas in other data centers. For refer-
ence, we list the number of inter-DC round-trips for 𝑇𝑟𝑒 , 𝑇𝑛𝑎 and
𝑇𝑟𝑎 in the last three columns of Table 1, respectively. To summa-
rize, in most cases, RedT enjoys a lower or at least equal number
of inter-DC round-trips and inter-DC communications compared
with existing protocols.

5 FAULT TOLERANCE AND CORRECTNESS
5.1 Fault Tolerance
5.1.1 Node Fault Tolerance. In our design, a node can act as either
a data node, an executor, or a coordinator. Therefore, when a node
fails, we need to perform failure recovery for a loss of data nodes
and coordinators/executors.

Failure recovery of data nodes. As opposed to Paxos/Raft,
RedT follows a stricter condition in which as long as more than
3
4 of the replicas for each partition are still alive, the transaction
keeps running normally; otherwise, if less than 3

4 of the replicas

for any partition vote to commit within a pre-defined timeout,
the coordinator directly enters the commit phase and notifies the
replicas to abort. Upon a failure, it is unnecessary for the replicas in
the failed nodes to release the locks. Instead, RedT finds new data
nodes, restores the failed replicas, and synchronizes the logs from
the other replicas to the new replicas following the logic of Paxos.

Failure recovery of executors. In each data center, there is
an executor that is responsible for acquiring/releasing locks on all
replicas operated by 𝑇 in the same data center, and these locks are
directly maintained with the replicas. In this way, the executor is
stateless. For this reason, once the executor fails, the coordinator
chooses another executor in the same data center to replace the
failed executor and lets it manage the locks on the replicas.

Failure recovery of coordinators. In RedT, the coordinator
maintains the operations and current status of the transaction𝑇 and
is responsible for coordinating the execution of 𝑇 . In the execution
phase, the coordinator sends the operations of 𝑇 to all executors.
Once the coordinator fails, one executor is selected to act as the new
coordinator. Because the status of𝑇 located in the failed coordinator
is lost, we need to restore the status in the new coordinator. To
do this, we adapt the mechanism used in TAPIR [63]. The new
coordinator restores the status by collecting the status of every
healthy replica. If more than 1

2 of the replicas for each partition are
still alive and have the same commit decisions, it means that the
status is committed; otherwise, it means that the status is aborted.
The reason is as follows. The status of a transaction is committed
only if more than 3

4 of replicas for each partition vote to commit,
meaning that at the worst case, 14 of replicas vote to commit fail. In
this way, 12 (34 −

1
4 = 1

2) of replicas still vote to commit. Thus, by
collecting the decisions from at least 1

2 of replicas for each partition,
the new coordinator can restore the status of the transaction. If
more than 1

4 of the replicas fail, the new coordinator needs to wait
until partial replicas are recovered.

5.1.2 Data Center Fault Tolerance. When a minor portion of data
centers fail, in the worst case, the coordinator and some executors of
𝑇 , and some replicas accessed by 𝑇 are lost. In this way, among the
remaining healthy executors, one executor is selected to act as the
new coordinator following the same logic discussed in Section 5.1.1.
If the number of failed replicas does not exceed 1

4 of replicas for
each partition, as discussed in Section 5.1.1, the new coordinator
does not need to restore the executor and replicas of 𝑇 ; otherwise,
when multiple data centers fail, causing more than 1

4 of replicas
for some partitions lost, the new coordinator needs to wait until
the replicas recover. To keep the system having enough healthy
replicas, RedT follows the logic of Paxos to find new data nodes
and restore the failed replicas asynchronously.

5.2 Correctness
To prove correctness, we show that RedT maintains the following
three properties 1) isolation, 2) atomicity, and 3) durability given
up to 1

4 of replicas failure in each partition.
Isolation. In RedT, any two conflicting transaction, 𝑇𝑖 and 𝑇𝑗 ,

that violate the serializability cannot commit both. That is, 𝑇𝑖 and
𝑇𝑗 access the same data item 𝑥 , and satisfy the order 𝑇𝑖 → 𝑇𝑗 and
𝑇𝑗 → ...→ 𝑇𝑖 . As discussed, in RedT, a transaction can commit only
after acquiring locks on more than 3

4 of replicas for each partition.

1379

𝑇𝑖 and 𝑇𝑗 cannot both acquire locks on more than 3
4 of replicas.

Therefore, with the order 𝑇𝑖 → 𝑇𝑗 , 𝑇𝑗 can acquire the lock on more
than 3

4 of replicas only after 𝑇𝑖 commits and releases its locks. By
using No-Wait, the order 𝑇𝑗 → ...→ 𝑇𝑖 cannot be held because 𝑇𝑖
cannot acquire other locks after releasing the locks. Even if less
than 1

4 of the replicas fail, more than 1
2 of the replicas still maintain

the correct orders. Because we can compute the transaction status
based on the replicas, failures of the coordinator and the executors
do not affect the serializable scheduling of transactions.

Atomicity. For atomicity, we must guarantee that 𝑇 is finally
committed if𝑇 enters the commit phase. Barring failures, the coordi-
nator would commit𝑇 normally; otherwise, the remaining executor
restores a new coordinator, and the new coordinator also computes
the same transaction status following the logic in Section 5.1 and
then commits 𝑇 normally.

Durability. For any committed transaction 𝑇 , upon a failure,
the original/new coordinators obtain the same status of 𝑇 and let
executors do the same writes to the replicas. Note, for the replicas
that vote to abort and the coordinator decides to commit, the execu-
tor modifies the status of the sub-transaction and writes a redo log
with a commit timestamp. Then the asynchronous thread replays
the redo logs according to the order of the commit timestamp, thus
maintaining the original serializable orders.

6 EXPERIMENT
We conduct the experiments over 8 or 12 machines of an RDMA-
capable EDR cluster. Each machine is equipped with one Intel(R)
Xeon(R) Gold 5220 CPU @ 2.20GHz (18 cores×2 HT) processor,
128GBRAM, and one ConnectX-5 EDR 100Gb/s InfiniBandMT27800.
All experiments are conducted over the following two benchmarks.

YCSB [11] is a comprehensive benchmark that simulates large-
scale Internet applications. Its dataset contains a single 10-column
relation, in which each data item occupies 1KB. The relation is
then horizontally partitioned, and partitions are distributed to data
nodes in a round-robin manner. In our evaluation, each data node
maintains 4 million data items, resulting in a 4GB storage space
per data node. Each transaction of the workloads is set to have a
fixed number of 10 read/write operations that access data items
following the Zipfian distribution. A larger Zipfian value results in
a higher contention workload. Unless otherwise specified, we
set the skew factor to 0.2, and the write-ratio to 0.5, i.e., there
are 50% reads and 50% writes among all transactions.

TPC-C [50] is another popular OLTP benchmark simulating a
warehouse order processing application. Its dataset is composed
of 9 relations, in which each warehouse has 100MB of data. By
default, we set the number of warehouses per node to 32. TPC-C
contains 5 types of transactions, among which Payment, New-order,
and Delivery are read-write transactions, Stock-level and Order-
status are read-only transactions. Following the previous works [23,
59], we only evaluate Payment and New-order transactions in the
experiments and omit Delivery, Stock-level, and Order-status that
are local transactions.

By default, we set up 4 data centers, with 2 nodes in each. To
support the data center fault tolerance, we set the replication factor
to 3, and replicas of each partition are placed in 3 distinct data cen-
ters. As we mainly focus on the processing of inter-DC transactions,

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

% of inter-DC transactions

2PC-Paxos
TAPIR
RedT

EP-Paxos

(a) Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

L
at

en
cy

 (
s)

% of inter-DC transactions

2PC-Paxos
TAPIR
RedT

EP-Paxos

(b) Latency

Figure 6: Impact of inter-DC transaction ratio - YCSB

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

Network delay (ms/RTT)

2PC-Paxos
TAPIR
RedT

EP-Paxos

(a) Throughput

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 10 20 30 40 50 60 70 80 90 100

L
at

en
cy

 (
s)

Network delay (ms/RTT)

2PC-Paxos
TAPIR
RedT

EP-Paxos

(b) Latency

Figure 7: Impact of inter-DC network delay - YCSB

unless otherwise specified, the ratio of inter-DC transactions is set
to 1 in YCSB and 0.5 in TPC-C. Each transaction is confined to 2
nodes. We simulate the inter-DC round-trip network delay as 40ms,
which is reasonable. For example, RTT from New York to Dallas
is 40ms [31]. We compare RedT with four protocols 2PC-Paxos,
TAPIR, EP-Paxos (Early Prepare with Paxos), and MDCC. In addi-
tion, we also implement RedT without RDMA networks. To avoid
an apple-to-orange comparison, all protocols are implemented and
evaluated in Deneva [23], open-sourced by MIT. For reference, we
release the source code of implementations via [43].

6.1 Impact of Inter-DC Transaction Ratio
We first evaluate the performance by varying the percentage of
inter-DC transactions in Figure 6. We can observe that RedT per-
forms the best, followed by TAPIR, EP-Paxos, and 2PC-Paxos. As ex-
pected, compared to 2PC-Paxos, EP-Paxos exhibits a higher through-
put and lower latency given the same ratio of the inter-DC transac-
tions, by eliminating the barrier between the execution phase and
prepare phase. The performance of both 2PC-Paxos and EP-Paxos
drops linearly when the ratio increases. This is because inter-DC
transaction processing takes a constantly larger number of inter-
DC round-trips than intra-DC transaction processing. In contrast,
RedT and TAPIR perform rather stable when the ratio increases.
This is because, for either RedT or TAPIR, it takes the same fixed
number of inter-DC round-trips to process inter-DC or intra-DC
transactions. RedT outperforms TAPIR because it requires a less or
equal number of round-trips to process distributed transactions.

6.2 Impact of Inter-DC Networks
We use the traffic control emulator tc provided by Linux kernel to
simulate a fixed and jittered inter-DC RTT ranges from 10ms to
100ms in Section 6.2.1, and Section 6.2.2, respectively.

1380

Table 2: An experimental comparison of all protocols in
terms of inter-DC communications and round-trips to pro-
cess non-read-only inter-DC committed transactions.

communications round-tripsProtocol Phase
average # max # average # max #

2PC-
Paxos

exe 2.00 2 1 1
prep 13.49 14 2.97 3

commit 9.60 10 2 2
EP-
Paxos

exe 13.59 14 3 3
commit 9.60 10 2 2

MDCC † commit 7.43 (9.24) 20 (20) 1.02 (1.38) 3 (3)

TAPIR
/G-PAC

exe 7.33 10 1 1
prep 7.01 10 1 1

commit 7.34 10 1 1

RedT
exe 5.87 6 1 1

commit 5.87 6 1 1
† For MDCC, we also report the results under high contention
(i.e., the skew factor is set to 0.8) in parenthesis. For all other
protocols, the skew factor is set to 0.2 by default.

6.2.1 Impact of Inter-DC Network Delay. In order to show the ad-
verse effect of the high-latency inter-DC networks, we report the
performance under various inter-DC network delays for inter-DC
transactions. Figure 7 demonstrates the throughput and latency
over YCSB. As the system deployed across multiple data centers is
exposed to and bottlenecked by the inter-DC networks, its perfor-
mance drops sharply with a growing inter-DC network delay. Take
2PC-Paxos for an example. Its throughput drops by 87% with the
network delay increasing from 10ms to 100ms. Benefitting from
its less exposure to inter-DC networks with a smaller number of
inter-DC round-trips and communications, as expected, RedT ex-
cels 2PC-Paxos, EP-Paxos, and TAPIR in terms of throughput and
latency under any given network delay.

6.2.2 Impact of Inter-DC Network Communications. We report the
number of inter-DC network communications to process non-read-
only inter-DC committed transactions in Table 2. Due to the space
limitation, we omit the experiments over the other kinds of trans-
actions, and instead, we make a theoretical analysis in Table 1.
Consistent with the theoretical analysis in Table 1, RedT enjoys
the smallest number of communications, with the average/maxi-
mum number per transaction being 11.74/12, while for 2PC-Paxos,
EP-Paxos, and TAPIR, these numbers are 25.09/26, 23.19/24, and
21.68/30, respectively. We also report these numbers for MDCC,
which are discussed later in Section 6.4. To evaluate the benefit
of this reduction of communications, we plot the throughput and
latency of all protocols by varying the partitions accessed per trans-
action in Figure 8. In this experiment, 12 machines are used to form
4 data centers, and primary replicas accessed by each transaction
are confined to 2 data centers. With the number of partitions ac-
cessed per transaction increasing from 2 to 6, all protocols except
RedT are exposed to a growing number of inter-DC communica-
tions. The throughput of 2PC-Paxos, EP-Paxos, and TAPIR, drops
by 27%, 23% and 15%, and their latency increases by 42%, 37% and
17%, respectively, while both the throughput and latency of RedT

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

of partitions accessed per transaction

2PC-Paxos
TAPIR
RedT

EP-Paxos

(a) Throughput

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 2 3 4 5 6

L
at

en
cy

 (
s)

of partitions accessed per transaction

2PC-Paxos
TAPIR
RedT

EP-Paxos

(b) Latency

Figure 8: Impact of partitions accessed - YCSB

 0

 0.5

 1

 1.5

 2

 2.5

 2 3 4 5 6

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

of DC accessed per transaction

2PC-Paxos
TAPIR
RedT

EP-Paxos

(a) Throughput

 0
 5

 10
 15
 20
 25
 30
 35
 40

 2 3 4 5 6

L
at

en
cy

 (
s)

of DC accessed per transaction

2PC-Paxos
TAPIR
RedT

EP-Paxos

(b) Latency

Figure 9: Impact of data centers accessed- YCSB

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

10
3 T

xn
s/

s)

% of write operations

2PC-Paxos
TAPIR

RedT
EP-Paxos

(a) Throughput

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 0 20 40 60 80 100

L
at

en
cy

 (
s)

% of write operations

2PC-Paxos
TAPIR

RedT
EP-Paxos

(b) Latency

Figure 10: Impact of write-ratio - YCSB

stay stable in any cases. We also vary the number of data cen-
ters involved per transaction, and report the results in Figure 9.
The performance of all protocols decreases because of an increas-
ing number of communications. However, RedT is less exposed
to the unstable inter-DC network by decomposing transactions in
terms of data center granularity. As a result, the performance of
2PC-Paxos, EP-Paxos, and TAPIR drops when the number of data
centers involved per transaction varies from 2 to 6, while that of
RedT decreases less.

6.3 Impact of Read-Write Ratio
We evaluate the performance by varying the write-ratio over YCSB.
Figure 10 shows the throughput and latency of different protocols,
with the write-ratio ranging from 0% to 100% among all inter-DC
transactions. For read-only transactions, i.e., setting the write-ratio
to 0%, 2PC-Paxos and EP-Paxos (TAPIR and RedT) demonstrate
similar performance. This is because, for all protocols, it is not nec-
essary to synchronize the redo/commit logs to secondary replicas
in the write set. In this way, 2PC-Paxos and EP-Paxos (TAPIR and
RedT) take three (two) round-trips and coincide with each other.

However, as the write-ratio increases, the performances of these
protocols begin to diverge. For 2PC-Paxos, its performance drops

1381

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

Skew factor

2PC-Paxos
TAPIR
RedT

EP-Paxos
MDCC

(a) Throughput

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
bo

rt
 R

at
e

(%
)

Skew factor

2PC-Paxos
TAPIR
RedT

EP-Paxos
MDCC

(b) Abort rate

Figure 11: Impact of contention level - YCSB

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

Network delay (ms/RTT)

RedT
RedT without RDMA

(a) Performance with/without RDMA

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

of threads

RedT
DSLR

(b) Comparison of RDMA protocols

Figure 12: Impact of RDMA - YCSB

sharply. For example, the latency of write-only transactions is ap-
proximately 1.92× higher than that of read-only transactions. This
is because each non-read-only inter-DC transaction takes five to six
round-trips, as demonstrated in Table 1. Often, a moderate write-
ratio would result in a vast number of non-read-only transactions.
For example, when the write-ratio is set to 0.5, 99.9% transactions
would become non-read-only transactions. Similarly, the latency of
EP-Paxos/TAPIR increases by 1.62%/1.44% as the number of round-
trips required increases from two/three (for read-only transactions)
to three/five (for write-only transactions). In RedT, all kinds of trans-
actions constantly take 2 inter-DC round-trips. Although extra log-
ging and data updating overheads are introduced for non-read-only
transactions, these overheads come imperceptible compared with
the cost of inter-DC round-trips, resulting in RedT’s insensitivity
to the changing write-ratio.

6.4 Impact of Contention Level
We evaluate the performance by varying the contention level over
YCSB, and show the results in Figure 11. Under low contention
levels (i.e., skew factor < 0.4), as we can see, all protocols have
a low abort rate and perform rather stable. In this situation, the
number of inter-DC round-trips almost dominates the performance.
RedT and MDCC take the minimum number of round-trips, and
thus outperform the others. Under moderate contention levels (i.e.,
0.4 ≤ skew factor < 0.6), the abort rate of all protocols increases
sharply, and still, RedT outperforms the others. The reason why
MDCC deteriorates the most is that, besides the increasing abort
overhead, it requires two additional round-trips for the primary
replica to step in and resolve the conflict. For reference, we report
the average/maximum number of inter-DC communications/round-
trips for MDCC in low/high contention scenarios in Table 2. Under
high contention levels (i.e., skew factor ≥ 0.6), as the growing

 0
 2
 4
 6
 8

 10
 12
 14
 16

 1 2 3 4

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

of nodes per DC

2PC-Paxos
TAPIR
RedT

EP-Paxos

(a) Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 2 3 4

L
at

en
cy

 (
s)

of nodes per DC

2PC-Paxos
TAPIR
RedT

EP-Paxos

(b) Latency

Figure 13: Scalability - YCSB

 0
 1
 2
 3
 4
 5
 6
 7

 1 2 3 4

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

of nodes per DC

2PC-Paxos
TAPIR
RedT

EP-Paxos

(a) Throughput

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4

 1 2 3 4

L
at

en
cy

 (
s)

of nodes per DC

2PC-Paxos
TAPIR
RedT

EP-Paxos

(b) Latency

Figure 14: Scalability - TPC-C (New-order)

number of aborts takes the dominant influence, all protocols suffer
from severe performance degradation.

6.5 Impact of RDMA
We first compare the performance of RedT and RedT without
RDMA, which replaces RDMA networks with TCP/IP networks
and is similar to the idea of multi-level 2PC [37]. The results are
given in Figure 12(a). For low or moderate inter-DC network de-
lays, i.e., when the data centers involved are not so far away, RedT
significantly outperforms RedT without RDMA. For high inter-DC
network delays, however, their throughput converges, as the con-
tribution of RDMA grows negligible compared to the bottlenecked
inter-DC networks. As a result, RDMA is shown to be effective
when the replicas are deployed in nearby data centers.

To show the efficiency of our RDMA-based implementation, we
then compare RedT with a recent RDMA-based protocol DSLR [58].
Each partition is set to have one replica and all transactions are
intra-DC transactions. We report the result in Figure 12(b). Similar
to RedT, DSLR uses 2PL for concurrency control, and we omit the
comparison with other optimistic RDMA protocols [14, 25, 54] for
fairness. We observe that the performance of RedT is generally
comparable to that of DSLR, at a significantly higher level than
traditional transaction processing protocols. Although the perfor-
mance of RedT grows slightly lower with an increasing number of
threads, this cost is acceptable as RedT requires additional overhead
to provide fault tolerance guarantees.

6.6 System Scalability
We study the system scalability over both YCSB and TPC-C, by
varying the number of nodes in a data center from 1 to 4. We plot
the results over YCSB in Figure 13. As we can see, when the number
of nodes per data center increases, the throughput of all proto-
cols increases almost linearly, while the latency remains almost

1382

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 2 3 4

T
hr

ou
gh

pu
t (

10
3

T
xn

s/
s)

of nodes per DC

2PC-Paxos
TAPIR
RedT

EP-Paxos

(a) Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1 2 3 4

L
at

en
cy

 (
s)

of nodes per DC

2PC-Paxos
TAPIR
RedT

EP-Paxos

(b) Latency

Figure 15: Scalability - TPC-C (Payment)

unchanged. This is because we set each transaction to read/write
primary replicas across two data centers, and varying the number
of nodes per data center does not affect the execution of the transac-
tion. With a growing number of nodes, there is an obvious benefit
of RedT compared with the other protocols. The reason is that RedT
performs constantly the best for each node, and this accumulated
benefit is amplified by increasing the number of nodes. Figure 14
and 15 report the scalability evaluation over TPC-C New-order
and Payment, respectively. Due to the same reasons, all protocols
enjoy a linear increase in throughput and an unchanged latency,
and again, RedT is superior to the other three protocols.

7 RELATEDWORK
Substantial efforts have been devoted to transforming distributed
transaction processing into local transaction processing. For these
works, they focus on carefully designing a static or dynamic data
partitioning scheme [1, 2, 12, 16, 39, 42, 44, 47, 51, 61] so that all data
partitions that each transaction accesses are on the same node. Yet,
a static scheme works only if the optimal data placement is known
a priori and never changes. Under the dynamic data partitioning
scheme, transactions are executed in batches. For each distributed
transaction, before it starts to execute, all the primary replicas that it
reads/writes must be moved to the same node in advance. However,
in this case, frequent data migration overhead across data centers
could lead to significant performance degradation. As a remedy, an
alternative method [34] is to arrange one super node that takes all
replicas of the whole data partitions. All distributed transactions
in a batch are then assigned to this super node, and before any of
them starts to execute, all involved secondary replicas in this node
are promoted as primary replicas so that they are transformed to
local transactions [34]. Nevertheless, for this method, the super
node may become the bottleneck when the workloads are skewed
or the size of the whole data partitions is prohibitively huge.

As opposed to eliminating distributed transactions, quite a few
works attempt to optimize distributed transaction processing by
reducing the number of network round-trips in conventional net-
works [57]. Multi-level 2PC [37] reduces the expensive inter-DC
communication by layering participants, but at the cost of a higher
intra-DC coordination overhead. Early Prepare [46] further elimi-
nates the barrier between the execution and prepare phase, where
each participant enters the prepare phase after the read/write exe-
cution without waiting for the notification from the coordinator.
Parallel Commit [52] turns some synchronous round-trips to asyn-
chronous and is specially designed for MVCC-based write intents in

CockroachDB. A series of classic algorithms are deterministic-based
[17–19, 32, 33, 40, 41, 49] with an assumption that the read/write set
of each transaction is known in advance. Commutativity is a differ-
ent constraint from determinism, with which MDCC [28] is able to
commit in a single synchronous round-trip. Without commutativity
of operations and in case of concurrent updates, however, primary
replicas must step in to resolve conflicts in two additional round-
trips. Recent works like TAPIR [63], G-PAC [35] attempt to unify
the commitment and consensus protocols in a single framework.
Specifically, instead of synchronizing log replications from primary
replicas to secondary replicas, in the prepare/commit phase, the
coordinator directly sends log replications to secondary replicas,
reducing the number of round-trips. Compared with these works,
RedT concentrates on the reduced number of not only network
round-trips, but also communication per round trip, and proposes
a pre-write-log mechanism that is able to overlap the prepare and
execution phase and eliminate redundant synchronization.

It has been a hotspot to use RDMA to optimize the distributed
transaction processing. As a foundation, a set of works [8, 26, 56, 60,
65] provide insights and guidelines for RDMA usage tips like com-
parison of one-sided and two-sided verbs, requests sending/receiv-
ing optimizations, and system architecture designs. On account of
its tempting features, RDMA is widely used to optimize distributed
transaction processing. Dozens of works utilize RDMA to provide
high availability with replicas [10, 15, 62], generate global times-
tamps with monotonicity [45], or reimplement concurrency control
algorithms including OCC-based variants [14, 54] and 2PL-based
variants [6, 55, 58]. As all these works confine their application
scenarios into a single data center, RedT presents a first-of-its-kind
attempt to support inter-data-center transaction processing and
data center fault tolerance simultaneously.

Other works [3, 4, 13, 22, 24] target to reduce the cost of net-
work communications in BFT-based (Byzantine Fault Tolerant)
blockchain systems, As we target the optimization for CFT-based
(Crash Fault Tolerant) database systems, the extension of these
works to RedT would be considered as our future work.

8 CONCLUSIONS
In this paper, we present RedT, a novel distributed transaction
processing protocol that supports inter-data-center transaction
processing and data center fault tolerance simultaneously. RedT
extends 2PC by decomposing transactions into sub-transactions in
terms of the data center granularity, and proposing a pre-write-log
mechanism that eliminates the log synchronization in the prepare
phase. It is particularly designed for high-latency and unstable
inter-DC networks, and achieves high performance by reducing the
number of inter-DC round-trips. Through extensive experiments
on YCSB and TPC-C, RedT is proved to excel over other state-of-
the-art methods by providing 1.57× better throughput, 0.56× lower
latency, as well as stabler performance in most cases.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China (Number 61972403, 61732014) and Ant Group Re-
search Fund.

1383

REFERENCES
[1] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. DynaMast:

Adaptive Dynamic Mastering for Replicated Systems. In 36th IEEE International
Conference on Data Engineering, ICDE 2020, Dallas, TX, USA, April 20-24, 2020.
IEEE, 1381–1392. https://doi.org/10.1109/ICDE48307.2020.00123

[2] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. 2020. MorphoSys:
Automatic Physical Design Metamorphosis for Distributed Database Systems.
Proc. VLDB Endow. 13, 13 (oct 2020), 3573–3587. https://doi.org/10.14778/3424573.
3424578

[3] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2019. CAPER:
A Cross-Application Permissioned Blockchain. Proc. VLDB Endow. 12, 11 (jul
2019), 1385–1398. https://doi.org/10.14778/3342263.3342275

[4] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. 2021. SharPer:
Sharding Permissioned Blockchains Over Network Clusters. In Proceedings of
the 2021 International Conference on Management of Data (Virtual Event, China)
(SIGMOD ’21). Association for Computing Machinery, New York, NY, USA, 76–88.
https://doi.org/10.1145/3448016.3452807

[5] Vlad Barshai, Yvonne Chan, Hua Lu, Satpal Sohal, et al. 2012. Delivering continuity
and extreme capacity with the IBM DB2 pureScale feature. IBM Redbooks.

[6] Claude Barthels, Ingo Müller, Konstantin Taranov, Gustavo Alonso, and Torsten
Hoefler. 2019. Strong Consistency is Not Hard to Get: Two-Phase Locking and
Two-Phase Commit on Thousands of Cores. Proc. VLDB Endow. 12, 13 (sep 2019),
2325–2338. https://doi.org/10.14778/3358701.3358702

[7] Philip A. Bernstein and Nathan Goodman. 1981. Concurrency Control in Dis-
tributed Database Systems. ACM Comput. Surv. 13, 2 (jun 1981), 185–221.
https://doi.org/10.1145/356842.356846

[8] Carsten Binnig, AndrewCrotty, Alex Galakatos, TimKraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow. 9,
7 (mar 2016), 528–539. https://doi.org/10.14778/2904483.2904485

[9] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu,
Xuntao Cheng, Zongzhi Chen, Zhenjun Liu, Jing Fang, Bo Wang, Yuhui Wang,
Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei Zhao,
Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB
Serverless: A Cloud Native Database for Disaggregated Data Centers. In Pro-
ceedings of the 2021 International Conference on Management of Data (Virtual
Event, China) (SIGMOD ’21). Association for Computing Machinery, New York,
NY, USA, 2477–2489. https://doi.org/10.1145/3448016.3457560

[10] Yanzhe Chen, XingdaWei, Jiaxin Shi, Rong Chen, and Haibo Chen. 2016. Fast and
General Distributed Transactions Using RDMA and HTM. In Proceedings of the
Eleventh European Conference on Computer Systems (London, United Kingdom)
(EuroSys ’16). Association for Computing Machinery, New York, NY, USA, Article
26, 17 pages. https://doi.org/10.1145/2901318.2901349

[11] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA)
(SoCC ’10). Association for Computing Machinery, New York, NY, USA, 143–154.
https://doi.org/10.1145/1807128.1807152

[12] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. 2010. Schism: A
Workload-Driven Approach to Database Replication and Partitioning. Proc.
VLDB Endow. 3, 1-2 (sep 2010), 48–57. https://doi.org/10.14778/1920841.1920853

[13] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin,
and Beng Chin Ooi. 2019. Towards Scaling Blockchain Systems via Sharding. In
Proceedings of the 2019 International Conference on Management of Data (Amster-
dam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New
York, NY, USA, 123–140. https://doi.org/10.1145/3299869.3319889

[14] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and Orion Hod-
son. 2014. FaRM: Fast Remote Memory. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). USENIX Association,
Seattle, WA, 401–414. https://www.usenix.org/conference/nsdi14/technical-
sessions/dragojevi{ć}

[15] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew
Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. 2015. No Com-
promises: Distributed Transactions with Consistency, Availability, and Perfor-
mance. Association for Computing Machinery, New York, NY, USA, 54–70.
https://doi.org/10.1145/2815400.2815425

[16] Aaron J. Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. 2015. Squall: Fine-Grained Live Reconfiguration for Par-
titioned Main Memory Databases. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria, Aus-
tralia) (SIGMOD ’15). Association for Computing Machinery, New York, NY, USA,
299–313. https://doi.org/10.1145/2723372.2723726

[17] Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion
Concurrency Control. Proc. VLDB Endow. 8, 11 (July 2015), 1190–1201. https:
//doi.org/10.14778/2809974.2809981

[18] Jose M. Faleiro, Daniel J. Abadi, and Joseph M. Hellerstein. 2017. High Perfor-
mance Transactions via Early Write Visibility. Proc. VLDB Endow. 10, 5 (jan 2017),
613–624. https://doi.org/10.14778/3055540.3055553

[19] Jose M. Faleiro, Alexander Thomson, and Daniel J. Abadi. 2014. Lazy Evaluation
of Transactions in Database Systems. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data (Snowbird, Utah, USA) (SIGMOD
’14). Association for Computing Machinery, New York, NY, USA, 15–26. https:
//doi.org/10.1145/2588555.2610529

[20] Yixiao Gao, Qiang Li, Lingbo Tang, Yongqing Xi, Pengcheng Zhang, Wenwen
Peng, Bo Li, Yaohui Wu, Shaozong Liu, Lei Yan, Fei Feng, Yan Zhuang, Fan
Liu, Pan Liu, Xingkui Liu, Zhongjie Wu, Junping Wu, Zheng Cao, Chen Tian,
Jinbo Wu, Jiaji Zhu, Haiyong Wang, Dennis Cai, and Jiesheng Wu. 2021. When
Cloud Storage Meets RDMA. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21). USENIX Association, 519–533. https:
//www.usenix.org/conference/nsdi21/presentation/gao

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu Pad-
hye, and Marina Lipshteyn. 2016. RDMA over Commodity Ethernet at Scale.
In Proceedings of the 2016 ACM SIGCOMM Conference (Florianopolis, Brazil)
(SIGCOMM ’16). Association for Computing Machinery, New York, NY, USA,
202–215. https://doi.org/10.1145/2934872.2934908

[22] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. 2020.
ResilientDB: Global Scale Resilient Blockchain Fabric. Proc. VLDB Endow. 13, 6
(mar 2020), 868–883. https://doi.org/10.14778/3380750.3380757

[23] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. 2017.
An Evaluation of Distributed Concurrency Control. Proc. VLDB Endow. 10, 5 (jan
2017), 553–564. https://doi.org/10.14778/3055540.3055548

[24] Jelle Hellings and Mohammad Sadoghi. 2021. ByShard: Sharding in a Byzantine
Environment. Proc. VLDB Endow. 14, 11 (oct 2021), 2230–2243. https://doi.org/
10.14778/3476249.3476275

[25] Masoud Hemmatpour, Bartolomeo Montrucchio, Maurizio Rebaudengo, and
Mohammad Sadoghi. 2022. Analyzing In-Memory NoSQL Landscape. IEEE
Transactions on Knowledge and Data Engineering 34, 4 (2022), 1628–1643. https:
//doi.org/10.1109/TKDE.2020.3002908

[26] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2016. Design Guide-
lines for High Performance RDMA Systems. In 2016 USENIX Annual Technical
Conference (USENIX ATC 16). USENIX Association, Denver, CO, 437–450. https:
//www.usenix.org/conference/atc16/technical-sessions/presentation/kalia

[27] Anuj Kalia,Michael Kaminsky, andDavid G. Andersen. 2016. FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram RPCs.
In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, Savannah, GA, 185–201. https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/kalia

[28] Tim Kraska, Gene Pang, Michael J. Franklin, Samuel Madden, and Alan Fekete.
2013. MDCC: Multi-Data Center Consistency. In Proceedings of the 8th ACM
European Conference on Computer Systems (Prague, Czech Republic) (EuroSys
’13). Association for Computing Machinery, New York, NY, USA, 113–126. https:
//doi.org/10.1145/2465351.2465363

[29] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2
(may 1998), 133–169. https://doi.org/10.1145/279227.279229

[30] Leslie Lamport. 2006. Fast Paxos. Distributed Computing 19 (October 2006),
79–103. https://www.microsoft.com/en-us/research/publication/fast-paxos/

[31] Network Latency. 2022. http://ipnetwork.windstream.net/.
[32] Yu-Shan Lin, Ching Tsai, Tz-Yu Lin, Yun-Sheng Chang, and Shan-Hung Wu.

2021. Don’t Look Back, Look into the Future: Prescient Data Partitioning and
Migration for Deterministic Database Systems. In Proceedings of the 2021 Inter-
national Conference on Management of Data (Virtual Event, China) (SIGMOD
’21). Association for Computing Machinery, New York, NY, USA, 1156–1168.
https://doi.org/10.1145/3448016.3452827

[33] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2020. Aria: A Fast and Practical
Deterministic OLTP Database. Proc. VLDB Endow. 13, 12 (jul 2020), 2047–2060.
https://doi.org/10.14778/3407790.3407808

[34] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Transactions
through Asymmetric Replication. Proc. VLDB Endow. 12, 11 (jul 2019), 1316–1329.
https://doi.org/10.14778/3342263.3342270

[35] Sujaya Maiyya, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. 2019.
Unifying Consensus and Atomic Commitment for Effective Cloud Data Manage-
ment. Proc. VLDB Endow. 12, 5 (jan 2019), 611–623. https://doi.org/10.14778/
3303753.3303765

[36] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using One-Sided RDMA
Reads to Build a Fast, CPU-Efficient Key-Value Store. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13). USENIX Association, San Jose, CA, 103–
114. https://www.usenix.org/conference/atc13/technical-sessions/presentation/
mitchell

[37] C. Mohan, B. Lindsay, and R. Obermarck. 1986. Transaction Management in the
R* Distributed Database Management System. ACM Trans. Database Syst. 11, 4
(dec 1986), 378–396. https://doi.org/10.1145/7239.7266

[38] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In 2014 USENIX Annual Technical Conference (USENIX
ATC 14). USENIX Association, Philadelphia, PA, 305–319. https://www.usenix.
org/conference/atc14/technical-sessions/presentation/ongaro

1384

https://doi.org/10.1109/ICDE48307.2020.00123
https://doi.org/10.14778/3424573.3424578
https://doi.org/10.14778/3424573.3424578
https://doi.org/10.14778/3342263.3342275
https://doi.org/10.1145/3448016.3452807
https://doi.org/10.14778/3358701.3358702
https://doi.org/10.1145/356842.356846
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.1145/3448016.3457560
https://doi.org/10.1145/2901318.2901349
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/3299869.3319889
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{%c2%a2}
https://www.usenix.org/conference/nsdi14/technical-sessions/dragojevi{%c2%a2}
https://doi.org/10.1145/2815400.2815425
https://doi.org/10.1145/2723372.2723726
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/2809974.2809981
https://doi.org/10.14778/3055540.3055553
https://doi.org/10.1145/2588555.2610529
https://doi.org/10.1145/2588555.2610529
https://www.usenix.org/conference/nsdi21/presentation/gao
https://www.usenix.org/conference/nsdi21/presentation/gao
https://doi.org/10.1145/2934872.2934908
https://doi.org/10.14778/3380750.3380757
https://doi.org/10.14778/3055540.3055548
https://doi.org/10.14778/3476249.3476275
https://doi.org/10.14778/3476249.3476275
https://doi.org/10.1109/TKDE.2020.3002908
https://doi.org/10.1109/TKDE.2020.3002908
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/atc16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/kalia
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/2465351.2465363
https://doi.org/10.1145/279227.279229
https://www.microsoft.com/en-us/research/publication/fast-paxos/
http://ipnetwork.windstream.net/
https://doi.org/10.1145/3448016.3452827
https://doi.org/10.14778/3407790.3407808
https://doi.org/10.14778/3342263.3342270
https://doi.org/10.14778/3303753.3303765
https://doi.org/10.14778/3303753.3303765
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://doi.org/10.1145/7239.7266
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro

[39] Andrew Pavlo, Carlo Curino, and Stanley Zdonik. 2012. Skew-Aware Automatic
Database Partitioning in Shared-Nothing, Parallel OLTP Systems. In Proceed-
ings of the 2012 ACM SIGMOD International Conference on Management of Data
(Scottsdale, Arizona, USA) (SIGMOD ’12). Association for Computing Machinery,
New York, NY, USA, 61–72. https://doi.org/10.1145/2213836.2213844

[40] Thamir Qadah, Suyash Gupta, and Mohammad Sadoghi. 2020. Q-Store: Dis-
tributed, Multi-partition Transactions via Queue-oriented Execution and Com-
munication.. In EDBT. 73–84.

[41] Dai Qin, Angela Demke Brown, and Ashvin Goel. 2021. Caracal: Contention
Management with Deterministic Concurrency Control. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event,
Germany) (SOSP ’21). Association for Computing Machinery, New York, NY,
USA, 180–194. https://doi.org/10.1145/3477132.3483591

[42] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. 2013. SWORD: Scalable
Workload-Aware Data Placement for Transactional Workloads. In Proceedings
of the 16th International Conference on Extending Database Technology (Genoa,
Italy) (EDBT ’13). Association for Computing Machinery, New York, NY, USA,
430–441. https://doi.org/10.1145/2452376.2452427

[43] RedT. 2022. https://github.com/rhaaaa123/RedT.git/.
[44] Marco Serafini, Rebecca Taft, Aaron J. Elmore, Andrew Pavlo, Ashraf Aboulnaga,

and Michael Stonebraker. 2016. Clay: Fine-Grained Adaptive Partitioning for
General Database Schemas. Proc. VLDB Endow. 10, 4 (nov 2016), 445–456. https:
//doi.org/10.14778/3025111.3025125

[45] Alex Shamis, Matthew Renzelmann, Stanko Novakovic, Georgios Chatzopou-
los, Aleksandar Dragojević, Dushyanth Narayanan, and Miguel Castro. 2019.
Fast General Distributed Transactions with Opacity. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 433–448.
https://doi.org/10.1145/3299869.3300069

[46] J.W. Stamos and F. Cristian. 1990. A low-cost atomic commit protocol. In
Proceedings Ninth Symposium on Reliable Distributed Systems. 66–75. https:
//doi.org/10.1109/RELDIS.1990.93952

[47] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. 2014. E-Store: Fine-
Grained Elastic Partitioning for Distributed Transaction Processing Systems. Proc.
VLDB Endow. 8, 3 (nov 2014), 245–256. https://doi.org/10.14778/2735508.2735514

[48] Robert H. Thomas. 1979. A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databases. ACM Trans. Database Syst. 4, 2 (jun 1979),
180–209. https://doi.org/10.1145/320071.320076

[49] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for
Partitioned Database Systems. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/2213836.2213838

[50] TPC-C. 2022. http://www.tpc.org/tpcc/.
[51] Khai Q. Tran, Jeffrey F. Naughton, Bruhathi Sundarmurthy, and Dimitris

Tsirogiannis. 2014. JECB: A Join-Extension, Code-Based Approach to OLTP
Data Partitioning. In Proceedings of the 2014 ACM SIGMOD International Confer-
ence on Management of Data (Snowbird, Utah, USA) (SIGMOD ’14). Association
for Computing Machinery, New York, NY, USA, 39–50. https://doi.org/10.1145/
2588555.2610532

[52] Nathan VanBenschoten. [n.d.]. Parallel Commits: An Atomic Commit Protocol For
Globally Distributed Transactions. https://www.cockroachlabs.com/blog/parallel-
commits/ (2019, November 7).

[53] C. Wang and X. Qian. 5555. RDMA-enabled Concurrency Control Protocols for
Transactions in the Cloud Era. IEEE Transactions on Cloud Computing PP, 01

(sep 5555), 1–1. https://doi.org/10.1109/TCC.2021.3116516
[54] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing

RDMA-enabled Distributed Transactions: Hybrid is Better!. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18). USENIX
Association, Carlsbad, CA, 233–251. https://www.usenix.org/conference/osdi18/
presentation/wei

[55] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast
In-Memory Transaction Processing Using RDMA and HTM. In Proceedings of the
25th Symposium on Operating Systems Principles (Monterey, California) (SOSP
’15). Association for Computing Machinery, New York, NY, USA, 87–104. https:
//doi.org/10.1145/2815400.2815419

[56] Xingda Wei, Xiating Xie, Rong Chen, Haibo Chen, and Binyu Zang. 2021. Char-
acterizing and Optimizing Remote Persistent Memory with RDMA and NVM. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association,
523–536. https://www.usenix.org/conference/atc21/presentation/wei

[57] Zhenkun Yang, Chuanhui Yang, Fusheng Han, Mingqiang Zhuang, Bing Yang,
Zhifeng Yang, Xiaojun Cheng, Yuzhong Zhao,Wenhui Shi, Huafeng Xi, Huang Yu,
Bin Liu, Yi Pan, Boxue Yin, Junquan Chen, and Quanqing Xu. 2022. OceanBase:
A 707 Million TpmC Distributed Relational Database System. Proc. VLDB Endow.
15, 12 (sep 2022), 3385–3397. https://doi.org/10.14778/3554821.3554830

[58] Dong Young Yoon, Mosharaf Chowdhury, and BarzanMozafari. 2018. Distributed
Lock Management with RDMA: Decentralization without Starvation. In Proceed-
ings of the 2018 International Conference on Management of Data (Houston, TX,
USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA,
1571–1586. https://doi.org/10.1145/3183713.3196890

[59] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael
Stonebraker. 2014. Staring into the Abyss: An Evaluation of Concurrency Control
with One Thousand Cores. Proc. VLDB Endow. 8, 3 (nov 2014), 209–220. https:
//doi.org/10.14778/2735508.2735511

[60] Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions Can Scale. Proc. VLDB Endow. 10, 6 (feb 2017),
685–696. https://doi.org/10.14778/3055330.3055335

[61] Erfan Zamanian, Carsten Binnig, and Abdallah Salama. 2015. Locality-Aware
Partitioning in Parallel Database Systems. In Proceedings of the 2015 ACMSIGMOD
International Conference on Management of Data (Melbourne, Victoria, Australia)
(SIGMOD ’15). Association for Computing Machinery, New York, NY, USA, 17–30.
https://doi.org/10.1145/2723372.2723718

[62] Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim Kraska. 2019.
Rethinking Database High Availability with RDMA Networks. Proc. VLDB
Endow. 12, 11 (jul 2019), 1637–1650. https://doi.org/10.14778/3342263.3342639

[63] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy,
and Dan R. K. Ports. 2015. Building Consistent Transactions with Inconsistent
Replication. In Proceedings of the 25th Symposium on Operating Systems Principles
(Monterey, California) (SOSP ’15). Association for Computing Machinery, New
York, NY, USA, 263–278. https://doi.org/10.1145/2815400.2815404

[64] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments.
In Proceedings of the 2015 ACM Conference on Special Interest Group on Data
Communication (London, United Kingdom) (SIGCOMM ’15). Association for
Computing Machinery, New York, NY, USA, 523–536. https://doi.org/10.1145/
2785956.2787484

[65] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and
Tim Kraska. 2019. Designing Distributed Tree-Based Index Structures for Fast
RDMA-Capable Networks. In Proceedings of the 2019 International Conference on
Management of Data (Amsterdam, Netherlands) (SIGMOD ’19). Association for
Computing Machinery, New York, NY, USA, 741–758. https://doi.org/10.1145/
3299869.3300081

1385

https://doi.org/10.1145/2213836.2213844
https://doi.org/10.1145/3477132.3483591
https://doi.org/10.1145/2452376.2452427
https://github.com/rhaaaa123/RedT.git/
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.14778/3025111.3025125
https://doi.org/10.1145/3299869.3300069
https://doi.org/10.1109/RELDIS.1990.93952
https://doi.org/10.1109/RELDIS.1990.93952
https://doi.org/10.14778/2735508.2735514
https://doi.org/10.1145/320071.320076
https://doi.org/10.1145/2213836.2213838
http://www.tpc.org/tpcc/
https://doi.org/10.1145/2588555.2610532
https://doi.org/10.1145/2588555.2610532
https://www.cockroachlabs.com/blog/parallel-commits/
https://www.cockroachlabs.com/blog/parallel-commits/
https://doi.org/10.1109/TCC.2021.3116516
https://www.usenix.org/conference/osdi18/presentation/wei
https://www.usenix.org/conference/osdi18/presentation/wei
https://doi.org/10.1145/2815400.2815419
https://doi.org/10.1145/2815400.2815419
https://www.usenix.org/conference/atc21/presentation/wei
https://doi.org/10.14778/3554821.3554830
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/2735508.2735511
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.1145/2723372.2723718
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.1145/2815400.2815404
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/2785956.2787484
https://doi.org/10.1145/3299869.3300081
https://doi.org/10.1145/3299869.3300081

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Distributed Transaction Processing
	2.2 RDMA
	2.3 RDMA-based Transaction Processing

	3 System Architecture
	4 Transaction processing
	4.1 Key Data Structures
	4.2 Pre-Write-Log Mechanism
	4.3 Analysis on Inter-DC Round-trips

	5 Fault Tolerance and Correctness
	5.1 Fault Tolerance
	5.2 Correctness

	6 Experiment
	6.1 Impact of Inter-DC Transaction Ratio
	6.2 Impact of Inter-DC Networks
	6.3 Impact of Read-Write Ratio
	6.4 Impact of Contention Level
	6.5 Impact of RDMA
	6.6 System Scalability

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

