
A Design Space Exploration and Evaluation for Main-Memory
Hash Joins in Storage Class Memory

Wentao Huang
National University of Singapore

huang@comp.nus.edu.sg

Yunhong Ji
Renmin University of China

jiyunhong@ruc.edu.cn

Xuan Zhou
East China Normal University

xzhou@dase.ecnu.edu.cn

Bingsheng He
National University of Singapore

hebs@comp.nus.edu.sg

Kian-Lee Tan
National University of Singapore

tankl@comp.nus.edu.sg

ABSTRACT
In this paper, we seek to perform a rigorous experimental study of
main-memory hash joins in storage class memory (SCM). In par-
ticular, we perform a design space exploration in real SCM for two
state-of-the-art join algorithms: partitioned hash join (PHJ) and
non-partitioned hash join (NPHJ), and identify the most crucial
factors to implement an SCM-friendly join. Moreover, we present
a rigorous evaluation with a broad spectrum of workloads for both
joins and provide an in-depth analysis for choosing the most suit-
able algorithm in real SCM environment. With the most extensive
experimental analysis up-to-date, we maintain that although there
is no one universal winner in all scenarios, PHJ is generally supe-
rior to NPHJ in real SCM.

PVLDB Reference Format:
Wentao Huang, Yunhong Ji, Xuan Zhou, Bingsheng He, and Kian-Lee Tan.
A Design Space Exploration and Evaluation for Main-Memory Hash Joins
in Storage Class Memory . PVLDB, 16(6): 1249 - 1263, 2023.
doi:10.14778/3583140.3583144

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fukien/hashjoin-scm.

1 INTRODUCTION
Main-memory hash joins attracted a surge of interest in the last
decade. Since I/O is no longer involved in the critical path, minimiz-
ing the cache thrashing penalty has become the main design objec-
tive. To achieve this goal, two families of hash join algorithms have
been designed and extensively studied: partitioned hash join (PHJ)
and non-partitioned hash join (NPHJ). In particular, PHJ borrows
the idea of Grace Hash Join [53]. It introduces a preliminary par-
tition phase to partition data into cache-sized fragments. The fol-
lowing join phase is performed on these fragments, which evades
excessive cache thrashes.

Proponents of NPHJ, however, argue that modern parallel pro-
cessors are powerful enough to hide the cache miss penalty, so the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583144

preparatory partition phase brings little benefits but incurs exces-
sive partitioning overhead. Moreover, the partition phase requires
painstaking efforts of hardware-conscious tailoring (e.g., cache size,
TLB capacity), but such efforts do not always pay off. In one embod-
iment, partitioning aims to transform some arbitrarily distributed
data into a distribution of high locality pattern. Yet, some data al-
ready exhibit a certain level of locality, making the additional parti-
tion phase redundant [11, 55]. In another embodiment, partitioning
demands meticulous tuning against the underlying hardware. Any
gain in performance (after accounting for the overheads) may soon
be diminished if the partitioning parameters deviate from the opti-
mal configuration [8]. As a consequence, even though PHJ already
outperforms NPHJ in some workloads [6, 7, 51, 79], the PHJ-vs-
NPHJ debate is still ongoing.

Meanwhile, main memory (DRAM) technology has hit a scal-
ing wall [21, 77]: it is becoming increasingly difficult to shrink
the DRAM cell size while maintaining enough capacity 1. Stor-
age Class Memory (SCM), or non-volatile memory, is the emerging
memory technology that primarily targets breaking this wall [21,
37, 45]. It offers large capacity, byte-addressability, and near-DRAM
access performance. Moreover, most SCM technologies support
data persistence [1, 17, 25, 29, 57, 72, 84, 91], making SCM an ap-
pealing alternative not only for DRAM but also for SSD. Several
SCM technologies have been put into practice [1, 44, 76, 82, 85],
among which NVDIMM-P [44] has become the most popular en-
deavor. It specifies that SCM should be formed as amemory DIMM,
attached to the memory bus, and communicate directly with pro-
cessors through DDR interfaces. Additionally, it defines the con-
cept of internal buffer management, standardizes the domain of
persistence/visibility, and facilitates the programming paradigm [76].

Inspired by NVDIMM-P, leading memory manufacturers have
been grinding for developing SCM products [42, 82, 85]. Up till
now, Intel Optane DC Persistent Memory Module (Optane DIMM)
is the first and only industrial NVDIMM-P implementation in mar-
ket [42]. Since its release, numerous attempts have been made to
harness it in developing persistent data structures [34, 35, 52, 63],
fault-tolerant file systems [32, 78, 100], crash recoverymechanisms
[14, 59, 98], etc. The industry community also invests huge efforts
to deploy it in data centers [48] and cloud providers [30, 58]. It is
expected that SCM will become a crucial building block in future
data-intensive platforms.

Unfortunately, SCM differs from DRAM in a few aspects, in-
dicating that directly translating main-memory hash joins from
1Memory capacity per core is expected to decrease by 30% biannually [77].

1249

https://doi.org/10.14778/3583140.3583144
https://github.com/fukien/hashjoin-scm
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583144
https://www.acm.org/publications/policies/artifact-review-and-badging-current

16 32 64 128 256

Access Size [Byte]

0

2

4

6

8

E
la

p
s
e
d
 T

im
e
 (

s
)

(a) Runtime w.r.t. Access Size

0.10
0.20

0.40

0.60

0.80

F
re

q
u
e
n
c
y

0.00 0.25 0.50 0.75 1.00

Nomarlized Elapsed Time (s)

DRAM

DRAM
(HUGE)

SCM

(c) Execution Time Breakdown

0 64 128 256

Tuple Size [Byte]

0.00

0.01

(b) Tuple Size Distribution

Figure 1: (a) Write performance with different access sizes. (b) The tuple size distribution of SSB [73] and TPC-H [22] joins. (c)
The execution time breakdown of a write-and-read microbenckmark on a 16KB memory region (“HUGE” denotes the huge
page configuration of DRAM, “others” overhead remains unnoticeable in all three memory configurations).

DRAM to SCM may lead to unsatisfactory results. For instance,
SCM behaves asymmetrically in read/write bandwidth, and its in-
ternal access granularity is incompatible with cacheline (e.g., 256B
vs. 64B). Although existing works [23, 31, 56, 92, 94, 95, 97] have
come up with practices for developing SCM-friendly applications,
they fail to notice the nature of a join workload, making these prac-
tices unavailing in SCM-based joins. We address two crucial limi-
tations that have been previously overlooked.
(1) Persistence cost should be eliminated to the greatest extent
possible. Existing studies tend to employ persistent instructions
(e.g., “clflush”, “clwb”, “ntstore”) for immediate persistence [88, 97]
or higher write bandwidth [10, 13]. However, persistent instruc-
tions only prevail at large access sizes and lose to regular store at
small access sizes (cf. Figure 1(a)). Note that join processing typ-
ically operates at a small granularity of tuple size (cf. Figure 1(b)
for the tuple size distribution in real benchmarks [22, 73]), persis-
tent instructions, thus, can do harm to join processing. Moreover,
join processing does not require immediate persistence. In light
of power outage, rerunning a query has a higher gain expectation
than recover-and-continue an interrupted run. Hence, persistent
instructions should not be used in SCM-based joins.
(2) Page fault overhead is more pronounced for cache-friendly al-
gorithms in SCM. We run a microbenchmark to demonstrate this
point. We first allocate a cache-sized region in SCM and eliminate
page faults via “memset”. Afterward, we issue random writes fol-
lowed by random reads in this region andmeasure the runtime.We
conduct the measurement in DRAM and plot the normalized time
in Figure 1(c). Page faults consume no more than 25% in DRAM
but takes up over 80% overhead in SCM, making page faults a
bottleneck for cache-friendly algorithms in SCM (we also observe
this phenomenon in PHJ). On this account, for cache-friendly algo-
rithms, page faults should be avoided as much as possible.

As far as we know, prior SCM-related studies pay little atten-
tion to main-memory join processing. While a recent work byMal-
tenberger et al. [66] attempts to investigate main-memory hash
joins in SCM, the work aims to compare DRAM and SCM join
performance, and fails to tune the algorithms accordingly for the
above limitations. Hence, their finding that NPHJ is superior over
PHJ is not sufficiently conclusive (and our study shows that this is
indeed the case!). We, therefore, seek to revisit the hash join prob-
lem and perform a more rigorous experimental study in SCM.

In this work, we aim to study the two families of hash joins in
real SCM 2 to understand their relative performance. In particular,
we perform a design space exploration for the implementations
of PHJ and NPHJ with a particular focus on SCM-conscious tun-
ing (Section 5). We also conduct a comprehensive evaluation in
extensive workloads to compare PHJ with NPHJ fairly (Section 6).
With a systematic experimental analysis, we maintain that PHJ is
generally the preferable solution for SCM. Moreover, we propose
several meaningful discussions to offer more insights for practi-
tioners (Section 7). It is worth addressing that we conduct exper-
iments with Optane DIMMs, the only available SCM hardware at
present, but our findings and discussions are majorly based on
NVDIMM-P standard. Moreover, we do not rely on any specific
persistent features. Therefore, our study has strong generalizabil-
ity and can be applied to future SCMs that formed in a DIMM fac-
tor [1, 20, 44, 82, 85] (see Section 2 for more details). To summarize,
we make the following contributions:
(1) We present, to our knowledge, the first thorough evaluation to
explore the design space of main-memory hash joins in real SCM.
By considering the characteristics of SCM, we scrutinize PHJ’s and
NPHJ’s internal phase implementations and inspect the alternative
implementations for both joins (cf. Table 1). Moreover, we atten-
tively discuss the optimizations and identify the main bottlenecks
of join processing in the real SCM environment, bridging the gap
between SCM studies and main-memory hash joins.
(2) We systematically conduct so far the most rigorous experimen-
tal study to compare PHJ andNPHJwith awide range ofworkloads.
Our experimental findings reveal the pros and cons of different
join algorithms and answer the aforementioned question that PHJ
is generally the better solution in the real SCM platform.
(3) We propose a set of practical tips for tuning efficient join algo-
rithms and present several analyses in a few auxiliary dimensions.
These tips, along with the discussions, summarize the key insights
of this paper and serve as essential guidelines for practitioners.

The rest of this paper is organized as follows. We introduce the
SCM landscape in Section 2 and review PHJ and NPHJ in Section 3.
Section 4 covers the details of experimental setups. We explore
the design space for PHJ and NPHJ in Sections 5, and perform a
comprehensive evaluation of PHJ and NPHJ in Section 6. Section 7
2Although a DRAM-SCM hybrid platform is more appealing to investigate, we seek a
prerequisite to thoroughly understand the join behaviors in an SCM-only platform.

1250

discusses the experimental findings in-depth and presents a few
auxiliary analyses. We briefly review related works in Section 8
and conclude the paper in Section 9. Additional experiments and
analyses are available in a technical report [38].

2 THE SCM LANDSCAPE
TheDRAM technology is facing an acute challenge: it fails to scale
to sub-20nm size [21, 77], which limits its deployment in future
technology nodes. In order to break this wall 3, various SCMs [17,
28, 29, 57, 72, 84] have been proposed, all of which manifest a
strong ability in scaling. For instance, ReRAM was shown to scale
down to the sub-5nm scale [33] and PCMwas validated to shrink to
the sub-2nm scale [45]. In addition to the excellent scaling ability,
SCM also delivers byte-addressability, near-DRAM access speed,
and low economic cost. Therefore, SCM is considered a strong al-
ternative for DRAM.

JEDEC specifies theNVDIMM-P [44] standard for adopting SCM
technology 4. In NVDIMM-P, SCM is organized asmemoryDIMMs
and attached to memory bus as DRAM. Through an integrated
memory controller (iMC), it directly communicates with proces-
sors at a cacheline granularity (64B).TheDIMMequips an on-DIMM
controller and a limited buffer (e.g., 16KB in Optane DIMM [62,
93]), which manage data access and buffering. The on-DIMM con-
troller also supports prefetching, making sequential access faster
than random. Due to the trade-off between address indirection and
encryption [97], the on-DIMMbuffer and controller visit the under-
lying SCM media at a coarser granularity (e.g., 256B XPLine size
in Optane DIMM) 5. Thus, small-size data requests from proces-
sors will result in read/write amplification. To exploit SCM’s byte-
addressability, NVDIMM-P suggests SCM to be accessed via DAX-
mmap [2, 46], which allows data requests to be completed via effi-
cient “load” and “store” instructions. Because of SCM’s read/write
asymmetry, the “load” bandwidth is superior to “store” [27, 70,
74, 75, 88]. Moreover, DAX-mmap exposes the costly page faults
in SCM’s critical path [19, 69] 6, which impairs the performance
of cache-sensitive applications (e.g., Figure 1(c)) and leads to no-
torious “small files problem” [2]. Furthermmore, NVDIMM-P de-
fines persistent instructions (“clwb”, “clflush”, etc.) to make use
of SCM’s non-volatility, and works compatibly with the prospec-
tive CXL [20] standard. In consequence, NVDIMM-P is becoming
a promising building block in future computing systems.

Due to the above features and the strong scaling ability, NVDIMM-
P iswidely acknowledged as the dominant standard for future SCM
devices.We, thus, seek to drill into a deeper understanding of main-
memory hash joins for NVDIMM-P SCMs. As Optane DIMM is the
only available NVDIMM-P implementation up to now [42], we use
it to conduct our experimental study. However, our study is not
limited to Optane. It can be easily generalized to any SCM tech-
nologies that conform to NVDIMM-P. For a better elaboration, we
highlight the following key traits of NVDIMM-P SCM and consider
them as the fundamental primitives of our study:

• P1: access granularity mismatch.
3SRAM and NOR flash also have hit the scaling wall [21].
4JEDEC also proposes the NVDIMM-N [43], which pairs DRAMwith flash in a DIMM.
Thus, it still suffers from the DRAM scaling wall and is beyond the scope of this study.
5This granularity also represents the unit size of error-correct code (ECC) block [31].
6This is assumed to be a common feature for most SCM technologies [19].

Table 1: List of Evaluated Main-Memory Hash Joins

Taxoxomy Join Notation Partitioning Hashing

Non-Partitioned
Hash Join

NPHJ-SC
—

Separate Chaining
NPHJ-LP Linear Probing

Partitioned
Hash Join

SHRll-SC Shared
Partitioning
(linked list)

Separate Chaining
SHRll-LP Linear Probing
SHRll-HM Histogram Mechanism
SHRcm-BC Shared

Partitioning
(contiguous
memory)

Bucket Chaining
SHRcm-SC Separate Chaining
SHRcm-LP Linear Probing
SHRcm-HM Histogram Mechanism
INDll-SC Independent

Partitioning
(linked list)

Separate Chaining
INDll-LP Linear Probing
INDll-HM Histogram Mechanism
INDcm-BC Independent

Partitioning
(contiguous
memory)

Bucket Chaining
INDcm-SC Separate Chaining
INDcm-LP Linear Probing
INDcm-HM Histogram Mechanism
RDX-BC

Radix
Partitioning

Bucket Chaining
RDX-SC Separate Chaining
RDX-LP Linear Probing
RDX-HM Histogram Mechanism
ASYM-BC Asymmetric

Radix
Partitioning

Bucket Chaining
ASYM-SC Separate Chaining
ASYM-HM Histogram Mechanism

1 “ —” depicts that the algorithms that do not perform partitoning;
2 “ Histogram Mechanism ” represents the historgam-based re-ordering hashing

scheme proposed in [51];
3 “ (contiguous memory) ”-based partitioning methods apply to

uniformly distributed data only.
• P2: on-DIMM buffer/controller integrated.
• P3: read/write asymmetry.
• P4: costly page fault handling.
• P5: persistent instructions supported.

3 HASH JOINS
We review PHJ and NPHJ and discuss their variants in this section.
For better comprehensibility, we categorize the joins and present
a taxonomy in Table 1. In addition, we refer to “the build side” and
“the probe side” as R and S respectively, and use the terms “table”
and “relation” interchangeably throughout the paper.

3.1 Non-Partitioned Hash Joins
Non-partitioned hash join (NPHJ) [11, 55] is similar to the canoni-
cal hash join. It simply comprises a build phase and a probe phase.
During the build phase, all threads jointly build a shared gigan-
tic hash table. Either separate chaining or open addressing can
be employed for collision resolution. The build side is evenly di-
vided among all threads, and each thread hashes tuples from its
own chunk. Latches or compare-and-swap (CAS) atomic instruc-
tions are employed to alleviate the potential write-conflict issues
in building. Typically, the hash table has far more buckets than ac-
tive threads, so the lock contention cost remains low. The probe
phase is conducted in a similar way but without the write-conflict
protections. The algorithm incurs one read pass for both R and S
but has one write pass over R only. Given that R is usually smaller

1251

⋯

⋯

Data Table Partitions

(a) Shared Partitioning

⋯

⋯

⋯

Data Table PartitionsPrivate Partitions

(b) Independent Partitioning

⋯

Data Table

⋯

PartitionsHistograms Prefix Sums

⋯⋯

1 2 3

(c) Radix Partitioning

⋯ ⋯

The Build Side (R) The Probe Side (S)

⋯

(d) Asymmetric Radix Partitioning

Figure 2: Partitioning Methods.

than S [22, 79], NPHJ significantly saves the write cost, especially
for the write-susceptible SCM.

Thanks to the modern parallel processors’ simultaneous multi-
threading (SMT) and out-of-order execution (OOE), cachemiss penal-
ties can be effectively hidden. The cache miss can be further con-
cealed by enabling software/hardware prefetching and bucket-level
alignment [7, 8]. Hence, modern parallel hardware alleviates the
cache miss overhead effectively.

3.2 Partitioned Hash Joins
Partitioned hash join (PHJ) is another family ofmain-memory hash
joins. In order to avoid cache thrashing during the join, it intro-
duces a preparatory partition phase to divide relations into cache-
sized sub-relations.The subsequent join phase is performed partition-
wise, reducing the cache thrashing overhead by a large margin.

3.2.1 Partition Phase. There are numerous ways to perform par-
titioning [80, 99], among which radix partitioning [6] has been
shown to be the best choice in main memory (DRAM) systems.
A natural question to ask is whether radix partitioning still domi-
nates in SCM. Recall that different partitioning methods induce dif-
ferent read/write passes and that SCM is more prone to writes than
DRAM; therefore, it is necessary to reconsider the performance
of partitioning algorithms in SCM environment. In the following,
we revisit representative partitioning algorithms and discuss their
alternative implementations with special attention to read/write
passes. Without the loss of generalizability, all active threads split
R and S at the beginning of the partition phase evenly.
(1) Shared Partitioning [11]. In shared partitioning, all threads
work jointly to populate a common set of partitions, each of which
is structured as a buffer linked list. In order to circumvent write-
conflict issues, each partition is assigned a private lock for thread
synchronization (cf. Figure 2(a)). The algorithm generates a read
and a write pass on both sides.
(2) Independent Partitioning [11]. Independent partitioning al-
lows each thread to create its private set of partitions (cf. Figure 2(b)),
thereby eliminating the need for lock protection. Like shared par-
titioning, each partition is organized as a buffer linked list. After
all threads finish their own jobs, their individual sets of private
partitions are merged into a single set of shared partitions. There-
fore, it also takes a read and a write pass to perform independent
partitioning.
(3) Radix Partitioning [6]. Radix Partitioning is the most promi-
nent partitioning algorithm so far (in DRAM). Unlike shared parti-
tioning and independent partitioning, a partition here is formed as
a contiguous memory region, and all partitions together also con-
stitute a giant contiguous memory region. The algorithm operates

in three steps (cf. Figure 2(c)): 1⃝ The input relation is evenly split
among all threads, where each thread scans a sub-relation and pop-
ulates a histogram that counts the tuple number for every single
partition. 2⃝ All threads synchronize at a barrier to modify their
histograms. By computing and aggregating the prefix sum of all
histograms, each thread is able to update its own histogram, where
the updated values correspond to the exclusive partitioning posi-
tions for the tuples in its scanning sub-relation. 3⃝According to its
histogram, each thread rescans its sub-relation and redistributes
tuples to their respective partitioning positions. Since partitioning
positions are exclusive, tuples can be efficiently written to their
final destinations without write synchronization.

The above radix partitioning algorithm takes two read passes
and one write pass. However, Manegold et al. [12, 67, 68] claims
that the partitioning performance drops sharply once the partition
fanout exceeds the TLB capacity .The radix partitioning, therefore,
is modified to a multi-pass manner, each pass of which is bounded
by TLB limit and thereby precluding excessive TLB thrashing. Hence,
a 𝑚-pass radix partitioning requires 2𝑚 read passes and 𝑚 write
passes for R and S, where 𝑚 refers to the number of partitioning
passes.
(4) Asymmetric Radix Partitioning [49]. Khattab et al. [49] go
beyond radix partitioning and propose an idea called asymmet-
ric radix partitioning, which targets a binary join scenario with
a salient size difference, i.e., S is much larger than R. Unlike radix
partitioning that maintains same pass number for both sides, asym-
metric radix partitioning applies different number of passes for par-
titioning R and S respectively. In particular, it takes𝑚 passes for R
and 𝑛 passes for S (referred to as𝑚-𝑛-pass), where𝑚 > 𝑛 (see Fig-
ure 2(d) for an example when𝑚 = 2, 𝑛 = 1). Since S is commonly
larger than R, the partitioning cost should be alleviated consider-
ably compared to 𝑚-pass radix partitioning. The algorithm, ther-
erfore, results in 2𝑚R + 2nS reads and𝑚R + nS writes.

However, asymmetric radix partitioning has been shown to be
inefficient in DRAM [49]. Fewer passes over S renders more reads
during the join phase, resulting in more cache misses. The sav-
ing from partitioning quickly diminishes, suggesting the algorithm
must revert to radix partitioning. Despite the disappointing profile
in DRAM, we note that the join phase incurs limited write oper-
ations, which is beneficial in a write-susceptible context. Hence,
asymmetric radix partitioning may exhibit a competitve profile in
SCM.

It is worth mentioning that the partitioninig performance can
be significantly improved with software write-combining buffers
(SWWCB) and non-temporal stores (“ntstore”) [4, 7, 79, 99]. SWWCB
maintains a separate in-cache buffer of 𝑁 -tuple capacity for each
partition. During partitioning, tuples are copied to these buffers

1252

Table 2: PHJ Passes
Partitioning Reads Writes

SHRll 2(𝑅 + 𝑆) 𝑅 + 𝑆
SHRcm 2(𝑅 + 𝑆) 𝑅 + 𝑆
INDll 2(𝑅 + 𝑆) 𝑅 + 𝑆
INDcm 2(𝑅 + 𝑆) 𝑅 + 𝑆
RDX (2𝑚 + 1)(𝑅 + 𝑆) 𝑚(𝑅 + 𝑆)
ASYM (2𝑚 + 1)𝑅 + (2𝑛 + 𝑘)𝑆 𝑚𝑅 + 𝑛𝑆

1 “k” denotes the times for R partition number over S partition
number;

2 We do not explicitly distinguish sequential/random passes as
we avail of SWWCBs’ temporal sequential pattern in random
page visits.

first. Once a buffer is full, the whole buffer is flushed to the final
partition destination, combining N writes to one. Therefore, both
cache thrashing and TLB thrashing are decreased by a factor of 𝑁 .
Partitioning with SWWCB can be further enhanced with “ntstore”.
Recall that a regular store must fetch a corresponding cacheline be-
fore writing data to it, which pollutes the cache and wastes mem-
ory bandwidth. With “ntstore”, a buffer is directly written to mem-
ory without cache pollution. As a consequence, the bandwidth uti-
lization is significantly enhanced.

Before we proceed to demystify the join phase, we digress to
discuss an alternative partition layout for shared and independent
partitioning. Recall that shared and independent partitioning struc-
ture their partition layout as buffer linked lists, which may span
separate memory pages. Compared to the contiguous memory lay-
out, scanning a buffer linked list incurs random memory reads,
which could expose moderate cache misses to the join phase. Con-
sidering this factor, we restructure the partition layout from a buffer
linked list to a pre-allocated contiguous memory region for shared
and independent partitioning (SHRcm-∗ and INDcm-∗ algorithms
in Table 1). This modification trades random memory accesses for
sequential accesseswithout introducing extra passes over data, prof-
iting not only the join execution but also the partition phase. A
noteworthy issue is that we normally lack knowledge of data dis-
tribution prior to partitioning. The pre-allocated memory regions,
therefore, may not well fit the actual data distribution, resulting
in memory overflow for specific partitions. To alleviate this issue,
we slightly enlarge the pre-allocated regions to a certain extent
(since SCM has denser capacity than DRAM, we are able to allo-
cate larger space for partitions), allowing each partition to carry
more tuples than usual. However, this partitioning method may
still suffer memory overflow issues with highly skewed datasets.
The modification, therefore, only applies to lowly skewed datasets.

3.2.2 Join Phase. The join phase is executed partition-by-partition.
Each active thread fetches a R partition and constructs a hash table
with a distinct hash function. It then fetches the respective parti-
tion of S and probes the hash table with the same hash function.
Note that different partitioning methods yield disparate partition
layouts. A contiguous layout involves one sequential read pass,
whereas a buffer linked list triggers one random read pass. The
probing performance, thus, is varied. A notable exception is asym-
metric radix partitioning. Since it takes more partitoning passes
over R than S, the R partition fanout may be 𝑘 times of S. A S parti-
tion should potentially find its matches in 𝑘 R partitions. Thus, the

asymmetric scheme takes 1 and 𝑘 read passes for R and S respec-
tively. We summarize the passes in Table 2 for ease of reference.

The major benefit of PHJ comes from hash tables of high local-
ity, which obliterates cache thrashing during probing. In order to
attain this high locality, a hash table must reside entirely within
caches, indicating that a hash table across separate memory pages
is not an option. Both separate chaining and bucket chaining can
be employed to achieve this goal, as long as they are allocated on
cache-sized memory regions. In particular, Manegold et al. [68] uti-
lize a variant bucket chainingmechanism,where tuples are chained
together via their starting offsets (in contrast to actual tuples or
pointers). However, since tuples are only chained but not moved,
this chaining mechanism only works for a partition of a contigu-
ous memory layout. Additionally, Kim et al. [51] proposed a 2-pass
hash table buildingmethod tomake use of SIMD acceleration (“His-
togram Mechanism” in Table 1). It first scans a partition to popu-
late a hash value histogram. Then it uses the prefix sum of the his-
togram to redistribute tuples in the second pass. In this way, tuples
with the same hash values are redistributed side-by-side, which
supports SIMD lookups and thereby expedites the probing.

4 EXPERIMENTAL SETUP
Testbed.Weconduct experiments on a dual-socket servermachine
with Linux kernel version 5.4.0-110. Each socket is equipped with
an Intel Xeon Gold 6230 CPUwith 20 physical cores, each of which
consists of 2 logical cores (40 threads/socket). Each physical core
has 32KB L1 data cache, 32KB L1 instruction cache, 1MB L2 cache,
and shares 27.5MB L3 cache (last level cache) with the remaining
cores in the socket. Besides, the L1 TLB capacity is 64 and 32 for
4KB-page and 2MB-page configuration respectively, and the L2
TLB entry number is 1536 for both page configurations.

The system contains 384GB DRAM and 1.5TB Optane DIMMs
(2 𝑠𝑜𝑐𝑘𝑒𝑡 × 6 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 128𝐺𝐵/𝐷𝐼𝑀𝑀) . All SCM DIMMs run in
app direct mode and are organized in an interleaved manner via
DAX-mmap. Unless explicitly stated for NUMA effects evaluation,
all memory accesses are restricted to the local socket by default.

Workload. We evaluate the aforementioned joins on a variety
of binary-join workloads (cf. Table 3). By default, a single tuple is
a 16-byte < 𝑘𝑒𝑦, 𝑝𝑎𝑦𝑙𝑜𝑎𝑑 > pair, and both key and payload are 8-
byte long. Following previous works [7, 8, 11], we set the build side
cardinality (i.e., |𝑅 |) and the probe side cardinality (i.e., |𝑆 |) as 16×
220 and 256×220 respectively.Thus, the size of the probe side is×16
of the build side, which is a typical ratio in TPC-H benchmark [22].
Additionally, we alter the ratio to×4 and×1 by increasing the build
side cardinality so that we are able to test the join performance
with different size ratios.

By default, the build side and the probe side follow a primary-
key-foreign-key (PK-FK) setting and both relations conform to the
uniform join key distribution (“pkfk”). We also generate a skew
workload (“zipf”) by altering the probe side distribution to zipfian
with various skewnesses (Zipf factor 𝜃). To further assess the join
robustness, we synthesize a many-to-many join workload (“m2m”)
by relaxing the PK-FK constraint to foreign-key-foreign-key (FK-
FK) constraint, which allows duplicates in the build side and thereby
intensifies hashing collisions.

1253

Table 3: List of Evaluated Workloads
workload pkfk zipf m2m pyld bln

|R| 16/64/256×220 16 × 220 16 × 220 16 × 220 1 × 230

|S| 256 × 220 256 × 220 256 × 220 256 × 220 16 × 230

tuple size 16B 16B 16B 16∼512B 16B
distribution uniform zipfian uniform uniform uniform
constraint PK-FK PK-FK FK-FK PK-FK PK-FK

skewness (𝜃) —
{ 1.05, 1.25,
1.50, 1.75 } — — —

1 “ PK-FK ” signifies primary-key-foreign-key constraint;
2 “ FK-FK ” denotes foreign-key-foreign-key constraint [71], i.e., many-to-many join.

Due to the limited capacity of DRAM, previous works [7, 8, 11,
60] only evaluate joins at million scale (mostly smaller than 5GB).
However, SCM has much higher density than DRAM, the capacity
limitation is no longer a concern. Hence, it is not only practical but
also worthwhile to evaluate the joins in huge workloads. We syn-
thesize two sorts of huge workloads for assessing join scalability:
(1) “pyld”.We fix the cardinality of R and S but enlarge the payload
size for every single tuple. The tuple size lies in the domain {16B,
32B, 64B, 128B, 256B, 512B}.Thus, the respective workload size (the
sum of R and S) ranges from 4.25GB to 136GB.
(2) “bln”. In contrast, we keep the tuple size fixed but increase the
cardinality to a billion scale (i.e., |𝑅 | = 230, |𝑆 | = 16 × 230), making
the workload size 272GB in total.

In the following experiment sections, we use the “pkfk” work-
load with a |R|:|S| ratio of 16 as the default workload to explore
the design space for both NPHJ and PHJ (Sections 5). The remain-
ing workloads will be evaluated rigorously in Section 6 for a fair
comparison between NPHJ and PHJ.

Implementation and Evaluation Metrics.We implement all
join algorithms listed in Table 1, and use GCC-9.3.0 to compile
then with the -O3 flag enabled. Unlike existing works of persis-
tent indices or crash recovery [35, 52, 59, 64, 98], a binary join
has no need for immediate persistence, and benefits from regu-
lar stores (cf. Figure 1(a)(b)). We, thus, only issue regular stores
(without cacheline flushes or memory fences) in our implementa-
tions unless otherwise stated. If not otherwise specified, we exploit
all physical cores of a single socket 7 to run joins, which offers a
favourable performance according to existing DRAM-based stud-
ies of main-memory hash joins [7, 11].

Following previous works of main-memory hash joins [7, 8, 11,
51, 60, 79], we conduct the binary join evaluation on relation R and
S in the form of “SELECT COUNT (∗) FROM R,S WHERE R.key ==
S.key”.We report the running elapsed time of each algorithm as the
evaluation metric 8, and the reported elapsed time is the median of
ten consecutive runs. It is worth mentioning that before taking the
ten measured runs, we warm up the SCM running pool, which is
in line with previous works [8, 9, 46, 50, 56, 65, 86, 94]. Moreover,
we pre-fault SCM mappings [2, 19, 46, 69] when allocating mem-
ory for hash tables or partitions, obliterating page faults in join
execution. Furthermore, we instrument our studies with PAPI [87],
VTune [39], and PMWatch [40] for hardware events measurement.

7By default, we only evaluate joins in one socket to avoid potential NUMA impacts.
8Previous works [7, 8, 11, 51, 60, 79] use “join throughput”, i.e., |𝑅 |+|𝑆 |

𝑒𝑙𝑎𝑝𝑠𝑒𝑑 𝑡𝑖𝑚𝑒 , for
evaluation, which is equivalent to our metric, elapsed time.

Figure 3: NPHJ runtime & SCM media reads w.r.t. prefetch-
ing distance (the distance refers to the number of tuples).

5 A DESIGN SPACE EXPLORATION
We now perform a design space exploration for NPHJ and PHJ. For
brevity, we only explore a few design dimensions in this section. A
more detailed exploration can be found in our technical report [38]

5.1 Non-Partitioned Hash Joins In SCM
We study NPHJ implementation in two aspects: 1) the benefit of
prefetching; 2) the effect of bucket alignment. The main goal of
this section is to uncover the most crucial factors that contribute
to a performant NPHJ implementation.

5.1.1 Prefetching. We start our evaluation with the prefetching
analysis. Prefetching has been shown to deliver impressive improve-
ment for hash joins [5, 7, 15, 16]. It substantially alleviates the cache
stall penalty by overlapping memory accesses with other compu-
tation instructions. The prefetched data is moved and retained in
caches before its use, enhancing the cache hit rate and facilitating
the join execution.

In order to parameterize the optimal prefetching distance in
SCM, we assess the join performance with varying prefetching
distances. Figure 3 shows the join execution time and SCM inter-
nal media read number with different prefetching distances. We
can observe a strong correlation between execution time and SCM
media reads. The performance first improves notably when the
prefetching distance increases from 0 to 24-tuple and then stabi-
lizes with longer prefetching distances. Once the distance reaches
214-tuple, the execution time and SCMmedia reads increase drasti-
cally. This phenomenon is primarily due to the limited capacity of
SCM on-DIMM buffer [P2]. A prefetching distance of 214-tuple
indicates that both prefetched tuples and hash buckets requires
1MB memory region (each prefetches 214 cachelines), which con-
sumes 2MB space in total and exceeds the last level cache (LLC)
size per core (LLC slice size [54]) 9. The prefetched buckets and
tuples, therefore, can no longer be buffered in LLC, rendering ex-
cessive repeated memory accesses. Moreover, they fail to reside in
on-DIMM buffers either. The reason is two-fold: (1) The Optane
on-DIMM buffer is believed to be 16KB [92, 95, 97], and the total
on-DIMM buffers are 96KB in our platform (6 interleaved Optane
DIMMs), which is far less than the size of the cache size per core. (2)
The Optane on-DIMM buffer is believed to be exclusive with CPU
9LLC size per core is calculated as 27.5𝑀𝐵 ÷ 20 = 1.375𝑀𝐵.

1254

0

1

2

3

4

E
la

p
s
e
d
 T

im
e
 (

s
)

unaligned

64B

256B

256B-Bkt4

256B-Bkt4

(a) NPHJ Execution Time

0

250

500

L
L
C
 M

is
s
e
s
s

(M
O

p
s
)

0

50

100

M
e
d
ia

 R
e
a
d
s

(M
O

p
s
)

(b) LLCMisses &Media Reads

Figure 4: NPHJ executione time, LLC Misses and SCM Me-
dia Readswith different bucket configurations (“256B-Bkt4”
refers to a 256B-alignment bucket setting with a 4-tuple ca-
pacity; “▼” denotes that the join is executed with 7 threads).

caches [95]: once a cacheline is loaded into caches, it is evicted im-
mediately from on-DIMM buffers. Therefore, we can see a drastic
rise in SCM media reads from the 214-tuple prefetching distance
and onwards, which exposes the long media access latency and
impairs join execution.

Tip #1: Employ prefetching for NPHJ but limit the prefetch-
ing distance within the LLC capacity. The prefetching distance can
be accordingly increased if the SCM on-DIMM buffer capacity ex-
ceeds the LLC capacity or is inclusive with CPU caches [P2].

5.1.2 Bucket Alignment. We now assess the impact of bucket
alignment. By default, a hash bucket requires 48 bytes in our imple-
mentaion 10. A single hash bucket access may incur one additional
memory access if the hash bucket spans two consecutive cache-
lines. Meanwhile, there exists a mismatch between CPU cacheline
(64B) and SCM internal access granularity i.e., 256B XPLine of Op-
tane DIMMSs [P1]. If the hash bucket spans two XPLines, the ad-
ditional memory access can trigger one more SCM media read, ex-
acerbating the bucket access overhead.

Bucket alignment aids in mitigating this issue of extra memory
accesses. Bucket alignment can be set as 64B, which ensures each
hash bucket be entirely stored in a single cacheline, and thereby
precludes the extra memory accesses. Another rational alignment
configuration is the internal granularity of SCM, i.e., 256B in our
case, which eliminates the possibility of additional SCMmedia reads.
Moreover, a 256B-aligned hash bucket is able to carry more tuples
than a 64B bucket, which may also affect the NPHJ performance.
With these considerations in mind, we test the performance of
NPHJ with different bucket alignment configurations: unaligned,
64B-aligned, 256B-aligned, and a 256B-aligned bucket containing
four tuples (denoted as “256B-Bkt4” in Figure 4).

Figure 4(a) depicts the outcomes of the experiments. As can
be seen, the unaligned bucket yields an inferior result than 64B-
or 256B-aligned hash bucket on account of excessive memory ac-
cesses.The 64B-aligned configuration slightly outperforms the 256B-
aligned configuration because it has fewer SCMmedia reads. How-
ever, the “256B-Bkt4” configuration renders the worst result. In or-
der to explicate the reason behind this phenomenon, we plot the
number of LLC misses and SCM media reads in Figure 4(b). We

10A bucket comprises two 16-byte tuples, a 8-byte next pointer, a 4-byte counter, and
a 1-byte latch with 3-byte padding.

REG
64B

128B
256B

512B
1KB

2KB

SWWCB Size

0

1

2

3

4

5

6

7

P
a
rt

it
io

n
 P

h
a
s
e
 T

im
e
 (

s
)

(a) In-DRAM SWWCBs

REG
64B

128B
256B

512B
1KB

2KB

SWWCB Size

0

1

2

3

4

5

6

7

(b) In-SCM SWWCBs

SHRll SHRcm INDll INDcm RDX ASYM

Figure 5: PHJ partitioning time using non-temporal stores
with different SWWCB size (“REG” denotes the naive parti-
tioning setting w/o “ntstore” and SWWCBs).

can observe that, even with 256B alignment, “256B-Bkt4” still in-
curs more LLC misses and SCM media reads than the unaligned
configuration, leading to inferior performance.

We claim that on-DIMMbuffer contention is themain culprit be-
hind this issue [P2]. To corroborate this claim,we rerunNPHJwith
“256B-Bkt4” configuration, but with only 7 running threads (cf. 20
threads of default setting), which is reflected as “256B-Bkt4▼” in
Figure 4. As shown in Figure 4(a), its runtime beats the unaligned
configuration. We also notice that “256B-Bkt4▼” significantly low-
ers SCM media reads (cf. Figure 4(b)). Recall that a 4-tuple hash
bucket spans two consecutive cachelines.When accessing the hash
bucket, the first cacheline is loaded to the caches while the second
cacheline resides in on-DIMM buffers, waiting for the following
read request. When executing a join with too many threads, these
cachelines have to contend for the limited on-DIMM buffer space,
resulting in notoriously XPLine thrashes in on-DIMMbuffers. Fewer
running threads, on the contrary, considerably alleviate the con-
tention problem. Hence, the join performance can be ameliorated.

Figure 4(b) also reveals an essential finding of NPHJ in real SCM.
“256B-Bkt4▼” incurs fewer media reads but more LLCmisses when
compared to the unaligned configuration. Given the superior per-
formance of “256B-Bkt4▼”, we argue that SCM media reads are
the most significant impediment for a high-performance join. One
should avoid excessive media reads to the greatest extent possible;
where required, trade SCM media reads for LLC misses. Overall,
we maintain that the 64B-aligned bucket offers the optimal perfor-
mance and provide the following configuration tip:

Tip #2: Align the hash buckets to the 64B-boundary for NPHJ.
If the bucket size exceeds 64B, align it to the SCM internal granu-
larity (e.g., 256B for Optane DIMM) and consider limiting the join
parallelism if necessary [P1,P2].

5.2 Partitioned Hash Joins In SCM
Likewise, we proceed to explore the design space for PHJ. As par-
titioning is well known to be the dominating factor in PHJ execu-
tion [4, 7, 79, 99], we focus on the PHJ partition phase and address
two scaling effects in this subsection: 1) “ntstore” with SWWCBs;
2) thread scalability. We also investigate the effect of the partition
fanout and examine the join phase implementation, but leave these
details in our technical report [38] for the sake of brevity.

5.2.1 Effect of SWWCB and “ntstore”. We first scrutinize the
effect of SWWCB in “ntstore”. Recall that “ntstore” delivers higher

1255

Figure 6: Partitioning time w.r.t. thread number (dashed
lines mark the starting of simultaneous multi-threading
(SMT); the bottom left figure zooms in the partitioning time
of independent partitioning, radix partitioning, and asym-
metric radix partitioning; the bottom right figures compares
the runtime between the 20-thread partitioning (THR-20)
and the bandwidth-regulation partitioning (BW-REG)).

write throughputwith larger access size (cf. Figure 1(a)) and SWWCB
reduces cache/TLB thrashes by combining 𝑁 -tuple writes to one.
We, thus, alter 𝑁 value to 4∼128 (SWWCB size varied from 64B to
2KB) and compare the partitioning runtimewith naive setting (w/o
“ntstore” and SWWCBs). We apply 2-pass partitioning to rule out
potential TLB conflicts [5, 8, 11, 51] and allocate SWWCBs in SCM
by default. Additionally, as DRAM has higher read performance
than SCM, we conduct experiments with in-DRAM SWWCBs to
see if there are any performance improvements.

Figure 5 presents the partitioning results. Compared to the naive
setting (“REG” in Figure 5), all partitioning methods significantly
benefit from “ntstore” and SWWCBs. The runtime scales down lin-
early and converges at 256B, which is equivalent to SCM inter-
nal granularity (i.e., XPLine size). As writes of this size can be di-
rectly flushed to SCM media, both read-modify-write in on-DIMM
buffers and lousy write amplification in underlying media are ap-
preciably alleviated, which accounts for themajor reduction in par-
titioning runtime [P1].

Figure 5 also shows that enlarging SWWCB brings no more per-
formance gains. Although a larger SWWCB merges more writes
into one and induces fewer cache/TLB thrashes, it does not affect
the underlying SCM media write number. The phenomenon indi-
cates thatmedia-level access ismore of a bottleneck than processor-
level thrash, which again validates our finding in Section 5.1.2. Fur-
thermore, in-DRAM SWWCBs do not benefit much from faster
DRAM and only achieve similar results. The reason is two-fold:
(1) “ntstore” retains tuples in caches, effectively mitigating cache
pollution; (2) SWWCB groups 𝑁 writes into one, reducing cache
thrashes by a 𝑁 factor. Hence, the DRAM’s superior read perfor-
mance makes no difference, and we can perform a complete in-
SCM partitioning without sacrificing performance.

Tip #3: Leverage “ntstore” and SWWCBs in partitioning and
make SCM’s internal access granularity as the SWWCB size [P1].

NPHJ SHRll SHRcm INDll INDcm RDX ASYM
0

1

2

3

E
la

p
s
e
d
 T

im
e
 (

s
)

Figure 7: Overall Comparison for NPHJ and PHJ (lighter col-
ors denote the build/partition phase while darker colors rep-
resent the probe/join phase).

5.2.2 Effect of thread scalability. SCM is widely reckoned to
have write deficiency [24, 70, 97] [P3] and PHJ partitioning in-
volves intensive write operations. We, therefore, seek to cultivate
an understanding of this write deficiency in PHJ partition phase.

We vary the thread count from 1 to 40 and employ “ntstore”
with 256B-SWWCB for evaluation. Figure 6 presents the execu-
tion time. There are generally two trends in partitioning thread
scalability: (1) Shared partitioning (SHRll and SHRcm) is highly
scalable to the partitioning thread number. Share partitioning is
majorly hindered by lock contention, its SCM bandwidth utiliza-
tion is far from full. Thus, SCM’s limited write scalability brings
no harm to shared partitioning. (2) The other partitioning meth-
ods exhibit a distinct scalability pattern. Their partitioning time
drops at first and reaches a local minima at around 10∼12 threads.
From 14 threads onwards, the runtime rises gradually and finally
converges to moderate values. Since there is no lock contention in
these partitioning methods, the SCM bandwidth is exploited effec-
tively, and the write deficiency in SCM is exposed thoroughly. In
consequence, a sound configuration practice is to limit the paral-
lelism for these independent partitioning (INDcm and INDll) and
radix-based partitioning (RDX, ASYM).

As stated in Section 3.2.1, radix-based partitioning involves mul-
tiple partitioning passes, and every single pass consists of three
steps (1⃝, 2⃝, and 3⃝ in Figure 2(c)). Note that 1⃝ and 2⃝ are read
and processing dominant respectively. They only issue write re-
quests to in-cache intermediates (histograms), which incurs nomem-
ory writes if no persistent instructions are enforced [P5]. As read
and processing exhibit strong thread scalability, parallelism limi-
tation can generate detrimental impacts. However, as 3⃝ is write-
intensive, it can benefit fromparallelism limitation.Therefore, there
exists a Pareto optimal threading configuration for radix-based par-
titioning. Given these facts, we employ a particularized bandwidth
regulationmechanism to improve radix partitioning further. Specif-
ically, we use all physical cores to process step 1⃝ and 2⃝ but
limit the threading around 10∼12 for 3⃝. We can see from Figure 6,
the bandwidth regulation introduces 7.7% performance gain (1.32s
vs. 1.43s). Though this improvement is not substantial in our plat-
form (Optane DIMMs), we expect it will introduce more positive
boosts in future SCM technologies, especially for SCM with larger
read/write performance gap (e.g., STT-MRAM [18, 24, 27]). Overall,
we provide the following partitioning tip:

Tip #4: Exhaust all cores for shared partitioning but enforce
parallelism limitation or bandwidth regulation for independent or
radix partitioning [P3].

1256

1:16 1:4 1:1
Size Ratio (|R|:|S|)

0

2

4

6

8

E
la

p
s
e
d
 T

im
e
 (

s
)

(a) Performance w.r.t. Size Difference

1.05 1.25 1.50 1.75
Zipf Factor

0

1

2

3

39.5 100.9 179.8 245.0

(b) Performance w.r.t. Skewness

0

1

2

3

5.0

(c) Performance in
Many-to-Many Join

0

50

100

150

200

(d) Performance on
Billion-Scale Workload

NPHJ SHRll SHRcm INDll INDcm RDX ASYM

Figure 8: Join execution time across a wide range of workloads (lighter colors indicate the build/partition phase while darker
colors represent the probe/join phase; as SHRll takes much longer time to complete the skewness test, we cut its bars in
subfigure (b) and place its values on top of its bars).

5.2.3 Other scaling effects. We have also inspected the impact
of the partition fanout and found that the partition fanout should
be bounded by TLB limit or meticulously tailored to ensure that
SWWCBs footprint is constrained within caches [P1,P3]. Besides,
we examine the join phase thread scalability and discover that its
throughput is highly scalable to the active physical cores [P3].
More details are available in our technical report [38].

5.3 Putting Everything Together
Having determined the optimal configuration for both PHJ and
NPHJ, we now perform an overall comparison for all joins. In par-
ticular, we use “ntstore” with 256B-SWWCB and apply 1-pass parti-
tioning to all PHJs (we use 2-1 pass for ASYM-∗ joins), as they offer
the highest write throughput in the current workload. For NPHJs,
we employ a prefetching distance of 24-tuple and align the hash
bucket at 64B-boundary. Additionally, We customize each join’s
ideal threading separately for each phase.

Figure 7 shows the comparison result. In general, PHJs vary a
lot in performance, whereas NPHJs only obtain intermediate re-
sults. Specifically, NPHJs spend 80% runtime in the probe phase,
revealing the hefty cost from random SCM accesses. Moreover, we
notice that NPHJ-SC and NPHJ-LP attain comparable performance.
Although their hashing schemes differ, the prefetching mechanism
substantially mitigates this disparity in performance.

As for PHJs, the partition phase takes up the most time in execu-
tion. Shared partitioning joins (SHRll-∗ and SHRcm-∗) lag behind
others by a large margin, primarily because of their heavy lock
contention. Independent partitioning joins deliver a good perfor-
mance, especially INDcm-∗ joins, which outperform all other joins.
This superiority is mainly the result of fewer reads in partitioning
and a contiguous memory layout that trades random reads for se-
quential reads. RDX-∗ joins achieve comparable performance, even
though they involve more reads in partitioning. The reason is that
SCM is more susceptible to writes than reads, which weakens the
impact of additional reads. Although ASYM-∗ joins have one more
partitioning pass over R, their performances are close to RDX-∗
joins’. Recall that |R| is 1

16 of |S|, the second partitioning pass only
imposes insignificant cost in partitioning. However, it incurs more
pronounced overhead in the join phase. In ASYM-∗ joins, each |S|
partition will be processed 𝑘 times. Since |S| is usually larger than
|R|, the 𝑘 times processing overhead can be significant. We will dis-
cuss ASYM-∗ more in-depth in Section 7.2. As for the join phase,
bucket chaining generally offers optimal performance. Therefore,

until otherwise stated, we leverage bucket chaining as the default
PHJ hashing scheme in the following evaluation.

6 A RIGOROUS EVALUATION
After a design space exploration for NPHJ and PHJ, we now con-
duct a comprehensive evaluation for these joins in a wide range of
workloads (Table 3). Additionally, we conduct many experiments
to study the joins concerningNUMA, store instructions, page faults,
etc., and evaluate joins in TPC-H[22], all of which are included in
our technical report [38] for the space constraint.

Section 5.2 has shown that the partition phase in PHJs domi-
nates the performance, and different hashing schemes do not sub-
stantially change the total execution time. Thus, to omit space, we
only present the PHJ result with bucket chaining and take parti-
tioning notations to represent the respective PHJs. Note that the
linked list partition layout does not support bucket chaining (Sec-
tion 3.2.2); we use Kim’s histogram mechanism [51] (HM) instead
for it leads to solid and robust performance. Similarly, we take sep-
arate chaining as NPHJ hashing scheme. We apply all proposed
implementation tips, and tune each join to its optimal configura-
tion in respective workloads.

6.1 Effect of Size Difference
The previous “exploration” is conducted in a workload with the
|R|:|S| ratio of 1:16. A larger size ratio incurs more writes for R,
which will affect the join performance terribly in write-susceptible
SCM.Thus, we raise the size raio to 1:4 and 1:1 (cf. “pkfk” in Table 3),
and report the result in Figure 8(a).

In general, the runtime increases for all joins as the size ratio
grows. Specifically, NPHJ deteriorates most badly. Its build phase
consumes 20% of the execution time when the size ratio is 1:16,
but 80%when the ratio rises to 1:1. PHJs also endure a rising execu-
tion overhead but constantlymaintain an advantage over NPHJ. As
the size ratio approaches 1:1, the advantage becomes increasingly
notable. SHRll and SHRcm, which lose to NPHJ at 1:16 size ratio,
even surpass NPHJ from 1:4 ratio and onwards. This advantage de-
rives from the higher throughput of “ntstore” and 256B-SWWCB.
“ntstore” with 256B-SWWCB transmits data directly to the under-
lying SCM media, bypassing cache pollution and write amplifica-
tion. However, NPHJ building writes at tuple-granularity (16B), re-
sulting in read-modify-write and write amplification. As a result,
the precious SCM bandwidth is wasted during the build phase, and
NPHJ falls further behind PHJs for larger size ratios.

1257

6.2 Effect of Skewness
We now evaluate joins in skewworkloads (cf. “zipf” in Table 3). We
vary the skewness (Zipf factor 𝜃 [7, 8]) and plot the experimental
results in Figure 8(b). Recall that the contiguous memory layout
is not applicable to a skew workload (Section 3.2), we thus omit
SHRcm and INDcm in this assessment.

As is evident from the figure, NPHJ benefits more from a high
skew workload while PHJs degenerate. As indicated before [11], a
high skew workload has better spatial and temporal locality, sig-
nificantly reducing cache misses in the probing phase, which con-
tributes to the NPHJ’s growing advantage over PHJs. However, the
increasing locality induces adverse effects on PHJ’s join phase. As
the data become more skew, the sizes of generated partitions will
be highly imbalanced, which distributes the join works unevenly
among all join threads and increase the cost of synchronization. Be-
sides, SHRll performs considerably worse than others because its
lock contention issue becomes more intense in skew workloads.

6.3 Many-to-Many Join Performance
Previous works mainly focus on the PK-FK setting [7, 8, 11]. How-
ever, many-to-many joins (FK-FK) are also common in real-world
queries. Hence, we proceed to evaluate joins in FK-FK workloads.

Figure 8(c) reports the experimental result. A significant run-
time increase can be observed in all joins’ execution, especially
NPHJ, whose higher runtime is derived from its longer probing
phase. A single probing, therefore, has to visit multiple hash ta-
ble entries to retrieve its potential matches. Moreover, If a hash
bucket is affiliated with a long linked list, the probing must visit
several separate memory pages, leading to more random SCM ac-
cesses and inducing more cache miss penalties. PHJs, however, are
far less impacted. As mentioned earlier, their joining phase is ex-
ecuted within cache-sized partitions. The increasing hashing colli-
sion only brings about marginal overhead. Consequently, PHJs are
the preferable solutions for many-to-many joins.

6.4 Performance in Billion-Scale Workloads
Due to the limited capacity of DRAM, existing works can only
study main-memory hash joins in million-scale workloads, i.e., re-
lations with million-scale cardinality. Since SCM can offer much
denser capacity than DRAM, we are now capable of conducting
a billion-scale study. We increase the cardinality to billion-scale
(“bln”) and plot the evaluation result in Figure 8(d). Note that the
billion-scale workload demands the re-configuration for fanouts
and partitioning passes. Hence, we tune each PHJ accordingly and
report their optimal performance 11.

Compared with the results of million-scale experiments (Fig-
ure 7), we can see a notable time explosion for all joins. The rela-
tive performance of NPHJ is consistent with its million-scale result
(Section 5.3). The build phase still accounts for 20% of the total ex-
ecution time, which indicates that NPHJ’s performance is scalable
to the relation cardinality.

PHJs, however, show a different view of relative performance,
which is mainly due to the partition fanout re-configuration. On
the one hand, a large fanout shrinks the size of each partition,
precluding cache thrashes for the subsequent join phase. On the
11The 1-pass partitioning still overcomes the 2-pass partitioning for all PHJs

Figure 9: Performancew.r.t. Tuple Size (lighter colors denote
the build/partition phase while darker colors indicate the
probe/join phase; NPHJ𝑝 and RDX𝑝 represent the pointer-
based variant of NPHJ and RDX, and their upper gray bars
denote the time of the final retrieving phase).

other hand, a large fanout exceeds the cache or TLB limit, which
renders enormous cache/TLB thrashes and harms the partitioning
efficiency. Thus, we see a relative performance decline in INDll,
INDcm, and RDX. Meanwhile, ASYM achieves the best result be-
cause of its 2-1 pass partitioning pattern. The reason is two-fold:
(1) The 2-1 pass pattern splits the large fanout accordingly over 2
passes, preventing the first partitioning pass from sustaining ex-
cessive cache/TLB thrashes. (2) The second partitioning is only ap-
plied on the small R, which not only saves the huge re-partitioning
cost of the large S, but also generates small enough R partitions
for populating cache-sized hash tables. Although these asymmet-
ric fanouts require more read passes over S in the join phase (Sec-
tion 3.2.2), the saving cost from the partition phase still pays off,
which makes ASYM succeed in the billion-scale workload. We will
elucidate ASYM’s pros and cons more thoroughly in Section 7.2.

6.5 Performance with Large-Size Payloads
Aside from cardinality, large-size payloads also affect the work-
load size considerably. To assess the payload impact, we vary the
payload size from 16B to 512B while fixing the relation cardinality.
Similarly, all joins are carefully tailored and are compared with
their optimal configurations.

Before we analyze the experiment, we briefly digress to describe
a pointer-based version of join implementation. Since SCM sup-
ports byte-addressability, in-SCM tuples can be accessedwith pointer-
indirection. Instead of directly manipulating the full tuples, a join
can be conducted by processing < 𝑘𝑒𝑦, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 > pairs, which
considerably saves the bytes read/written in execution. In order
to retrieve the join results, the pointer-based implementation re-
quires an additional round of random reads to retrieve the tuples
via pointer-indirection. In a nutshell, pointer-based implementa-
tion makes a trade-off between processing and retrieval.

Figure 9 depicts the result. For brevity, we only present results
of NPHJ, RDX, ASYM, and two pointer-based implementations,
NPHJ𝑝 with RDX𝑝 . Other PHJs exhibit similar performance trends
but deliver suboptimal results. We make the following observa-
tions. First, PHJs (RDX, ASYM) beat NPHJ with small payloads but
lose to NPHJ with large payloads (256B and onwards). This is be-
cause large payloads raise the partitioning overhead, and the join
phase gainswill soon be reduced. Second, pointer-based implemen-
tations perform poorly with small-size payloads. However, they

1258

outperform others with larger payloads, especially RDX𝑝 , which
dominates from 128B-payload onwards. The reason behind this
success is the colossal partitioning saving by using< 𝑘𝑒𝑦, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 >
pairs. The saving becomes more and more pronounced when pay-
loads get larger and larger, which renders a broader winning mar-
gin for pointer-based versions.Third, NPHJ𝑝 ’s retrieving time keeps
growingwith increasing payload size, while RDX𝑝 ’s retrieving time
remains almost constant across all sizes. This is because NPHJ𝑝
stores the intermediate join result (< 𝑘𝑒𝑦, 𝑝𝑜𝑖𝑛𝑡𝑒𝑟 > pairs) ran-
domly. The increasing payload size raises the amount of random
reads, impairing the retrieval performance. RDX𝑝 , however, stores
the intermediate join result partition-wise. If a tuple is joinedmulti-
ple times, it will only be called when retrieving its partition. More-
over, as long as the partition is well cache-sized, the tuple will re-
side in caches all the time until another partition retrieval starts.
Thus, excessive cache misses can be eliminated in the retrieving
phase. Overall, PHJs, or their pointer-based implementations, are
better solutions for various payload sizes.

7 DISCUSSION
We now summarize our experiment findings and bring about a few
auxiliary discussions for SCM-based joins.

7.1 Locality is All You Need
Previous experiments (Section 6) suggest that PHJs are generally
better than NPHJs (PHJs also prevail in other experiments; see our
technical report [38] for more details). By partitioning, PHJs ar-
range arbitrary distributed relations into a set of high-locality sub-
relations, which buffers the following hash table accesses within
caches, and thereby drastically reduces the expensive SCMaccesses.
Despite the fact that partitioning entails penalties from additional
relation passes, its ensuing high locality provides significant per-
formance gains in the subsequent join phase. Even though SCM of-
fers slower reads/writes than DRAM/SRAM, the gain-over-penalty
does not compromise. Hence, the preliminary partition phase is
well worth a shot.

In contrast, though NPHJs incur fewer read/write passes, they
fail to yield such locality, and hence suffer from massive random
SCM accesses during execution. A notable exception is the skew
workload (Section 6.2), in which NPHJs surpass PHJs. However,
this is because a skew workload exhibits a high locality inherently,
which prevents NPHJ probing from randomSCMaccesses and thereby
makes PHJ partitions redundant. As a consequence, this perfor-
mance exception confirms the effectiveness of high locality.

Thanks to the high locality of the compact partition layout, RDX,
ASYM, and INDcm generally deliver better performances among
all PHJs (Section 5.3). Moreover, the superiority of bucket chaining
(BC), histogram mechanism (HR), and linear probing (LP) against
separate chaining (SC) also validates the efficacy of high locality
(Section 5.3). In a nutshell, high locality is the dominating factor
that contributes to an efficient SCM-based join implementation.

7.2 Read/Write Asymmetry in PHJ
Since read/write asymmetry [P3] is widely acknowledged as an in-
herent SCM primitive [24, 70], write-limited algorithms [26, 61, 89,

90] have become a principle guideline for performance improve-
ments. However, as Section 6 reports, ASYM joins, which save
writes by reducing S partitioning passes, do not always render min-
imal runtime. Hence, we now give an in-depth analysis to deter-
mine the predominating conditions for ASYM joins.

We take 𝑚-pass RDX and 𝑚-𝑛-pass ASYM for comparison, as
they deliver not only magnificent performance but also great ap-
plicability for wide-ranging workloads 12. Let 𝑟𝑒𝑎𝑑 and 𝑤𝑟𝑖𝑡𝑒 be
the SCM bandwidth of read and write respectively, and 𝜆 denotes
𝑟𝑒𝑎𝑑
𝑤𝑟𝑖𝑡𝑒 . Following the pass number in Table 2, 𝑚-pass RDX has a
cost model of: (2𝑚+1) (𝑅+𝑆)

𝑟𝑒𝑎𝑑 + 𝑚 (𝑅+𝑆)
𝑤𝑟𝑖𝑡𝑒 . Similarly, we can derive a

cost model for𝑚-𝑛-pass ASYM if R partition number is 𝑘 times of
S’: (2𝑚+1)𝑅+(2𝑛+𝑘)𝑆

𝑟𝑒𝑎𝑑 + 𝑚𝑅+𝑛𝑆
𝑤𝑟𝑖𝑡𝑒 . We further assume that S is 𝑥 times

of R and refer to the cost ratio of RDX over ASYM as 𝜖 . Given that
2-pass RDX is able to partition a 4TB relation without thrashing
cache/TLB, we set𝑚 = 2, 𝑛 = 1 and derive the following function:

𝜖 = 𝑓 (𝑘, 𝑥, 𝜆) = (𝑥 + 1) (2𝜆 + 5)
(𝑥 + 2)𝜆 + (𝑘 + 2)𝑥 + 5

. (1)

In our platform, 𝜆 is close to 4.36 13 if partitioning is properly
configuredwithout cache/TLB thrashes.We thus parameterize 𝑓 (𝑘,
𝑥, 4.36) on 𝑘 and 𝑥 in Figure 10(a). As can be seen, the cost ratio 𝜖
ranges from 0.50 to 1.50, and it gets higher when 𝑥 becomes larger
and 𝑘 gets smaller. In particular, for 𝑘 ≤ 4, 𝜖 becomes larger than 1,
indicating that ASYM starts to surpass RDX. The 𝜖 is close to 1.50
for 𝑥 ≥ 4, which suggests that ASYM is at least 50% better than
RDX. We thus conclude that 2-1-pass ASYM should be applied on
a workload with a large size difference (𝑥 ≥ 4) and parameter 𝑘
should be limited within 4.

In order to validate the above cost model, we synthesize a mi-
crobenchmark, with cardinality ranges from 64 to 16384 million
(5∼320GB) and size ratio 𝑥 within 4∼32. Figure 10(b) compares the
results between 2-pass RDX (RDX-2) and 2-1-pass ASYM (ASYM).
We also plot the 1-pass RDX result (RDX-1) for a comprehensive
comparison. As expected, RDX-1 is competitive for small cardinal-
ities whereas RDX-2 dominates in large-scale datasets, which val-
idates the efficacy of multi-pass partitioning. Meanwhile, ASYM
generally offers robust and competitive results across all work-
loads. In particular, it beats RDX-2 by a large margin, except that
cache/TLB excessively thrash in S partitioning (|𝑅 | ≥ 2048M) ,
which corroborates the correctness of our cost ratio function. Also,
ASYM delivers comparable results as RDX-1 in small-scale datasets
and prevails when |𝑅 | ≥ 256M, which confirms its moderate write
cost in producing cache-sized partitions. Specifically, we notice
that ASYM achieves the best result when 256M≤ |𝑅 | ≤ 1024M and
16 ≤ 𝑥 ≤ 32. Given that most large-scale queries fit in this size
ratio range [8, 22, 73] and can be reduced to this scale by selection
pushdown [71, 79], we maintain that ASYM can be incorporated
to query plans for upcoming SCM-based DBMSs.

Since other SCM may have disparate read/write asymmetries
(i.e., 𝜆) [24], we derive the partial derivative of 𝜖 with respect to 𝜆:

𝜕𝜖

𝜕𝜆
=

𝜕𝑓 (𝑘, 𝑥, 𝜆)
𝜕𝜆

=
(2𝑘 − 1)(𝑥 + 1)𝑥

[(𝑥 + 2)𝜆 + (𝑘 + 2)𝑥 + 5]2
. (2)

12INDcm joins require larger memory footprint and are not applicable to skew work-
loads (Section 3.2.1).
13𝑟𝑒𝑎𝑑 is 2.31GT/s while 𝑤𝑟𝑖𝑡𝑒 is 0.53GT/s, where GT/s denotes the Giga tuples per
second.

1259

2 4 8 16
k

2

4

8

16

32

x

λ=4.36

0.75

1.00

1.25

1.50

(a) Cost Ratio 𝜖

0.0

0.5

1.0

1.5

2.0

E
la

p
s
e
d
 T

im
e
 (

s
)

64M:256M
(x= 4, k= 2)

0

2

4

6

128M:1024M
(x= 8, k= 2)

0

5

10

15

20

256M:4096M
(x= 16, k= 2)

0

25

50

75

512M:16384M
(x= 32, k= 2)

0

25

50

75

1024M:16384M
(x= 16, k= 2)

0

25

50

75

100

2048M:16384M
(x= 8, k= 4)

0

50

100

150

4096M:16384M
(x= 4, k= 4)

RDX-1 RDX-2 ASYM

(b) Performance comparison between RDX joins and ASYM join.

Figure 10: (a) is annotated with the cost ratio 𝜖 of 2-pass RDX over 2-1-pass ASYM (a lighter shade denotes that ASYM is far
better than RDX while a darker shade indicates the opposite). (b) Join execution time for 1-pass RDX (RDX-1), 2-pass RDX
(RDX-2), and 2-1-pass ASYM (ASYM) with varying cadinalities (|R|:|S|) and size ratio 𝑥 (lighter colors represents the partition
phase while darker colors stands for the join phase).
Given that 𝑘 > 1 forever holds, the above partial derivative is al-
ways positive. Therefore, for SCM with larger read/write asymme-
try, ASYM will render more performance gains over RDX 14.

7.3 Future SCM and Beyond
Through extensive experiments, we conclude that PHJ is gener-
ally the better solution (Section 6). We also provide practical tips
(Section 5) for configuring efficient join implementations. Unfortu-
nately, Intel shuts down the Optane business [41] out of financial
issues, so it is natural to question the value of our conclusions. We,
however, do not reckon that this marks the end of SCM and main-
tain that our study will remain valuable for the following reasons.

First, SCMs are inevitable. As SCM technology is initially pro-
posed to break the DRAM scaling wall [37, 77], its necessity is not
going to die. Meanwhile, SRAM and flash have their own scaling
challenges, which can also be resolved by deploying SCM in vari-
ous storage tiers [21, 70]. As widespread deployment leads to high
production volume and high volume drives down the production
cost [21], Optane’s financial concerns are expected to be resolved.

Second, our tips in Section 5 rely on the primitives of NVDIMM-
P, a predominant SCM standard that future manufacturers will
likely adhere to. While some primitives may vary in SCM proto-
types (e.g., different internal granularity [P1]), it is simple to ac-
cordingly adjust our tips to function in these devices.

Third, future SCMs will probably conform to the emerging CXL
standard [20], which sacrifices access latency to avoid bandwidth
contention [47]. On this account, the latency-bound NPHJs [8] are
likely to be more bottlenecked. Hence, the PHJ-over-NPHJ conclu-
sion is unlikely to fade away.

8 RELATEDWORK
Main-Memory Hash Joins. Main-memory hash joins have been
rigorously studied for almost thirty years. Shatdal et al. [83] open
up the research of PHJ. They note that the cache miss penalty ac-
counts for most join overhead, and partitioning can help reduce
this overhead considerably. Subsequently, Boncz el al. [12, 67, 68]
confirm this idea and add that TLB thrashes impair partitioning
terribly.The partitioning, therefore, should be done in a multi-pass
manner where every pass fanout should not exceed the TLB capac-
ity. Follow-up works [4–7, 51] extend their idea to parallel query

14We also have the same conclusion for 1-pass RDX and ASYM but omit the func-
tion/derivative for brevity.

processing and develop a performant PHJ implementation. Mean-
while, Blanas et al. [11] argue that modern hardwares effectively
conceal the cache miss overhead, which makes partitioning unnec-
essary and leads NPHJ in beating PHJ. Afterward, Schuh et al. [79]
compare PHJ with NPHJ in microbenchmarks and proclaim that
PHJ generally outperforms NPHJ. However, Bandle et al. [8] later
conduct an evaluation in TPC-H [22] and show that NPHJ is a bet-
ter solution. As a result, the PHJ-vs-NPHJ debate is still ongoing.

SCM System Studies. Since the commercialization of Optane
DIMMs, numerous studies have been conducted to study its impact
in various research fields. Several works [10, 23, 31, 88, 92, 95, 97]
characterize its access profile, providing a few practices for bet-
ter utilizing the hardware. Some other researchers develop SCM-
friendly data structures [34, 36, 52, 63], which exploit SCM’s non-
volatility for fast recovery. Other studies focus more on general
SCM technologies rather than Optane DIMMs; they mostly follow
the NVDIMM-P specification and propose designs for logging [3],
file system [96], memory security [32], etc.

Unfortunately, few efforts have been made for SCM-based join
processing. Viglas [89] first studies the read/write asymmetry im-
pact in join and Shanbhag et al. [81] revisit his findings in Op-
tane DIMMs. Besides, Daase et al. [23] and Lasch et al. [56] re-
examine query benchmarks in Optane DIMMs. Nonetheless, they
target traditional external joins, failing to exploit the SCM’s byte-
addressability in join processing. Maltenberger at el. [66] take the
advantage of byte-addressability and evaluate main-memory hash
joins in SCM recently. However, they overlook a few SCM primi-
tives and end up with a misleading conclusion, which our experi-
mental study seeks to rectify.

9 CONCLUSION
This paper revisits main-memory hash joins in SCM. In particu-
lar, we explore the design space for PHJ and NPHJ and provide
a few tips for a performant join implementation. Through a com-
prehensive evaluation, we demonstrate that PHJ is generally the
preferred solution in SCM. Our study, along with discussions, are
not limited to current SCM hardwares.They can be easily extended
and applied to future NVDIMM-P SCM technologies and beyond.

ACKNOWLEDGMENTS
This project is partially supported by a grant funded by the Min-
istry of Education (Title: inPMdb: An in-Persistent Memory Data-
base System;WBSNo: A8000082-00-00) and Shanghai Engineering
Research Center of Big Data Management.

1260

REFERENCES
[1] AgigaTech. 2022. AGIGARAM®NVDIMM-N. http://agigatech.com/products/

agigaram-nvdimms/
[2] Chloe Alverti, Vasileios Karakostas, Nikhita Kunati, Georgios Goumas, and

Michael Swift. 2022. DaxVM: Stressing the Limits of Memory as a File Interface.
In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO).
IEEE, 369–387.

[3] Joy Arulraj, Matthew Perron, and Andrew Pavlo. 2016. Write-Behind Logging.
Proc. VLDB Endow. 10, 4 (2016), 337–348.

[4] Cagri Balkesen, GustavoAlonso, Jens Teubner, andM. TamerÖzsu. 2013. Multi-
Core, Main-Memory Joins: Sort vs. Hash Revisited. Proc. VLDB Endow. 7, 1
(2013), 85–96.

[5] Cagri Balkesen, Jens Teubner, Gustavo Alonso, andM. Tamer Özsu. 2012. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware
[Technical Report]. ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/
779.pdf

[6] Cagri Balkesen, Jens Teubner, Gustavo Alonso, andM. Tamer Özsu. 2013. Main-
memory hash joins on multi-core CPUs: Tuning to the underlying hardware.
In ICDE. IEEE Computer Society, 362–373.

[7] Cagri Balkesen, Jens Teubner, Gustavo Alonso, andM. Tamer Özsu. 2015. Main-
Memory Hash Joins on Modern Processor Architectures. IEEE Trans. Knowl.
Data Eng. 27, 7 (2015), 1754–1766.

[8] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition,
or Not to Partition, That is the Join Question in a Real System. In SIGMOD
Conference. ACM, 168–180.

[9] Ronald Barber, Guy M. Lohman, Ippokratis Pandis, Vijayshankar Raman,
Richard Sidle, Gopi K. Attaluri, Naresh Chainani, Sam Lightstone, and David
Sharpe. 2014. Memory-Efficient Hash Joins. Proc. VLDB Endow. 8, 4 (2014),
353–364.

[10] Lawrence Benson, Leon Papke, and Tilmann Rabl. 2022. PerMA-Bench: Bench-
marking Persistent Memory Access. Proc. VLDB Endow. 15, 11 (2022), 2463–
2476.

[11] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and evaluation of
main memory hash join algorithms for multi-core CPUs. In SIGMOD Confer-
ence. ACM, 37–48.

[12] Peter A. Boncz, Stefan Manegold, and Martin L. Kersten. 1999. Database Archi-
tecture Optimized for the New Bottleneck: Memory Access. In VLDB. Morgan
Kaufmann, 54–65.

[13] Wentao Cai, Haosen Wen, H. Alan Beadle, Chris Kjellqvist, Mohammad He-
dayati, and Michael L. Scott. 2020. Understanding and optimizing persistent
memory allocation. In ISMM. ACM, 60–73.

[14] Daniel Castro, Alexandro Baldassin, João Barreto, and Paolo Romano. 2021.
SPHT: Scalable Persistent Hardware Transactions. In FAST. USENIX Associa-
tion, 155–169.

[15] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.
2004. Improving Hash Join Performance through Prefetching. In ICDE. IEEE
Computer Society, 116–127.

[16] Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry.
2007. Improving hash join performance through prefetching. ACMTrans. Data-
base Syst. 32, 3 (2007), 17.

[17] Ping Chi, Shuangchen Li, Yuanqing Cheng, Yu Lu, Seung H Kang, and Yuan
Xie. 2016. Architecture design with STT-RAM: Opportunities and challenges.
In 2016 21st Asia and South Pacific design automation conference (ASP-DAC).
IEEE, 109–114.

[18] Yu-Der Chih, Yi-Chun Shih, Chia-Fu Lee, Yen-An Chang, Po-Hao Lee, Hon-
Jarn Lin, Yu-Lin Chen, Chieh-Pu Lo, Meng-Chun Shih, Kuei-Hung Shen, et al.
2020. 13.3 a 22nm 32Mb embedded STT-MRAMwith 10ns read speed, 1M cycle
write endurance, 10 years retention at 150 c and high immunity to magnetic
field interference. In 2020 IEEE International Solid-State Circuits Conference-
(ISSCC). IEEE, 222–224.

[19] Jungsik Choi, Jiwon Kim, and Hwansoo Han. 2017. Efficient Memory Mapped
File I/O for In-Memory File Systems. In HotStorage. USENIX Association.

[20] CXL Consortium. 2022. Compute Express Link (CXL) Specifica-
tion. https://www.computeexpresslink.org/_files/ugd/0c1418_
1798ce97c1e6438fba818d760905e43a.pdf

[21] Thomas Coughlin and Objective Analysis Jim Handy. 2022. Persistent Mem-
ories: Without Optane,Where Would We Be? https://storagedeveloper.org/
events/sdc-2022/agenda/session/324

[22] Transaction Processing Performance Council. 2021. TPC BENCHMARKTM H
(Decision Support) Standard Specification Revision 3.0.0. https://www.tpc.
org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf

[23] Björn Daase, Lars Jonas Bollmeier, Lawrence Benson, and Tilmann Rabl. 2021.
Maximizing Persistent Memory Bandwidth Utilization for OLAP Workloads.
In SIGMOD Conference. ACM, 339–351.

[24] Tim Daulby, Anand Savanth, Alex S. Weddell, and Geoff V. Merrett. 2020. Com-
paring NVM Technologies through the Lens of Intermittent Computation. In
ENSsys@SenSys. ACM, 77–78.

[25] CA de Araujo, Jolanta Celinska, Chris R McWilliams, Lucian Shifren, Greg
Yeric, XM Huang, Saurabh Vinayak Suryavanshi, Glen Rosendale, Valeri
Afanas’ ev, Eduardo C Marino, et al. 2022. Universal Non-Polar Switching in
Carbon-doped Transition Metal Oxides (TMOs) and Post TMOs. arXiv preprint
arXiv:2204.07656 (2022).

[26] Laxman Dhulipala, Charles McGuffey, Hongbo Kang, Yan Gu, Guy E. Blelloch,
Phillip B. Gibbons, and Julian Shun. 2020. Sage: Parallel Semi-Asymmetric
Graph Algorithms for NVRAMs. Proc. VLDB Endow. 13, 9 (2020), 1598–1613.

[27] Ivan Fernandez, Aditya Manglik, Christina Giannoula, Ricardo Quislant, Nika
Mansouri-Ghiasi, Juan Gómez-Luna, Eladio Gutiérrez, Oscar G. Plata, and
Onur Mutlu. 2022. Accelerating Time Series Analysis via Processing using
Non-Volatile Memories. CoRR abs/2211.04369 (2022).

[28] Bill Gervasi. 2019. Will Carbon NanotubeMemory Replace DRAM? IEEEMicro
39, 2 (2019), 45–51.

[29] Seyed Ali Ghasemi, Belal Jahannia, and Hamed Farbeh. 2022. GraphA: An
efficient ReRAM-based architecture to accelerate large scale graph processing.
Journal of Systems Architecture (2022), 102755.

[30] Caixin Gong, Chengjin Tian, Zhengheng Wang, Sheng Wang, Xiyu Wang, Qi-
ulei Fu, Wu Qin, Qian Long, Rui Chen, Jiang Qi, Ruo Wang, Guoyun Zhu,
Chenghu Yang, Wei Zhang, and Feifei Li. 2022. Tair-PMem: a Fully Durable
Non-Volatile Memory Database. Proc. VLDB Endow. 15, 12 (2022), 3346–3358.

[31] Shashank Gugnani, Arjun Kashyap, and Xiaoyi Lu. 2020. Understanding the
Idiosyncrasies of Real Persistent Memory. Proc. VLDB Endow. 14, 4 (2020), 626–
639.

[32] Xijing Han, James Tuck, and Amro Awad. 2022. Horus: Persistent Security
for Extended Persistence-Domain Memory Systems. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO). IEEE, 1255–1269.

[33] PreetamHazra and KB Jinesh. 2018. Scaling of resistive random accessmemory
devices beyond 100 nm2: influence of grain boundaries studied using scanning
tunneling microscopy. Nanotechnology 29, 49 (2018), 495202.

[34] Yuliang He, Duo Lu, Kaisong Huang, and Tianzheng Wang. 2022. Evaluating
Persistent Memory Range Indexes: Part Two. Proc. VLDB Endow. 15, 11 (2022),
2477–2490.

[35] Daokun Hu, Zhiwen Chen, Wenkui Che, Jianhua Sun, and Hao Chen. 2022.
Halo: A Hybrid PMem-DRAM Persistent Hash Index with Fast Recovery. In
SIGMOD Conference. ACM, 1049–1063.

[36] Daokun Hu, Zhiwen Chen, Jianbing Wu, Jianhua Sun, and Hao Chen. 2021.
Persistent Memory Hash Indexes: An Experimental Evaluation. Proc. VLDB
Endow. 14, 5 (2021), 785–798.

[37] Kaisong Huang, Yuliang He, and TianzhengWang. 2022. The Past, Present and
Future of Indexing on Persistent Memory. Proc. VLDB Endow. 15, 12 (2022),
3774–3777.

[38] WentaoHuang, Yunhong Ji, Xuan Zhou, BingshengHe, andKian-Lee Tan. 2022.
A Design Space Exploration and Evaluation for Main-Memory Hash Joins in
Storage Class Memory [Technical Report]. https://www.comp.nus.edu.sg/
~huang/assets/works/VLDB-2023/hashjoin-scm/main-tr.pdf

[39] Intel. 2014. Intel® VTune Profiler. https://www.intel.com/content/www/us/
en/developer/tools/oneapi/vtune-profiler.html

[40] Intel. 2020. Intel® PMWatch. https://github.com/intel/intel-pmwatch/
[41] Intel. 2022. Intel Reports Second-Quarter 2022 Financial Results.

https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-
second-quarter-2022-financial-results#:~:text=Second%2Dquarter%20GAAP%
20revenue%20of,billion%2C%20down%2017%25%20YoY.&text=Intel’s%
20Client%20Computing%20and%20Datacenter,Mobileye%20achieved%
20record%20quarterly%20revenue.

[42] Intel. 2022. Intel® Optane™ Persistent Memory. https://www.intel.sg/
content/www/xa/en/architecture-and-technology/optane-dc-persistent-
memory.html

[43] JEDEC. 2018. DDR4 NVDIMM-N DESIGN SPECIFICATION. https://www.
jedec.org/standards-documents/docs/jesd248

[44] JEDEC. 2021. DDR4 NVDIMM-P BUS PROTOCOL. https://www.jedec.org/
system/files/docs/JESD304-4-01.pdf

[45] Rakesh Gnana David Jeyasingh, Jiale Liang, Marissa Caldwell, Duygu Kuzum,
and H.-S. Philip Wong. 2012. Phase Change Memory: Scaling and applications.
In CICC. IEEE, 1–7.

[46] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,
and Vijay Chidambaram. 2019. SplitFS: reducing software overhead in file sys-
tems for persistent memory. In SOSP. ACM, 494–508.

[47] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaibhav
Gogte, and Ronald G. Dreslinski. 2021. Improving Performance of Flash Based
Key-Value Stores Using Storage Class Memory as a Volatile Memory Exten-
sion. In 2021 USENIX Annual Technical Conference, USENIX ATC 2021, July 14-
16, 2021, Irina Calciu and Geoff Kuenning (Eds.). USENIX Association, 821–837.
https://www.usenix.org/conference/atc21/presentation/kassa

[48] Hiwot Tadese Kassa, Jason Akers, Mrinmoy Ghosh, Zhichao Cao, Vaibhav
Gogte, and Ronald G. Dreslinski. 2022. Power-optimized Deployment of Key-
value Stores Using Storage Class Memory. ACM Trans. Storage 18, 2 (2022),

1261

http://agigatech.com/products/agigaram-nvdimms/
http://agigatech.com/products/agigaram-nvdimms/
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/779.pdf
ftp://ftp.inf.ethz.ch/pub/publications/tech-reports/7xx/779.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_1798ce97c1e6438fba818d760905e43a.pdf
https://www.computeexpresslink.org/_files/ugd/0c1418_1798ce97c1e6438fba818d760905e43a.pdf
https://storagedeveloper.org/events/sdc-2022/agenda/session/324
https://storagedeveloper.org/events/sdc-2022/agenda/session/324
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
https://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v3.0.0.pdf
https://www.comp.nus.edu.sg/~huang/assets/works/VLDB-2023/hashjoin-scm/main-tr.pdf
https://www.comp.nus.edu.sg/~huang/assets/works/VLDB-2023/hashjoin-scm/main-tr.pdf
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/intel/intel-pmwatch/
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results#:~:text=Second%2Dquarter%20GAAP%20revenue%20of,billion%2C%20down%2017%25%20YoY.&text=Intel's%20Client%20Computing%20and%20Datacenter,Mobileye%20achieved%20record%20quarterly%20revenue.
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results#:~:text=Second%2Dquarter%20GAAP%20revenue%20of,billion%2C%20down%2017%25%20YoY.&text=Intel's%20Client%20Computing%20and%20Datacenter,Mobileye%20achieved%20record%20quarterly%20revenue.
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results#:~:text=Second%2Dquarter%20GAAP%20revenue%20of,billion%2C%20down%2017%25%20YoY.&text=Intel's%20Client%20Computing%20and%20Datacenter,Mobileye%20achieved%20record%20quarterly%20revenue.
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results#:~:text=Second%2Dquarter%20GAAP%20revenue%20of,billion%2C%20down%2017%25%20YoY.&text=Intel's%20Client%20Computing%20and%20Datacenter,Mobileye%20achieved%20record%20quarterly%20revenue.
https://www.intc.com/news-events/press-releases/detail/1563/intel-reports-second-quarter-2022-financial-results#:~:text=Second%2Dquarter%20GAAP%20revenue%20of,billion%2C%20down%2017%25%20YoY.&text=Intel's%20Client%20Computing%20and%20Datacenter,Mobileye%20achieved%20record%20quarterly%20revenue.
https://www.intel.sg/content/www/xa/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.sg/content/www/xa/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.intel.sg/content/www/xa/en/architecture-and-technology/optane-dc-persistent-memory.html
https://www.jedec.org/standards-documents/docs/jesd248
https://www.jedec.org/standards-documents/docs/jesd248
https://www.jedec.org/system/files/docs/JESD304-4-01.pdf
https://www.jedec.org/system/files/docs/JESD304-4-01.pdf
https://www.usenix.org/conference/atc21/presentation/kassa

13:1–13:26.
[49] Omar Khattab, Mohammad Hammoud, and Omar Shekfeh. 2018. PolyHJ: A

Polymorphic Main-Memory Hash Join Paradigm for Multi-Core Machines. In
CIKM. ACM, 1323–1332.

[50] Ana Khorguani,Thomas Ropars, and Noel De Palma. 2022. ResPCT: fast check-
pointing in non-volatile memory for multi-threaded applications. In EuroSys.
ACM, 525–540.

[51] Changkyu Kim, Eric Sedlar, Jatin Chhugani, Tim Kaldewey, Anthony D.
Nguyen, Andrea Di Blas, Victor W. Lee, Nadathur Satish, and Pradeep Dubey.
2009. Sort vs. Hash Revisited: Fast Join Implementation on Modern Multi-Core
CPUs. Proc. VLDB Endow. 2, 2 (2009), 1378–1389.

[52] Wook-Hee Kim, Madhava Krishnan Ramanathan, Xinwei Fu, Sanidhya
Kashyap, and Changwoo Min. 2021. PACTree: A High Performance Persistent
Range Index Using PAC Guidelines. In SOSP. ACM, 424–439.

[53] Masaru Kitsuregawa, Hidehiko Tanaka, and Tohru Moto-Oka. 1983. Applica-
tion of Hash to Data Base Machine and Its Architecture. New Gener. Comput.
1, 1 (1983), 63–74.

[54] Tomohiro Korikawa, Akio Kawabata, Fujun He, and Eiji Oki. 2020. Packet pro-
cessing architecture using last-level-cache slices and interleaved 3D-stacked
DRAM. IEEE Access 8 (2020), 59290–59304.

[55] Harald Lang, Viktor Leis, Martina-Cezara Albutiu, Thomas Neumann, and
Alfons Kemper. 2013. Massively Parallel NUMA-Aware Hash Joins. In
IMDM@VLDB (Revised Selected Papers) (Lecture Notes in Computer Science,
Vol. 8921). Springer, 3–14.

[56] Robert Lasch, Thomas Legler, Norman May, Bernhard Scheirle, and Kai-Uwe
Sattler. 2022. Cost Modelling for Optimal Data Placement in Heterogeneous
Main Memory. Proc. VLDB Endow. 15, 11 (2022), 2867–2880.

[57] Benjamin C. Lee, Ping Zhou, Jun Yang, Youtao Zhang, Bo Zhao, Engin Ipek,
OnurMutlu, and Doug Burger. 2010. Phase-Change Technology and the Future
of Main Memory. IEEE Micro 30, 1 (2010), 143.

[58] Sekwon Lee, Soujanya Ponnapalli, Sharad Singhal, Marcos K Aguilera, Kim-
berly Keeton, and Vijay Chidambaram. 2023. DINOMO: An Elastic, Scalable,
High-Performance Key-Value Store for Disaggregated Persistent Memory (Ex-
tended Version). Proc. VLDB Endow. 15, 13 (2023).

[59] Se Kwon Lee, JayashreeMohan, Sanidhya Kashyap, Taesoo Kim, and Vijay Chi-
dambaram. 2019. Recipe: converting concurrent DRAM indexes to persistent-
memory indexes. In SOSP. ACM, 462–477.

[60] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Willhalm. 2019. Evaluating Persistent Memory Range Indexes. Proc. VLDB
Endow. 13, 4 (2019), 574–587.

[61] Yu-Pei Liang, Tseng-Yi Chen, Yuan-Hao Chang, Shuo-Han Chen, Hsin-Wen
Wei, and Wei-Kuan Shih. 2020. B*-Sort: Enabling Write-Once Sorting for Non-
volatile Memory. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 39, 12
(2020), 4549–4562.

[62] Sihang Liu, Suraaj Kanniwadi, Martin Schwarzl, Andreas Kogler, Daniel Gruss,
and Samira Khan. 2023. Side-Channel Attacks on Optane Persistent Memory.
In 32th USENIX Security Symposium (USENIX Security 23).

[63] Baotong Lu, Jialin Ding, Eric Lo, Umar Farooq Minhas, and Tianzheng Wang.
2021. APEX: A High-Performance Learned Index on Persistent Memory. Proc.
VLDB Endow. 15, 3 (2021), 597–610.

[64] Baotong Lu, Xiangpeng Hao, Tianzheng Wang, and Eric Lo. 2020. Dash: Scal-
able Hashing on Persistent Memory. Proc. VLDB Endow. 13, 8 (2020), 1147–
1161.

[65] Shaonan Ma, Kang Chen, Shimin Chen, Mengxing Liu, Jianglang Zhu, Hongbo
Kang, and YongweiWu. 2021. ROART: Range-query Optimized Persistent ART.
In FAST. USENIX Association, 1–16.

[66] Tobias Maltenberger, Till Lehmann, Lawrence Benson, and Tilmann Rabl. 2022.
Evaluating In-Memory Hash Joins on Persistent Memory. In EDBT. OpenPro-
ceedings.org, 2:368–2:372.

[67] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2000. What Happens
During a Join? Dissecting CPU and Memory Optimization Effects. In VLDB.
Morgan Kaufmann, 339–350.

[68] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. 2002. Optimizing
Main-Memory Join on Modern Hardware. IEEE Trans. Knowl. Data Eng. 14, 4
(2002), 709–730.

[69] Mark Mansi, Bijan Tabatabai, and Michael M. Swift. 2022. CBMM: Financial
Advice for Kernel Memory Managers. In USENIX Annual Technical Conference.
USENIX Association, 593–608.

[70] Sparsh Mittal and Jeffrey S. Vetter. 2016. A Survey of Software Techniques for
Using Non-Volatile Memories for Storage and Main Memory Systems. IEEE
Trans. Parallel Distributed Syst. 27, 5 (2016), 1537–1550.

[71] Yoon-Min Nam, Donghyoung Han, and Min-Soo Kim. 2020. SPRINTER: A Fast
n-ary Join Query Processing Method for Complex OLAP Queries. In SIGMOD
Conference. ACM, 2055–2070.

[72] Dimin Niu, Yiran Chen, and Yuan Xie. 2010. Low-power dual-element mem-
ristor based memory design. In Proceedings of the 16th ACM/IEEE international
symposium on Low power electronics and design. 25–30.

[73] Patrick E. O’Neil, Elizabeth J. O’Neil, Xuedong Chen, and Stephen Revilak.
2009. The Star Schema Benchmark and Augmented Fact Table Indexing. In
TPCTC (Lecture Notes in Computer Science, Vol. 5895). Springer, 237–252.

[74] Ismail Oukid. 2018. Architectural Principles for Database Systems on Storage-
Class Memory. Ph. D. Dissertation. Dresden University of Technology, Ger-
many.

[75] Ismail Oukid. 2019. Architectural Principles for Database Systems on Storage-
Class Memory. In BTW (LNI, Vol. P-289). Gesellschaft für Informatik, Bonn,
477–486.

[76] SNIA Technical Position. 2017. NVM Programming Model (NPM) Version
1.2. https://www.snia.org/sites/default/files/technical-work/npm/release/
SNIA-NVM-Programming-Model-v1.2.pdf

[77] Moinuddin K. Qureshi. 2014. Memory Scaling is Dead, Long Live Memory
Scaling. https://hps.ece.utexas.edu/yale75/qureshi_slides.pdf

[78] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter.
2021. HeMem: Scalable Tiered Memory Management for Big Data Applica-
tions and Real NVM. In SOSP. ACM, 392–407.

[79] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Compari-
son of Thirteen Relational Equi-Joins in Main Memory. In SIGMOD Conference.
ACM, 1961–1976.

[80] Felix Martin Schuhknecht, Pankaj Khanchandani, and Jens Dittrich. 2015. On
the Surprising Difficulty of SimpleThings: the Case of Radix Partitioning. Proc.
VLDB Endow. 8, 9 (2015), 934–937.

[81] Anil Shanbhag, Nesime Tatbul, David Cohen, and SamuelMadden. 2020. Large-
scale in-memory analytics on Intel® Optane™ DC persistent memory. In Da-
MoN. ACM, 4:1–4:8.

[82] Simon Sharwood. 2022. Last week Intel killed Optane. Today, Kioxia and Ever-
spin announced comparable tech. https://www.theregister.com/2022/08/02/
kioxia_everspin_persistent_memory/

[83] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. 1994. Cache Conscious
Algorithms for RelationalQuery Processing. InVLDB. Morgan Kaufmann, 510–
521.

[84] Ali Sheikholeslami and P. Glenn Gulak. 2000. A survey of circuit innovations
in ferroelectric random-access memories. Proc. IEEE 88, 5 (2000), 667–689.

[85] Anton Shilov. 2022. Samsung’s Memory-Semantic CXL SSD Brings a 20X Per-
formance Uplift. https://www.tomshardware.com/news/samsung-memory-
semantic-cxl-ssd-brings-20x-performance-uplift

[86] Dixin Tang, Zechao Shang, Aaron J. Elmore, Sanjay Krishnan, and Michael J.
Franklin. 2020. Thrifty Query Execution via Incrementability. In SIGMOD Con-
ference. ACM, 1241–1256.

[87] Daniel Terpstra, Heike Jagode, Haihang You, and Jack J. Dongarra. 2009. Col-
lecting Performance Data with PAPI-C. In Parallel Tools Workshop. Springer,
157–173.

[88] Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons
Kemper. 2019. Persistent Memory I/O Primitives. In DaMoN. ACM, 12:1–12:7.

[89] Stratis Viglas. 2014. Write-limited sorts and joins for persistent memory. Proc.
VLDB Endow. 7, 5 (2014), 413–424.

[90] Lukas Vogel, Alexander van Renen, Satoshi Imamura, Jana Giceva, Thomas
Neumann, and Alfons Kemper. 2022. Plush: AWrite-Optimized Persistent Log-
Structured Hash-Table. Proc. VLDB Endow. 15, 11 (2022), 2895–2907.

[91] Weier Wan, Rajkumar Kubendran, Clemens Schaefer, Sukru Burc Eryilmaz,
Wenqiang Zhang, DabinWu, Stephen Deiss, Priyanka Raina, He Qian, Bin Gao,
et al. 2022. A compute-in-memory chip based on resistive random-access mem-
ory. Nature 608, 7923 (2022), 504–512.

[92] Zixuan Wang, Xiao Liu, Jian Yang, Theodore Michailidis, Steven Swanson, and
Jishen Zhao. 2020. Characterizing and Modeling Non-Volatile Memory Sys-
tems. In MICRO. IEEE, 496–508.

[93] Zixuan Wang, Mohammadkazem Taram, Daniel Moghimi, Steven Swanson,
Dean Tullsen, and Jishen Zhao. 2023. NVLeak: Off-Chip Side-Channel At-
tacks via Non-Volatile Memory Systems. In 32th USENIX Security Symposium
(USENIX Security 23).

[94] YinjunWu, Kwanghyun Park, Rathijit Sen, Brian Kroth, and JaeyoungDo. 2020.
Lessons learned from the early performance evaluation of Intel optane DC per-
sistent memory in DBMS. In DaMoN. ACM, 14:1–14:3.

[95] Lingfeng Xiang, Xingsheng Zhao, Jia Rao, Song Jiang, and Hong Jiang. 2022.
Characterizing the performance of intel optane persistentmemory: a close look
at its on-DIMM buffering. In EuroSys. ACM, 488–505.

[96] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for
Hybrid Volatile/Non-volatile Main Memories. In FAST. USENIX Association,
323–338.

[97] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven
Swanson. 2020. An Empirical Guide to the Behavior and Use of Scalable Per-
sistent Memory. In FAST. USENIX Association, 169–182.

[98] Wen Zhang, Scott Shenker, and Irene Zhang. 2020. Persistent State Machines
for Recoverable In-memory Storage Systems with NVRam. In OSDI. USENIX
Association, 1029–1046.

1262

https://www.snia.org/sites/default/files/technical-work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf
https://www.snia.org/sites/default/files/technical-work/npm/release/SNIA-NVM-Programming-Model-v1.2.pdf
https://hps.ece.utexas.edu/yale75/qureshi_slides.pdf
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.theregister.com/2022/08/02/kioxia_everspin_persistent_memory/
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift
https://www.tomshardware.com/news/samsung-memory-semantic-cxl-ssd-brings-20x-performance-uplift

[99] Zuyu Zhang, Harshad Deshmukh, and Jignesh M. Patel. 2019. Data Partition-
ing for In-Memory Systems: Myths, Challenges, and Opportunities. In CIDR.
www.cidrdb.org.

[100] Diyu Zhou, Yuchen Qian, Vishal Gupta, Zhifei Yang, Changwoo Min, and
Sanidhya Kashyap. 2022. ODINFS: Scaling PM Performance with Opportunis-
tic Delegation. In OSDI. USENIX Association, 179–193.

1263

	Abstract
	1 Introduction
	2 The SCM Landscape
	3 Hash Joins
	3.1 Non-Partitioned Hash Joins
	3.2 Partitioned Hash Joins

	4 Experimental Setup
	5 A Design Space Exploration
	5.1 Non-Partitioned Hash Joins In SCM
	5.2 Partitioned Hash Joins In SCM
	5.3 Putting Everything Together

	6 A Rigorous Evaluation
	6.1 Effect of Size Difference
	6.2 Effect of Skewness
	6.3 Many-to-Many Join Performance
	6.4 Performance in Billion-Scale Workloads
	6.5 Performance with Large-Size Payloads

	7 Discussion
	7.1 Locality is All You Need
	7.2 Read/Write Asymmetry in PHJ
	7.3 Future SCM and Beyond

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

