
Bringing Compiling Databases to RISC Architectures
Ferdinand Gruber

Technical University of Munich
gruberfe@in.tum.de

Maximilian Bandle
Technical University of Munich

bandle@in.tum.de

Alexis Engelke
Technical University of Munich

engelke@tum.de

Thomas Neumann
Technical University of Munich

neumann@in.tum.de

Jana Giceva
Technical University of Munich

jana.giceva@in.tum.de

ABSTRACT
Current hardware development greatly influences the design deci-
sions of modern database systems. For many modern performance-
focused database systems, query compilation emerged as an integral
part and different approaches for code generation evolved, making
use of standard compilers, general-purpose compiler libraries, or
domain-specific code generators. However, development primarily
focused on the dominating x86-64 server architecture; but neglected
current hardware developments towards other CPU architectures
like ARM and other RISC architectures.

Therefore, we explore the design space of code generation in
database systems considering a variety of state-of-the-art compila-
tion approaches with a set of qualitative and quantitative metrics.
Based on our findings, we have developed a new code generator
called FireARM for AArch64-based systems in our database sys-
tem, Umbra. We identify general as well as architecture-specific
challenges for custom code generation in databases and provide
potential solutions to abstract or handle them.

Furthermore, we present an extensive evaluation of different
compilation approaches in Umbra on a wide variety of x86-64 and
ARMmachines. In particular, we compare quantitative performance
characteristics such as compilation latency and query throughput.

Our results show that using standard languages and compiler
infrastructures reduces the barrier to employing query compilation
and allows for high performance on big data sets, while domain-
specific code generators can achieve a significantly lower compila-
tion overhead and allow for better targeting of new architectures.

PVLDB Reference Format:
Ferdinand Gruber, Maximilian Bandle, Alexis Engelke, Thomas Neumann,
and Jana Giceva. Bringing Compiling Databases to RISC Architectures.
PVLDB, 16(6): 1222 - 1234, 2023.
doi:10.14778/3583140.3583142

PVLDB Artifact Availability:
Available at https://nextcloud.in.tum.de/index.php/s/iaciyPg8n4bbRHX.

1 INTRODUCTION
Over the last decade, query compilation has emerged as one key
technique to achieve substantial performance improvements for

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 6 ISSN 2150-8097.
doi:10.14778/3583140.3583142

Co
m
pi
lin

g
D
BM

S

Ex
ec
ut
ab
le

VM
x8

6-
64

&
A
A
rc
h6

4A
Interpreted

Programming Lang.
Section 3.2

General-Purpose IR
Section 3.3

Domain-Specific IR
Section 3.4

Section 3

ü
FireARM
Section 4

(a) System Analysis & IR Impl.

0 1 2
Avg. Time TPC-H SF 5 [s]

Interpreted

C (O3)

LLVM opt

FireARM
Execute
Compile

(b) Extensive Evaluation

Figure 1: Overview of different approaches for code genera-
tion in compiling database systems and their combined per-
formance in terms of latency and throughput.

efficient data processing. Consequently, several database systems [9,
13, 14, 19, 25, 26] shifted towards this approach of compiling queries
to native machine code, allowing a more effective use of available
computational capacities. Further, such compilation approaches
were no longer exclusive to database systems, but also became
increasingly important for general data processing tasks [8].

Due to the dominance of the x86-64 architecture in the server
market over the past decades, code generation approaches have
strongly focused on performance tuning for this single architecture.
However, while performance increases of x86-64 chips have slowed
down over the recent years, other architectures are picking up
momentum. Particularly ARM, originally focused on embedded and
mobile devices, recently started pushing into the server market and
is gaining significant traction [22, 39, 40]. Moreover, RISC-V [42] is
also an emerging architecture with significant traction, although
high-performance hardware is not yet commercially available. This
trend in hardware is likely to continue, which is also due to the
increasing heterogeneity of computer components.

To meet this increasing heterogeneity, we implement a query
compiler back-end called FireARM that directly emits code for
AArch64 and thereby also identify general challenges and poten-
tial solutions for handling and abstracting specifics of different
architectures.

Over the past ten years, a variety of different approaches for
query compilation have emerged, setting different priorities with
respect to performance, flexibility, and engineering effort. Database
systems with query compilation can be roughly classified into three
categories (see Figure 1a): first, systems using standard program-
ming languages like C, where the database emits code and uses
a standard compiler to generate machine code. Second, systems

1222

https://doi.org/10.14778/3583140.3583142
https://nextcloud.in.tum.de/index.php/s/iaciyPg8n4bbRHX
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3583140.3583142
https://www.acm.org/publications/policies/artifact-review-and-badging-current

using the back-ends of standard compilers like LLVM, where code
is generated in form of the intermediate representation (IR) of that
back-end. And third, systems running their own domain-specific
intermediate representations and code generators, with possible
bridges to standard compiler back-ends allowing them to make use
of their optimizations.

This motivates us to review different code generation strategies
with particular focus on their ability to adapt to different and new
processor architectures. To this end, we analyze state-of-the-art
approaches for code generation with regard to performance charac-
teristics, expressiveness of their code representation, and required
engineering effort.

Furthermore, we present a thorough performance evaluation of
different code generation approaches for x86-64 and AArch64. In
particular, we fairly compare the performance characteristics of all
three code generation strategies on different architectures within
the same system, Umbra [26].

We find that while approaches using standard programming lan-
guages or compiler back-ends are comparably easy to develop, they
also incur a higher latency for query execution. In contrast, our
approach of using a domain-specific IR in combination with a fast
code generator allows for low-latency execution with comparably
high throughput. Due to the design of our IR, this approach can
at the same time be used to achieve the highest execution perfor-
mance with a bridge to standard compilers. We have also found
that domain-specific IRs can be designed with a focus on database-
specific operations and allow for a more idiomatic expression of
complex operations, which is particularly useful when efficiently
targeting different architectures, as such operations can be lowered
to more optimized architecture-specific instruction sequences.

Thus, the main contributions of this paper are as follows:
• FireARM, a low-latency compilation back-end for Umbra’s
domain-specific IR targeting AArch64
• Experiences and challenges for porting a compiling database
from x86-64 to AArch64
• A thorough qualitative analysis of state-of-the-art query
compilation approaches with regard to recent developments
in processor architectures
• Evaluation of different code generation approaches on dif-
ferent architectures

The remainder of this paper is structured as follows: In Section 2,
we outline the history of compiling databases in more detail. Then,
in Section 3, we analyze the state-of-the-art systems for query
compilation. In Section 4, we describe our implementation of a code
generator for AArch64 and discuss challenges and our approaches
for architecture portability. In Section 5, we present the results of
our evaluation and discuss the findings in Section 6. Finally, we
conclude with a summary of our findings in Section 7.

2 PRIORWORK
The generation of machine code from query plans in database
systems was first implemented in System R in the last century [5].
At that time, the performance of databases was not mainly limited
by computational power, but by speed and capacity of memory and
storage. Therefore, for the following decades, architecture-specific
compilation was replaced by interpretation, which is easier to port

between different systems [2]. In the first decade of this century,
memory and storage capacities in servers reached a point where all
data of interest could reside in memory [28]. Thus, interpretation
started to become the bottleneck for data processing and code
generation for queries gained traction again.

Starting with HyPer [25] in 2011, code-generation in databases
became a fully-fledged compiler task by using the LLVM toolchain.
Other systems such as Impala [19], RAW [17], and Peloton [24]
also adopted similar approaches for better performance. In con-
trast, other systems like Voila [14], HIQUE [21], LegoBase [37],
Voodoo [29], and Hekaton [9] chose a different way: They use differ-
ent general-purpose and newly designed domain-specific program-
ming languages for translating query plans or even whole parts
of the runtime to machine code. As standard compiler toolchains,
e.g., GCC [11] and LLVM [32], are not designed for low latency
compilation, systems like Umbra [26] and Flounder [13] started to
design custom IRs (Intermediate Representations). Consequently,
final code-generation was now also a task of the database system
and not done by standard compilers anymore [13, 18]. Currently,
many different strategies for query compilation are implemented
by modern databases, but there is still no consensus about which
way to go [25, 38, 41].

At the end of the last decade, the hardware market started to
change again. For processors based on the x86-64, observed per-
formance improvements were comparably low, while at the same
time, ARM [40] managed to set a foot in the server segment. Based
on the ARM instruction set architecture, which already dominates
the mobile market, companies like Amazon, Apple, Nvidia, and
Huawei [16] started to develop their own processor designs, tack-
ling x86-64 systems of Intel and AMD. For example, Amazon’s new
Graviton processors are already showing competitive performance
for different database workloads at a lower price [20]. This rapid
development confronts compiling database systems with new chal-
lenges: While previous research in this field strongly focused on
optimizations of code-generation solely for x86-64 systems and
made — possibly extensive — use of its properties, it did not cover
portability of the query compiler to new architectures. Architec-
tures like ARM or RISC-V [42] do not just differ in their actual
instruction set, but also in other aspects like the memory model,
where x86-64 offers stronger guarantees than most other architec-
tures. While some of these differences are abstracted by compilers
for traditional applications, this is not the case for compiling data-
base systems.

These developments motivate bringing compiling databases to
advancing RISC architectures. The variety of approaches for query
compilation, however, opens a range of multiple high-level design
choices with a different impact on performance, code representa-
tions, and engineering effort.

3 DESIGN SPACE ANALYSIS
In current compiling databases, multiple strategies are used to com-
pile queries to machine code. To identify a suitable approach for
high-performance query compilation on RISC architectures, we an-
alyze and classify existing approaches and guide our decision using
metrics for evaluating the different strategies in various aspects.

1223

SQL Parser

DBMS

Query
Optimizer

Code
Optimizer

Emitter
Virtual
Machine

Compiler Front-End

Compiler

Intermediate
Code Generator

Code
Optimizer

Code Generator

DSIR

Progr
amm

ing

Lang
uage

General-PurposeIR
Interpreted

Figure 2: Simplified overview of layers involved in query
compilation in a modern code-generating database system.

In compiling databases, code generation starts after the DBMS
constructs a physical and an execution plan for a query [41]. Fig-
ure 2 shows a simplified view of the overall structure of such an
engine. Different strategies for code generation integrate differently
within a database system: Programming languages integrate a
whole compiler into the system — including a new front-end for
parsing. Databases using general-purpose IRs avoid the front-
end overhead but still add additional layers to code generation.
Domain-specific IRs are specialized IRs designed for database
systems and do not necessarily rely on external compiler frame-
works. Code generation can be customized and implemented close
to the rest of the database system.

The key factor of a code generation system — and therefore the
main focus of our analysis — is the (intermediate) code representa-
tion used to express query code, as it strongly impacts performance
characteristics, the ability to effectively use hardware features, and
the engineering effort for the implementation of the database itself.

3.1 Metrics for Query Compilers
To rate a code generation system of a database that allows query
compilation for multiple architectures (e.g., x86-64 and ARM), we
define five metrics for evaluation. In our opinion, these metrics
cover most interesting aspects of a query compilation strategy:
performance, expressiveness for query translation, and usability.
Although the metrics of expressiveness and usability are hard to ob-
jectively quantify, we consider them to be highly important factors
and evaluate them from our perspective.
Throughput is the number of tuples processed per second, which
databases often strive to maximize. For compiling databases, the
throughput mainly depends on the quality of the generatedmachine
code for a query. Despite the additional impact of the database
engine’s runtime system, we focus on the potential code quality of
a compilation approach.
Latency is the time needed for generating and compiling query
code before it can be executed. Low latency is more important for
real-time transactional systems than for longer running queries as
they occur, e.g., in stream-based data processing [3, 18].

Latency and throughput are coupled metrics and both cannot
be maximized at the same time because the compilation time in-
creases with the amount and complexity of applied optimization.

Consequently, finding a reasonable trade-off that is the best fit for
their use case scenario is required.
Domain Expressiveness assesses the ability to represent algorith-
mic details for databases (e.g., algorithmic operator details, memory
interaction, etc.) in its intermediate language. An efficient and ex-
pressive translation from higher levels of representation (e.g., query
plans) to intermediate languages or representations reduces com-
plexity and allows maintaining database-specific semantics for later
compilation stages.
Architecture Expressiveness assesses how well a compilation
approach can handle architecture-specific properties (e.g., memory
models, architectural constraints). This not only covers architecture-
specific instructions or the fine-tuning of vectorization, but also the
ability to support multiple architectures and possibly also heteroge-
neous systems at the same time. This metric is particularly relevant
when porting a database system to a new architecture, as using
architecture-specific features is necessary for high-performance
database systems. With the rise of co-processors, FPGAs, computa-
tional storage devices, and accelerators which all have their own set
of constraints and properties, this metric is also of major importance
for future compiling database systems.

For compiling databases, domain expressiveness, as well as ar-
chitecture expressiveness, supports the quality of compiled query
code. A more efficient and simple operator representation can be
transformed more easily into optimized machine code. Similarly,
architectural information helps the code-generator to produce more
optimized machine code for a given target system.
Ease-Of-Use rates the complexity of integrating a certain com-
pilation strategy into a database system. For databases, which are
usually long-lasting software applications, complexity or low flexi-
bility in the compilation layer are important factors. In this metric,
we also include the required level of knowledge in different domains
like programming languages, compiler frameworks, and computer
architectures. While this metric is certainly the most subjective, we
nevertheless consider it as crucial for the development of query
compilation systems.

PL (3.2)

GP IR (3.3)

DS IR (3.4)

Query Plan

VoilaMAT

PIT

Scala

CLite

C/C++ LLVM IR

LLVM MIR

Umbra IR

Query Program

Hekaton
LegoBa

se Voila Umbra

HyPer

Em
itt
er

Compiler

Figure 3: Overview of languages and representations used
for code generation in different query compilation systems.

1224

3.2 Strategy: Programming Languages
Using an existing programming language to compile a given query
plan is a commonly used approach [9, 14, 26, 37]; thus several
different higher-level and lower-level languages have been pro-
posed so far, as shown in Figure 3. Thereby, the usage and position
of programming languages in the corresponding code generation
layer differ between the systems. We consider a system to follow
this approach if the last part of the query compilation toolchain is
implemented using a programming language.

LegoBase [37] uses the Scala programming language to imple-
ment the engine and as the target for translating query plans. Engine
and query code are optimized and compiled together using available
run-time information. Afterwards, the generated optimized pro-
gram is translated source-to-source from Scala to C. For generating
machine code, LegoBase invokes a C compiler, which also applies
compiler optimizations. Hekaton [9] is part of the SQL Server and
uses C for code generation. Query plans are first represented as
Mixed Abstract Trees (MAT) and then as lower-level Pure Imperative
Trees (PIT), both of which are not suitable for direct code generation.
Thus, PITs are translated to C programs later. Voila [14] implements
a new domain-specific language to lower query plans that is more
suitable to describe algorithmic details of database queries like hash
table look-ups. To ease code generation, Voila code is translated
to a subset of C (CLite), which, after source-code optimizations,
is translated to a C++ program for compilation with a standard
compiler.

In Umbra, query plans of SQL are translated to the internal
IR called Umbra IR. The C back-end of Umbra then generates C
programs from that internal representation using templates of C
code, which get slightly modified to adopt the current requirements.
The structure of these patterns is not changed; therefore, the process
of building these C programs is similar to building objects using
construction blocks.

3.2.1 Latency and Throughput. The performance of this code gen-
eration approach varies strongly, depending on the usecase scenario
and layout of the code generation layer. While the generated ma-
chine code can generally achieve a high throughput due to compiler
optimizations, the latency of the whole code generation process is
typically also high: Compilers like GCC or Clang focus on high-
performance machine code but are not designed for low-latency
compilation. Systems like Amazon Redshift mitigate this problem
by extensively caching parts of previously compiled queries [1].

In addition, source-to-source translation of programming lan-
guages is a comparably time-consuming task. Its rather high impact
on top of compilation can be seen in the query compilation times of
LegoBase [37]. Multi-step translations like translating from Voila
to CLite and then from CLite to C++ additionally increase latency.

3.2.2 Domain Expressiveness. The domain expressiveness of this
approach strongly depends on the employed languages. Describing
database-specific algorithms like hash lookups in detail is more com-
plex and less intuitive in general-purpose programming languages
that do not offer native support for these operations. LegoBase
efficiently represents database-specific algorithms in Scala but has
to lower these representations to C before final generation of code
takes place. Voila offers a rich expressiveness for database-specific

algorithms but againmust lower to a low-level language before code
generation. This process may lead to the loss of domain-specific or
other relevant information that is beneficial for generating code.
Besides the problem of information preservation, the lowering of
high-level representations to lower-level ones is not always possi-
ble in a reasonable manner. In Hekaton, the direct translation of
MATs to C code is difficult; thus, another intermediate translation
step using PITs is necessary.

In general, to lower higher-level to lower-level languages that
make code generation easier, the lower-level languages must have
at least the same amount of declarative expressiveness [10]. This
leads to the fact that the domain expressiveness is finally limited
by the last language in the code generation stack. Therefore, using
low-level C and C++ that have low domain expressiveness raises
questions about their suitability as final targets for code generation.

3.2.3 Architecture Expressiveness. The usage of specific features of
a computer architecture like ARM or accelerators like FPGAs must
be supported by the last language used in the stack. For example,
to use SIMD operations provided by modern processors, compilers
can apply auto-vectorization, but the result might not be optimal
for non-trivial code. Thus, architecture-specific libraries, intrinsic
functions, or assembly code must be used to generate optimized
vectorized code. In general, the operators defined by a former lan-
guage of the compilation stack must be lowered to corresponding
operators of the latter one. This is non-trivial if there is no simple
mapping between both languages.

3.2.4 Ease-Of-Use. The complexity of this compilation strategy
depends on the chosen languages and the layout of the code gen-
eration stack. In general, the translation of query plans using pro-
gramming languages can be done with pre-defined code patterns
and templates. The integration of this approach is also rather sim-
ple: The database calls an external compiler and generated query
programs are loaded as modules. In addition, little knowledge of
hardware details is necessary for generating code. Nevertheless,
source-to-source transformations between multiple high-level or
domain-specific languages increase complexity.

3.3 Strategy: General-Purpose IRs
To avoid the overhead of first translating queries to source code like
C, which compilers internally have to translate to their internal IR
again, direct generation of the compiler IR is a more efficient option.
This approach is used by HyPer [25], Peloton [24], and Umbra [26],
among others, using the IR of the LLVM compiler framework.

3.3.1 Latency and Throughput. This approach allows re-using ex-
isting code generation infrastructure while reducing the latency by
skipping the compiler front-end for parsing and source code analy-
sis. However, the other considerations regarding latency caused by
expensive optimizations remain. At the same time, the throughput
is not affected as long as the IR generated by the query compiler has
a similar quality as the IR derived from the programming language:
most of the important optimizations (e.g., the removal of dead code)
are performed at the IR level anyway.

The performance of the database system HyPer, which uses
LLVM IR for the translation of query plans, shows that this approach
is competitive with programming languages regarding latency and

1225

throughput [25]. Unlike HyPer, the LLVM back-end of Umbra uses
LLVM only for final code generation, where Umbra IR is translated
to LLVM IR. This translation is faster than the translation to C
programs and at the same time reaches similar performance.

3.3.2 Domain Expressiveness. The IRs of compiler toolchains like
LLVM specify instruction sets of virtual computer architectures.
They are designed as targets for lowering high-level programming
languages to machine code. Therefore, the expressiveness of com-
piler IRs is at least as powerful as the supported programming
language. Nevertheless, in accordance with our definition of do-
main expressiveness, this does not have to hold: Common compiler
IRs only provide simple operations and do not contain specialized
instructions to represent database-specific algorithms. Technically,
it is possible to extend the IR using intrinsic functions or by adding
new instructions, but such modifications are non-trivial tasks and
also need a considerable maintenance effort [31].

3.3.3 Architecture Expressiveness. Since general-purpose IRs are
designed to handle compiler workloads, the architecture expres-
siveness of using such IRs is similar to using programming lan-
guages. For example, LLVM-IR provides intrinsic functions for
target-specific operations to enable representing C intrinsic func-
tions and allows for including architecture-specific code with inline
assembly to support inline assembly as written in C or C++. Com-
munication with co-processors or other devices like FPGAs can be
done by calling library functions that can be provided as IR modules.
Since LLVM IR enshrines details of architectures (e.g., size of types),
this can be an interoperability issue between different architectures
and requires additional handling.

3.3.4 Ease-of-use. Using IRs of compilers to generate query pro-
grams is more difficult than using programming languages. While
the latter can be generated using templates or code-snippets, most
IRs are given in Single Static Assignment (SSA) form, which incurs
additional complexity for generating code. Besides that, interact-
ing with compiler frameworks is more complicated than calling
compilers and requires more advanced knowledge. LLVM offers an
interface for JIT compilation and therefore can be fully integrated
into a database system without requiring external toolchain com-
ponents to be available. However, this code generation strategy
introduces another level of complexity compared to using program-
ming languages.

3.4 Strategy: Domain-Specific IRs
In contrast to compiler IRs, domain-specific IRs are designed to
solve challenges of specific usecases. Besides their primary usage
as additional internal abstraction layer (e.g., MAT and PIT of Heka-
ton [9]), they can also be the starting point for directly generating
machine code. In the following, we only consider domain-specific
IRs that support direct translation tomachine code. Domain-specific
IRs are tailored to the needs of a database system and can be opti-
mized in different aspects. These aspects range from a high domain-
expressiveness to performance optimizations or memory consump-
tion for program representation. Nevertheless, they are lower-level
than domain-specific languages like Voila to enable direct code
generation.

The design and structuring of domain-specific IRs for databases
is simpler and more expressive than compiler IRs. Due to the limita-
tion to represent only the query programs of one database system,
they can be tailored to the specific needs. This results in an IR
design whose expressiveness can exactly match the requirements.
On the other hand, domain-specific IRs cannot be directly compiled
with existing compiler toolchains. Thus, code generation has to be
implemented for the specific IR and every supported architecture,
which is a complex and non-trivial task. Even though their design
and structure is often simplified or limited, domain-specific IRs
enable a high degree of flexibility in the design process.

Flounder [13] and Umbra [26] both implement domain-specific
IRs with a custom code generator. In the case of Flounder, the
IR is designed at low-level and close to the x86-64 ISA [13]. This
allows the implementation of an efficient code-generator that is less
complex than common IR compilers. Umbra implements Umbra
IR as customized domain-specific IR for internal representation of
query programs and low-latency code generation [18]. Umbra IR is
designed with a higher degree of domain-expressiveness compared
to Flounder IR and has a higher-level structure that is closer to
compiler IRs. Nevertheless, Umbra IR is still less complex than
compiler IRs in terms of generating IR programs and efficiently
translating them to machine code.

3.4.1 Latency and Throughput. Domain-specific IRs allow optimiz-
ing for low latency, high throughput, or both properties. By keeping
a simple structure for the domain-specific IR, the complexity of
code generation back-ends decreases. This allows code generation
with fewer and faster transformation passes compared to common
compiler toolchains like LLVM, which require multiple passes for
translation even if no optimizations are applied. Umbra IR, as well
as Flounder IR, is translated by single-pass code-generators [13, 18].
This allows low-latency compilation, which is especially necessary
for real-time transactional databases.

In general, the full feature set of programming languages and
general-purpose IRs is not needed to transform a query plan into a
program. A reduced set of instructions that is capable of describing
all necessary algorithmic details is sufficient. As a consequence, the
potential throughput which can be achieved by domain-specific
IRs is at least on par with the other code generation strategies for
databases. Besides the structure of a query program (e.g., control
flow, basic block ordering, etc.), the throughput mainly depends on
the applied optimizations and the selection of machine instructions.
Both are non-trivial to implement but can be highly optimized if
the design of a domain-specific IR is simple enough. Nevertheless,
compiler optimized query programs are usually slightly ahead in
terms of throughput due to many optimization passes.

3.4.2 Domain Expressiveness. Domain-specific IRs are designed
and implemented for specific use case scenarios, so their expres-
siveness may not be beneficial for other use cases. In contrast, for
databases the expressiveness of specialized IRs is higher by de-
sign and they can show their full potential. Compiler IRs usually
lack specialized instructions for representing database-related al-
gorithmic details that domain-specific IRs are free to implement.
Thereby, these instructions must not be as flexible and expressive
as high-level constructs in languages like Voila. In SQL, checks for

1226

Table 1: Evaluation of different compiling database systems
according to our set of metrics.

System Latency Throughput Domain
Expr.

Architecture
Expr.

Voila [14] − − − ++ ++ −−
Hekaton [9] − − − ++ + −−
LegoBase [37] − − − ++ + −−
DBLAB/LB [38] − − − ++ ++ −−
HyPer [25] ++ ++ − − − −
Flounder [13] ++ + − − − ++
Umbra [18, 26]
–Low-Latency + + + ++ + + + +
–High-Throughput − + + + − −

arithmetic overflows are necessary, so code generation for them is a
re-occurring task that can be simplified by specialized instructions.

3.4.3 Architecture Expressiveness. As the design of the IR and the
code generation layer is under full control, there are fewer chal-
lenges when adding specialized instructions and annotations com-
pared to huge projects like LLVM or GCC. This also allows better
support for accelerator hardware or co-processors on the level of
domain-specific IRs with specialized instructions. This can also be
done using general-purpose IRs, but modifications like the addition
of instructions to full-grown compiler toolchains are much more
complex. In addition, specialized instructions also help emit the best
possible instruction sequence for a certain operation. If this must
be done on top of general-purpose IR instructions, this is usually
harder and requires multiple complex optimization steps.

3.4.4 Ease-Of-Use. Defining domain-specific IRs and implement-
ing customized code-generators is far more complex than re-using
an existing compiler infrastructure and requires a deep understand-
ing of IR design, compiler development, and computer architecture.
In general, it is also not possible to re-use parts of existing com-
piler infrastructure for domain-specific IRs. Nevertheless, domain-
specific IRs integrate better in databases than general-purpose IRs
because they are tailored for the rest of the system.

3.5 Analysis
To better understand the practical impacts and trade-offs of the
different approaches, we rated different database systems that use
code generation in Table 1. The low-latency and high-throughput
modes of Umbra are rated separately because of their different
ratings according to our metrics.

Latency and Throughput. All approaches turn out to be reason-
able choices for achieving high throughput. Because most of the
discussed databases rely on compilers and their optimizations for
code generation, the difference in terms of throughput is reasoned
by the structure of generated query programs and the rest of the
database system. If JIT modes of compilers are used, commonly
fewer optimization passes are chosen and performance may be not
as good as full compiler translations. Customized code generators
for domain-specifc IRs usually do not apply the same amount of
optimizations to code as compilers do. This is not a restriction
in general because additional optimization passes can be added
for better execution performance. However, due to higher domain

and architecture expressiveness, domain-specific IR can achieve
throughput that is on par with the other approaches using com-
piler toolchains. Nevertheless, generating programs with higher
throughput than compilers is not easy to achieve and requires heavy
engineering. In contrast to that, we suggest that low-latency code
generation is only achievable using domain-specific IRs. Common
compilers are not optimized for low-latency code generation and
even when avoiding parsing by generating IR code directly (see
Figure 2), latency is higher than that of domain-specific IRs.

Expressiveness. It is easier to translate query plans to domain-
specific languages like Voila than lowering them to general-purpose
programming languages like C++, as database-specific constructs
can be expressed directly. While compiler IRs can be extended, this
often involves substantial effort with a complexity close to (if not
higher than) building customized IRs. Therefore, domain-specific
IRs are a good trade-off between required expressiveness and low-
level representation. Regarding architecture support, languages
like Voila or Scala (LegoBase) do not directly offer functionality for
hardware-specific optimizations. Domain-specific IRs can avoid this
problem easily because they can be freely extended with specialized
instructions or annotations.

Ease-Of-Use. In terms of usage complexity, programming lan-
guages have an advantage in comparison to IRs. Internal transfor-
mations are still part of the database system and may be non-trivial,
but final generation of machine code is done by an external tool-
chain. Building query-programs with compiler IRs usually requires
the integration of the IR system into the database. This is more com-
plex than a call to an external compiler but can use already existing
infrastructure for the creation and compilation of IR programs. In
contrast, domain-specific IRs must not only be designed, but also
code generation and multiple back-ends for machine code must be
implemented. This requires in-depth knowledge about compiler
construction and machine architectures. Even if a customized solu-
tion may integrate better into the rest of a system, the complexity
of using domain-specific IRs is still high. If the minimization of
complexity is an important aspect, we think that programming lan-
guages are the best choice for code generation in database systems.

4 FIREARM
Tahboub et al. advised database developers to use programming
languages or existing compiler infrastructure (e.g., LLVM) for query
compilation in database systems [41]. Our analysis, however, showed
that all approaches face challenges and have different trade-offs.
Compared to programming languages, compiler IRs help to address
some challenges of query compilation like the latency, but they also
introduce new issues like a rapidly increasing complexity for code
generation. Because IRs and compiled programming languages are
on par in terms of our throughput metric, the latter are a reason-
able choice if latency is not an important factor. If latency is the
most important metric, then domain-specific IRs like Umbra IR
turn out to be a favorable option. With their high domain- and
architecture-expressiveness, domain-specific IRs also compete with
specialized domain-specific languages like Voila — on another level
of abstraction.

1227

SQL Parser Query Optimizer

IR Generator Relational Algebra

Compile Time System

Relations Schema

Concurrency Logging

Buffer Manager Statistics

Scheduler Execution Plan

Morsel-Driven
Parallelism

Adaptive
Compilation

Opt. Opt. Opt. Opt. Opt.

VM C LLVM x86 ARM

Code Generator

IR Optimizer

Runtime System

Execution Engine

Code Generation Back-Ends

Figure 4: Components of the Umbra database system.

As Kersten et al. [18] showed, Umbra IR allows the direct gener-
ation of machine code without using external compiler frameworks
or other additional IRs, thereby avoiding the high compilation time
of standard frameworks. This was first implemented for the x86-
64 architecture as part of an adaptive execution back-end called
Flying Start, which achieved a comparably high throughput with a
significantly lower latency.

Figure 4 gives an overview on the components of Umbra. The
code generator also supports additional modes of compilation be-
sides directly translating Umbra IR to machine code: it can also
adaptively make use of a standard compiler IR (LLVM IR) for more
optimized code generation for longer running tasks. Furthermore,
Umbra IR can also be transformed into the C programming language
for compilation with a standard compiler.

This flexibility of supporting all three code generation strategies
in a single system makes Umbra a good choice for porting a com-
piling database to new architectures and analyzing the impact of
the different options. We implemented a new custom code gener-
ator for ARM-based systems that we call FireARM, which is able
to generate machine code for ARMv8.2-A [23] with low latency
while achieving performance close to compiler-generated code. Our
work on developing a direct code generator for ARM platforms un-
covered several architectural challenges inherent to weak-memory
RISC-like architectures, which also ease further ports to similar
architectures like RISC-V.

4.1 Compiling Umbra IR
Similar to Flying Start, FireARM directly translates the internal
IR of Umbra to ARM machine code in a single pass without an
additional, lower-level IR.

The general design of Umbra IR is inspired by LLVM IR in terms
of instruction set and functionality, but it is optimized for use in
a database system. Like LLVM-IR [33] and GCC GIMPLE [6], it
has a base set of instructions for arithmetic, control-flow, and in-
teraction with memory. As mentioned in Section 3.4, it also adds
database-specific operations like checked arithmetic or enhanced
branching. Along with most modern IRs, Umbra IR uses SSA (Static
Single Assignment)[35], so IR values (the IR counterpart of variables
known from programming languages) are only set once. This eases

central parts of code generation such as register allocation and
control flow simplification.

In accordance with LLVM IR, a function in Umbra IR is structured
in basic blocks, which contain a sequence of instructions terminated
by a control flow transition to the next basic block, such that there
is no branching or other control flow within a basic block [18, 33].
FireARM translates each function for its own and also generates
code block by block. Currently, there are no global optimizations,
such as the inlining of other functions, as known from compilers.

Similar to general-purpose IRs, Umbra IR supports a large set
of common data types for IR values. Unlike LLVM IR, however,
Umbra IR does not implement aggregate types such as structs.
The absence of extraction operations as found in LLVM IR (see List-
ing 1a) not only simplifies the IR itself, but also simplifies register
allocation and stack management. Nevertheless, some operations
do produce multiple result values; for example, checked arithmetic
produces the arithmetic result and overflow information. Umbra
IR addresses this special case using so-called ghost instructions that
implicitly reference results of the previous instruction. Due to this
direct coupling, such instruction pairs need to be translated in
combination.

1 %tmp_result = call { i32 , i1 } @llvm.sadd.with.←↪

overflow.i32(i32 %a, i32 %b)

2 %result = extractvalue { i32 , i1 } %tmp_result , 0

3 %overflow = extractvalue { i32 , i1 } %tmp_result , 1

(a) General-Purpose IR — LLVM IR

1 %result = SAddOverflow i32 %a, %b

2 %overflow = OverflowResult Bool

(b) Domain-Specific IR — Umbra IR

Listing 2: Getting result and overflow information from
arithmetic operations.

Listing 2 shows the ghost instruction OverflowResult, that al-
lows using overflow information such as regular IR values. Code
generation benefits from these instructions: The simpler format
permits a faster code generation, since the instructions are easier
to resolve and permit a good instruction selection without further
analyses — without losing expressiveness at the IR-level.

To achieve low-latency compilation, FireARM only performs
dead-code elimination on Umbra IR before generating machine
code but omits other optimizations typically found in compilers;
optimizations such as the control flow optimization or common
sub-expression elimination are not performed. For compiling data-
base systems, it is more reasonable to do certain optimizations
on the level of relational algebra before generating intermediate
code. This prevents the system from generating unnecessary or
inefficient IR code in the first place. Furthermore, optimizations on
top of the IR are more complex even when using domain-specific
information. For example, the elimination or optimization of a join
operator on a low-level IR is much more difficult than on a query
plan. Thus, FireARM as well as FlyingStart substantially benefit
from optimizations done on the level of relational algebra. Writing
custom code generators aiming at either low-latency or reasonable
throughput gets more difficult if the front-end misses certain opti-
mization opportunities. To some extent this also applies to other

1228

1 define i8 @overflow(i8 %0, i8 %1) {

2 %3 = call { i8, i1 }

3 @llvm.sadd.with.overflow.i8 (i8 %0, i8 %1)

4 %4 = extractvalue { i8, i1 } %3, 1

5 br i1 %4, label %5, label %6

6 5: call void @errorHandling ()

7 br label %8

8 6: %7 = extractvalue { i8, i1 } %3, 0

9 br label %8

10 8: %9 = phi i8 [0, %5], [%7, %6]

11 ret i8 %9

12 }

(a) General-Purpose IR — LLVM IR

1 define i8 @overflow(i8 %0, i8 %1) {

2 %2 = checkedSAdd i8 %0, %1, label %3, label %4

3

4

5

6 3: call void @errorHandling ()

7 ret i8 0

8

9

10

11 4: ret i8 %2

12 }

(b) Domain-Specific IR — Umbra IR

Listing 1: Tailored instructions, e.g., for the error-handling of checked arithmetic, simplify the IR structure in a DSIR.

code generation strategies, where optimizers are still limited in
their possibilities to recover optimizations without further domain-
specific knowledge about the operations.

One of the most important aspects that affect the performance of
generated code and also the compilation time is register allocation,
whose optimal solution is an NP-complete problem. Thus, FireARM
(like Flying Start) uses a modified version of linear scan [30] for
lifetime analysis of IR values and register allocation, which is a com-
mon strategy for JIT-compilers. The lifetime analysis of FireARM
is not general purpose, because it does not support control flow
constellations like irreducible loops [15]. This is still feasible because
Umbra avoids such control flow during code generation and there
are no optimizations that introduce it afterwards.

As already mentioned, Umbra IR was originally designed for
x86-64 systems. Thus, generation of Umbra IR programs and their
internal structure are also suited to match the limited register set
of x86-64. Umbra tries to produce IR code with tight loops for its
pipelines, so the amount of life IR values is as small as possible. In
contrast, RISC architectures like ARM have a richer set of general-
purpose registers (32 in case of ARMv8) due to their less flexible
instruction set. Therefore, FireARM or code generators for RISC in
general have fewer problems to avoid spilling [4]. FireARM only
uses the caller-save subset of the 31 general-purpose registers of
ARM for IR values, which is larger than the whole general-purpose
register set of x86-64. This is due to a variety of reasons, such as
the simplification of register allocation and favoring internal calls
(e.g., calls between JIT-compiled Umbra IR functions).

Most Umbra IR instructions follow the three operand principle,
so an instruction has one destination and supports two source
operands that can either be IR Values or constants. Translating
them to machine code is less complex on RISC systems because
their machine instructions follow the same principle. On x86-64,
register allocation can get quite complex because most machine
instructions for arithmetic only support two operands. This leads to
register-to-register copying and spilling, which is quite expensive in
terms of performance. In contrast, FireARM benefits from the larger
register set and the three operand principle of a RISC architecture
like ARM during code generation.

4.2 Architectural Challenges
Umbra IR was originally designed to enable efficient code gener-
ation on the x86-64 architecture. Consequently, some aspects of
Umbra IR and the preceding translation of query plans to Umbra

relaxed

acquire

seq. cst

mov

mov

mov

x86-64

ldr

ldar

ldar

AArch64

Implicit
Barrier�

(a) Load

relaxed

release

seq. cst

mov

mov

xchg

x86-64

str

stlr

stlr

AArch64

Implicit
Barrier

Atomic
Locks

�

(b) Store

Figure 5: Comparison of the C++ atomic operation mapping
to x86-64 and AArch64 instructions.

IR are designed to match specifics of x86-64. During the imple-
mentation of FireARM, we gained detailed insights about porting a
compiling database system to an architecture with a weak memory
model and a RISC-like instruction set.
Memory Ordering is different on x86-64 compared to several
other widespread architectures. x86-64 processors use a processor-
ordering consistency model [36], while the ARM architecture im-
plements a weak-ordering consistency model [34]. Figure 5 shows
the machine instructions of x86-64 and ARM that are used to imple-
ment different C++ memory orderings. Except for stores requiring
sequential consistency, the mov instruction of x86-64 is sufficient
for memory operations with relaxed, acquire, or release semantics.
Following Umbra IR’s design focus on x86-64, a fine-graded defini-
tion of the memory ordering was not necessary and therefore only
allows marking stores as atomic to achieve sequential consistency.

In contrast, on a weak-ordering architecture, selecting the appro-
priate instruction is a more complex task, especially if the required
ordering is not precisely defined in the IR. On such architectures,
CPUs often get significant performance benefits by exploiting the
weaker memory model, as it allows for a more flexible execution
order of memory accesses.

To evaluate the impact of choosing too strong ordering semantics
in the context of query compilers, we forcefully chose stronger
ordering semantics for loads and/or stores in several (handwritten)
TPC-H queries and measured the overall execution time; Table 2
shows the results on two different AArch64 platforms. While the
impact is moderate for TPC-H query 3, the performance of queries
1 and 19 are much more sensitive to a stronger ordering. This shows
that choosing optimal ordering semantics for all memory operations
is highly relevant to achieve high performance.

1229

Table 2: Impact of choosing a too strong memory ordering
in several TPC-H (SF 10) queries on AArch64 processors.

Optimal Force Load Force Store Always
Model Acquire Release Acq/Rel

A
pp

le
M
1 Q1 79ms 178ms 98ms 188ms

Q3 53ms 61ms 66ms 68ms
Q12 64ms 69ms 70ms 69ms
Q14 199ms 231ms 199ms 233ms
Q19 767ms 1008ms 789ms 1015ms

Th
un

de
rX

2 Q1 53ms 73ms 66ms 143ms
Q3 58ms 59ms 61ms 85ms
Q12 13ms 18ms 17ms 18ms
Q14 73ms 83ms 89ms 92ms
Q19 134ms 221ms 228ms 239ms

Besides the execution of query plans, the memory model affects
other important aspects of database systems as well: as discussed
by Oberhauser et al. [27], synchronization primitives and their
implementation may be a source of bugs that are particularly hard
to find and solve, while overly restrictive programming in critical
sections might have a strongly negative performance impact.
Alignment is usually not a major concern because it is auto-
matically handled properly by the CPU in most cases. In-memory
systems like Umbra tend to pack their internal data structures and
increase space utilization by avoiding padding bytes. RISC-like ar-
chitectures like AArch64, however, have more limited addressing
modes, especially with regard to immediate offsets that are not a
multiple of the element data size. Additionally, unaligned data is
also problematic when used for atomic memory accesses: While
modern x86-64 systems guarantee atomicity for atomic operations
on unaligned data if the operation remains in a single cache line,
most other architectures like ARM or RISC-V prohibit unaligned
atomic accesses altogether. Thus, to avoid expensive workarounds,
data that needs atomic accesses should be aligned if at all possible.
Arithmetic Operations with 8-bit and 16-bit wide operands can
be challenging on several RISC architectures. x86-64 directly ex-
poses arithmetic on these sizes using explicitly addressable sub-
registers and properly provides extra information like an indication
of overflow. On AArch64, in contrast, such small operations need to
be promoted to 32-bit arithmetic, causing them to be less efficient
and increasing the complexity of the code generator.

As the design of Umbra IR focused x86-64, arithmetic on small
data sizes occurs even when not strictly required. Due to the single-
pass compilation in FireARM, such operations are currently not
optimized and thus the code generated by FireARM is often inferior
to compiler-generated code in this aspect.
Instruction Selection is one of the most important aspects of
code generation. To achieve high performance, optimizing com-
pilers generally try to combine multiple IR instructions into one
machine code instruction and at the same time avoid machine in-
structions or instruction sequences that are considered as inefficient.
To achieve high performance, classical compilers often have a large
set of patterns and rules and if possible also make use of additional
information about the targeted micro-architecture.

In a latency-sensitive context, however, complex instruction
matching is too expensive; thus, FireARM only uses a comparably
small part of the ARM ISA. Especially the larger diversity of ARM
CPU designs — besides the standard designs of ARMmanufacturers
like Huawei [16] or Apple can also roll their own, with potentially
substantive differences in performance characteristics — and the
increasing fragmentation of supported instruction set extensions
make it infeasible for a low-latency code generator to optimize for
available specialized instructions. However, ARM also offers also
complex instructions that are not available on x86-64, for example
a combined multiply-add. Currently, due to its focus on x86-64,
Umbra IR does not provide such instructions and therefore FireARM
must explicitly detect such instruction sequences to achieve more
efficient code.
Immediate operands encoded directly into instructions differ
strongly between architectures. x86-64 is very flexible as a conse-
quence of the variable-length instruction encoding, often allowing
immediates up to 32 bits, and to use this possibility effectively,
Umbra IR also supports immediate operands for many operations.
RISC architectures with a fixed instruction size are necessarily less
flexible than x86-64 and therefore the code generator needs to move
the immediate operand to a dedicated register more often. For large
immediates, generally sequences of instructions to combine the
constant value are necessary, increasing code size and complexity.

5 EVALUATION
To analyze the latency/throughput (cf. Section 3.1) of the different
code generation strategies (cf. Section 3) on different architectures,
we run all 22 TPC-H queries with 5 code generation back-ends in
Umbra [26]. As the Umbra IR programs, which are generated using
a push-based model, are the same for all back-ends, we ensure that
the results are comparable, i.e., have the same query plan and use
the same runtime system. Besides the Umbra-specific IR, we are
not aware of aspects limiting the applicability of the approaches
(and therefore also results) in other query compilation engines.

5.1 Experimental Setup
Umbra translates query plans to its internal Umbra IR, consisting of
one function per pipeline [26]. We evaluate the following back-ends
to compile those Umbra IR functions to machine code:
■ Interpreted Umbra IR is translated to an internal bytecode repre-
sentation, which gets interpreted, similar to systems like SQLite [7].
■C Umbra IR is translated to C code, which is compiled and opti-
mized by gcc -O3. The C code is generated by simply concatenating
fixed code templates without further optimizations.
■LLVM This back-end first translates Umbra IR to LLVM IR and
then uses the JIT-capabilities of LLVM for fast code generation. It
supports a latency-optimized mode without optimization passes
using FastISel and a throughput-optimized mode with selected opti-
mization passes1 using SelectionDAG for instruction selection.
■ FireARM This refers to the ARM-specific back-end for direct
code generation described in Section 4.

1Umbra uses the following passes: Common Sub-expression Elimination, Instruction
Combination, Re-association, Simplification of Control Flow Graphs, Aggressive Dead
Code Elimination

1230

AArch64 x86-64

10-410-310-210-110-0
Latency [s]

0

25M

50M

75M

100M

125M

150M

175M

Th
ro
ug

hp
ut

[T
up

le
s/
s]

Interpreted FireARM LLVM LLVM opt C (O3)

𝜎
2𝜎
3𝜎

Lower Latency

H
igher

Throughput

(a) Raspberry Pi 4 (4 Cores, 8GB, sf=5)

10-410-310-210-110-0
Latency [s]

0

250 M

500 M

750 M

1000 M

1250 M

1500 M

1750 M

Th
ro

ug
hp

ut
[T

up
le

s/
s]

Interpreted FireARM LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency

H
igher

Throughput

(b) Apple M1 (8 Cores, 16GB, sf=10)

10-410-310-210-110-0
Latency [s]

0

250 M

500 M

750 M

1000 M

1250 M

1500 M

1750 M

Th
ro

ug
hp

ut
[T

up
le

s/
s]

Interpreted Flying Start LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency

H
igher

Throughput

(c) AMD Ryzen 7 4750U (8 Cores, 32GB, sf=10)

10-410-310-210-110-0
Latency [s]

0

1000 M

2000 M

3000 M

4000 M

5000 M

6000 M

7000 M

Th
ro

ug
hp

ut
[T

up
le

s/
s]

Interpreted FireARM LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency

H
igher

Throughput

(d) Fujitsu A64FX (48 Cores, 32GB HBM, sf=30)

10-410-310-210-110-0
Latency [s]

0

1000 M

2000 M

3000 M

4000 M

5000 M

6000 M

7000 M
Th

ro
ug

hp
ut

[T
up

le
s/

s]

Interpreted FireARM LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency
H
igher

Throughput

(e) Thunder X2 (256 Cores, 512GB, sf=30)

10-410-310-210-110-0
Latency [s]

0

1000 M

2000 M

3000 M

4000 M

5000 M

6000 M

7000 M

Th
ro

ug
hp

ut
[T

up
le

s/
s]

Interpreted Flying Start LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency

H
igher

Throughput

(f) Intel Skylake-X (10 Cores, 64GB, sf=30)

10-410-310-210-110-0
Latency [s]

0

2000 M

4000 M

6000 M

8000 M

10000 M

Th
ro

ug
hp

ut
[T

up
le

s/
s]

Interpreted FireARM LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency

H
igher

Throughput

(g) Graviton 2 (64 Cores, 128GB, sf=30)

10-410-310-210-110-0
Latency [s]

0

2000 M

4000 M

6000 M

8000 M

10000 M

Th
ro

ug
hp

ut
[T

up
le

s/
s]

Interpreted FireARM LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency

H
igher

Throughput

(h) Graviton 3 (64 Cores, 128GB, sf=30)

10-410-310-210-110-0
Latency [s]

0

2000 M

4000 M

6000 M

8000 M

10000 M

Th
ro

ug
hp

ut
[T

up
le

s/
s]

Interpreted Flying Start LLVM LLVM opt C (O3)

σ
2σ
3σ

Lower Latency

H
igher

Throughput

(i) AMD Epyc 7713 (64 Cores, 1TB, sf=30)

Figure 6: Compile-time and throughput of different query-compilation strategies in Umbra running the TPC-H benchmark.

■ Flying Start This back-end is the x86-64-specific back-end for
direct code generation presented by Kersten et. al. [18]. This back-
end is the standard compilation back-end on x86-64 systems and
also serves as first-tier code generator in the adaptive back-end.

For compilation of C code in the C back-end, we useGCC 11.1 and
LLVM 14 for JIT-compilation in the LLVM back-end. All back-ends
only use one thread for the generation of machine code or preparing
the interpretation in case of the VM back-end; multi-threaded code
generation is currently not implemented. The execution of the
compiled code uses all available hardware threads.

5.2 Compilation Latency
The X axes in Figure 6 show the compilation times of the different
back-ends of Umbra on our test systems. While every back-end
starts with an optimized Umbra IR program, the latency differs by
several orders of magnitude on ARM as well as on x86-64 based

on the chosen compilation approach. The VM back-end generally
has the lowest latency on all platforms as a consequence of its very
lightweight transformation to bytecode, often achieving latencies
in the range of 0.5ms and 4ms for a single query.

From the compiling back-ends, FireARM and Flying Start have
the lowest latency on their respective target platforms, which is a
consequence of going from Umbra IR to machine code in a single
step without complex optimizations and additional layers or code
representations. Thus, FireARM achieves latencies often between
1ms and 5ms and therefore incurs a slightly higher latency than
the interpreter. On the M1 machine, latencies have a significantly
higher variance caused by the big-little core design. The latency of
FireARM increases around 2.1x if code is generated on efficiency
instead of performance cores. Flying Start on x86-64 is slightly
faster with latencies in the range of 0.5ms and 2.5ms. In comparison
to FireARM, Flying Start is more mature and has more optimized
implementations for encoding machine code instructions.

1231

Nevertheless, FireARM as well as Flying Start have latencies in
the same order of magnitude as the VM back-end while generating
native machine code instead of bytecode.

The latency of the latency-optimized LLVM back-end generally
is around 2.7x larger compared to FireARM/Flying Start on all
systems. This has two major reasons: First, this back-end performs
several transformations of the query code, which is first translated
from Umbra IR to LLVM IR, then translated to LLVM’s architecture-
specific Machine IR, and from there to actual machine code. And
second, LLVM is generally not focused on fast compilation times,
contrary to our approaches for directly emitting machine code.

The throughput-optimized LLVM back-end operates similarly to
the latency-optimized LLVM back-end, differing only in two points:
First, it applies additional optimization passes, some of which have
a superlinear runtime complexity. Second, and much more impor-
tantly, it uses the optimizing SelectionDAG instruction selector
instead of FastISel. While SelectionDAG allows for a significantly
better code quality, it adds another layer of intermediate code rep-
resentation between the transformation from LLVM IR to LLVM’s
Machine IR. This additional code representation combined with
a more expensive approach for finding performant architecture-
specific instructions increases the latency by about 2.8x on the ARM
systems and about 2.6x on the x86-64 systems.

The C back-end has the highest latency and is an order of mag-
nitude slower than the LLVM back-ends. While the actual process
of generating C code only has a minor impact, not only all compila-
tion phases of the compiler back-end have to be executed, but also
parsing and verifying the C code adds additional overhead. Further,
the code has to be written to disk and the compilation process also
involves disk access for storing intermediate files (assembly text,
object file). In addition to that, the machine code generated by the
C compiler cannot be executed directly and instead must be loaded
from the resulting shared library into memory. Many of these addi-
tional tasks involve heavy interaction with the operating system,
leading to an overall latency in the range of 20ms and 500ms, which
is a factor of more than 100x compared to FireARM and Flying Start.

Generally, the most important factors on the hardware side for
achieving low latency is the single-threaded computational power,
which often correlates with the clock speed. Several ARM platforms
like the Thunder X2, the Graviton 2, and the Raspberry Pi have
a weaker single-core performance compared to modern x86-64
processors, causing compilation-based query execution to suffer
from higher latencies. Nevertheless, recent ARM processors like
the Apple M1 and the Graviton 3 offer comparable performance to
modern x86-64 and are likely to change and increase the diversity
in server hardware in the future.

5.3 Analytical Query Throughput
The Y axes in Figure 6 show the tuple throughput of all TPC-H
queries using the different back-ends. In terms of throughput, the
direct-emitting back-ends FireARM and Flying Start achieves a
similar performance compared to the fast LLVM back-end. On the
Fujitsu A64FX and the AWS Graviton 2, FireARM achieves an even
higher throughput, and on the x86-64 machines, Flying Start is
also generally slightly more performant. The throughput of the VM
back-end is around 2.6x lower and therefore rarely worth using.

Table 3: Run-time of TPC-H queries 3, 9, 13, and the average
over all queries on different systems using scale factor 5.

System DuckDB LLVM Flying Start FireARM

Ryzen 4750U

Q3 0.28 s 0.15 s 0.14 s —
Q9 4.61 s 0.36 s 0.36 s —
Q13 0.39 s 0.15 s 0.15 s —
Avg 0.65 s 0.11 s 0.10 s —

Apple M1

Q3 0.18 s 0.11 s — 0.12 s
Q9 2.18 s 0.28 s — 0.28 s
Q13 0.28 s 0.27 s — 0.28 s
Avg 0.36 s 0.09 s — 0.09 s

Raspberry Pi 4

Q3 1.41 s 0.90 s — 0.92 s
Q9 3.68 s 2.97 s — 2.99 s
Q13 3.14 s 0.85 s — 0.87 s
Avg 7.83 s 0.73 s — 0.78 s

The optimizing LLVM as well as the C back-end generally yield
a slightly higher throughput than the latency-optimized compil-
ing back-ends. This is a consequence of applying state-of-the-art
compiler techniques, and especially of having a better instruction
selection and register allocation, which are specifically targeted to-
wards the properties of the target execution machine. For example,
LLVM’s SelectionDAG back-end implements a plenty of rules and
strategies to transform LLVM IR code to efficient machine code se-
quences. The additional optimization passes, however, only yielded
minor improvements on a few queries. Thus, compared to directly
emitting machine code in a single pass, approaches based on stan-
dard compilers are better suited to address architecture-specific
issues outlined in Section 4.2.

However, the throughput differences between compiling back-
ends optimized for latency and throughput is comparably low. This
is especially remarkable on ARM CPUs, which have a high het-
erogeneity in their focus area ranging from low-power, embedded
systems to large server CPUs, while at the same time, FireARM
performs no active CPU-specific optimizations. For example, on
the Fujitsu A64FX, designed for arithmetic-heavy workloads, such
optimizations can yield minor performance improvements, whereas
on the Graviton 2, a general-purpose CPU, there is no significant
difference in throughput.

To analyze the impact of query compilation on different plat-
forms, we also compared the latency-optimized back-ends with the
vectorized interpretation of DuckDB on all TPC-H queries, Table 3
shows the results. FireARM is up to 8x faster than DuckDB on ARM
platforms and Flying Start is up to 12x times faster on the x86-64
machine. This underlines that also on weaker platforms like a Rasp-
berry Pi, query compilation allows for performance improvements
in an order of magnitude.

6 DISCUSSION
Latency and Throughput Our evaluation shows that custom
code generation for domain-specific IRs can compete with other
compilation approaches in terms of latency as well as throughput.
FireARM and Flying Start have only a slightly larger latency than
the VM back-end while generating machine code and therefore
achieve a much higher throughput. The throughput of code pro-
duced by FireARM and Flying Start is slightly lower than using a

1232

0 1000 2000 3000 4000 5000 6000 7000 8000
Umbra’s back-ends for code generation [Lines of Code]

Interpreted 2639 LoC
C 1700 LoC
LLVM 2335 LoC
Flying Start 5373 LoC
FireARM 7959 LoC

Figure 7: Code comparison of Umbra’s back-ends.

highly optimizing compiler back-end, which in turn comes with
the cost of a significantly higher latency. In addition to that, all
compilation approaches outperform the vectorized interpretation
of DuckDB on different systems.
Ease-Of-Use In Section 3.5, we ranked the complexity of domain-
specific IRs highest among all approaches. All evaluated back-ends
in Section 5 use our domain-specific Umbra IR as the starting point.
From an architectural point of view, this is similar to systems like
Hekaton that use an internal IR and then apply code generation
with programming languages or general-purpose IRs (see Figure 3).

However, the complexity of the different back-end approaches
differs heavily. Figure 7 shows the number of lines of code for each
of Umbra’s back-ends. Although such a metric is by no means
sufficient to assess the complexity, it gives a rough indication
that writing a back-end like Flying Start and FireARM incurs a
notably larger complexity compared to the other approaches in
addition to requiring deep knowledge of compiler construction
and architecture-specific details. The challenges of directly gen-
erating machine code for ARM (cf. Section 4.2) are also reflected
in the size of the FireARM back-end. In contrast, generating code
using programming languages (C back-end) or general-purpose IRs
(LLVM back-ends) is much simpler because much of the complexity
is handled by the compiler tool-chains.
Domain Expressiveness The effects of domain expressiveness on
code generation can be seen in the performance of both FireARM or
Flying Start. These back-ends use the full potential of the domain-
specific parts of Umbra IR to generate optimized machine code
for ARM and x86-64, without complex optimization passes while
having lower latency at the same time. Without this domain expres-
siveness, the complexity of both back-ends would be substantially
higher. Optimizations of modern compilers can compensate the
absence of domain expressiveness — and in fact, the domain ex-
pressiveness of Umbra IR is lost to some degree when translating
to C and LLVM IR — at the cost of higher latency and complexity.
Thus, future custom code generators for domain-specific IRs with
even higher expressiveness than Umbra IR could make traditional
compilers obsolete in databases by providing the best trade-off for
latency and throughput.
Architecture Expressiveness Currently Umbra IR does not im-
plement many architecture expressive constructs. It is designed
with x86-64 in mind, so some parts of it can be seen as architecture
expressive; however, generally the architecture expressiveness is
currently limited. For example, FireARM could benefit most from
adding more operations like fused-multiply-add to better use fea-
tures provided by the ARM architecture. At the same time, the C
and LLVM back-ends would also benefit, as they could use more
optimized built-in functions or instructions. However, as discussed

in Section 3.5, programming languages and general-purpose IR can
implement architecture expressiveness only to a certain level.

For future iterations of Umbra IR or domain-specific IRs in gen-
eral, architecture expressiveness should be one part of the design
process from the beginning. While currently domain-specific IRs
are designed top-down from the query plans, IR design should
also include bottom-up considerations based on different architec-
tures to prevent facing challenges like the ones we discussed in
Section 4.2. Of course, the expressibility principle [10, 38] and the
consideration of different architectures must not lead to restricted
IRs like GNU Lightning [12]. Architecture-aware IRs implement
aspects of architecture but are not limiting themselves to specific
ones like architecture-specific IRs. It is an open question how such
architecture-aware design can look in detail and how it will affect
the performance of different code generation approaches.

The suitability of the different approaches differs depending on
the actual requirements of a database system. As we have shown
in Section 5, there are notable differences in latency for code gener-
ation between the different back-ends. Thus, real-time analytical
and transactional workloads benefit most from the low-latency
direct code generation of FireARM and Flying Start. Especially on
small systems with a low processing power, e.g., a Raspberry Pi,
domain-specific IRs with a direct path to machine code can signifi-
cantly improve latency compared to standard compiler back-ends.
If latency is not critical, e.g., for longer running analytical tasks or
stream-based systems, general-purpose languages or IRs offer slight
advantages ahead in throughput and significant benefits in terms
of implementation effort. Nevertheless, future domain-specific IRs
and custom code generators could change the picture in future.

7 CONCLUSION
Custom query compilation using domain-specific IRs as done by
FireARM fits well for real-time analytical database systems and
systems with a focus on transactional workloads because it offers
the best trade-off between latency and tuple throughput. Other
compilation strategies (e.g., programming languages and compiler
IRs) may lead to higher tuple throughput due to extensive compiler
optimizations but suffer from high latency for code generation.
However, migrating custom code generation in databases that are
primarily focused on the x86-64 architecture to RISC-based systems
comes with various challenges and leaves room for architecture-
specific optimizations. Nevertheless, our benchmarks and extensive
evaluation show that FireARM still performs well over a wide range
of modern ARM machines. We conclude that compilation perfor-
mance using domain-specific IRs on ARMwill increase even further
if architectural heterogeneity is taken into account from the begin-
ning, possibly ending the dominance of x86-64 for databases.

ACKNOWLEDGMENTS
Experiments on ARM platforms were partially run on the Bavarian
Energy, Architecture and Software Testbed at the Leibniz Super-
computing Centre. This work was partially funded by the German
Research Foundation as part of the priority program “Scalable Data
Management for Future Hardware” (GA No KE401/22-2) and by the
European Research Council under the European Union’s Horizon
2020 research and innovation programme (GA No 725286).

1233

REFERENCES
[1] Inc Amazon Web Services. 2022. Factors affecting query performance. https:

//docs.aws.amazon.com/redshift/latest/dg/c-query-performance.html. Accessed:
February 26, 2023.

[2] Morton M. Astrahan, Mike W. Blasgen, Donald D. Chamberlin, Kapali P. Eswaran,
Jim Gray, Patricia P. Griffiths, W. Frank King III, Raymond A. Lorie, Paul R.
McJones, James W. Mehl, Gianfranco R. Putzolu, Irving L. Traiger, Bradford W.
Wade, and Vera Watson. 1976. System R: Relational Approach to Database
Management. ACM Trans. Database Syst. 1, 2 (1976), 97–137.

[3] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. 2002. Models and Issues in Data Stream Systems. In PODS. ACM, 1–16.

[4] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and PeterW.Markstein. 1981. Register Allocation Via Coloring. Comput.
Lang. 6, 1 (1981), 47–57.

[5] Donald D. Chamberlin, Morton M. Astrahan, Mike W. Blasgen, Jim Gray,
W. Frank King III, Bruce G. Lindsay, Raymond A. Lorie, JamesW. Mehl, Thomas G.
Price, Gianfranco R. Putzolu, Patricia G. Selinger, Mario Schkolnick, Donald R.
Slutz, Irving L. Traiger, Bradford W. Wade, and Robert A. Yost. 1981. A History
and Evaluation of System R. Commun. ACM 24, 10 (1981), 632–646.

[6] GCC Developer Community. 2022. GIMPLE. https://gcc.gnu.org/onlinedocs/
gccint/GIMPLE.html. Accessed: February 26, 2023.

[7] SQLite Consortium. 2022. The SQLite Bytecode Engine. https://www.sqlite.org/
opcode.html. Accessed: February 26, 2023.

[8] Patrick Damme, Marius Birkenbach, Constantinos Bitsakos, Matthias Boehm,
Philippe Bonnet, Florina Ciorba, Mark Dokter, Pawel Dowgiallo, Ahmed Eleliemy,
Christian Färber, Georgios Goumas, Dirk Habich, Niclas Hedam, Marlies Hofer,
Wenjun Huang, Kevin Innerebner, Vasileios Karakostas, Roman Kern, Tomaž
Kosar, and Xiao Zhu. 2022. DAPHNE: An Open and Extensible System Infras-
tructure for Integrated Data Analysis Pipelines. In Proceedings of the Conference
on Innovative Data Systems Research (CIDR ’22).

[9] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Åke Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In SIGMOD Conference. ACM, 1243–1254.

[10] Matthias Felleisen. 1991. On the Expressive Power of Programming Languages.
Sci. Comput. Program. 17, 1-3 (1991), 35–75.

[11] Free Software Foundation. 2022. GCC, the GNU Compiler Collection. https:
//gcc.gnu.org/. Accessed: February 26, 2023.

[12] Free Software Foundation. 2022. GNU lightning. https://www.gnu.org/software/
lightning/manual/lightning.html. Accessed: February 26, 2023.

[13] Henning Funke, Jan Mühlig, and Jens Teubner. 2020. Efficient generation of
machine code for query compilers. In DaMoN. ACM, 6:1–6:7.

[14] Tim Gubner and Peter A. Boncz. 2021. Charting the Design Space of Query
Execution using VOILA. Proc. VLDB Endow. 14, 6 (2021), 1067–1079.

[15] Paul Havlak. 1997. Nesting of Reducible and Irreducible Loops. ACM Trans.
Program. Lang. Syst. 19, 4 (1997), 557–567.

[16] Ltd. Huawei Technologies Co. 2022. Kunpeng Computing Platform. https:
//e.huawei.com/en/products/servers/computing-kunpeng. Accessed: February
26, 2023.

[17] Manos Karpathiotakis, Miguel Branco, Ioannis Alagiannis, and Anastasia Aila-
maki. 2014. Adaptive Query Processing on RAW Data. Proc. VLDB Endow. 7, 12
(2014), 1119–1130.

[18] Timo Kersten, Viktor Leis, and Thomas Neumann. 2021. Tidy Tuples and Flying
Start: fast compilation and fast execution of relational queries in Umbra. VLDB J.
30 (2021), 883–905.

[19] Marcel Kornacker, Alexander Behm, Victor Bittorf, Taras Bobrovytsky, Casey
Ching, Alan Choi, Justin Erickson, Martin Grund, Daniel Hecht, Matthew Jacobs,
Ishaan Joshi, Lenni Kuff, Dileep Kumar, Alex Leblang, Nong Li, Ippokratis Pandis,
Henry Robinson, David Rorke, Silvius Rus, John Russell, Dimitris Tsirogiannis,
Skye Wanderman-Milne, and Michael Yoder. 2015. Impala: A Modern, Open-
Source SQL Engine for Hadoop. In CIDR. www.cidrdb.org.

[20] Nik Krichko. 2021. Comparing Graviton (ARM) Performance to Intel and AMD
for MySQL. https://www.percona.com/blog/comparing-graviton-performance-
to-arm-and-intel-for-mysql/. Accessed: February 26, 2023.

[21] Konstantinos Krikellas, Stratis Viglas, and Marcelo Cintra. 2010. Generating code
for holistic query evaluation. In ICDE. IEEE Computer Society, 613–624.

[22] Mark Liu. 2022. ARM-based Server Penetration Rate to Reach 22% by 2025 with
Cloud Data Centers Leading the Way, Says TrendForce. https://www.trendforce.
com/presscenter/news/19700101-11178.html. Accessed: February 26, 2023.

[23] Berenice Mann. 2017. Arm Architecture - Armv8.2-A evolution and deliv-
ery. https://community.arm.com/arm-community-blogs/b/architectures-and-
processors-blog/posts/arm-architecture-armv8-2-a-evolution-and-delivery. Ac-
cessed: February 26, 2023.

[24] Prashanth Menon, Andrew Pavlo, and Todd C. Mowry. 2017. Relaxed Opera-
tor Fusion for In-Memory Databases: Making Compilation, Vectorization, and
Prefetching Work Together At Last. Proc. VLDB Endow. 11, 1 (2017), 1–13.

[25] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (2011), 539–550.

[26] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance. In CIDR. www.cidrdb.org.

[27] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming Fu,
Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat, Yuzhong Wen, Haibo Chen,
Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: push-button verification and
optimization for synchronization primitives on weak memory models. In ASPLOS.
ACM, 530–545.

[28] John K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Ja-
cob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan, Guru M.
Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan
Stutsman. 2009. The case for RAMClouds: scalable high-performance storage
entirely in DRAM. ACM SIGOPS Oper. Syst. Rev. 43, 4 (2009), 92–105.

[29] Holger Pirk, Oscar R. Moll, Matei Zaharia, and Sam Madden. 2016. Voodoo - A
Vector Algebra for Portable Database Performance on Modern Hardware. Proc.
VLDB Endow. 9, 14 (2016), 1707–1718.

[30] Massimiliano Poletto and Vivek Sarkar. 1999. Linear scan register allocation.
ACM Trans. Program. Lang. Syst. 21, 5 (1999), 895–913.

[31] LLVM Project. 2022. Extending LLVM: Adding instructions, intrinsics, types, etc.
https://llvm.org/docs/ExtendingLLVM.html. Accessed: February 26, 2023.

[32] LLVM Project. 2022. The LLVM Compiler Infrastructure. https://llvm.org/.
Accessed: February 26, 2023.

[33] LLVM Project. 2022. LLVM Language Reference Manual. https://llvm.org/docs/
LangRef.html. Accessed: February 26, 2023.

[34] Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and
Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic axiomatic
and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018),
19:1–19:29.

[35] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value Numbers
and Redundant Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (San Diego, California, USA)
(POPL ’88). Association for Computing Machinery, New York, NY, USA, 12–27.
https://doi.org/10.1145/73560.73562

[36] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Mag-
nus O. Myreen. 2010. x86-TSO: a rigorous and usable programmer’s model for
x86 multiprocessors. Commun. ACM 53, 7 (2010), 89–97.

[37] Amir Shaikhha, Yannis Klonatos, and Christoph Koch. 2018. Building Efficient
Query Engines in a High-Level Language. ACM Trans. Database Syst. 43, 1 (2018),
4:1–4:45.

[38] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mohammad
Dashti, and Christoph Koch. 2016. How to Architect a Query Compiler. In
SIGMOD Conference. ACM, 1907–1922.

[39] Softbank Group. 2020. Annual Report – ARM Business Strategy.
Statista. https://group.softbank/system/files/pdf/ir/financials/annual_reports/
annual-report_fy2020_01_en.pdf

[40] Andreas Stiller. 2022. ARMs langer Marsch in die Serverwelt. iX 1 (2022), 60–65.
[41] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. 2018. How to Architect

a Query Compiler, Revisited. In SIGMOD Conference. ACM, 307–322.
[42] Andrew Waterman, Krste Asanović, John Hauser, and SiFive Inc. 2021.

The RISC-V Instruction Set Manual Volume II: Privileged Architecture Version
20211203. Technical Report. EECS Department, University of California, Berke-
ley. https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/
riscv-privileged-20211203.pdf

1234

https://docs.aws.amazon.com/redshift/latest/dg/c-query-performance.html
https://docs.aws.amazon.com/redshift/latest/dg/c-query-performance.html
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html
https://www.sqlite.org/opcode.html
https://www.sqlite.org/opcode.html
https://gcc.gnu.org/
https://gcc.gnu.org/
https://www.gnu.org/software/lightning/manual/lightning.html
https://www.gnu.org/software/lightning/manual/lightning.html
https://e.huawei.com/en/products/servers/computing-kunpeng
https://e.huawei.com/en/products/servers/computing-kunpeng
https://www.percona.com/blog/comparing-graviton-performance-to-arm-and-intel-for-mysql/
https://www.percona.com/blog/comparing-graviton-performance-to-arm-and-intel-for-mysql/
https://www.trendforce.com/presscenter/news/19700101-11178.html
https://www.trendforce.com/presscenter/news/19700101-11178.html
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-architecture-armv8-2-a-evolution-and-delivery
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/arm-architecture-armv8-2-a-evolution-and-delivery
https://llvm.org/docs/ExtendingLLVM.html
https://llvm.org/
https://llvm.org/docs/LangRef.html
https://llvm.org/docs/LangRef.html
https://doi.org/10.1145/73560.73562
https://group.softbank/system/files/pdf/ir/financials/annual_reports/annual-report_fy2020_01_en.pdf
https://group.softbank/system/files/pdf/ir/financials/annual_reports/annual-report_fy2020_01_en.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Priv-v1.12/riscv-privileged-20211203.pdf

	Abstract
	1 Introduction
	2 Prior Work
	3 Design Space Analysis
	3.1 Metrics for Query Compilers
	3.2 Strategy: Programming Languages
	3.3 Strategy: General-Purpose IRs
	3.4 Strategy: Domain-Specific IRs
	3.5 Analysis

	4 FireARM
	4.1 Compiling Umbra IR
	4.2 Architectural Challenges

	5 Evaluation
	5.1 Experimental Setup
	5.2 Compilation Latency
	5.3 Analytical Query Throughput

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

