
RECA: Related Tables Enhanced Column Semantic Type
Annotation Framework

Yushi Sun
HKUST

Hong Kong, China
ysunbp@cse.ust.hk

Hao Xin
HKUST

Hong Kong, China
hxinaa@cse.ust.hk

Lei Chen
HKUST

Hong Kong, China
HKUST(GZ)

Guangzhou, China
leichen@cse.ust.hk

ABSTRACT
Understanding the semantics of tabular data is of great importance
in various downstream applications, such as schema matching, data
cleaning, and data integration. Column semantic type annotation is
a critical task in the semantic understanding of tabular data. Despite
the fact that various approaches have been proposed, they are chal-
lenged by the difficulties of handling wide tables and incorporating
complex inter-table context information. Failure to handle wide
tables limits the usage of column type annotation approaches, while
failure to incorporate inter-table context harms the annotation qual-
ity. Existing methods either completely ignore these problems or
propose ad-hoc solutions. In this paper, we propose Related tables
Enhanced Column semantic type Annotation framework (RECA),
which incorporates inter-table context information by finding and
aligning schema-similar and topic-relevant tables based on a novel
named entity schema. The design of RECA can naturally handle
wide tables and incorporate useful inter-table context information
to enhance the annotation quality. We conduct extensive exper-
iments on two web table datasets to comprehensively evaluate
the performance of RECA. Our results show that RECA achieves
support-weighted F1 scores of 0.853 and 0.937 with macro average
F1 scores of 0.674 and 0.783 on the two datasets respectively, which
outperform the state-of-the-art methods.

PVLDB Reference Format:
Yushi Sun, Hao Xin, and Lei Chen. RECA: Related Tables Enhanced Column
Semantic Type Annotation Framework. PVLDB, 16(6): 1319 - 1331, 2023.
doi:10.14778/3583140.3583149

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/ysunbp/RECA-paper.

1 INTRODUCTION
In various data mining applications, column type annotation plays
a crucial role: In schema matching, column type annotation can
help identify semantic relationships [15, 27]; Accurate annotation of
data types can efficiently facilitate automated data cleaning [19, 28];
Integration of tabular data from different sources can also benefit

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583149

from the accurate annotation of column types [32, 36]. In general,
table column types can be divided into two categories: atomic and
semantic [36]. Atomic types, such as Integer and Boolean, pro-
vide fundamental and general information about the data type of
the column content. Semantic types, such as BirthPlace and Per-
son, provide fine-grained information of the column content. The
fine-grained semantic type is helpful for various downstream appli-
cations that require a deep understanding of the column content
semantics. However, although most existing systems can accurately
annotate the atomic types, they are challenged by the difficulty
of accurately annotating the semantic types solely based on the
column content. As shown in Figure 1, the first columns in all
three tables have similar content, which are the names of artworks.
However, the semantic label of the first columns in Table 𝑇1 and
𝑇2 is TelevisionShow, while that in Table 𝑇3 is VideoGame. The
ambiguity of the column content makes the column semantic type
annotation a great challenge to the database community.

In response, various approaches have been proposed to utilize
additional context information in the tables to resolve the ambigu-
ity and improve the annotation quality: Hulsebos et al. proposed
Sherlock [15] based on hand-crafted statistical features. Sato [36] in-
corporates table topic features and inter-column co-occurrence rela-
tionships into generating the column representations. TaBERT [35]
utilizes BERT [9] as a base model to capture the table content fea-
tures. TABBIE [16] refines the idea of TaBERT by encoding rows
and columns respectively to provide a more comprehensive view
of tables. DODUO [30] designs a Transformer-based structure to
encode the intra-table contextual information inside each table.
Among these methods, TABBIE and DODUO achieve state-of-the-
art performance. Although these methods achieve state-of-the-art
performance on the column semantic type annotation task, they are
challenged by the following difficulties: (1) Difficulty in handling
wide tables: In the era of big data, the size of tables is growing. As
shown in [24], the average number of columns of tables in Open
Data is 16, with a large variance: some tables have hundreds of
columns. Therefore, column semantic type annotation approaches
that effectively handle these wide tables are needed. However, the
existing state-of-the-art column semantic type annotation meth-
ods cannot handle the wide tables well due to the maximum input
length limits of the language models (LMs) used by these meth-
ods. For instance, TABBIE [16] and DODUO [30] use BERT as the
core LM, which has a hard maximum input length limit of 512
tokens [9]. In response, TABBIE [16] ignores the issue of wide ta-
bles; DODUO [30] suggests designing user-defined splitting rules,

1319

https://doi.org/10.14778/3583140.3583149
https://github.com/ysunbp/RECA-paper
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583149
https://www.acm.org/publications/policies/artifact-review-and-badging-current

splitting the wide tables into clusters, and then encoding each clus-
ter to perform column semantic type annotation for wide tables.
Unfortunately, DODUO [30] fails to provide a detailed design of
the table splitting rules and the method of combining the annota-
tions provided by each cluster. Besides, designing such splitting
rules is non-trivial: rich domain knowledge is required to design
rules that are both effective and generalizable. As a result, handling
wide tables properly remains a challenge to the existing LM-based
column semantic type annotation methods. (2) Difficulty in incor-
porating complex inter-table context information: TCN [33]
draws schema-related tables from various websites and extracts
inter-table context information. As suggested by [33], inter-table
context information is potentially useful for column semantic type
annotation. By incorporating the inter-table context information,
ambiguity in column content is expected to be reduced, and the
annotation quality can be improved. As shown in Figure 1, the first
columns of𝑇1 and𝑇2 refer to TV series. Annotating the first column
of 𝑇1 solely based on the content of 𝑇1 is difficult: the number of
rows in 𝑇1 is few, so it’s difficult for existing methods to resolve
the ambiguity between the similar semantic types, such as Televi-
sionShow, VideoGame, etc. By aligning 𝑇1 and 𝑇2, we augment
the content of 𝑇1, the model receives more useful information for
annotation and the annotation quality is thus improved. However,
both TABBIE [16] and DODUO [30] ignore the useful inter-table
context information. Incorporating inter-table context information
is non-trivial: Since the table schema information is generally not
available [16, 30, 36], it is difficult to align tables that potentially
have similar schema solely based on the table content. Although
TCN [33] incorporates inter-table context information, it is limited
to handling relational tables with a known table schema1 and page
topic. Unfortunately, valid table schema and page topic annotations
are generally unavailable in real-world web tables datasets [6, 14].
Therefore, effectively incorporating inter-table context information
solely based on the table content without additional table schema
and page topic annotations remains a challenge to the column
semantic type annotation task.

In order to handle wide tables, we first studied the reasons why
previous approaches have failed. One key observation is that they
incorporate intra-table context to enhance the annotation quality.
However, since the intra-table context (columns except for the
one that we aim at annotating) grows linearly with respect to
the table width, the design of incorporating intra-table context
without splitting can easily lead to the exhaustion of input tokens
for LM-based approaches. As a result, previous approaches cannot
process entire wide tables properly. To circumvent this problem,
we suggest utilizing inter-table context instead to enhance the
annotation quality. In order to handle the difficulty of incorporating
complex inter-table context information, we define and adopt a
novel named entity schema for web tables. Based on this novel
named entity schema, we can successfully align tables that have
similar schemata and extract useful inter-table context information
from the tables aligned with the original table. In this way, the

1TCN [33] manually cleans the headers to form the table schema, based on which it
develops the inter-table relationship. However, according to the common practice of
previous work [16, 30, 36], table headers should not be provided as a piece of known
information to prevent introducing noise or incurring potential information leaks.

difficulty of incorporating inter-table context without accessing
table schemata and page topics can be resolved.

In general, RECA is a self-contained data-driven representation
learning framework, i.e. it requires no external linkage to a knowl-
edge base nor additional manual annotations of table schema and
page topic. RECA considers the target column only in the original ta-
ble so that it can easily accommodate wide tables. We define a novel
named entity schema with table filtering and alignment strategies
for RECA to efficiently extract and process the inter-table context
to obtain rich context information for the annotation. RECA further
leverages BERT [9] as the core LM to encode the target column and
the inter-table context information. Finally, RECA combines the em-
beddings generated and annotates the target column. Specifically,
we have made the following contributions:

• We propose a novel self-contained data-driven representa-
tion learning framework called RECA for column semantic
type annotation. RECA extracts and leverages inter-table
context to enhance the annotation quality of the target
column, thus resolving the wide table issue.

• We define a novel named entity schema for RECA to effi-
ciently align related and sub-related table, which resolves
the difficulty of incorporating inter-table context without
manual table schemata annotations and page topics.

• We conduct extensive experiments on two real-world web
table datasets to show that RECA outperforms all the state-
of-the-art methods. The result demonstrates the effective-
ness of utilizing the inter-table context to annotate column
semantic types accurately.

• We show that RECA is data efficient and learning effi-
cient, since it requires shorter input token sequences and
fewer training data to achieve high performance. The result
demonstrates the robustness and power of RECA on the
column semantic type annotation task.

2 RELATEDWORK
In general, there are two lines of research related to our work:
feature-based data interpretation and pre-trained model-based rep-
resentation learning.

Feature-based data interpretation Research in feature-based
data interpretation aims to capture the semantics in tabular data by
extracting hand-crafted, statistical, and semantic features. The ex-
tracted features are then employed to resolve the column semantic
type annotation problem.

Some early works extract the semantics of data by designing
hand-crafted features. SemanticTyper [29] first separates the tab-
ular data into textual and numeric types and then suggests using
Term Frequency-Inverse Document Frequency (TF-IDF) and a two-
sample Kolmogorov-Smirnov test [22] to extract the semantics
from the tabular data. Pham et al. [26] include Mann-Whitney test
[22] and Jaccard Similarity for textual data to further improve the
performance of SemanticTyper.

Several previous works consider statistical and semantic fea-
tures in column semantic type annotation. Sherlock [15] extracts
character-level, word-level, paragraph-level, and global-level fea-
tures and then employs deep learning classifiers to achieve high

1320

Figure 1: From the left to right we denote the tables as Table 𝑇1, 𝑇2, and 𝑇3. 𝑇1 and 𝑇2 contain information about television
series; 𝑇3 is about video games. The named entities extracted from the tables by spaCy [13] are colored differently: Orange -
WORK_OF_ART (W); Green - PERSON (P); Blue - DATE (D); Red - ORG (O). The bottompart shows the three tables’ corresponding
named entity schema strings.

annotation quality. Sato [36] furthers the capability of Sherlock [15]
by incorporating the table topic features and intra-table context
into the annotation task.

However, the hand-crafted, statistical, and semantic features used
by these methods are too general to capture the rich semantics and
form expressive representations from tables, which is a significant
limitation. As suggested by [33], these methods cannot effectively
capture the fine-grained semantics in tables because of the fact that
the shallow networks of these methods have limited expressiveness.

Pre-trained model-based representation learning To anno-
tate column types, pre-trained neural models are used by recent
methods to learn representations of tables and generate predictions.
In general, the pre-trained model-based representation learning
approaches generally outperform the feature-based data interpreta-
tion approaches and thus serve as our main baselines.

TURL [8] employs a pre-training + fine-tuning framework to per-
form column semantic type annotation. A visibility matrix is used
to mask out the components of tables that are structurally irrelevant
to the transformer structure. The generated column embeddings
are fed into a classifier for column semantic type annotation. TaPas
[12] encodes the queries and the table content together. The po-
sitional embedding of the original BERT [9] structure is modified
by TaPas to ensure a better understanding of tables. TaBERT [35]
slices the web tables with the user queries and feeds them into the
BERT structure to learn the representations of every column in
the tables. Based on Sherlock [15], Zhou et al. [37] utilize a Star-
Transformer [11] structure to encode the features extracted using
Sherlock. TCN [33] suggests using both intra-table and inter-table
information and applying multi-task training to perform column
semantic type annotation. However, the information used by TCN
such as table schema and page topic requires extra manual anno-
tation and cleaning, so it cannot be widely applied on most web
table datasets. (For instance, the Semtab2019 dataset [6] does not
provide table schema annotations and page topic information for
its tables, and the Webtables dataset [36] does not provide page
topic information.) TABBIE [16] furthers the design of TaBERT [35]
by considering two independent transformers to encode the rows
and columns of the tables jointly. TABBIE [16] provides a more
comprehensive view of tables in comparison with TaBERT [35] and
therefore achieves better annotation quality in comparison with

TaBERT. DODUO [30] uses a transformer structure to encode all
the columns in the tables in one pass. The representations of all the
columns in the tables are considered together when training the
classification module. It also suggests applying multi-task learning
to generate representations that contain rich semantic information.

Among these methods, TABBIE [16] and DODUO [30] achieve
state-of-the-art performance on the column semantic type annota-
tion task. However, they neglect the inter-table context information,
which is beneficial in generating high-quality annotations. Besides,
they cannot handle wide tables well. TABBIE and DODUO models
directly feed all the columns into a transformer structure to learn
the representation of each column, which leaves space for further
improvement in terms of boosting the annotation performance.

3 NOTATIONS AND PROBLEM DEFINITION
We first discuss the notations used in this paper and then formally
define the problem of column semantic type annotation.

3.1 Notations and Concepts
The general notations are introduced in Table 1. We further intro-
duce some important concepts used in this paper.

Definition 1: (Target Column): We define the target column to be
the column that has a manual annotation of its semantic type in
the table. Note that not all the columns necessarily have a manually
annotated label.

Definition 2: (Named Entity Schema): Named Entity Schema is the
table schema generated based on the named entity type extracted in
each column. As shown in Figure 1, the named entity schemata are
formed by selecting the most frequent named entity type in each
column. Each named entity schema 𝑠 is represented as a string.

Definition 3: (Edit distance): The edit distance Φ(𝑠𝑖 , 𝑠 𝑗) between
named entity schemata 𝑠𝑖 and 𝑠 𝑗 is defined as the minimum number
of changes required to convert 𝑠𝑖 to 𝑠 𝑗 with the insertion, deletion
and substitution editing operations [5, 23].

Definition 4: (Target Table): We define the table that contains the
target column to be annotated as the target table. For instance, if
we currently want to annotate the semantic type of column 𝐶𝑚

𝑖
,

then the target table here refers to 𝑇𝑖 .
Definition 5: (Candidate Table): A table 𝑇𝑗 is a candidate table of

𝑇𝑖 if the Jaccard similarity [17] between their content is less than
or equal to a threshold.

1321

Figure 2: We denote the table lying on the top as Table 𝑇4; the two tables at the bottom are Table 𝑇5 and 𝑇6, respectively. Note
that these tables describe the detailed information of countries, so it can potentially grow very wide and thus causes challenges
to existing methods. We notice that Table 𝑇4, 𝑇5, and 𝑇6 share the same table schema, so we link them together and develop the
main idea of RECA based on this.

Definition 6: (Related Table): A candidate table 𝑇𝑗 is a related
table of the target table 𝑇𝑖 if 𝑠 𝑗 = 𝑠𝑖 .

Definition 7: (Sub-related Table): A candidate table𝑇𝑗 is defined as
a sub-related table of the target table𝑇𝑖 if the edit distance Φ(𝑠𝑖 , 𝑠 𝑗)
is less than or equal to a threshold.

Definition 8: (Identified Column): An identified column is the
column in the related or the sub-related table that has the same
column index and the same named entity type as the target column.

Definition 9: (Inter-table context): Given a target table, the inter-
table context refers to the collection of the identified columns in
related tables and sub-related tables of the target table.

3.2 Problem definition
Aligning with the problem definition of previous methods [15, 16,
30, 36], the goal of column semantic type annotation is to predict
the semantic type of the target column from a pre-defined semantic
type set. The pre-defined semantic type sets are normally defined
using existing ontologies to ensure the coverage of column semantic
types [15, 18]. The prediction of the target column type should be
solely based on the table contentwithout accessing the table headers
(table schema) in alignment with the common practice of previous
work [15, 16, 30, 36]. The problem is formulated as a multi-class
classification problem.

Problem 1: (Column semantic type annotation): Given a web
table 𝑇 (without table headers) from the dataset 𝐷 , denote the
target column as 𝐶𝑡 in 𝑇 . The column semantic type annotation
model𝑊 annotates 𝐶𝑡 with a semantic type 𝑦𝑡 =𝑊 (𝐶𝑡 ,𝑇 , 𝐷) ∈ 𝑆 ,
such that 𝑦𝑡 best fits the semantics of 𝐶𝑡 (being the closest to the
ground truth semantic type 𝑦𝑡).

4 METHODOLOGY
In order to handle the wide tables, a naive design encodes the target
column only. However, such a design discards the table context
information, which is potentially useful for annotating the target
column [36]. In order to handle the wide table issue without com-
promising the quality of annotations, we incorporate inter-table

Table 1: General notations with corresponding descriptions.

Notation Description
𝐷 = {𝑇1,𝑇2, ...,𝑇𝑛} web table dataset that contains 𝑛 tables
𝑇 , (𝑇𝑖) the (𝑖-th) web table without headers
𝑀 , (𝑀𝑖) the number of columns in the table𝑇 , (𝑇𝑖)
𝑁 , (𝑁𝑖) the number of rows in the table 𝑇 , (𝑇𝑖)
𝐶𝑚 , (𝐶𝑚

𝑖
) the𝑚-th column in the table 𝑇 , (𝑇𝑖)

𝐶 , (𝐶𝑖) the set of all the columns in 𝑇 , (𝑇𝑖)

𝑐𝑚,𝑛 , (𝑐𝑚,𝑛
𝑖

) the cell at the𝑚-th column, the 𝑛-th row
of the table 𝑇 , (𝑇𝑖)

𝐸𝑚 , (𝐸𝑚
𝑖
) the collection of named entities in the𝑚-

th column of the table 𝑇 , (𝑇𝑖)

𝑦𝑚 , (𝑦𝑚
𝑖
) the semantic type ground truth label of

the𝑚-th column in the table 𝑇 , (𝑇𝑖)
𝑠 , (𝑠𝑖) the named entity schema of table 𝑇 , (𝑇𝑖)
𝑅, (𝑅𝑖) the set of related tables of table 𝑇 , (𝑇𝑖)
𝑋 , (𝑋𝑖) the set of sub-related tables of table𝑇 , (𝑇𝑖)

𝐼𝑡
𝑅
, (𝐼𝑡

𝑅𝑖
)

the set of identified columns correspond-
ing to the target column 𝐶𝑡

𝑖
in related ta-

bles 𝑅, (𝑅𝑖)

𝐼𝑡
𝑋
, (𝐼𝑡

𝑋𝑖
)

the set of identified columns correspond-
ing to the target column𝐶𝑡

𝑖
in sub-related

tables 𝑋 , (𝑋𝑖)
𝑆 the pre-defined column semantic type set

Ψ
Dictionary-based mapping from each
named entity type to a distinct English
character

context information. In Figure 2, we aim at annotating the first
columns, which have Country type. Tables𝑇5 and𝑇6 are the tables
that are potentially related to table 𝑇4. Since table 𝑇4 is wide, it
cannot be properly processed by existing methods, such as DO-
DUO [30], without splitting. The point is that tables 𝑇4, 𝑇5, and 𝑇6
are similar in table schema and table content, so they can thus be

1322

C1
c1,1
c1,2
c1,3

C2
c2,1
c2,2
c2,3

C3
c3,1
c3,2
c3,3

Target Column

3. Table finding

and alignment

Related Tables

Sub-related
Tables

Target TableSource Dataset

4. Column encoding

4. Column encoding

4. Column encoding

Target column
embedding

Related tables
embedding

Sub-related
tables embedding

5. Classification

5. Classification

5. Classification

Annotation

1. Named entity
tagging

2. Table
filtering

Figure 3: The general Column Semantic Type Annotation process of RECA.

viewed as a holistic collection of data records. The inter-table con-
text from tables𝑇5 and𝑇6 can extend the information in the original
table 𝑇4’s target column and thus serve as a perfect replacement
for the intra-table context, which constrains LMs’ ability to handle
the wide tables.

In order to incorporate inter-table context information without
additional table schema and page topic annotations, designing ef-
fective related table alignment and filtering rules is necessary. As
shown in Figure 1, table schema and page topic are not available for
general web tables. Therefore, we need to design a special approach
to filter out irrelevant tables and align the related tables with the
original tables. To this end, we define a novel table schema called a
named entity schema. As shown in Figure 1, named entity types can
be detected from the table and we can form the so-called named en-
tity schema for the web tables by selecting the most frequent named
entity type for each column. Intuitively, web tables with similar
named entity schemata are likely to describe the same collection
of data records. For example, the named entity schema in tables 𝑇1
and 𝑇2 is [WORK_OF_ART, PERSON, PERSON, DATE], while the
named entity schema in table 𝑇3 is [WORK_OF_ART, ORG, DATE,
DATE]. Despite the fact that the first columns in both 𝑇2 and 𝑇3
are the names of artwork (and the fact that the first columns in
𝑇2 and 𝑇3 look similar in terms of content and format), 𝑇2 and 𝑇3
are not likely to belong to the same data record collection because
of the difference in their named entity schemata. As a result, the
possibility that the first columns of 𝑇2 and 𝑇3 refer to the same
column type is lower than that of the first columns of 𝑇2 and 𝑇1.
Indeed, the first columns in both Tables𝑇1 and𝑇2 include the names
of TV series, while that in 𝑇3 includes the names of games. In this
way, we can gather together the tables that are similar in schemata.
Table column alignment can then be applied thereafter, and we can
find columns that likely extend the target column and form the
inter-table context for column semantic type annotation.

The general process of RECA is shown in Figure 3: RECA first
extracts the named entities and assigns types from a pre-defined
named entity type set, which is discussed in Section 4.1. Based on
the named entity types extracted, it further generates the named

entity schema for the input table. In Section 4.2, we discuss how
RECA filters out the topic-irrelevant tables. Then it finds the related
tables and sub-related tables of the target table based on their corre-
sponding named entity schemata, which is introduced in Section 4.3.
RECA then encodes the target column and its corresponding inter-
table context information, which is discussed in Section 4.4. Finally,
we introduce how RECA performs column type annotation based
on the encoding generated, which is discussed in Section 4.5.

4.1 Named entity tagging
First note that under our problem formulation, the table schema
(header) information is not provided as input to the model. There-
fore, we propose forming an approximated schema based on named
entities in each column to identify related and sub-related tables. In
order to achieve this, the first step is to identify the named entities
in the tables.

Given a table 𝑇 from dataset 𝐷 that has𝑀 columns and 𝑁 rows,
RECA utilizes tagging tools such as spaCy [13] to identify the
named entities in each column 𝐶𝑚 ∈ 𝐶 and tag them into basic
named entity types as shown in Figure 4. The tagged named entities
in each column are denoted as 𝐸𝑚 .

Apart from the basic named entity types, we notice that several
named entity types have different representation formats, such
as DATE and PERSON, which can be further divided into sub-
types based on simple hand-crafted rules. For instance, as shown in
Figure 1, the fourth columns of both tables 𝑇1 and 𝑇3 are annotated
as DATE, while the format of the content in the columns is different
(YYYY-MM-DD& YYYY). The difference in the data format suggests
that the two tables are likely to be from different sources. Therefore,
the possibility that the two tables describe the same data collection
is relatively low.

To this end, we designed hand-crafted rules to further classify
types DATE and PERSON into sub-types based on the data format2.
Detailed descriptions of the sub-types are introduced in Table 2.
We only divide the DATE and PERSON types into sub-types, since
these two types are common, and designing hand-crafted rules to
2In reference to the data formats in the Document Automation Language of Oracle

1323

WORK_OF_ART

Basic Named Entity Types defined by spaCy

DATE-1 DATE-2

DATE-3 DATE-4

DATE-5

Sub-types under DATE

PERSON-1

PERSON-2

Sub-types under PERSON

EMPTY

Empty type

ORG

LANGUAGE

GPE

ORDINAL

FAC

EVENT

PRODUCT

LOC

LAW

QUANTITY

PERCENT

CARDINAL

TIME

NORP

MONEY

DATE PERSON

Figure 4: The basic named entity types defined by spaCy [13]
(orange); the sub-types defined under DATE and PERSON
(green); the EMPTY type that handles the case when no
named entity is detected (red).

Table 2: Sub-types and the corresponding descriptions.

Sub-type Description
DATE-1 dates in YYYY format. e.g. 2022

DATE-2
dates that contain month names or ab-
breviations of month names. e.g. January
16th, 2022

DATE-3 dates in DD-MM-YYYY or MM-DD-YYYY
or YYYY-MM-DD format. e.g. 18-11-1998

DATE-4 dates that contain numerical months and
days only. e.g. 02-29

DATE-5 dates in other formats.

PERSON-1 person names that contain abbreviations.
e.g. J. K. Rowling

PERSON-2 person names in other formats.

classify entities in these two types is relatively simple3. Note that
the sub-typeswe defined are general andmay be further divided, but
further dividing the sub-types may require more complicated hand-
crafted rules, which would not be desirable for maintaining the
generalizability of the RECA framework on other web table data. In
other words, there is a trade-off between the generalizability of the
hand-crafted rules and the granularity of the sub-types generated.
Furthermore, we also include a new type called EMPTY to handle
cases where no named entity is extracted from the column. As a
result, we obtain the finer-grained named entity types, based on
which we can generate the updated tagged named entities in each
column𝑚 as 𝐸𝑚 .

After obtaining the updated tagged named entities for each col-
umn, we further generate the named entity schema for the table
𝑇 . For each 𝐸𝑚 obtained, we denote the most frequent named en-
tity type4 in 𝐸𝑚 as 𝑒𝑚 . Based on this, we obtain the named entity

3These rules can be applied as a complement on other tagging tools, since the rules
are general and the types DATE and PERSON are also common in other tagging tools.
4In case a tie happens, for simplicity, we select the named entity type that occurs first
in the column from the most frequent types.

schema string 𝑠 of table 𝑇 : 𝑠 = (Ψ(𝑒1),Ψ(𝑒2), ...,Ψ(𝑒𝑀)), where
each entity type shown in Figure 4 is mapped to a distinct English
character through a dictionary-based mapping Ψ5. In this way, we
can generate the table schemata for all the tables in the dataset 𝐷
(Lines 3 and 5, Algorithm 1).

4.2 Table filtering
In order to obtain candidate tables that are topically similar to the
target table, we need to filter them based on the table content. In
reference of [10], we adopt the Jaccard similarity [17] to achieve
this goal. For each target table 𝑇𝑖 and each table 𝑇𝑗 , where (𝑗 ≠ 𝑖),
we denote the set of words in 𝑇𝑖 as 𝐴𝑖 and the set of words in 𝑇𝑗 as
𝐴 𝑗 . Then we compute the Jaccard similarity between 𝑇𝑖 and 𝑇𝑗 :

Jaccard(𝐴𝑖 , 𝐴 𝑗) =
|𝐴𝑖 ∩𝐴 𝑗 |
|𝐴𝑖 ∪𝐴 𝑗 |

(1)

We include 𝑇𝑗 as a candidate table if the similarity is smaller
than or equal to a threshold 𝛿 . After performing table filtering, we
obtain the candidate tables that are topically related to the target
table (Line 9, Algorithm 1).

4.3 Table finding and alignment
Note that Section 4.2 considers the relatedness of tables mainly
based on the table topics. We now consider the relatedness of tables
based on the structural information (schema and location). Given
a table 𝑇𝑖 in the dataset 𝐷 , we now want to find its corresponding
related and sub-related tables based on the named entity schemata
extracted. The alignment of the related tables is straightforward: we
simply identify the candidate tables 𝑇𝑗 that have the same schema
𝑠 𝑗 as the schema 𝑠𝑖 of the table 𝑇𝑖 , where 𝑗 ≠ 𝑖 . We denote the set
of these related tables 𝑇𝑗 as 𝑅𝑖 .

In order to identify sub-related tables that are ‘approximately’
aligned with the target table, we consider these requirements:

• Schema similarity: The named entity schema of the sub-
related table should not be much different from that of the
target table.

• Column location alignment: The named entity type of
the target column matches with that of the column at the
identical location in the sub-related table.

The intuition of schema similarity is that sub-related tables that
share similar schemata with the target table are likely to have
related or similar table content as the target table. For column
location alignment, if the inner order of column types in a sub-
related table differs much from the target table, then the inner
schema structures of the two tables are not similar. Therefore, the
possibility that the sub-related table and the target table describe
the same data collection is low.

In considering the schema similarity, we compute the edit dis-
tance [23] between the table schema string of a candidate table 𝑇𝑘
and that of the target table 𝑇𝑖 . If the edit distance Φ(𝑠𝑖 , 𝑠𝑘) is larger
than a threshold6, then the candidate table cannot be regarded as a
sub-related table of the target table. If Φ(𝑠𝑖 , 𝑠𝑘) is larger than 0 and

5We constructed a dictionary that maps the named entity types and sub-types into 24
distinct English characters.
6We empirically set the threshold to be the square root of the width of the target table.
i.e.,

√
𝑀𝑖 .

1324

less than or equal to the threshold, we add 𝑇𝑘 to 𝑋𝑖 . If Φ(𝑠𝑖 , 𝑠𝑘) = 0,
then 𝑇𝑘 is a related table and is added to 𝑅𝑖 . We denote the set of
sub-related table candidates that are ‘schema similar’ to the target
table as 𝑋𝑖 (Line 14, Algorithm 1).

We obtain the identified columns as follows: For the target col-
umn 𝑡 in 𝑇𝑖 , we consider each related table 𝑇𝑘 in 𝑅𝑖 and include 𝐶𝑡

𝑘

in 𝐼𝑡
𝑅𝑖
. For each sub-related table in 𝑋𝑖 , we consider the following

exact alignment rule to achieve column location alignment: We
denote the named entity column type of the target column as Ψ(𝑒𝑡

𝑖
).

For a sub-related table candidate𝑇𝑘 , if Ψ(𝑒𝑡𝑘) = Ψ(𝑒𝑡
𝑖
), then the 𝑡-th

column of 𝑇𝑘 is the identified column, we include 𝐶𝑡
𝑘
in 𝐼𝑡

𝑋𝑖
(Line

17, Algorithm 1).

4.4 Column encoding
After obtaining the inter-table context (identified columns in re-
lated and sub-related tables, i.e., 𝐼𝑡

𝑅𝑖
and 𝐼𝑡

𝑋𝑖
), the next step is to

generate embeddings for the annotation. As shown in Figure 3, the
target column, the identified columns in the related tables, and the
identified columns in the sub-related tables are encoded indepen-
dently. Specifically, for the target column 𝐶𝑡

𝑖
, we concatenate the

cell content in the 𝑡-th column to generate the input string 𝐿𝑡
𝑖
for

BERT model:

𝐿𝑡𝑖 = Concatenate(𝑐𝑡,1
𝑖
, 𝑐
𝑡,2
𝑖
, ..., 𝑐

𝑡,𝑁𝑖

𝑖
) (2)

Similarly, we concatenate the cells from the identified columns
of the related table set 𝐼𝑡

𝑅𝑖
(or the sub-related table set 𝐼𝑡

𝑋𝑖
) to obtain

the concatenated column set 𝑍𝑅𝑖 (𝑍𝑋𝑖
):

𝑍𝑅𝑖 = {Concatenate(𝑐𝑡
′,1
𝑘

, 𝑐
𝑡 ′,2
𝑘

, ..., 𝑐
𝑡 ′,𝑁𝑘

𝑘
) |for table 𝑇𝑘 ∈ 𝑅𝑖 } (3)

𝑍𝑋𝑖
= {Concatenate(𝑐𝑡

′,1
𝑘

, 𝑐
𝑡 ′,2
𝑘

, ..., 𝑐
𝑡 ′,𝑁𝑘

𝑘
) |for table 𝑇𝑘 ∈ 𝑋𝑖 } (4)

where 𝑡 ′ is the identified column index in each related table (or
sub-related table).

Then we generate the input strings 𝐿𝑡
𝑅𝑖

and 𝐿𝑡
𝑋𝑖

for related tables
and sub-related tables:

𝐿𝑡𝑅𝑖
= Concatenate(𝑍𝑅𝑖) (5)

𝐿𝑡𝑋𝑖
= Concatenate(𝑍𝑋𝑖

) (6)
Upon obtaining the input strings for the target column, identified

columns of related tables, and sub-related tables, we tokenize the
strings and append an additional [CLS] token at the front of each
string. Each string is passed to BERT and transformed into a 768-
dimension embedding. We denote the embeddings of the target
column, the identified columns of related tables and the identified
columns of sub-related tables as 𝑣𝑡

𝑖
, 𝑟𝑡
𝑖
, 𝑥𝑡

𝑖
(Line 24, Algorithm 1).

Note that BERT [9] has a maximum input sequence length limit
𝐵 (which by default is 512). For target columns that exceed this
limit, we truncate the sequence to fit within the limit. As for the
identified columns in related and sub-related tables, we promote
fair allocation of the input tokens (e.g., If there are four identified
columns in the related table set, each identified column will take
𝐵
4 tokens. If the identified column exceeds this limit, we truncate
it). The main reason why we adopt such a fair allocation is that we
hold an optimal view of the related and sub-related tables aligned:
All the related and sub-related tables should be of high quality in
terms of relatedness and thus should be considered. Besides, if we

consider only some but not all of the related and sub-related tables,
then we are at risk of biasing the model towards some tables that
have a skewed distribution of data.

Algorithm 1 Training process of RECA
Input:

Number of epochs 𝑃
Training dataset 𝐷𝑡𝑟

Loss function J
Output:

Trained RECA model𝑊𝑡𝑟

1: for 𝑖 = 1, 2, ..., |𝐷𝑡𝑟 | do
2: for 𝑗 = 1, 2, ..., 𝑀𝑖 do
3: Named Entity tagging, obtain 𝑒

𝑗
𝑖
from 𝐶

𝑗
𝑖

4: end for
5: Generate 𝑠𝑖 = (Ψ(𝑒1

𝑖
),Ψ(𝑒2

𝑖
), ...,Ψ(𝑒𝑀𝑖

𝑖
))

6: end for
7: for 𝑖 = 1, 2, ..., |𝐷𝑡𝑟 | do
8: for 𝑗 = 1, 2, ..., 𝑖 − 1, 𝑖 + 1, ..., |𝐷𝑡𝑟 | do
9: Compute Jaccard(𝐴𝑖 , 𝐴 𝑗), if Jaccard(𝐴𝑖 , 𝐴 𝑗) ≤ 𝛿 , include

𝑇𝑗 to 𝑇𝑖 ’s candidate table set 𝑄𝑖

10: end for
11: end for
12: for 𝑖 = 1, 2, ..., |𝐷𝑡𝑟 | do
13: for each table 𝑇𝑘 in 𝑄𝑖 do
14: Compute edit distance Φ(𝑠𝑖 , 𝑠𝑘), if Φ(𝑠𝑖 , 𝑠𝑘) = 0 add 𝑇𝑘 to

𝑅𝑖 ; if 0 < Φ(𝑠𝑖 , 𝑠𝑘) ≤
√
𝑀𝑖 add 𝑇𝑘 to 𝑋𝑖

15: end for
16: for each target column 𝑡 in 𝑇𝑖 do
17: Align and store 𝐼𝑡

𝑅𝑖
and 𝐼𝑡

𝑋𝑖
to 𝐷𝑡𝑟 as side information

18: end for
19: end for
20: Initialize the LM core of𝑊𝑡𝑟 with pre-trained BERT weights
21: for epoch = 1 to 𝑃 do
22: Randomly split 𝐷𝑡𝑟 into batches {𝐵1, 𝐵2, ..., 𝐵𝑓 }
23: for 𝑙 = 1, 2, ..., 𝑓 do
24: Encoding and classification 𝐿 = J (𝐵𝑙 ,𝑊𝑡𝑟)
25: 𝑊𝑡𝑟 = Backpropagate(𝑊𝑡𝑟 , 𝐿)
26: end for
27: end for
28: return 𝑊𝑡𝑟

4.5 Classification
The generated embeddings for the target column and the corre-
sponding identified columns of related tables and sub-related tables
are fed into the classificationmodule for the annotation of the target
column type as shown in Figure 3.

Note that the identified columns in the related and sub-related
tables are expected to be of the same semantic type as the target col-
umn yet have different content to provide a broader view of context
information for the target column. Therefore, we design a three-
network classification module to compute the annotations based
on the content of the target column, related tables, and sub-related
tables. Specifically, we adopt the standard two-layer classification

1325

module [34] for each network: A dropout layer that avoids overfit-
ting and a linear layer that generates the annotations based on the
input embeddings. We denote the outputs of the three networks as
𝑣𝑡
𝑖
, 𝑟𝑡
𝑖
, 𝑥𝑡

𝑖
respectively. We then generate the final annotation 𝑎𝑡

𝑖
of

the target column by combining the three outputs:

𝑎𝑡𝑖 = 𝛼 ∗ 𝑣𝑡𝑖 + 𝛽 ∗ 𝑟𝑡𝑖 + 𝛾 ∗ 𝑥𝑡𝑖 (7)

where 𝛼 , 𝛽 , and 𝛾 are trainable weights.
Cross-Entropy loss is used as the loss function. The formula for

the loss J is as follows:

J = −
|𝑆 |∑︁
𝑘=1

(𝑝𝑘 ∗ 𝑙𝑜𝑔(𝑞𝑘)) (8)

where 𝑝𝑘 ∈ {0, 1} is the ground truth label for the 𝑘-th type. 𝑞𝑘 is
the 𝑘-th entry of 𝑎𝑡

𝑖
. The predicted column type 𝑦𝑡

𝑖
= arg max𝑘 𝑞𝑘

(Line 24, Algorithm 1).

4.6 Analysis
Algorithm 1 shows the complete training process of RECA. We
perform named entity tagging in each table first and formulate the
named entity schemata (lines 1 to 6). Then we compute the Jaccard
similarity between each pair of tables to obtain candidate tables
(lines 7 to 11). After that, we compute the edit distance between
candidate table pairs (lines 13 to 15) so as to perform column align-
ment (lines 16 to 18). Then we adopt BERT to encode the columns
and perform classification (line 24). For a dataset 𝐷 with 𝑛 tables,
we denote the maximum number of columns of tables as 𝑀̂ ; the
maximum number of rows of tables as 𝑁̂ ; BERT embedding dimen-
sion as 𝑑 ; BERT maximum input sequence limit as 𝐵; the size of the
pre-defined label set as |𝑆 |; the number of epochs as 𝑃 ; the number
of batches as 𝑓 .
Time complexity For each table, named entity tagging is per-
formed to generate its named entity schema: we need to go through
each column and each row, which takes 𝑂 (𝑀̂𝑁̂) time complexity.
For all the 𝑛 tables, we need𝑂 (𝑀̂𝑁̂𝑛) time. Computing the Jaccard
similarity takes 𝑂 (𝑀̂𝑁̂𝑛2) time since there are 𝑂 (𝑛2) pairs to com-
pute and computing the Jaccard similarity for each pair requires
going through the table content and thus takes 𝑂 (𝑀̂𝑁̂). Comput-
ing edit distance takes 𝑂 (𝑀̂2𝑛2) time. Since we compute the pair-
wise edit distance, each pair needs𝑂 (𝑀̂2) time. Aligning identified
columns takes 𝑂 (𝑀̂𝑛2) time, since each table contains at most 𝑀̂
target columns, each target column has at most𝑛 identified columns,
in total there are 𝑛 tables, aligning a pair of columns takes 𝑂 (1).
Preparation for the input sequence takes𝑂 (𝑁̂𝑛) for each column so
in total𝑂 (𝑀̂𝑁̂𝑛2) time. Encoding each column with its related and
sub-related identified columns takes 𝑂 (𝐵𝑑 (𝐵 + 𝑑)) time [9, 31]. So
preparing input and encoding the columns takes overall𝑂 (𝑀̂𝑁̂𝑛2 +
𝐵𝑑 (𝐵+𝑑)𝑛𝑃) time. Classification takes𝑂 (𝑑2 |𝑆 |𝑛𝑃) time. So the over-
all time complexity is 𝑂 (𝑀̂𝑁̂𝑛 + 𝑀̂𝑁̂𝑛2 + 𝑀̂2𝑛2 + 𝑀̂𝑛2 + 𝑀̂𝑁̂𝑛2 +
𝐵𝑑 (𝐵 +𝑑)𝑃𝑛 +𝑑2 |𝑆 |𝑃𝑛) = 𝑂 (𝑀̂2𝑛2 + 𝑀̂𝑁̂𝑛2 + (𝐵2 +𝐵𝑑 +𝑑 |𝑆 |)𝑑𝑃𝑛).
Space complexity For named entity tagging, we need 𝑂 (𝑀̂𝑁̂ +
𝑀̂𝑛) memory space to load each table and store the named entity
schemata. The Jaccard similarity computation step requires𝑂 (𝑀̂𝑁̂+
𝑛2) space since 𝑂 (𝑀̂𝑁̂) is used for computing the Jaccard similar-
ity and 𝑂 (𝑛2) is used to store the pairwise Jaccard values between
tables. Computing the edit distance requires 𝑂 (2𝑀̂ + 𝑛2) space:

𝑂 (2𝑀̂) space to perform the computation and the edit distance
results require 𝑂 (𝑛2) memory space. Aligning identified columns
needs 𝑂 (𝑀̂𝑛2 + 𝑀̂𝑁̂𝑛) space, where we need 𝑂 (𝑀̂𝑛2) to perform
alignment and store the alignment relationship (since each table
contains at most 𝑀̂ target columns and each target column has at
most 𝑛 identified columns, there are 𝑛 tables in total) and𝑂 (𝑀̂𝑁̂𝑛)
to store the table content. Preparing input and encoding columns re-
quires𝑂 (𝑁̂𝑛+ (𝐵+𝑑)𝑑) space:𝑂 (𝑁̂𝑛) space for preparing the input
sequence (since each column has at most 𝑁̂ cells and each column
has at most 𝑛 identified columns), 𝑂 (𝐵𝑑) space for the input and
output embeddings and𝑂 (𝑑2) for self-attentionmatrices. The classi-
fication step requires𝑂 (𝑑 |𝑆 |) space. So the overall space complexity
is max(𝑂 (𝑀̂𝑁̂ + 𝑛2),𝑂 (𝑀̂𝑛(𝑁̂ + 𝑛)),𝑂 (𝑁̂𝑛 + (𝐵 + 𝑑)𝑑),𝑂 (𝑑 |𝑆 |)).

5 EXPERIMENT
We compared RECA with the following baselines: Sherlock [15],
TaBERT [35], TABBIE [16], and DODUO [30]. Comparison with
Sato [36] is omitted, since it is outperformed by DODUO. We do
not compare with TCN [33], since TCN requires additional manual
annotations and cleaning for the table schemata and page topics.

Table 3: Statistics of the Semtab2019 dataset and the WebTa-
bles dataset.

types # tables # cols avg rows avg cols
Semtab2019 275 3,045 7,603 69.0 4.5
WebTables 78 32,262 74,141 20.0 2.3

5.1 Datasets
We selected the Semtab2019 dataset [6] and the WebTables dataset
from the VizNet corpus [14] used in [30, 36] to evaluate the per-
formance of RECA. These datasets contain vertical relational web
tables with valid semantic labels of different levels of granular-
ity. Specifically, we selected rounds 1, 3, and 4 in the Semtab2019
dataset. In total, there are 3,045 tables with 275 distinct seman-
tic types. For the WebTables dataset, we selected the tables with
multiple columns. There are 32,262 tables with 78 distinct types.
As shown in Table 3, the tables in the Semtab2019 dataset tend
to be larger in size than those in the WebTables dataset. Besides,
the number of semantic types in the Semtab2019 dataset is larger
than that of the WebTables dataset, while the WebTables dataset
has more tables than the Semtab2019 dataset, and every column in
the WebTables dataset is annotated. Considering these differences
in the properties of the two datasets, conducting experiments on
both datasets provided a comprehensive and deep understanding
of the properties of RECA. All the table headers are excluded fol-
lowing the common practice of previous work [15, 16, 30, 36], the
main reasons are: a) Several datasets [6, 7, 18] contain index-like
headers, which do not contain useful semantic information to gen-
erate meaningful table schema. b) The commonly-used benchmark
WebTables dataset utilizes the column headers as the ground truth
semantic type labels. In this case, utilizing table headers as input
is likely to incur information leaks since the model will learn to
directly annotate the columns based on the headers instead of the

1326

table content. Incorporating column headers as input would be
unfair when performing a comparison with other approaches in
the evaluation process.

In order to select training, validation, and testing sets from the
Semtab2019 dataset [6], we randomly sampled 10% of the annotated
columns to form the testing set. Then we randomly divided the rest
of the data into five folds to conduct 5-fold cross-validation (80% for
the training set and 20% for the validation set). We preserved the
percentage of each type7 when generating the training, validation,
and testing sets. As for the WebTables dataset, we followed the
5-fold cross-validation setting8 provided by [36].

5.2 Baselines
In order to evaluate the performance of RECA, we selected the
following methods for comparison:

• Sherlock [15]: Sherlock extracts character-level and global-
level statistical features from the tables. Besides, it considers
semantic features from word-level and paragraph-level to
form vector representations for table columns.

• TaBERT [35]: TaBERT jointly considers queries and table
content to identify three salient rows in a table to gener-
ate table content snapshots. Based on the table content
snapshots generated, TaBERT utilizes BERT to process and
formulate representations for each table column for classi-
fication purposes.

• TABBIE [16]: TABBIE adopts a dual-transformer structure
to encode the table columns and rows. The generated em-
bedding for the target column is then used to annotate the
column semantic types.

• DODUO [30]: DODUO utilizes a transformer structure to
encode all the columns in the target table together in order
to consider the intra-table context.

Among these methods, TABBIE and DODUO achieve state-of-
the-art performances. To be fair for the evaluation, we used the
open-sourced official implementations of the above-mentioned
baselines. We preserved the experimental settings mentioned by the
original papers as much as possible. Specifically, for Sherlock [15],
we followed the official implementation [1]. For TaBERT [35], we
adopted the prescribed implementation [2]. Note that the original
purpose of TaBERT was to facilitate the question-answering task
on table content. We followed the suggestions in [21] and provided
a blank space as the query input of TaBERT. For TABBIE [16], we
used the official implementation [3] in the paper. For DODUO [30],
we adopted the implementation [4] released by the authors and
maintained the experimental settings of the model.

5.3 Experiment Metrics
We adopted F1 scores as the evaluation metrics for RECA (𝐹1 =

2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙). As suggested by [36], due to the imbalanced

distribution of semantic types, we selected two different kinds of
F1 scores, support-weighted F1 score and macro average F1 score
to evaluate the performance of different methods comprehensively.
Specifically, the Support-weighted F1 score is the weighted average

7We used StratifiedKFold in scikit-learn [25].
8https://github.com/megagonlabs/sato/tree/master/table_data

of per-type F1 scores, where the weights are proportional to the
support in each type. The macro average F1 score is the mean of all
the per-type F1 scores, focusing on the types with fewer supports.

5.4 Experiment Settings
We trained RECA for 20 epochs on each fold of the Semtab2019
dataset and trained it for 15 epochs on each fold of the WebTables
dataset. We used Adam optimizer [20], and we adopted spaCy [13]
as the named entity tagging tool, which has 18 basic named entity
types. After extending the named entity type set as shown in Sec-
tion 4.1, we obtained 24 named entity types. The set of learning
rates to be selected was {0.00005, 0.00001, 0.000005}. The batch size
was selected from {8, 16, 32}. The weight decay of 0.01 was used
to optimize the training process. The Jaccard threshold 𝛿 was set
to 0.1. Following the settings of the classification module in the
Huggingface [34] implementation of BERT [9], we set the dropout
rate of the classification module to be 0.3. We followed a consistent
model selection method with [30], where the best model was se-
lected based on the performance on the validation set. The means
and standard deviations of the F1 scores are reported in Table 4. We
conducted all the experiments on Intel(R) Xeon(R) Gold 5220R @
2.20GHz CPUs and GeForce RTX 3090 GPUs.

5.5 Experiment Results
We conducted a 5-fold cross-validation to evaluate the performance
of RECA in comparison with the baselines. The mean F1 scores of
the 5-fold are reported. ± denotes the standard deviation recorded
for the F1-scores in 5-fold.

As shown in Table 4, Sherlock [15] is significantly outperformed
by RECA. The relatively poor performance of Sherlock can be
attributed to the fact that Sherlock encodes the target column based
on the cells in the target column only. Besides, Sherlock encodes
the columns with statistical and simple semantic features, which
have limited expressiveness to capture the rich semantics in tables.

We further noticed that TaBERT [35] performs poorly for macro
average F1 scores on both datasets, which coincides with the exper-
imental results shown by [37]. Besides, its performance for support-
weighted F1 scores is also outperformed by RECA. As suggested
by [37], the main reason for this phenomenon is that TaBERT fo-
cuses on table semantic parsing. The column embeddings generated
by TaBERT are more suitable for understanding the alignment be-
tween the input text and table schema, while they are less powerful
for column type annotation.

We also observed that RECA outperforms the state-of-the-art
models TABBIE [16] and DODUO [30] for both support-weighted
F1 scores and macro average F1 scores on the two datasets. Specifi-
cally, RECA outperforms TABBIE by 6.8% and 11.0% for the support-
weighted F1 score and macro average F1 score, respectively, on the
Semtab2019 dataset. For the WebTables dataset, RECA outperforms
TABBIE by 0.9% and 6.7% for the two F1 scores. Furthermore, RECA
achieves performance uplifts of 4.0% and 7.0% for the F1 scores
on the Semtab2019 dataset and improvements of 1.0% and 5.5% on
the WebTables dataset. Note that both TABBIE and DODUO utilize
LMs to process intra-table context while ignoring the inter-table
context information when generating the embeddings of the tar-
get columns. However, RECA mainly focuses on extracting useful

1327

https://github.com/megagonlabs/sato/tree/master/table_data

Table 4: Experimental results on the Semtab2019 dataset and the WebTables dataset.

Semtab2019 dataset WebTables dataset
Model names Support-weighted F1 Macro average F1 Support-weighted F1 Macro average F1
Sherlock [15] 0.646 ± 0.006 0.440 ± 0.009 0.844 ± 0.001 0.670 ± 0.010
TaBERT [35] 0.768 ± 0.011 0.413 ± 0.019 0.896 ± 0.005 0.650 ± 0.011
TABBIE [16] 0.799 ± 0.013 0.607 ± 0.011 0.929 ± 0.003 0.734 ± 0.019
DODUO [30] 0.820 ± 0.009 0.630 ± 0.015 0.928 ± 0.001 0.742 ± 0.012
RECA target only 0.808 ± 0.017 0.586 ± 0.039 0.911 ± 0.001 0.688 ± 0.014
RECA w/o re 0.836 ± 0.012 0.641 ± 0.037 0.927 ± 0.001 0.748 ± 0.024
RECA w/o sub 0.848 ± 0.009 0.650 ± 0.019 0.936 ± 0.002 0.774 ± 0.011
RECA 0.853 ± 0.005 0.674 ± 0.007 0.937 ± 0.002 0.783 ± 0.014

inter-table context information to enhance the embeddings of the
target columns. The performance uplifts of RECA over the state-
of-the-art models show that the inter-table context information
serves as a suitable replacement for the intra-table context infor-
mation when generating the embeddings for the target columns.
Besides, by incorporating inter-table context information in replace-
ment of the intra-table context information, RECA can naturally
handle wide tables. Furthermore, we noticed that the performance
boost for macro average F1 scores is significant, which suggests
that RECA is especially good at improving the performance for
less-populated semantic types by incorporating useful inter-table
context information.

5.6 Ablation Study
To better understand how different components of RECA benefit
the model in annotating the column semantic type, we conducted
an extensive ablation study to evaluate the performance of RECA
and its following variants:

• RECA target only: The RECA model that only considers the
target column without processing related and sub-related
tables. This variant degenerates to the basic BERT model
that only processes the cells in the target column.

• RECA w/o re: The RECA model that only considers the
target column and the identified columns in the sub-related
tables, without processing related tables.

• RECA w/o sub: The RECA model that only considers the
target column and the identified columns in the related
tables, without processing sub-related tables.

We present the results of RECA target only to establish a baseline
performance for processing the content of the target column only,
so as to analyze the importance of related and sub-related tables
in generating target column representations. Then, we present
the results of RECA w/o re and RECA w/o sub in order to see if
related and sub-related tables provide useful context information
that boosts the annotation quality of RECA.

As shown in Table 4, the performance of RECA drops signifi-
cantly when both related tables and sub-related tables are removed
(RECA target only). On the Semtab2019 dataset, 5.3% and 13.1%
of the performance drops can be observed for the two metrics,
while on the WebTables dataset, the F1 scores drop by 2.8% and
12.1%. These drops demonstrate the importance of incorporating

inter-table context information when generating target column
representations. To further understand the effects of incorporating
related and sub-related tables, we evaluated the performances of
RECA w/o re and RECA w/o sub. Note that the performances of
RECA drop slightly when the sub-related tables are removed: 0.9%
and 3.6% on the Semtab2019 dataset; 0.1% and 1.1% on the WebTa-
bles dataset. But the performance drops are more prominent when
the related tables are removed: 2.0% and 4.9% on the Semtab2019
dataset; 1.1% and 4.5% on theWebTables dataset. Since related tables
are ‘more related’ compared with sub-related tables in terms of the
similarity in the named entity schema, removing sub-related tables
causes less harm to the model performance than removing related
tables, as is shown in the experimental results. We further notice
that the performance drop on the macro average F1 metric is much
larger than that on the support-weighted F1 metric, which suggests
that the related and sub-related table information can improve the
annotation quality of RECA on the less-populated semantic types.

Table 5: Learning Efficiency evaluation on the Semtab2019
dataset and the WebTables dataset.

Datasets [%] Support-weighted F1 Macro average F1
Semtab2019 25 0.697 ± 0.041 0.442 ± 0.074
Semtab2019 50 0.792 ± 0.020 0.566 ± 0.045
Semtab2019 75 0.820 ± 0.021 0.631 ± 0.047
Semtab2019 100 0.853 ± 0.005 0.674 ± 0.007
WebTables 25 0.909 ± 0.002 0.680 ± 0.008
WebTables 50 0.924 ± 0.004 0.738 ± 0.019
WebTables 75 0.930 ± 0.002 0.772 ± 0.013
WebTables 100 0.937 ± 0.002 0.783 ± 0.014

5.7 Efficiency
Learning Efficiency We further evaluated the effectiveness of
RECA with less training data. We trained RECA with training sizes
(25%, 50%, 75%, 100% of the full training set). As shown in Table 5,
when using 75% of the training data, the F1 scores of RECA dropped
by only 0.7% and 1.4% compared with training with the full train-
ing set on the WebTables dataset, while the F1 scores of RECA
dropped by 3.9% and 6.4% compared with training with the full

1328

Table 6: Data Efficiency evaluation on the Semtab2019 dataset
and the WebTables dataset.

Datasets Max Support-weighted F1 Macro average F1
Semtab2019 8 0.540 ± 0.009 0.319 ± 0.010
Semtab2019 16 0.654 ± 0.013 0.436 ± 0.006
Semtab2019 32 0.728 ± 0.010 0.507 ± 0.020
Semtab2019 128 0.816 ± 0.017 0.620 ± 0.033
Semtab2019 256 0.851 ± 0.011 0.662 ± 0.024
Semtab2019 512 0.853 ± 0.005 0.674 ± 0.007
WebTables 8 0.907 ± 0.004 0.737 ± 0.011
WebTables 16 0.923 ± 0.002 0.762 ± 0.011
WebTables 32 0.931 ± 0.002 0.780 ± 0.010
WebTables 128 0.937 ± 0.002 0.783 ± 0.014
WebTables 256 0.936 ± 0.003 0.783 ± 0.020
WebTables 512 0.936 ± 0.001 0.780 ± 0.011

training set on the Semtab2019 dataset. RECA with 75% training
data still slightly outperformed the state-of-the-art methods TAB-
BIE [16] and DODUO [30] on two datasets. While training RECA
with 50% of the data, RECA achieves slightly worse performance
than the state-of-the-art models TABBIE and DODUO. When RECA
is trained with only 25% of the training data, it still outperforms
Sherlock [15]. The learning efficiency results show that RECA has
the advantage of training a high-performance model with a rela-
tively small amount of training data.
Data Efficiency As suggested by [30], input data efficiency is an
important issue worth considering when designing column seman-
tic type annotation models. Due to the maximum sequence length
limit of BERT, annotating columns accurately with only a small
number of tokens is a crucial factor in evaluating the performance
and robustness of column semantic type annotation models.

We conducted experiments on two datasets with different max-
imum sequence length limits to evaluate the data efficiency of
RECA. As shown in Table 6, there is not much difference when the
maximum sequence length limit is set to 128, 256, and 512 on the
WebTables dataset. While the performance dropped by only 0.2%
and 1.8% when set from 512 to 256 on the Semtab2019 dataset. We
noticed that RECA still outperforms all the state-of-the-art methods
on the WebTables dataset even if we reduce the maximum sequence
length to 32, while still achieving comparable performance to the
state-of-the-art approaches even if we further reduce the maximum
sequence length to 16. This phenomenon demonstrates the high
data efficiency of RECA. Besides, it also shows the robustness of
RECA when dealing with data with small input size.

5.8 Discussion
We analyzed the effectiveness of the column location alignment
requirement mentioned in Section 4.3 to see if aligning identified
columns at the exact same location as the target column is indeed
an effective strategy. Following the notations in Section 4.3, we
compared RECA with the following alignment variants:

• RECA set: If not aligned by the exact alignment but if any
Ψ(𝑒 𝑗

𝑘
) = Ψ(𝑒𝑡

𝑖
), 𝑗 = 1, 2, ..., 𝑀𝑘 then the 𝑗-th column is the

Table 7: Alignment strategies evaluation on the Semtab2019
dataset and the WebTables dataset.

Datasets F1 RECA set RECA prox RECA
Semtab2019 S 0.842 ± 0.008 0.843 ± 0.004 0.853 ± 0.005

M 0.660 ± 0.014 0.663 ± 0.009 0.674 ± 0.007
WebTables S 0.934 ± 0.003 0.935 ± 0.004 0.937 ± 0.002

M 0.778 ± 0.016 0.780 ± 0.017 0.783 ± 0.014
S stands for support-weighted F1 scores; M stands for macro average F1 scores.

identified column. In case multiple 𝑗 exist, select the one
that is closer to 𝑡 .

• RECA prox: If not aligned by the exact alignment butΨ(𝑒𝑡−1
𝑘

)
= Ψ(𝑒𝑡

𝑖
) or Ψ(𝑒𝑡+1

𝑘
) = Ψ(𝑒𝑡

𝑖
), then the 𝑡-1-th column or 𝑡+1-

th column is the identified column. In case a tie happens,
regard both columns as the identified columns.

As shown in Table 7, the support-weighted F1 score of RECA
drops by 1.2% and 1.3%, while the macro average F1 score drops by
1.6% and 2.1% when applying RECA prox and RECA set alignment
strategies, respectively on the Semtab2019 dataset. Slight perfor-
mance drops can also be observed on the WebTables dataset. We
noticed that the performance drop when applying the RECA set
alignment strategy is larger than applying the RECA prox align-
ment strategy, which is understandable since the requirements of
the RECA prox strategy are stricter than that of the RECA set strat-
egy: the shift of the identified column index from the target column
index cannot be larger than 1. We attribute the drop in performance
to the reason that by applying alignment strategies that are ‘looser’,
some noisy columns that should not be aligned may be included as
the inter-table context and thus mislead the model. To this end, we
conclude that the column location alignment requirement is neces-
sary since it considers the inner schema structures of two tables.

Figure 5: Sensitivity analysis of RECA on different values
of the Jaccard threshold 𝛿 . The x-axis denotes the values of
𝛿 . The y-axis denotes the values of F1 scores. S-SW and S-
MA stand for the support-weighted and macro average F1
scores on the Semtab2019 dataset; W-SW and W-MA stand
for the support-weighted and macro average F1 scores on the
WebTables dataset.

1329

Figure 6: Top left is the target table, bottom left is one of the exemplars related tables, and the two tables on the right are the
exemplar sub-related tables. The target column and the corresponding identified columns are marked in yellow. Note that the
cells marked in grey are masked out from the model input during experiments. For ease of demonstration, we only present one
related table and two sub-related tables in the figure.

The similarity of the inner schema structures should be considered
when designing the column alignment strategy for RECA.

5.9 Parameter Sensitivity
We analyzed the impact of the key parameter of RECA: the Jaccard
threshold 𝛿 in Section 4.2. 𝛿 is chosen from {0, 0.02, 0.05, 0.1, 0.2, 0.3,
0.4, 0.5, 0.8, 1}. Figure 5 presents the results. We notice that the
performance of RECA increases as we increase 𝛿 from 0 to 0.1 since
larger 𝛿 filters out the topically irrelevant inter-table context and
thus reduces the noise. The performance decreases as we further
increase 𝛿 to 1 because if the Jaccard threshold 𝛿 is too large, useful
inter-table context is filtered out. We observe that the performance
is generally stable for 𝛿 in the range of [0, 0.3]. In practice, we
suggest finding the optimal values of 𝛿 based on the dataset.

5.10 Qualitative Evaluation
To better understand how inter-table context helps improve the an-
notation quality of column semantic types, we further conducted a
qualitative evaluation of RECA and its state-of-the-art counterparts.

On the top left corner of Figure 6, we present Table #8 in the test-
ing set of the Semtab2019 dataset. This table is about the rankings
of films, the year of production, and the corresponding directors
of the films. The second column is the target column in this ta-
ble, and the ground truth label is Film. The intra-table content
could be misleading since other similar semantic types describing
WORK_OF_ART, such as TelevisionEpisode and Musical, can
have very similar table content. TABBIE [16] and DODUO [30]
are likely to be influenced by the intra-table context information
since both of them annotate it as TelevisionEpisode. However,
RECA finds the related tables and sub-related tables of the target
tables and processes the identified columns as inter-table context
information to provide more information for the semantic type of
the target column. As shown in Figure 6, the bottom left shows one
of the related tables, and the right shows two of the sub-related
tables. We notice that the identified columns in the related tables

and sub-related tables are all film names. By incorporating more
film names as context information to RECA, the chance that it
correctly annotates the target column as Film instead of other
WORK_OF_ART types increases. Therefore, the inter-table context
information can serve as an enhancement for the content in the
target column. At the same time, it eliminates noisy information
brought by the context in the target table.

6 CONCLUSION
In this paper, we propose RECA, an inter-table context enhanced
column semantic type annotation framework based on pre-trained
language models. Extensive experiments on two web table datasets
demonstrated the effectiveness of RECA in providing high-quality
annotations for table columns. Specifically, RECA achieves new
state-of-the-art performance on the two datasets. Through our eval-
uation, we also confirm that the inter-table context information can
be a powerful replacement for the intra-table context information,
thus giving the model the ability to annotate wide tables. Further-
more, we have shown that RECA is learning efficient and input
data efficient. As a future direction, we would like to explore the
effectiveness of inter-table context on other table understanding
tasks, such as column relation prediction and row population.

ACKNOWLEDGMENTS
Many thanks to Chengmin Wu for her valuable input. This work
is partially supported by National Science Foundation of China
(NSFC) under Grant No. U22B2060, theHongKong RGCGRF Project
16213620, RIF Project R6020-19, AOE Project AoE/E-603/18, Theme-
based project TRS T41-603/20R, China NSFC No. 61729201, Guang-
dong Basic andApplied Basic Research Foundation 2019B151530001,
Hong Kong ITC ITF grants MHX/078/21 and PRP/004/22FX, Mi-
crosoft Research Asia Collaborative Research Grant and HKUST-
Webank joint research lab grants.

1330

REFERENCES
[1] 2019. Sherlock. Retrieved Feb 1, 2023 from https://github.com/mitmedialab/

sherlock-project
[2] 2020. TaBERT. Retrieved Feb 1, 2023 from https://github.com/facebookresearch/

TaBERT
[3] 2021. TABBIE. Retrieved Feb 1, 2023 from https://github.com/SFIG611/tabbie
[4] 2022. DODUO. Retrieved Feb 1, 2023 from https://github.com/megagonlabs/

doduo
[5] Arturs Backurs and Piotr Indyk. 2015. Edit distance cannot be computed in

strongly subquadratic time (unless SETH is false). In Proceedings of the forty-
seventh annual ACM symposium on Theory of computing. ACM, New York, NY,
USA, 51–58. https://doi.org/10.1145/2746539

[6] Vincenzo Cutrona, Federico Bianchi, Ernesto Jiménez-Ruiz, and Matteo Pal-
monari. 2020. Tough tables: Carefully evaluating entity linking for tabular data.
In International Semantic Web Conference. Springer, Cham, Switzerland, 328–343.
https://doi.org/10.1007/978-3-030-62466-8_21

[7] Vincenzo Cutrona, Jiaoyan Chen, Vasilis Efthymiou, Oktie Hassanzadeh, Ernesto
Jiménez-Ruiz, Juan Sequeda, Kavitha Srinivas, Nora Abdelmageed, Madelon
Hulsebos, Daniela Oliveira, et al. 2022. Results of SemTab 2021. Proceedings of
the Semantic Web Challenge on Tabular Data to Knowledge Graph Matching 3103
(2022), 1–12.

[8] Xiang Deng, Huan Sun, Alyssa Lees, You Wu, and Cong Yu. 2020. TURL: ta-
ble understanding through representation learning. Proceedings of the VLDB
Endowment 14, 3 (2020), 307–319.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). ACL, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[10] Besnik Fetahu, Avishek Anand, and Maria Koutraki. 2019. Tablenet: An approach
for determining fine-grained relations for wikipedia tables. In The World Wide
Web Conference. ACM, New York, NY, USA, 2736–2742. https://doi.org/10.1145/
3308558.3313629

[11] Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao, Xiangyang Xue, and Zheng
Zhang. 2019. Star-Transformer. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers). ACL, 1315–1325. https:
//doi.org/10.18653/v1/N19-1133

[12] Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Piccinno,
and Julian Eisenschlos. 2020. TaPas: Weakly Supervised Table Parsing via Pre-
training. In Proceedings of the 58th Annual Meeting of the Association for Com-
putational Linguistics. ACL, 4320–4333. https://doi.org/10.18653/v1/2020.acl-
main.398

[13] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incremen-
tal parsing. To appear 7, 1 (2017), 411–420.

[14] Kevin Hu, Snehalkumar’Neil’S Gaikwad, Madelon Hulsebos, Michiel A Bakker,
Emanuel Zgraggen, César Hidalgo, Tim Kraska, Guoliang Li, Arvind Satya-
narayan, and Çağatay Demiralp. 2019. Viznet: Towards a large-scale visualization
learning and benchmarking repository. In Proceedings of the 2019 CHI Conference
on Human Factors in Computing Systems. ACM, New York, NY, USA, Article 662,
12 pages. https://doi.org/10.1145/3290605.3300892

[15] Madelon Hulsebos, Kevin Hu, Michiel Bakker, Emanuel Zgraggen, Arvind Satya-
narayan, Tim Kraska, Çagatay Demiralp, and César Hidalgo. 2019. Sherlock: A
deep learning approach to semantic data type detection. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.
ACM, New York, NY, USA, 1500–1508. https://doi.org/10.1145/3292500.3330993

[16] Hiroshi Iida, Dung Thai, Varun Manjunatha, and Mohit Iyyer. 2021. TABBIE:
Pretrained Representations of Tabular Data. In Proceedings of the 2021 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. ACL, 3446–3456. https://doi.org/10.18653/v1/
2021.naacl-main.270

[17] Paul Jaccard. 1912. The distribution of the flora in the alpine zone. 1. New
phytologist 11, 2 (1912), 37–50.

[18] Ernesto Jiménez-Ruiz, Oktie Hassanzadeh, Vasilis Efthymiou, Jiaoyan Chen,
Kavitha Srinivas, and Vincenzo Cutrona. 2020. Results of semtab 2020. In CEUR
Workshop Proceedings, Vol. 2775. 1–8.

[19] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2011. Wran-
gler: Interactive visual specification of data transformation scripts. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, New
York, NY, USA, 3363–3372. https://doi.org/10.1145/1978942.1979444

[20] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint (2014), 5. arXiv:1412.6980

[21] Aneta Koleva, Martin Ringsquandl, Mitchell Joblin, and Volker Tresp. 2021. Gen-
erating Table Vector Representations. arXiv preprint (2021), 5. arXiv:2110.15132

[22] Erich Leo Lehmann, Joseph P Romano, and George Casella. 2005. Testing statisti-
cal hypotheses. Vol. 3. Springer, New York, NY, USA.

[23] Frederic P Miller, Agnes F Vandome, and John McBrewster. 2009. Levenshtein
distance: Information theory, computer science, string (computer science), string
metric, damerau? Levenshtein distance, spell checker, hamming distance.

[24] Renée J Miller. 2018. Open data integration. Proceedings of the VLDB Endowment
11, 12 (2018), 2130–2139.

[25] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830.

[26] Minh Pham, Suresh Alse, Craig A Knoblock, and Pedro Szekely. 2016. Semantic
labeling: a domain-independent approach. In International Semantic Web Confer-
ence. Springer, Cham, Switzerland, 446–462. https://doi.org/10.1007/978-3-319-
46523-4_27

[27] Erhard Rahm and Philip A Bernstein. 2001. A survey of approaches to automatic
schema matching. the VLDB Journal 10, 4 (2001), 334–350.

[28] Vijayshankar Raman and Joseph M Hellerstein. 2001. Potter’s wheel: An interac-
tive data cleaning system. In VLDB, Vol. 1. Morgan Kaufmann, San Francisco,
CA, USA, 381–390.

[29] S Krishnamurthy Ramnandan, Amol Mittal, Craig A Knoblock, and Pedro Szekely.
2015. Assigning semantic labels to data sources. In European Semantic Web
Conference. Springer, Cham, Switzerland, 403–417. https://doi.org/10.1007/978-
3-319-18818-8_25

[30] Yoshihiko Suhara, Jinfeng Li, Yuliang Li, Dan Zhang, Çağatay Demiralp, Chen
Chen, and Wang-Chiew Tan. 2022. Annotating columns with pre-trained lan-
guage models. In Proceedings of the 2022 International Conference on Management
of Data. ACM, New York, NY, USA, 1493–1503. https://doi.org/10.1145/3514221.
3517906

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998–6008.

[32] Petros Venetis, Alon Y Halevy, Jayant Madhavan, Marius Pasca, Warren Shen,
Fei Wu, and Gengxin Miao. 2011. Recovering semantics of tables on the web.
Proceedings of the VLDB Endowment 4, 9 (2011), 528–538.

[33] Daheng Wang, Prashant Shiralkar, Colin Lockard, Binxuan Huang, Xin Luna
Dong, and Meng Jiang. 2021. TCN: Table Convolutional Network for Web Table
Interpretation. In Proceedings of the Web Conference 2021. ACM, New York, NY,
USA, 4020–4032. https://doi.org/10.1145/3442381.3450090

[34] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-the-art natural language pro-
cessing. arXiv preprint (2019), 1. arXiv:1910.03771

[35] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics. ACL, 8413–8426. https://doi.org/10.18653/v1/2020.acl-main.745

[36] Dan Zhang, Madelon Hulsebos, Yoshihiko Suhara, Çağatay Demiralp, Jinfeng Li,
and Wang-Chiew Tan. 2020. Sato: contextual semantic type detection in tables.
Proceedings of the VLDB Endowment 13, 12 (2020), 1835–1848.

[37] Yiwei Zhou, Siffi Singh, and Christos Christodoulopoulos. 2021. Tabular Data
Concept Type Detection Using Star-Transformers. In Proceedings of the 30th ACM
International Conference on Information & Knowledge Management. ACM, New
York, NY, USA, 3677–3681. https://doi.org/10.1145/3459637.3482197

1331

https://github.com/mitmedialab/sherlock-project
https://github.com/mitmedialab/sherlock-project
https://github.com/facebookresearch/TaBERT
https://github.com/facebookresearch/TaBERT
https://github.com/SFIG611/tabbie
https://github.com/megagonlabs/doduo
https://github.com/megagonlabs/doduo
https://doi.org/10.1145/2746539
https://doi.org/10.1007/978-3-030-62466-8_21
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/3308558.3313629
https://doi.org/10.1145/3308558.3313629
https://doi.org/10.18653/v1/N19-1133
https://doi.org/10.18653/v1/N19-1133
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.1145/3290605.3300892
https://doi.org/10.1145/3292500.3330993
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.18653/v1/2021.naacl-main.270
https://doi.org/10.1145/1978942.1979444
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2110.15132
https://doi.org/10.1007/978-3-319-46523-4_27
https://doi.org/10.1007/978-3-319-46523-4_27
https://doi.org/10.1007/978-3-319-18818-8_25
https://doi.org/10.1007/978-3-319-18818-8_25
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3514221.3517906
https://doi.org/10.1145/3442381.3450090
https://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.1145/3459637.3482197

	Abstract
	1 Introduction
	2 Related work
	3 Notations and Problem definition
	3.1 Notations and Concepts
	3.2 Problem definition

	4 Methodology
	4.1 Named entity tagging
	4.2 Table filtering
	4.3 Table finding and alignment
	4.4 Column encoding
	4.5 Classification
	4.6 Analysis

	5 Experiment
	5.1 Datasets
	5.2 Baselines
	5.3 Experiment Metrics
	5.4 Experiment Settings
	5.5 Experiment Results
	5.6 Ablation Study
	5.7 Efficiency
	5.8 Discussion
	5.9 Parameter Sensitivity
	5.10 Qualitative Evaluation

	6 Conclusion
	Acknowledgments
	References

