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ABSTRACT

Exploiting the relationships among data is a classical query opti-
mization technique. As persistent data is increasingly being created
and maintained programmatically, prior work that infers data re-
lationships from data statistics misses an important opportunity.
We present Coco, the first tool that identifies data relationships
by analyzing database-backed applications. Once identified, Coco
leverages the constraints to optimize the application’s physical
design and query execution. Instead of developing a fixed set of
predefined rewriting rules, Coco employs an enumerate-test-verify
technique to automatically exploit the discovered data constraints
to improve query execution. Each resulting rewrite is provably
equivalent to the original query. Using 14 real-world web applica-
tions, our experiments show that Coco can discover numerous data
constraints from code analysis and improve real-world application
performance significantly.
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1 INTRODUCTION

From key constraints to the uniqueness of data values, relation-
ships among attributes in a dataset are bases for relational query
optimization. These data constraints occur in datasets across many
different application domains [52, 65], and have been used in op-
timization that ranges from normalizing relational schemas [62],
detecting data errors [64], to leveraging functional dependencies
to improve query execution [60].

There has been a long line of research that applies statistical [48]
and machine learning [45] techniques to identify data constraints
from persistently stored data. While such data-driven approaches
have been effective in discovering constraints from collected datasets
(such as those from census or physical experiments), we are un-
aware of techniques that target programmatically-generated datasets.

We encounter programmatically-generated datasets routinely
in our daily lives—all websites process user inputs via web ap-
plications that generate persistently stored data. While there are
means to express data constraints for programmatically-generated
data, such as SQL constraints [43] and various data validation APIs
provided by web application frameworks [8, 24], they all require
developers to manually declare them in their applications, which
has shown to be tedious and error-prone to developers due to their
complexity [65]. As the artifacts that are used to generate or manip-
ulate such datasets are often available (e.g., web application code,
synthetic data generators), relying on data analysis techniques to
“re-discover” constraints by analyzing the stored datawhile ignoring
the programmatic artifacts is simply a missed opportunity.

In this paper, we investigate the feasibility of discovering data
constraints by analyzing the programs that generate and process
persistent data. We focus on database-backed web applications,
given their prevalence and the public availability of artifacts. We
study how such applications are developed and designed Coco, the
first tool that automatically analyzes database-backed web applica-
tions to discover different data constraints in the stored data. Given
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the source code of a web application, Coco statically analyzes the
code to extract candidate constraints.

We demonstrate the usefulness of the discovered constraints by
using them to optimize application performance. Coco leverages
the extracted constraints to change the data schema to reduce stor-
age, add parameter precheck to avoid issuing queries, and rewrite
queries to improve their performance. To optimize query perfor-
mance, we first install the extracted constraints into the database.
However, as discussed in Sec. 6.3, mainstream commercial and
open-source databases fail to utilize the constraints as they rely
on pattern-matching rules to rewrite queries [7, 12, 36, 46, 61], and
those rules are often application-specific. While we can extend ex-
isting optimizers with additional rules, doing so takes substantial
effort1 and only benefit few applications as rules are overly specific.

Moreover, blindly applying such rules can degrade query perfor-
mance [39]. Coco instead uses an enumerate-test-verify approach,
where a number of rewrites are first enumerated for each query
based on various query features (e.g., whether it joins one of the
tables with identified constraints). Coco then estimates the cost of
the rewritten query using the database’s optimizer. If the cost is less,
it verifies that the rewritten and original queries are semantically
equivalent with test cases and a formal verifier.

In sum, this paper makes the following contributions:
• Data constraints are often embedded in artifacts that generate and
process persistent data programmatically. To our knowledge, this
is the first work that discovers data constraints from application
source code and uses them for query optimization.

• We use extracted constraints to automatically rewrite queries, op-
timize application code, and change the physical design (Sec. 6.2).
To rewrite queries, rather than crafting a priori query transfor-
mation rules, we enumerate candidate rewrites and use formal
verification to identify equivalent and efficient ones (Sec. 6.3).

• Evaluation of 14 popular open-source web applications shows
that Coco can extract 4039 constraints (averaging 289 per appli-
cation). We evaluate Coco’s optimization on 6 such applications.
Among queries with constraints, 13.8% queries can benefit from
data layout optimization, and 47% queries are optimized by chang-
ing application code. Finally, Coco ’s constraint-driven optimizer
improves the performance of 2511 queries, 118 of which have
over 2× speedup.

2 BACKGROUND

2.1 Structure of ORM applications

Applications built with the object-relational mapping (ORM) frame-
work are structured using the model-view-controller (MVC) archi-
tecture. For example, when a web user submits a form through a
URL http://foo.com/wikis/id=1, a controller action wikis/id
is triggered. This action takes the parameters from the HTTP re-
quest (e.g., “1” in the URL) and interacts with the database via the
ORM’s API (e.g., ActiveRecord). The ORM translates its function
calls (e.g., Wiki.where(id=1)) into SQL queries (e.g., a select query
to retrieve wiki record with id=1), with results then serialized into

1It took more than two years for PostgreSQL developers to implement a pattern that
removes the DISTINCT clause if the result is unique by definition, and this feature is
yet to be merged [26].

model objects (e.g., Wikis) and returned to the controller. The re-
turned objects are then passed to the view files to generate a web
page returned to users.

2.2 Associations among classes and tables

ORM frameworks provide an object-oriented interface to manage
persistent data, where each class or class hierarchy is mapped to
database table(s). To support inheritance in relational databases,
ORMs either use one table to store data for all types under the
same inheritance hierarchy (also called the “Table Per Hierarchy”
approach), or store each type in its separate table (i.e., “Table Per
Type”). Table Per Hierarchy results in one table storing all entities
in the inheritance hierarchy. The table includes a “discriminator”
column, which stores the actual type for each row. Furthermore,
developers can define relationships between classes to connect
them, such as belongs_to, has_one, and has_many. Once defined,
an object can simply retrieve its relevant objects of different classes
through its fields without writing joins.

2.3 Data constraints in ORM applications

Data constraints are rules enforced on stored data. Including class
relationships, there are three ways to express data constraints:
Front-end constraints. Developers can check for user input on
the client side (e.g., logins must be longer than 6 characters) and
returns an error if the check fails without contacting the server.
Application constraints. The application code running on the
server can also contain constraints. For instance, it can validate
data values before inserting them into the database and only persist
data if validation passes. As we will discuss in Sec. 4, a variety of
constraints can be expressed in the application code.
Database constraints. Developers can also declare constraints in
the database, such as primary and foreign keys, uniqueness, value
nullness, and string length constraints.

As shown in previous work [65], the first category contains very
few constraints, while the latter two cover more than 99% of all
constraints. In this paper, we focus on application constraints, and
describe how they can be generalized into several common patterns
and automatically discovered. As we will see in Sec. 7, most of the
inferred constraints are not declared in the database, hence they
are not leveraged by the database during query optimization.

2.4 ORM frameworks

ORMs provide a high-level API over a relational database. This
allows developers to manipulate persistent data and its schemas
using the programming language they are familiar with rather than
SQL. When executed, ORMs automatically translate each API call
into SQL queries. All ORMs that we are aware of translate such calls
straightforwardly and leave query optimization to the underlying
database. This makes sense as each ORM typically supports multiple
databases2 and is thus difficult for it to include optimizations that
are compatible with all databases. Meanwhile, as shown in Table 2,
none of the popular open-source or commercial databases supports
all types of the rewrite optimization provided by Coco because
many of them are application-specific and they take substantial
effort to implement without using Coco’s “enumerate-test-verify”
2Rails for instance supports SQLite, MySQL, PostgreSQL. [20]
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approach. While Coco ’s functionalities can be implemented in the
ORM or the database, we implement our prototype as an indepen-
dent component as doing so demonstrates that our technique is
agnostic to any specific ORM or database implementation.

3 OVERVIEW

We first give an overview of using Coco on an example abridged
from Redmine [25], a popular collaboration web application built
using Rails. Redmine defines a User class to manage user infor-
mation and a Project class to store project details. The Member
class keeps track of each user’s membership information (for exam-
ple, one user can be a member of many projects). Rails stores user,
member, and project information in separate database tables, and
developers manipulate the stored data by calling Rails’ functions.
Listing 1 shows the definition of the Member class on lines 1-4, and
the code to create and save a Member object on lines 6-7. Line 4
utilizes Rails’ built-in validation API and is called whenever the
object is saved to the database, as shown in line 7. Rails executes
the validation on Line 4 by executing a query to determine if a user
with the same project already exists in the member table and raises
an error if so. Here, the validation function implicitly defines a
data constraint that given a project, the users belonging to the project
are unique. Yet, it is only defined in the application code but not
specified as part of the database schema, as developers can write
arbitrary code in the validation function, and not all of them can
be easily translated to SQL constraints.

1 # Member Class definition

2 class Member

3 belongs_to :user , :project

4 validates_uniqueness_of :user_id , :scope => :project_id

5 # Create a Member object and save it to the database

6 member = Member.new(user_id=1, project_id =2)

7 member.save

Listing 1: Redmine code with an implicit data constraint.

Once the uniqueness constraint is discovered, Coco leverages it
to improve application performance. For example, Listing 2 shows
a Redmine query that selects all the active users working on a given
project. This query has a DISTINCT keyword to filter out duplicate
users. But, given the constraint mentioned, users working on the
same project are guaranteed to be unique, hence there is no need
to run duplicate elimination. With 100K records in the users tables,
this query can be accelerated by 1.65× by removing the DISTINCT
keyword. However, we are unaware of any mainstream query op-
timizer that would perform such optimization as the optimizer is
unaware of such constraints. As we will show, many similar con-
straints that manipulate persistent data are “hidden” in applications,
and we are unaware of any existing tools that can discover them.
Moreover, as we will show in Sec. 7, even if we install such “hidden”
constraints into the database, the optimizer still fails to leverage
them to optimize queries as traditional DBMS uses heuristics to
rewrite queries, and they cannot cover all possible optimizations,
such as the one shown here.

1 SELECT DISTINCT users.* FROM users

2 INNER JOIN members ON members.user_id = users.id

3 WHERE users.status = 'active ' AND (members.project_id = 2)

Listing 2: Query issued by Redmine.
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Figure 1: Coco Architecture.

1 SELECT COUNT (*) FROM "users" WHERE "users"."type" IN ($1, $2) [[

"User"], ["AnonymousUser"]]

Listing 3: Each log record consists of a query template and its

parameter values. Here $1 and $2 are the query parameters

with values “User” and “AnonymousUser” respectively.

Coco is built to bridge the gap between application and database.
It analyzes application source code to automatically extract data
constraints. Moreover, Coco automates the challenging process of
using constraints to optimize queries. Even the most sophisticated
commercial and open source databases, as shown in Table 2, do not
support all of the rewrite types offered by Coco. Coco optimizes
queries using the two components as shown in Figure 1.
• Offline Optimization. Coco first statically analyzes the appli-
cation source code to extract constraints. It detects constraints
by matching code patterns defined in Sec. 4. The extracted con-
straints are valid by construction, but Coco also generates a
checker program for constraint validation against the stored data
in case the application violates our assumptions stated in Sec. 5.1.
Coco then extracts the queries that the application might issue
by analyzing the logs generated by running application tests.
Listing 3 shows an example log record with two parts: query
template and parameters. Coco extracts the query templates and
uses extracted constraints to optimize query performance by:
– Optimizing data layout (Sec. 6.2). If a string column has a limited
set of possible values, i.e., there is an inclusion constraint on
the column, Coco changes the data type from string to enum
to save the storage and speed up queries.3

– Adding prechecks on query parameters (Sec. 6.2). Coco utilizes
format and length constraints to optimize application logic by
adding prechecks on user inputs to avoid issuing queries if
the input violates length or format requirements. Coco takes
constraints and application source code offline and emits an
optimized version with precheck logic.

– Rewriting queries (Sec. 6.3). Coco rewrites query templates to
improve query performance using the extracted constraints.
To rewrite the query templates, Coco enumerates feasible

3In cases where modifying the database schema directly is undesirable (e.g., breaking
other applications that access the same database), Coco can also generate a SQL DDL
script for the database administrator to determine when to apply the modifications.
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rewrites (e.g., remove DISTINCT) based on the extracted con-
straints. It then filters out slow rewrites based on the estimated
cost. Coco then uses test cases and a formal verifier to ensure
that the rewritten query templates are semantically equivalent
to the original. At the end of this offline step, Coco creates a
lookup table comprising of the original and optimized query
template pairs, and the table is used to rewrite queries online
as the application runs.

• Online query replacement. As the application runs, Coco
intercepts all queries issued by the application. If the query’s
template exists inCoco’s lookup table,Coco issues the optimized
query template with its parameters to the database. Otherwise,
the query is issued as-is.
We now discuss different types of data constraints inherent in the

application code and how Coco detects them. Then we introduce
the optimizations with these constraints, followed by an evaluation
using real-world database-backed ORM applications.

4 DETECTING CONSTRAINTS

Coco extracts both application constraints and database constraints
automatically from the source code. Application constraints are
embedded semantically in the application code when developers
define the model class. Database constraints are specified explic-
itly in the migration files [21], which are used to alter database
schema over time. Constraints defined in migration files will later
be installed into the database as database constraints.

Because of the flexibility, convenience of use, and capacity to
manage errors, many constraints are written in the application
rather than the database, as indicated in Sec. 7.2. Defining con-
straints in the application code is more flexible as the constraint
type is not limited, and developers can write complex logic to ex-
press constraints. Meanwhile, constraints not supported by the data-
base must be expressed as user-defined functions (UDFs), which
are typically written in SQL and are tedious to use for complex
logic. As shown in Sec. 4.1, ORM frameworks also have a number of
simple built-in APIs to express common constraints. Finally, devel-
opers can associate meaningful error messages when constraints
are violated. Whereas the database only throws low-level errors
that are rarely caught by the developers [65]. Hence, once triggered,
the web user’s session will most likely crash, with all the filled-in
contents lost with a cryptic SQL error.

Coco uses both the database constraints and application con-
straints to optimize the application. Coco works by parsing the
app source code, building an abstract syntax tree (AST) for each
file, and pattern-matching on the AST nodes. If the current node
contains any of the patterns shown in Table 1 and [54], Coco will
continue to visit its children. Therefore, if the application source
code has 𝑛 tokens, the complexity of pattern matching is O(𝑛).

Coco extracts the following types of constraints:
• Inclusion: the field value is restricted to a limited set.
• Presence: the field value cannot be null. This is the same as SQL
NOT NULL constraint but is implicitly defined in the application.

• Length: the length of a string field should be in a certain range.
• Uniqueness: same as the SQL uniqueness constraint, but is only
defined in the application.

• Format: the value of a string field must match a regular expres-
sion, which is specified in the application code.

• Numerical: the value of a numerical field must lie within the
range specified in the application code.

• Foreign key: same as the SQL foreign key constraint, where the
field points to the primary key of the referenced table.
For each constraint, we first describe how it conceptually arises

from application code, followed by an example, and then the general
code pattern that Coco uses for extraction.

4.1 Data validation

Data validation is the most important method for extracting the ap-
plication constraints. It’s an important feature of ORM-based apps
since it ensures that only valid data is kept in the database. Similar
to SQL triggers, most ORMs provide callback mechanisms (e.g.,
validation functions provided by Rails [24], Django validators[8],
Hibernate validators [34], etc.) where a function is triggered au-
tomatically every time before data is saved to the database. The
callback can be one of the ORM’s built-in functions that capture
common attributes to validate, or one of the user’s own validation
procedures. Inside the callback, a built-in or customized property
is checked on the data to be saved, and the function returns an
error without saving the data if the check fails. Consequently, such
checks lead to constraints that must be satisfied by all stored data.

As an example, Listing 4 shows two types of validation callbacks
from OpenProject [18]. First, in line 3, a Rails built-in validation
function, validate_format_of, is used to check if the specified
field email satisfies the regular expression in Line 4. Then, in line 7,
a custom validation function validate_name, defined in lines 8–9,
is registered to ensure the length of the name field does not exceed
30 characters, implying a data constraint that length(name)≤30.

1 class User < ApplicationRecord

2 # built -in validation

3 validates_format_of :email , :with =>

4 "/\A([^@\s]+)@((?:[-a-z0 -9]+\.) +[a-z]{2,})\Z/i"

5 # custom validation

6 validate :validate_name

7 def validate_name

8 if length(name) > 30

9 errors.add(:name , "is too long (maximum is 30 characters)")

Listing 4: Validation function excerpt from OpenProject.

To extract constraints from validation functions, Coco identifies
uses of built-in and custom validations registered with validate.
As each built-in validation checks for a particular data property,
such as validates_length_of checks for the length of passed-in
fields, we define a constraint template for each built-in validation
as shown in Table 1, and use the template to generate a constraint
by analyzing the passed parameter(s).

To handle custom validations, Coco walks through the parsed
AST of the function body to identify the branch condition leading
to an error statement. It then matches the branch condition with
pre-defined patterns as detailed in [54], and uses the negation of the
condition as a constraint if the pattern-match succeeds. For instance,
in Listing 4, Coco identifies that the condition name.length > 30
leads to an error statement shown in Line 10. The branch condition
is matched as api_call(field) > constant from the grammar.
It then derives a constraint on the User table as the negation of the
condition, i.e., !(name.length > 30).
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Table 1: Rails built-in data validation patterns. In Django [8] and Hibernate [34], all patterns are implemented similarly.

Built-in Validation

Code Pattern Category Constraint Description

validates_inclusion_of:field, in value_list Inclusion field takes value from value_list
validates_presence_of:field Presence field is not NULL
validates_uniqueness_of: field, scope: scope_field | scope_field_list Uniqueness (field,scope_field) | [field] + scope_field_list is unique
validates_length_of | validates_size_of: field,
minimum => value, maximum => value,
in | within value_range

Length field has type string, and its length is within the given range

validates_format_of: field, :with => regex Format field matches the format specified by the regex
validates_numericality_of: field, greater_than:
value, greater_than_or_equal_to: value, equal_to:
value, less_than: value, less_than_or_equal_to: value

Numerical field’s numerical value matches the condition specified by the compari-
son keywords

4.2 Class relationships

ORM frameworks support complex relationships between classes
such as class hierarchies, polymorphic one-to-many, etc. The frame-
work maintains those relationships, which can be found as con-
straints on persistent data. We list the full patterns in [54].

4.2.1 Type hierarchy. As discussed in Sec. 2.2, ORMs use different
mechanisms to support inheritance in relational databases, such as
one table per entire class hierarchy, or one table per class. Rails [22]
(and similarly Django [1]) by default employs the table per hier-
archy mechanism, which uses a separate string field to record the
classname to distinguish between various class instances. This field
is called type by default, or can be explicitly defined by the user
in the inheritance_column. Similar to the example in Listing 5,
where both Firm and Client inherit from Company. Rails keeps a
single companies table to store instances of both Firm and Client,
with the type field of this table indicating which class the record
belongs to. This mechanism introduces an inclusion constraint,
where the value of the type field can only be Firm or Client.

1 class Company < ActiveRecord ::Base;

2 class Firm < Company;

3 class Client < Company;

Listing 5: Example of type inheritance, with bodies of the

class definitions omitted due to space.

To extract class inheritance constraints, Coco maps each class
to its inherited classes by searching for class definitions in the code.
Coco then generates inclusion constraints for each entry in the
mapping where the key is the table and column name, and the value
is the value range of the inclusion constraint. For instance, in the
case shown in Listing 5, Coco will detect that Company.type can
only have values ‘Firm’ or ‘Client’.

4.2.2 Polymorphic definitions. Similar to type fields in class in-
heritance, ORM frameworks allow developers to define a field that
refers to the primary key of multiple tables, and uses an extra string
field to identify which table the record belongs to. An example is
shown in Listing 6: each Organization and User object contains
a single Address, and hence an Address object can belong to ei-
ther an Organization or a User. This polymorphic relationship
is declared in line 2, where each Address is set to belong to an
addressable interface, and the Organization and User classes
are declared as addressable in lines 5 and 8.

Internally, since all Address records are stored in a single address
table, Rails adds an integer field addressable_id that refers to a
primary key in either the organizations or users table, and a
string field addressable_type to store the type name of the object
that an address belongs to. This mechanism allows for inclusion
constraints where addressable_type can only take the value of
‘Organization’ or ‘User’. Similar to the type hierarchy, Coco
automatically analyzes and infers such constraints.

Coco also extracts polymorphic definitions by building a map-
ping from the polymorphic class name and the interface name (e.g.,
(Address, addressable)) to a list of classes that use the interface
(e.g., [‘Organization’, ‘User’])

1 class Address < ActiveRecord ::base

2 belongs_to :addressable , polymorphic: true

3
4 class Organization < ActiveRecord ::base

5 has_one :addresses , as: :addressable

6
7 class User < ActiveRecord ::base

8 has_one :addresses , as: :addressable

Listing 6: Example of a polymorphic interface definition.

4.2.3 has_one association. ORMs provide has_one associations to
express that exactly one other class has a reference to a class object.
Listing 7 shows an example, where line 2 declares a WikiPage object
belonging to a Project object, while each Project has only one
WikiPage (line 5). With the belongs_to association, a foreign key
field project_id is added to the wikipages table. This implies that
the constraint project_id is unique across the wikipage table.

1 class WikiPage < ActiveRecord ::base

2 belongs_to project , class_name: 'Project '

3
4 class Project < ActiveRecord ::base

5 has_one wikipage , class_name: 'WikiPage '

Listing 7: Example of data association declaration.

Coco extracts such associations by matching the has_one key-
word for each class, and records its class_name and the associated
class. A unique constraint is then generated on the class_name_id
field of the table identified by the associated class name.

4.3 Field definition with state machines

Instead of issuing an UPDATE query, applications often use libraries
to change the value of a field. For instance, the state_machine
library is commonly used to define how the value of a field can be
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changed [23]. An example is shown in Listing 8 from Spree [30],
where changing the state field is done by a state_machine: as
shown in line 2, the value of state can be changed from ‘checking’,
‘pending’, ‘complete’ to ‘processing’ only when the
start_processing event is triggered. Using state_machine to
update state implies a constraint where the value of state can
only be one of the string literals defined within the state machine.

1 class Payment

2 state_machine : state , initial: 'checkout ' do

3 event :start_processing do

4 transition from:['checkout ','pending ','complete '],

5 to: 'processing '

6 event :failure do

7 transition from:['pending ', 'processing '], to:'failed '

Listing 8: Example of field definition from Spree.

Coco extracts state machine constraints by first identifying
state_machine library calls. It goes through each of the event
functions and extracts all parameters in the from: and to: expres-
sions to obtain potential state values. If all the values are string
literals, Cocowill generate a corresponding inclusion constraint. In
using state machines, the state variable only changes when the spec-
ified event takes place [31]. Thus, all possible states must appear in
the same state_machine construct, as shown in Listing 8.

5 VALIDITY OF OUR APPROACH

We first describe the requirements for applications to use Coco.
Next, we list the assumptions Coco makes, and how Coco handles
application changes.

5.1 Requirements and Assumptions

Coco extracts constraints with pattern matching on the validation
APIs defined by the ORM. While Coco currently focuses on Rails,
the validation APIs defined by other ORMs such as Hibernate and
Django are essentially identical to Rails’. Therefore, a large number
of ORM applications should readily benefit from Coco.

Moreover, to guarantee the correctness of extracted constraints,
we make the following assumptions about ORM applications:
• Data validation, as discussed in Sec. 4, is not bypassed. Even
though developers can skip validation when saving an object by
setting the validate parameter to false (e.g., obj.save(validate:
false), such behavior violates the design principle of validation
and is highly discouraged [33]. We scan the code of all 14 ap-
plications used in the evaluation and only find two cases where
the developer skips the validation. Those two cases update only
fields that are irrelevant to validation, and therefore do not affect
the validity of the extracted constraints.

• The application does not use any non-analyzable third-party
library that breaks existing constraints. We assume that the ap-
plication code is analyzable, as we cannot guarantee constraint
validity if a third-party library whose source code is not available
modifies the fields involved in the constraints. However, this case
is rare and we did not find any in the evaluated applications.
Given these assumptions, Coco will generate valid constraints.

While we focus on the database being accessed by a single applica-
tion, if there are multiple applications accessing the same database,
Coco will ensure that the same constraint holds for all applications
before extracting it as detailed in [54].

5.2 Code upgrade

Developers can run Coco to re-detect constraints when application
code is updated. As shown in Sec. 7.3, re-extracting constraints is
fast and efficient. Moreover, incremental constraint detection can
be performed by scanning only modified files to further reduce
the constraint extraction time. Note that code changes might add
new constraints or alter previously extracted constraints so that
new constraints are incompatible with old data. As shown in [65],
the mismatch between constraints and data is problematic and
developers should ensure that data integrity is preserved. Multiple
methods have been proposed to fix this. For example, migration files
can be used to ensure that data in the database satisfy the newly
inferred constraints. Coco’s checker program described in Sec. 5.3
can also help developers identify such data integrity problems and
ensure the validity of extracted constraints.

5.3 External changes and constraints checker

In cases where the DB contents are not only modified by the ap-
plication, such as when a DB administrator manually changes the
contents of the database via a command line interface, the con-
straints detected by Coco may become invalid. Although such
behavior is discouraged and rare, Coco comes with a checker that
examines if constraints still hold after a third party modifies the
database. The checker can also be used to validate the extracted con-
straints under the two assumptions described in Sec. 5.1. For each
extracted constraint, Coco generates a Ruby script that scans all
data in the database and checks whether the extracted constraints
are valid. The checker script can be run against a concrete database
instance and remove any Coco-extracted constraints that are no
longer valid. In general, we expect such cases to be rare and leave
the decision of when to run the checker script to the developer.

6 QUERY ANALYSIS AND OPTIMIZATION

We now discuss how Coco rewrites queries with extracted con-
straints. We summarize the constraints used in different optimiza-
tion in Table 3, and discuss how Coco leverages them to optimize
queries by changing the source code or database schema and rewrit-
ing queries with our enumerate-test-verify approach.

6.1 Query extraction

Coco extracts SQL queries that can be issued by the application
by running its provided test cases and analyzing the log file that
records all SQL queries executed. Coco replaces the issued query
template (as discussed in Sec. 3) with the optimized version if it
exists in the lookup table. As the application runs, queries are
issued against different query templates after pairing them with
parameters. Therefore, Coco can still apply the optimization as
long as the query template exists in its lookup table. Furthermore,
as tests are carefully written with a high level of code coverage
(over 92% for the applications used in our evaluation), Coco should
have analyzed most templates that the application can possibly
issue when deployed.
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6.2 Optimizing code logic and physical design

Coco leverages the extracted constraints to optimize performance
by rewriting application code and changing the data type of the
underlying storage. We describe both below.
Adding prechecks to avoid issuing queries. A query can be
completely removed if it returns empty results. For example, for a
query containing a predicate that compares a field with user input,
we can add a precheck in the application code to issue the query
only if the input matches the field’s associated constraints. Listing 9
shows an example from Dev.to [3], where Coco adds precheck on
the string field username. Here Coco extracts a constraint that
all characters in username must be digits, letters, or underscores,
as expressed by matching the regular expression in line 1. For
the query that retrieves users given username (line 2) , we add a
precheck to the parameter (line 4) that avoids issuing the query
altogether if the parameter contains invalid characters and hence
is impossible to match a username in the database.

1 + if param[: username ].match (/\A[a-zA-Z0 -9_]+\z/)

2 user = User.where(username: param[: username ])

3 + else

4 + user = nil

Listing 9: Adding parameter check example from Dev.to [3].

+ indicates code added by Coco.

To implement this, Coco checks each query𝑄 for the presence of
the predicate TableName.field=param. Using the data flow graph,
Coco traces if param is computed from the user input and if there
is a constraint associated with field. If 𝑄 satisfies these criteria,
Coco adds the precheck as shown in Listing 9.
Altering database schema. If a string field has an inclusion con-
straint (i.e., its value can only come from a limited set of literals),
Coco changes its physical design and replaces the field with an
enumeration type. Since enum comparison is faster than string
comparison, changing the storage can reduce the time to process
predicates on that field. Additionally, it improves space efficiency, as
the enum type is stored using only four bytes in the database [9, 10].

To implement this, Coco checks extracted inclusion constraints
and changes the type of field f to enumeration type if there is an
inclusion constraint on the field. Coco creates an enum datatype
based on the inclusion constraints. It generates ALTER TABLE state-
ments that change f’s type from varchar to enum based on the
value list of the inclusion constraint. Coco can execute those state-
ments directly or return them to the DB administrators to determine
when to apply them (e.g., when there are no updates to the affected
columns). Queries involving field f will remain unchanged as the
database will perform type conversion when running the query.

Notice that the above-mentioned optimizations can only be per-
formed by Coco: the database is unaware if a query parameter
is derived from user inputs and is unable to add prechecks on in-
put columns. Moreover, the database is also unaware of inclusion
constraints and thus cannot alter its schema automatically. Using
Coco, however, a large number of queries can benefit from the two
optimizations, as we will discuss in Sec. 7.3.

6.3 Rewriting queries

The previous two optimizations do not need to modify the query,
however, many queries do require exploiting extracted constraints

Table 2: Rewrite types supported by mainstream DBMS.

DBMS
Remove
Distinct

Add Limit
One

Predicate Elimination
Introduction

Join Elimination
Introduction

Detect
Empty Set

PostgresSQL 10.7 × ✓ × × ×
MySQL 8.0.2 × ✓ × × ×

SQL Server 2019 × × × ✓ ×
DB2 10.5 Kepler × × ✓ ✓ ×

Coco ✓ ✓ ✓ ✓ ✓

to rewrite the query to a semantically equivalent but more efficient
one. In Table 3, we outline the taxonomy of using constraints for
query optimizations in Coco.

We first install the Coco-extracted constraints into the database
and see if the database can leverage them to optimize queries. How-
ever, as shown in Sec. 7.4, only a few queries can benefit even after
the constraints are in place. Most major database management sys-
tems, as shown in Table 2, are unable to leverage Coco-extracted
constraints to optimize queries. The reason is that existing DBMS
relies on heuristics to exploit constraints and rewrite queries. Each
type of rewrite necessitates different rules, and some of which are
rather complex. For instance, to remove the DISTINCT keyword in
a query after identifying a uniqueness constraint, the optimizer
must track the uniqueness of all the columns used in every operator,
since not all query operators preserve the uniqueness of the input
(e.g., projection) [26]. Implementing such rules requires substantial
effort, yet it is unclear how generally applicable they are. For in-
stance, in the Redmine, only 399 out of 2283 queries use DISTINCT,
among which only 67 can be removed.

Algorithm 1 Rewrite generation, test, and verification algorithm
Input: Original query template𝑄 , and all constraints𝐶 .
Output: Equivalent rewrite 𝑅 with the minimum cost.
1: // Step 1: enumerating potential rewrites.
2: 𝑓 𝑖𝑒𝑙𝑑𝑠 = get_used_fields(𝑄)
3: 𝐶𝑄 = get_constraints_on_fields(𝑓 𝑖𝑒𝑙𝑑𝑠 ,𝐶)
4: 𝑟𝑒𝑤𝑟𝑖𝑡𝑒_𝑡𝑦𝑝𝑒𝑠 = get_constraint_rewrites(CQ)
5: 𝑅𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 = {𝑄 }
6: for 𝑟𝑡 ∈ 𝑟𝑒𝑤𝑟𝑖𝑡𝑒_𝑡𝑦𝑝𝑒𝑠 do
7: 𝑅𝑡 = {} // rewrites after applying 𝑟𝑡
8: for 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝑅𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 do

9: 𝑅𝑡 += apply_transformation(𝑟𝑡 , 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
10: 𝑅𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 += 𝑅𝑡

11: // Step 2: Cost estimation and testing rewrites.
12: 𝑅𝑐𝑜𝑠𝑡 = {}
13: for 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝑅𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒 do

14: if cost(instantiate(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)) < cost(instantiate(𝑄)) then
15: 𝑅𝑐𝑜𝑠𝑡 .add(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
16: 𝑅𝑡𝑒𝑠𝑡 = {}
17: for 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝑅𝑐𝑜𝑠𝑡 do

18: if test_eq_on_test(instantiate(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒), instantiate(𝑄)) then
19: 𝑅𝑡𝑒𝑠𝑡 .add(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒)
20: // Sort rewrites based on the cost in ascending order
21: 𝑅𝑡𝑒𝑠𝑡_𝑠𝑜𝑟𝑡 = 𝑅𝑡𝑒𝑠𝑡 .sort(key = cost, asc=True)
22: // Step 3: formally verifying rewrite equivalence.
23: for 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ∈ 𝑅𝑡𝑒𝑠𝑡_𝑠𝑜𝑟𝑡 do
24: if verify_eq(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 ,𝑄) then
25: Return 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 // Early stop
26: return NULL // fail to find an optimized rewrite
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Coco instead uses an enumerate-test-verify approach as shown
in Algorithm 1 to automate the rewrite process. First, Coco enu-
merates all possible transformations of a query template given
the rewrites shown in Table 3. To reduce the number of potential
rewrites, only those query templates containing fields with con-
straints are enumerated. Coco then puts the parameter values into
the rewritten templates and uses the query optimizer to estimate the
cost of each instantiated rewrite. Rewrites with a lower cost than
the original are then checked for semantic equivalence. As formal
verification can be costly, Coco instead generates a test database
to execute each instantiated rewrite and the original query. Coco
filters away those cases where the instantiated rewrite returns dif-
ferent results from the original. Coco then sorts the remaining
rewrites based on their estimated costs in ascending order and
sends them to Coco’s formal verifier to check for query equiva-
lence. Coco finally emits the rewritten template once it finds the
first equivalent one. We now describe these steps in detail.
Step 1:Heuristic-guided rewrite.Wedescribe the query optimiza-
tions with constraints that Coco leverages in Table 3. As described,
each rewrite leverages certain types of constraints. Therefore, Coco
enumerates potential rewrites only when the corresponding con-
straints exist. As shown in Algorithm 1 lines 2–10, Coco extracts
all columns used in a query template and checks them against
the extracted constraints. For each existing constraint, Coco ap-
plies the corresponding potential transformations as shown in Ta-
ble 3. For instance, for the query in Listing 10, Coco extracts the
used columns members.user_id, users.id, users.status, and
members.project_id. Coco then determines that users.id and
each pair of (members.user_id, members.project_id) is unique.
It then applies the Remove DISTINCT and Add LIMIT One transfor-
mations and generates three candidate rewrites as shown in lines
14–16. Coco’s modular design makes it easy to add new types of
rewrite rules. Users can simply add a new semantic query rewrite
rule to the search space by providing the utilized constraints and
associated enumeration.

The candidate rewrites generated by the enumeration step are
not guaranteed to be semantically equivalent to the original or to
perform better, and that is the goal of Step 2.

1 -- Original Query

2 SELECT DISTINCT users.* from users

3 INNER JOIN members ON members.user_id = users.id

4 WHERE users.status = $1 AND (members.project_id = $2)

5
6 -- Used columns

7 members.user_id , users.id, users.status , members.project_id

8
9 -- Extracted constraints on used columns

10 Uniqueness: (members.user_id , members.project_id) pair is unique

11 Uniqueness: users.id is unique

12
13 -- Candidate rewritten templates:

14 1. SELECT users.* from users INNER JOIN members ON members.user_id =

users.id WHERE users.status = $1 AND (members.project_id = $2)

-- remove DISTINCT

15 2. SELECT DISTINCT users.* from users INNER JOIN members ON members.

user_id = users.id WHERE users.status = $1 AND (members.

project_id = $2) LIMIT 1 -- add LIMIT 1

16 3. SELECT users.* from users INNER JOIN members ON members.user_id =

users.id WHERE users.status = $1 AND (members.project_id = $2)

LIMIT 1 -- remove DISTINCT and add LIMIT 1

Listing 10: Heuristic-guided rewrite for a Redmine query.

Step 2: Cost estimation and check for rewrite equivalence

using test database. For each enumerated candidate template,
Coco first instantiates it by binding the parameter values as the
original query. Next, Coco asks the database optimizer to estimate
its cost, as shown in lines 13–16, and only retains it if it has a
potentially lower cost than the original query. After filtering away
the slow rewrites, Coco attempts to eliminate as many incorrect
rewrites as possible to reduce the number of rewrites that need to
be verified. To achieve this, Coco generates a synthetic database
given the table schema and compares the outputs of the candidate
and the original query. The templates of rewrites that produce the
same outputs as the original query are sent to step 3 for verifying
query equivalence formally.
Step 3: Formal verification of the candidate rewrites. As the
last step, Coco calls its verifier to check the equivalence of the orig-
inal query template and rewritten ones for all remaining candidates.
The verifier is based on Cosette’s U-semiring semantics [40–42]
and implements the U-semiring decision procedure (UDP). Given a
pair of query templates to check, UDP translates each SQL query
template to an expression of U-semiring, rewrites into sum-product
normal form (SPNF, as given in [40]), and finally attempts to unify
both SPNFs. The UDP approach already models uniqueness, key
constraints, and treats aggregations as uninterpreted functions. To
model the LIMIT 1 transformation, we introduce a new axiom for
the LIMIT operator.∑︂

𝑎

𝑅(𝑎) =
∥︁∥︁∥︁∑︂

𝑎

𝑅(𝑎)
∥︁∥︁∥︁ =⇒ Limit(1, 𝑅) = 𝑅.

This captures the idea that when there are no more than one row
in 𝑅, we can turn Limit(1, 𝑅) into 𝑅.

We model constraints on columns by adding a predicate over
columns, which will be injected as additional predicates in the U-
semiring expressions. For example, the numerical constraint of less
than 100 for some column 𝑘 in table 𝑅 is handled by the solver
with the rewrite 𝑅(𝑘) = [𝑘 < 100] × 𝑅(𝑘) after normalization.
The verifier then calls an SMT solver [29] to check for logical
equivalence between the predicates during the unification of SPNFs.
Data Generation.We implemented a data generator to create syn-
thetic data. Data generation is done in three phases. First, Coco
creates a graph of class relationships where the vertices represent
Rails models, and the edges denote the dependencies between mod-
els (e.g., foreign key). Coco then runs a topological sort on the
graph to determine the order to populate test data. Coco then gen-
erates a Ruby script for each Rails model that inserts data into the
database when executed. Finally, Coco executes each generated
Ruby file based on the topological sort order from the first phase.
Because we insert data through the Rails API, all generated data
will be validated before inserting it into the database.

7 EVALUATION

7.1 Experiment setup

Application corpus. We select 14 real-world web applications
built using the Ruby on Rails framework [28] that cover 5 cate-
gories: forum, collaboration, e-commerce, social network, and map
application. We select the most popular, actively maintained appli-
cations from each category based on the number of GitHub stars as
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Table 3: Description of rewrite types, the constraints that trigger the rewrite, and the implementation.

Rewrite Type Constraints Enumeration implementation When is the enumeration correct and why is it beneficial

Remove DIS-
TINCT [47] Uniqueness Remove the DISTINCT keyword if there is any uniqueness con-

straint on any of the used columns in the query.
The selection result is known to be unique. It is advantageous because the
DISTINCT operator sorts or aggregates data, both of which are expensive.

Add LIMIT
One [66] Uniqueness Add LIMIT 1 to the end of the query and any subquery if there

is any uniqueness constraint on any used columns in the query.

If no more than one record is selected, add LIMIT 1 to avoid unnecessary
operations (e.g., scan) after finding one satisfying record. This is useful if there
is no index on the unique column, and a sequential scan must be performed to
find the matching result.

Predicate
Elimination [38,
39]

Numerical
or Presence

Remove the predicate if there are any numerical or presence
constraints on the fields included in the predicate.

The predicate is known to be always true given the constraints. This is beneficial
because of avoiding unnecessary predicate comparison.

Predicate
Introduction [38,
39, 63]

Numerical

Use a solver [29] to enumerate all non-redundant formulas
derivable from the predicates and numerical constraints, and
add them to the predicate if there is a numerical constraint on
any of the used columns in the query.

The added predicated is guaranteed to be true. A new predicate on an indexed
attributemay allow for amore efficient accessmethod. Similarly, a new predicate
on a join attribute may reduce the number of join records, thus improving the
join performance.

Join
Elimination [38,
39, 63]

Foreign
Key and
Presence

Enumerate all possible ways to drop the join table and the join
conditions if there is any foreign key constraint on any used
columns in the query.

A join may be constrained such that its result is known a priori and does not
need to be evaluated. For example, queries that join two tables are related
through a referential integrity constraint.

Detecting the
Empty Answer
Set [38, 39]

Numerical
or Presence

Modify the predicate to False if there are any numerical or
presence constraints on the fields included in the predicate.

If the query predicates are inconsistent with the integrity constraints, the query
result is always empty, and we can avoid issuing the query completely.

Table 4: Details of the applications chosen in our study. Fields

show the number of average fields across all tables.

Category Abbr. Name Stars Tables Fields

Forum

Ds Discourse[5] 30.8k 180 9
Dv Dev.to[3] 2.1k 92 13
Lm Loomio[14] 1.9k 50 19
Lb Lobsters[13] 3.0k 15 4

Collaboration
Re Redmine[25] 3.7k 54 8
Gi Gitlab[11] 22.2k 337 8
Op OpenProject[18] 1.2k 114 7

E-commerce Ro Ror ecommerce[27] 1.2k 65 6
Sp Spree[30] 11.4k 57 11

SocialNetwork

Da Diaspora[4] 12.4k 50 7
On Onebody[17] 1.4k 57 11
Ma Mastodon[15] 3.6k 78 6
Ta Tracks[32] 1.0k 17 6

Map Applications Os OpenStreetmap[19] 2.1k 46 7

listed in Table 4. All the applications have over 1K stars and have
been developed for more than four years.
Evaluation platform and Synthetic dataset. We implement
Coco using Ruby, Python, and Rust, where the Ruby code analyzes
the application code to detect constraints, the Python code enumer-
ates rewrites, and the Rust code formally verifies query equivalence.
We use the AWS c5.4xlarge instance with 16 vCPUs and 32GB mem-
ory to measure query performance and use PostgresSQL 10.7 as
the database for all apps. We use the tool described in Sec. 6.3 to
generate data for evaluation and scale the application data size to
be 5–10GB, with 10K to 1M records per table, which is close to the
size of data reported by application developers [6].

7.2 Constraint detection

We report the total number of constraints detected by running
Coco on each application in Table 5. Coco extracts an average of
289 constraints for each application.
Missing constraints and accuracy analysis. Coco extracts all
constraints defined using built-in APIs and a subset of constraints
defined in custom validators. As Coco is based on pattern matching,
we are unable to enumerate every conceivable pattern defined in

Table 5: Number of model constraints.

Application Ds Dv Lm Lb Re Gi Op

Data Validation 167 395 61 109 223 853 164
Class Relations
and Field Definition 285 111 64 48 89 525 103

Total 452 506 125 157 312 1378 267

Application Sp Ro Da On Ma Ta Os

Data Validation 129 184 64 103 108 24 152
Class Relations
and Field Definition 148 103 59 65 126 21 63

Total 277 287 123 168 234 45 215

the user’s custom validation code and thus can potentially miss con-
straints defined in custom validation functions. However, based on
our observation of the 6 evaluated applications, as detailed in [54],
over 85% validation functions are defined using built-in validations
and Coco already extracts a large portion of total constraints.
Comparison with database constraints. As described in Sec. 4,
developers can also explicitly declare database constraints in mi-
gration files. Constraints defined this way are installed as database
constraints. Comparing the constraints extracted from model files
and those installed in the database as shown in Figure 2(a), there
is a small percentage overlap which accounts for only 12% of the
total number of constraints. This demonstrates Coco’s ability in
discovering latent constraints defined only in the application code.

Moreover, as shown in Figure 2(b), the constraint type determines
if it is defined in the application or the database. For example,
inclusion, format, and numerical constraints are only defined in
the application, as defining them in the database requires writing
UDFs or as CHECK constraints [2], which is tedious to implement.
Comparison with prior work. We compare the correctness of
extracted constraints and the execution time between Coco and
two prior data-driven algorithms [16] on our synthetic data. We
run the HyUCC [59] discovery algorithm to detect unique columns
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Figure 2: Application and DB constraint comparison.

Table 6: Compare with HyFD [58] and HyUCC [59]. ER = Er-

ror Rate. UCC = Unique Column Constraint. FD = Functional

Dependency. Error rates for Coco are all 0% because UCC-

s/FDs extracted by Coco are valid by construction. We show

the total number of UCCs extracted by Coco and HyUCC,

and the overlap defines the UCCs extracted by both meth-

ods. Similarly, we show the total number of FDs extracted by

Coco and HyFD, as well as the overlap.

App
Table name
(size in MB)

Coco FD
/HyFD (ER)/overlap

Coco UCC
/HyUCC (ER)/overlap

HyFD/HyUCC/
Coco exec(s)

Dv notes (312) 7 / 29 (79%) / 6 1 / 5 (80%) / 1 3.06/2.94/0.06
Re journal_details (703) 5 / 19 (74%) / 5 1 / 4 (75%) / 1 6.64/5.93/0.03
Op auth_sources (316) 34 / 15 (60%) / 10 2 / 5 (60%) / 2 2.80/2.94/0.04
Ma users (73) 70 / 74 (73%) / 28 3 / 7 (57%) / 4 3.21/2.65/0.08
Os users (111) 584 / 1007 (44%) / 551 5 / 34 (85%)/ 4 3.80/3.31/0.07
Sp spree_assets (2.9) 15 / 15 (60%) 1 / 2 (50%) / 1 0.44/0.45/0.09

and HyFD [58] to detect functional dependencies on the biggest
synthetic table from each evaluated application.

As shown in Table 6, although HyUCC generates a superset
of the UCCs that Coco generates, most constraints that are only
detected by HyUCC are incorrect. For instance, in Openstreetmap,
HyUCC detects 34 unique columns, where only 5 of them are true
keys when manually checking the application code. The other 29
detected columns appear to be unique only looking at the data.
For example, the creation_time field of User is detected as a key
as users are unlikely to be created at the same time. However, it
is not a valid key as multiple users can theoretically be created
concurrently. In contrast, Coco does not detect creation_time as
a key. It correctly identifies 5 true keys without false positives. This
illustrates a general issue with data-driven approaches to constraint
discovery: while they can extract similar ones compared to Coco,

Table 7: Number of queries that can benefit from parameter

precheck and changing data storage.

Application
Queries with
constraints

Length
Precheck

Format
Precheck

Change Physical
Design (String to Enum)

Dev.to 4738 676 (14.3%) 456 (9.6%) 430 (9.1%)
Redmine 3511 1270 (36.2%) 302 (8.6%) 877 (25.0%)

OpenProject 14845 6329 (42.6%) 502 (3.4%) 6373 (42.9%)
Mastodon 7059 5469 (77.5%) 5519 (78.2%) 19 (0.3%)

Openstreetmap 4889 555 (11.4%) 0 (0.0%) 72 (1.5%)
Spree 4261 15 (0.4%) 0 (0.0%) 185 (4.3%)

the extracted constraints can be ephemeral due to the persistent
data available at the time.

On extracting functional dependency constraints, We compare
Coco with HyFD [58]. As shown in Table 6, Coco and HyFD have
some overlaps on detected functional dependencies (FDs), but Coco
can detect FDs that HyFD missed. HyFD also reports FDs that are
not detected by Coco, but upon manual inspection, the majority
of such constraints are false positives. HyFD, like HyUCC, recog-
nizes any column related to time information as a part of functional
dependencies. Also, because HyDB uses a fast approximation al-
gorithm by only calculating from a subset of rows in the table, it
falsely claims that many columns containing random values are
unique (e.g., encrypted_password).

Finally, Coco runs much faster than HyUCC and HyFD as it
only scans the application source code once with complexity as
described in Sec. 4 to extract unique columns and function depen-
dencies concurrently. On the other hand, HyUCC/HyFD performs
extraction by analyzing the data, which scales with the data size
and is typically much bigger than the source code.

7.3 Optimization opportunities

We next investigate Coco’s ability to leverage constraints to opti-
mize application performance on six applications, Redmine [25],
Dev.to [3], OpenProject [18], Mastodon [15], OpenStreetmap [19],
and Spree [30]. We list the number of queries that use a constrained
column in Table 7. We first show the number of queries that can
benefit from optimizing application code and physical design. We
next measure the number of queries that can be rewritten using
the Coco-detected constraints.

7.3.1 Precheck and optimizing physical design. As shown in Table 7,
the number of applicable optimizations in each category is deter-
mined by the number of constraints and queries that can benefit
from the optimization. For example, despite having only 6 format
constraints and 13 length constraints on user information columns
(e.g., username, domain name), many queries in Mastodon are opti-
mized, as 75% of its queries search for username related records. On
the other hand, as OpenStreetmap is a map application, its queries
are almost exclusively about searching for location coordinates.
Although there are only 3 format constraints and 26 length con-
straints, none of them are on coordinate related columns. Therefore,
none of its queries benefit from the format precheck optimization.
Similarly, as Spree does not contain any format constraints, none
of its queries benefit from the format precheck optimization either.

7.3.2 Query Rewrite. Rewrite count. In Figure 3, we show the
total number of queries rewritten by Coco, as well as the number
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Figure 3: Number of queries after each rewrite step.

of rewrites after each step. To count the number of queries with
constraints, we extract all fields utilized by a query template and
check if any of them contains a constraint. By enumerating those
queries, Coco generates candidate rewrites. The number of enu-
merated candidates varies across applications due to the varying
styles of query templates used in each application. For example,
in Dev.to [3], we cannot apply the remove DISTINCT optimization
since none of the query templates has the DISTINCT keyword. Sim-
ilarly, the estimating cost and testing steps are affected by query
characteristics and vary by application. Since the first three steps
filter away a considerable amount of the incorrect or slow rewrites,
1894 queries on average are finally sent to the verifier, which then
proves that an average of over 415 queries can be optimized.

We examine the verified rewrites and find that some optimized
queries benefit from a combination of optimizations. For instance,
Coco performs two optimizations on the query shown in Listing 11
using two different constraints: the uniqueness leads to the removal
of DISTINCT; and Coco changes the datatype of users.type from
varchar to enum and performs selection on the transformed storage.
Both optimizations lead to 2.4× speedup.

1 --Constraints

2 --1.( members.user_id , members.project_id) pair is unique

3 --2.users.type can only take values from ['User ', AnonymousUser ']

4 --Query before

5 SELECT DISTINCT users.* FROM users INNER JOIN members ON members.

user_id = users.id WHERE users.status = $1 AND (members.

project_id = $2) AND users.type IN ($3)

6 --Query After (user.type has been changed to enumeration type)

7 SELECT users.* FROM users INNER JOIN members ON members.user_id =

users.id WHERE users.status = $1 AND (members.project_id = $2)

AND users.type IN ($3)

Listing 11: Two optimizations applied to a Redmine query.

Execution time.The constraint extraction time for Redmine, Open-
Project, Dev.to, Mastodon, Openstreetmap, and Spree are 1.30s,
1.41s, 0.55s, 0.49s, 0.62s, 0.27s, and 0.83s respectively. The average
time to enumerate, remove slow rewrites, and run tests is less than
1s across all applications as detailed in [54]. Verification takes the
longest time. However, even with Redmine and OpenProject, which
have more complicated queries (with the longest query consisting
of 1551 characters), the average verification time is still within 100s.

(a) Storage of changing
data layout

(b) Performance of changing 
data layout

(c) Performance  of 
optimizing code

Figure 4: Evaluation of optimizing code and data layout.

7.4 Performance Evaluation

We first evaluate the storage reduction of changing data storage.
For columns that can benefit from this optimization, assuming the
candidate values are distributed evenly in our synthetic dataset, the
average number of bytes for columns involved in the optimization
are 10.70, 8.56, 10.21, 7.57, 5.97, and 9.80, respectively. After chang-
ing to enum, only 4 bytes are needed for each field, which reduced
storage by 2.19× on average. We also observe minor performance
improvement by changing data storage. As shown in Figure 4 (b),
changing datatype from string to enum improves query performance
by 1.05× across all applications. The speedups from changing the
database schema are not very significant as the majority of queries
involve many columns, and columns with inclusion constraints
only make up a small part of all those that are queried.

To evaluate the benefits of adding prechecks on user inputs, we
sample 3 queries and evaluate them under different ratios of invalid
input. As shown in Figure 4 (c), the speedup consistently increases
as the percentage of invalid input increases. When 80% of the input
is invalid, we obtain the average speedup of 5×. Meanwhile, adding
precheck introduces negligible overhead.

We next evaluate the benefits of utilizing constraints to improve
query performance. For each rewritten query, we first record the
query execution time with predefined database constraints as the
baseline. The time spent only doing the rewrite, only installing
application constraints, and both installing application constraints
and performing query rewriting are then recorded. We issue each
query 30 times and average the results. Note in Coco, the whole
optimization process (constraint extraction, code optimization, data
layout changes, and query rewrites) happens offline, as discussed
in Sec. 3. Therefore, we only assess the query performance before
and after rewrites to simulate the online setting. Figure 5 depicts
the number of queries with various speed improvements.

1 --Constraints , address is unique

2 --Original Query , creating a unique index on address speedups 12.3x

3 SELECT email_addresses .* FROM email_addresses WHERE email_addresses.

address = 'bcfy@yaho.com' or user_id = 10;

Listing 12: Example of database optimizations with

constraints from Redmine.

As shown in Figure 5, the database only optimizes a small fraction
of queries. The largest speedup comes from creating an index on
the unique column once the uniqueness constraints are installed.
As demonstrated in Listing 12, installing the uniqueness constraint
on the address column creates an index, altering the query plan
from a linear scan to an index lookup and getting 12.3× speedup.
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Figure 5: Performance improvement after installing extracted constraints and performing rewrites. Improvement = ((execution

time with only database constraints / execution time after optimization) - 1)× 100%.

We also examine the performance of just rewriting queries with-
out installing the application constraints as shown in Figure 5. The
rewrite achieves comparable results as both installing and rewriting
queries, which corresponds to our observation that the database un-
derutilizes the installed constraints. Lastly, we install the extracted
constraints, utilize Coco to rewrite queries, and evaluate query per-
formance. Among queries with constraints, over 7.2% (52/722) for
Redmine, 21.6% (11/51) for Dev.to, 2.9% (31/1086) for OpenProject,
12.9% (8/62) for Mastodon, 17.6% (6/34) for Openstreetmap, 1.8%
(10/556) for Spree have a speedup of more than 2×. For some queries
both installing constraints in the database and performing rewrites
lead to more gains than only performing one of two. For example,
in Listing 12, installing the uniqueness constraint on the address
column causes an index to be created. Subsequently, rewriting the
query by adding LIMIT 1 further speeds it up by 1.4× as it allows
early return after finding the first matching record using the index.
Overall, the speedups mainly come from Coco ’s ability to leverage
constraints to simplify queries and save unnecessary computation
to improve performance. For example, when the selection result is
known to be unique, Coco removes the DISTINCT operator from
the query to avoid expensive sort or aggregate operations.

We observe some slowdowns from the experiment and the causes
are twofold. First, a few queries become slower after rewriting as
the optimizer fails to predict the cost accurately, resulting in the
rewritten query taking longer to execute. We believe the perfor-
mance of those queries can still be improved with more accurate
cost estimates. Second, many slowdowns are caused by our syn-
thetically generated test dataset, which does not necessarily have
the same data distribution as real-world data. This leads to some of
the queries returning empty results (particularly for selections and
joins), and any additional operation added as a result of Coco’s
rewrites causes a minor but obvious slowness. We believe our eval-
uation will be more accurate with real-world user data.

8 RELATEDWORK

Constraint detection. Techniques have been proposed to dis-
cover constraints from data. [35, 48, 57, 67] extract dependencies
by modeling the search space as a power set lattice of attribute
combinations and traverses it, while [37, 49, 50, 53] automatically
discover soft and hard functional dependencies for big data query
optimization. Coco instead detects constraints by code analysis.
Compared to data-driven methods, Coco scales well regardless of
data size. It can also discover many other types of constraints in
addition to functional and inclusion dependencies.
Leveraging database constraints for query optimization. Se-
mantic query rewrite has been widely studied in the database lit-
erature. Some work provides theoretical results [38, 51, 56, 60, 63],
while other work shows how this can be done in real systems [44,
55, 68]. All prior work uses heuristics [7, 12] to leverage constraints,
the contribution of Coco lies in combining different heuristics and
automating the optimization process.

9 CONCLUSION

We presented Coco, a tool that extracts data constraints from ap-
plications to optimize queries. Our experiments show that Coco
can discover many constraints from real-world applications and
speed up 118 queries across 6 evaluated applications by over 2×.
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