
High-Performance Row Pattern Recognition Using Joins
Erkang Zhu*

Microsoft Research
Redmond, Washington, U.S.A.

ekzhu@microsoft.com

Silu Huang*
Microsoft Research

Redmond, Washington, U.S.A.
silu.huang@microsoft.com

Surajit Chaudhuri
Microsoft Research

Redmond, Washington, U.S.A.
surajitc@microsoft.com

ABSTRACT
The SQL standard introduced MATCH_RECOGNIZE in 2016 for row
pattern recognition. Since then, MATCH_RECOGNIZE has been sup-
ported by several leading relation systems, they implemented this
function using Non-Deterministic Finite Automaton (NFA). While
NFA is suitable for pattern recognition in streaming scenarios, the
current uses of NFA by the relational systems for historical data
analysis scenarios overlook important optimization opportunities.
We propose a new approach to use Join to speed up row pattern
recognition in historical analysis scenarios for relational systems.
Implemented as a logical plan rewrite rule, the new approach first fil-
ters the input relation to MATCH_RECOGNIZE using Joins constructed
based on a subset of symbols taken from the PATTERN expression,
then run the NFA-based MATCH_RECOGNIZE on the filtered rows,
reducing the net cost. The rule also includes a specialized cardi-
nality model for the Joins and a cost model for the NFA-based
MATCH_RECOGNIZE operator for choosing an appropriate symbol
set. The rewrite rule is applicable when the query pattern’s defini-
tion is self-contained and either the input table has no duplicates or
there is a window condition. Applying the rewrite rule to a query
benchmark with 1,800 queries spanning over 6 patterns and 3 pat-
tern definitions, we observed median speedups of 5.4× on Trino
(v373 with ORC files on Hive), 57.5× on SQL Server (2019) using
column store and 41.6× on row store.
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1 INTRODUCTION
In relational systems, a row pattern recognition task is to detect a
sequence of ordered rows from an input table that match a user-
specified pattern. For example, a financial service provider needs
to identify sequences of suspicious transactions that match known
patterns of criminal activities; an e-commerce site analyzes the
steps taken by customers from landing through a social media
referrer to a successful purchase [17].

In response to the increasing importance of row pattern recogni-
tion, MATCH_RECOGNIZE was added to the official SQL standard [25]
to perform these tasks using a declarative interface and avoid ex-
porting data to external programs. Oracle, Apache Flink, Azure
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SELECT * FROM Crimes MATCH_RECOGNIZE (
ORDER BY datetime
MEASURES R.id AS RID, B.id AS BID,M.id AS MID,count(Z.id) AS GAP
ONE ROW PER MATCH
AFTER MATCH SKIP TO NEXT ROW
PATTERN (R Z* B Z* M)
DEFINE R AS R.primary_type = 'ROBBERY',

B AS B.primary_type = 'BATTERY'
AND B.lon BETWEEN R.lon - 0.05 AND R.lon + 0.05
AND B.lat BETWEEN R.lat - 0.02 AND R.lat + 0.02,

M AS M.primary_type = 'MOTOR VEHICLE THEFT'
AND M.lon BETWEEN R.lon - 0.05 AND R.lon + 0.05
AND M.lat BETWEEN R.lat - 0.02 AND R.lat + 0.02
AND M.datetime - R.datetime <= INTERVAL '30' MINUTE)

Figure 1: A MATCH_RECOGNIZE query on Chicago Crimes data
set looking for potentially related sequences of crimes.

Figure 2: A match (dashed box) for the pattern (R Z* B Z* M)
found in the sequence of crimes reports ordered by datetime.

Streaming Analytics, Snowflake and Trino have already announced
support for MATCH_RECOGNIZE [26, 27, 37, 46, 52].
Example 1. Figure 1 is a query on the Chicago Crimes data set [10].
Each row is a crime report and this query detects sequences of pos-
sibly related crimes ordered by datetime. Specifically, the pattern
refers to three ordered instances of “ROBBERY”, “BATTERY”, and
“MOTOR VEHICLE THEFT” occurred within 30 minutes in the
same latitude-longitude “box” centered at the location of “ROB-
BERY”. The pattern is expressed using a regular expression style
notation in the PATTERN clause, which composes symbols (e.g., R,
B) in sequential order. Each symbol is defined as a set of Boolean
conditions through the DEFINE clause specifying when a row can
be matched to the symbol (Z is undefined thus matches any row).
Each of R, B, and M matches exactly one row, and Z* is a Kleene
Star matching 0 or more rows, indicating there may be other
crimes between the crimes of interest. A window of 30 minutes
is also defined inside the DEFINE clause. The AFTER MATCH SKIP
clause determines the starting row to resume pattern matching
after a non-empty match has been found. Figure 2 illustrates a
match of this pattern.

There are two scenarios of row pattern recognition: streaming
and historical analysis. For the streaming scenario, the input table
is an event stream, and the queries emit results in real-time when
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specified patterns are detected. Streaming systems that support
MATCH_RECOGNIZE use executors based on the Non-deterministic
Finite Automaton (NFA), which compiles a query into a directed
state-transition graph and identifies ordered sequences of events
that match any path from start to end of the graph (e.g., R → B →
M) while consuming the events sequentially. Notable examples of
streaming systems supporting MATCH_RECOGNIZE include Apache
Flink [6] and Azure Streaming Analytics [39].

Relational systems for historical analysis also use NFA to im-
plement MATCH_RECOGNIZE, as in Trino [55]. NFA works well in
streaming but the current NFA-based MATCH_RECOGNIZE implemen-
tations ignore several optimization opportunities in historical anal-
ysis setting, namely: (1) flexible order of execution, (2) availability
of indexes and (3) operator-level parallelism. The following example
is a case in which these opportunities can be taken.
Example 2. To execute the query in Figure 1, NFA consumes the
ordered input rows one-by-one and attempts to match the symbol
R. If successful then it moves to Z*, followed by B, Z* and lastly
M. Suppose 5M rows match R, 100 rows match B, and 50 row se-
quences match pattern (R Z* B), NFA will over its life cycle incur
5M incomplete matching states started by R and checked for Z*.
With at most 50 of themmatching (R Z* B), most of the computa-
tion is wasted. Because all rows are available, there exists another
way, in which, first, we find rows matching B’s primary_type,
then check for R and M within a window-sized datetime interval
around each of those rows, incurring only 100 incomplete match-
ing states. Furthermore, an index on primary_type will allow us
to get rows matching B’s condition directly without a table scan,
and process those rows grouped by intervals in parallel.

Previous works in streaming have found flaws in NFA’s fixed
order of execution and proposed alternatives like tree-based ex-
ecutor [38] and lazy evaluator [32], but as standalone streaming
systems, they command significant modifications to the executor
and optimizer in order to integrate with existing relational sys-
tems. For historical analysis, Korber et al. [33] proposed an ap-
proach to make use of indexes via a strategy called “prefiltering”:
use indexes to filter the input records, then apply the NFA-based
MATCH_RECOGNIZE on the filtered result. This requires the input
table to be physically sorted with a clustered index, and secondary
indexes for relevant columns in the query. It limits applicability as
the input table may be stored as files in a data lake with no indexes.
It also demands adding a new physical operator for prefiltering.
We have not seen other work concerning operator-level parallel
execution of MATCH_RECOGNIZE.

Given the importance of simple system integration and efficiency,
we adopted the prefiltering strategy but chose to use Join to perform
the filtering. Join’s order of evaluation can be optimized; it also
makes use of parallel execution algorithms and available indexes.
Above all, Join is supported by nearly all relational systems, so
our approach can be implemented as a logical plan rewrite rule
without modifying other parts of the host system. The following is
an example of how we use Join:
Example 3. Following Example 2, we first obtain two sets of rows,
each set matches R’s or M’s primary_type condition, then join
them on the following conditions: R.datetime <= M.datetime,

Figure 3: A plan for the query in Figure 1 showing the logical
steps to find matches for the pattern (R Z* B Z* M).

latitude-longitude box, and window constraint. Based on the pat-
tern expression, the R.datetime and the M.datetime in each
joined tuple form a temporal range of a potential match. We can
then run the NFA-based MATCH_RECOGNIZE on the few rows that
fall into those ranges to get the same result as running on all the
original input table.

Figure 3 illustrates the Joins in Example 3 with indexes. It is
7× faster than NFA in SQL Server (2019). When indexes are not
available, in order to avoid expensive cross-product Joins, we make
use of window constraint to virtually bucketize the input table, and
rewrite the Joins into equality Joins so that each row is only joined
with its own and neighboring buckets.

Another challenge we have encountered is query optimization.
Though the previous example uses the symbol set {R, M} to create
the Joins for generating ranges, it is also possible to use any subset,
e.g., {R, B, M}. The cost of a rewritten plan can vary significantly
depending on the Joins and their filtering power, so it is impor-
tant to choose a symbol set that maximizes the net cost reduction.
For this, we use a cardinality model tailored to our rewrite by in-
corporating the semantic of the Joins for a more differentiating
cost estimate. We also designed a new cost model for NFA-based
MATCH_RECOGNIZE based on the number of state transition function
evaluations, estimated using a simulator. We drew a relationship
between the MATCH_RECOGNIZE cost model and the join cost model
through a bootstrapping calibration.

Compared with NFA-based MATCH_RECOGNIZE implementations
on a benchmark of 1,800 query instances spanning over 6 patterns
and 3 pattern definitions based on existing datasets [33], our ap-
proach hits median speed-ups of 5.4× on Trino (v373 with ORC
files on Hive), 57.5× on SQL Server (2019) using column store and
41.6× on row store with indexes.

In summary, we improved MATCH_RECOGNIZE performance in
historical analysis scenarios by introducing a logical plan rewrite
rule that uses Join-based prefiltering with a specialized cardinality
model for the Joins and a new cost model for MATCH_RECOGNIZE.
Section 2 references related work; Section 3 presents the rewrite
rule; Section 3.4 discusses applicability – the rule requires self-
contained pattern definition and either a window condition or
distinct rows in the input table. Section 4 covers the cardinality
model and cost model; lastly, Section 5 illustrates and discusses the
experimental results.
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2 RELATEDWORK

Complex Event Processing (CEP) is a type of analytics performed
on data streams to detect sequences of events matching a user-
specified pattern. SASE [57] and its subsequent work [5, 13] pro-
posed a new query language and a execution engine based on Non-
deterministic Finite Automaton (NFA) (see our technical report [16]
for a quick overview). Cayuga [11], SPASS [44] and NEEL [35]
proposed to optimize CEP queries using sub-pattern/expression
sharing among concurrent queries. Kolchinsky and Schuster [31]
also explored optimizing concurrent CEP queries but also consid-
ered pattern reordering in the optimization space. An alternative to
NFA is explored by ZStream [38]: a tree-based query engine with
buffers that “assembles” patterns from events through a tree of
operators – this idea inspired our approach to use Join operators
for partial matches. Kolchinsky and Schuster [30] proposed to unify
query optimization for both NFA-based and tree-based execution
engines by quantifying the relationship between partial matches in
NFA and intermediate results in operator tree. This work helped
us gain insight into why our Join-based approach is beneficial. An
enhancement to NFA is AFA [9] (part of Trill [8]): it introduced the
concept of “registers” to let users manage matching states easily
and write queries using a programming language API. We used
AFA to implement the user-defined aggregate (UDA) version of
MATCH_RECOGNIZE for our experiments. The survey paper from Gi-
atrakos et al. [20] goes into detail to summarize the landscape of
CEP works. Overall, the focus of CEP systems is for continuous
queries providing online results. This is different from relational
systems that are optimized for batch, off-line historical analysis
queries.
Sequence Processing in Databases has been studied for decades.
The SEQ Project [49–51] proposed a database designed after a
sequence data model. SRQL [43] took a different approach to en-
hance SQL support for sequences by introducing new operators.
SQL-TS [47] introduced an earlier version of regular expression
syntax for pattern search. It was implemented using a single-pass
algorithm inspired by the KMT algorithm [29] for text-matching.
DejaVu [14] studied the problem of pattern correlation queries
which correlates online streaming data with offline archive data,
and proposed query processing algorithms and optimizations. Most
recently, Korber et al. [33] studied the problem of improving per-
formance of MATCH_RECOGNIZE queries in offline analysis scenario
using indexes for prefiltering. Their approach assumes that the
data store is ordered by timestamp with a primary index on the
timestamp and secondary indexes on other attributes. Additional
execution logic that interacts with indexes is required to carry
out the prefiltering. In contrasts, our approach does not assume
availability of indexes or require changes to the executor.
Join Query Processing is a mature research area and our approach
is based on many existing works, namely, join algorithms, statistics
estimation, cost-based access path selection, and query optimization.
For join algorithms, the survey paper from Graefe [21] provides a
practical summary. Worst-case optimal join algorithms [4, 28, 40,
41, 56] provide better runtime guarantee than binary joins in the
presence of growing intermediate results. A hybrid of worst-case
optimal join and binary joins are employed in Umbra [18]. Most

host systems, including Trino and SQL Server, have not yet imple-
mented these algorithms. In our work we utilize the host system’s
existing index join when index is available, and use hash join when
not. For statistics we employ the statistical profile model presented
by Mannino et al. [36] with our own cardinality estimators (Sec-
tion 4.1). For many databases their cost models are influenced by the
System R Project from Selinger et al. [48]. Lastly, the Starburst [24]
and Volcano/Cascade [22, 23] query optimization frameworks have
heavily influenced many relational databases. Thus we assume
the host system’s optimization framework supports adding logical
query plan rewrite rules as in Starburst and Volcano/Cascade.
Band Join is a special type of range join with condition in the
form of 𝐴 + 𝑥 < 𝐵 < 𝐴 + 𝑦. Many [12, 34, 45, 53] have worked on
improving its performance using specialized physical operators.
There are two approaches: sorting-based [12] and partitioning-
based [34, 53]. Recently [45] proposed to use kd-tree for general
range join. A few systems have implemented such specialized band-
join operator, e.g., Databricks, Oracle and Vertica, but most have
not. Our bucketized prefilter (Section 3.2) was inspired by [53], but
we implemented our approach as a logical plan rewrite rule rather
than adding a specialized physical operator in the host system.

3 THE REWRITE RULE
In this section, we present our logical query plan rewrite rule that
uses Joins to filter the input table to MATCH_RECOGNIZE and a tem-
poral bucketization technique to speed up the Joins.

3.1 Basic Prefilter
As described in Section 1, the rewrite rule creates a prefilter that
filters the input table for the original MATCH_RECOGNIZE query so
the final output is unchanged. As sketch of our prefilter construction
steps: we first choose a symbol sub-sequence (of length at most
3), e.g., (R, M), from the query pattern; then construct a join to find
all the timestamp ranges 𝑅 = {(𝑡𝑠 , 𝑡𝑒 ), ...} such that 𝑅 contains the
“envolopes” of all timestamps 𝑡 of rows matching the sub-sequence;
lastly, use 𝑅 ⋈︁𝑡𝑠≤𝑡≤𝑡𝑒 𝑇 to filter the input table.

Let us dive into the details starting with the Boolean conditions,
using the query in Figure 1 as our running example.

Definition 3.1. An independent condition is a Boolean condi-
tion that can be evaluated on a single row.

Definition 3.2. A dependent condition is a Boolean condition
that must be evaluated on multiple rows.

For example, B.primary_type = ‘BATTERY’ is an independent
condition on a rowmatching B; M.lat BETWEEN R.lat - 0.02 AND
R.lat + 0.02 is a dependent condition, which must be evaluated
on a row matching M and a row matching R.

Definition 3.3. A self-contained dependent condition is a
dependent condition that can be evaluated on rows from the same
match1 only.

All dependent conditions in a MATCH_RECOGNIZE query must
be self-contained for our rewrite rule to apply. For example, the
condition PREV(R.primary_type) = ‘ASSAULT’ would have to
1Amatch is a row sequence that matches the input pattern. Figure 2 depicts an example.
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be evaluated on the row immediately preceding the row match-
ing R and outside of the same matching sequence starting at R,
thus it is not self-contained. On the other hand, the condition
PREV(B.primary_type) != B.primary_type is self-contained be-
cause the row immediately preceding the row matching B is either
a G or R – inside the same match.

Definition 3.4. A sequential condition is a dependent condi-
tion in the form equivalent to 𝐴.𝑡 ≤ 𝐵.𝑡 where symbol 𝐴 precedes 𝐵
absolutely in the PATTERN expression; 𝑡 is the primary ORDER BY key.

A sequential condition is not stated but rather implied by the
pattern expression. For example R.datetime <= B.datetime is
implied as a row matches R comes before a row matches B in the
same pattern match. In case of Alternation (e.g. (A | B)) or Per-
mutation (e.g. PERM(A, B, C)), there is no sequential condition
among the participating symbols.

Definition 3.5. A window condition is a dependent condition
in the form equivalent to 𝐵.𝑡 −𝐴.𝑡 ≤ 𝑤 where symbol 𝐴 precedes 𝐵
absolutely in the PATTERN expression; 𝑡 is the primary ORDER BY key;
𝑤 is a non-negative value called window size.

A window condition can be “propagated backward” through
sequential conditions:

Proposition 3.1. A window condition 𝐶.𝑡 − 𝐴.𝑡 ≤ 𝑤 together
with sequential conditions 𝐴.𝑡 ≤ 𝐵.𝑡 and 𝐵.𝑡 ≤ 𝐶.𝑡 generate new
window conditions 𝐶.𝑡 − 𝐵.𝑡 ≤ 𝑤 and 𝐵.𝑡 −𝐴.𝑡 ≤ 𝑤 .

For example, there is no stated conditions for Z but using the
above proposition, we can assign a new window condition to Z
and R: Z.datetime - R.datetime <= INTERVAL ‘30’ MINUTE.
Note that the propagation of window condition can be applied
independently to the query without creating a prefilter.

Definition 3.6. A pattern window condition is a window con-
dition between𝐴 and 𝐵 that are respectively the first and last symbols
ordered by their sequential conditions: for the set of all symbols 𝜒 ,
𝐴.𝑡 ≤ 𝑠 .𝑡 and 𝐵.𝑡 ≥ 𝑠 .𝑡 for any 𝑠 ∈ 𝜒 .

For example, M.datetime - R.datetime <= INTERVAL ‘30’
MINUTE is a pattern window condition as R and M are the first and
the last symbols, respectively.

With these conditions in Def. 3.1-3.6, we can define prefilter by
starting with a special case where the input pattern involves no
Alternation nor Kleene operator, as well as no duplicates in the
input table, and then extending it to the general case by converting
the general pattern into special ones.

3.1.1 Special Case. We first consider the case when the input pat-
tern only has Concatenation operator, e.g., (A B C D E).

Definition 3.7. Given an input relation 𝑇 (without duplicates)
and a query pattern 𝑄 = (𝑠1 𝑠2 ... 𝑠𝑛) involving only Concatenation
operators on an ordered set of pattern symbols 𝜒 = (𝑠1, 𝑠2, ..., 𝑠𝑛)
and self-contained dependent conditions 𝐶𝜒 , for a subsequene 𝑋 =

(𝑠𝑖1 , 𝑠𝑖2 , ..., 𝑠𝑖𝑘 ) of 𝜒 where 1 ≤ 𝑖 𝑗 ≤ 𝑛 for ∀1 ≤ 𝑗 ≤ 𝑘 , the prefilter

(a) Q: ((A | B) (C | D)) (b) Q: ((A | B) C+)

Figure 4: Decomposing general pattern to special patterns

𝑃𝑋 can be constructed using bag-based relational algebra2:

𝑃𝑋 =𝛿

(︂
𝜋𝑓 (𝑡1,𝑡𝑘 )

(︂
𝜌𝑡1/𝑡

(︂
𝜎𝐶𝑠𝑖1

(𝑇 )
)︂
⋈︁𝐶𝑠𝑖1 ,𝑠𝑖2

𝜎𝐶𝑠𝑖2
(𝑇 ) ⋈︁

...𝜎𝐶𝑠𝑖𝑘−1
(𝑇 ) ⋈︁𝐶𝑠𝑖1 ,𝑠𝑖2 ,..𝑠𝑖𝑘

𝜌𝑡𝑘/𝑡
(︂
𝜎𝐶𝑠𝑖𝑘

(𝑇 )
)︂ )︂
⋈︁𝑡𝑠≤𝑡≤𝑡𝑒 𝑇

)︂
where 𝐶𝑠𝑖 𝑗 is the set of independent conditions associated with 𝑠𝑖 𝑗 ;
𝐶𝑠𝑖1 ,...,𝑠𝑖 𝑗 is the set of dependent conditions (including sequential and
window conditions) associated with 𝑠𝑖1 , ..., 𝑠𝑖 𝑗 ; and the function

𝑓 (𝑡1, 𝑡𝑘 ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(𝑡1→ 𝑡𝑠 , 𝑡𝑘→ 𝑡𝑒 ) if (𝑖1 = 1) ∧ (𝑖𝑘 = 𝑛)
(𝑡𝑘 −𝑤→ 𝑡𝑠 , 𝑡𝑘→ 𝑡𝑒 ) if (∃𝑤) ∧ (𝑖𝑘 = 𝑛)
(𝑡1→ 𝑡𝑠 , 𝑡1 +𝑤→ 𝑡𝑒 ) if (∃𝑤) ∧ (𝑖1 = 1)
(𝑡𝑘 −𝑤→ 𝑡𝑠 , 𝑡1 +𝑤→ 𝑡𝑒 ) if (∃𝑤)

where ∃𝑤 means there exists a pattern window condition in pattern
𝑄 and 𝑤 is the window size of the pattern window condition; the 𝛿
operator [19] removes duplicate rows in the output of the last join
with 𝑇 due to overlapping time ranges.

Any row in a match must be part of a prefilter, as stated by the
following proposition:

Proposition 3.2. Given an input relation 𝑇 without duplicates,
a special pattern 𝑄 involving only Concatenation operators on an
ordered set of pattern symbols 𝜒 , and an ordered symbol set 𝑋 ⊆
𝜒 , if all dependent conditions 𝐶𝜒 are self-contained, 𝑀𝑅(𝑄,𝑇 ) =

𝑀𝑅(𝑄, 𝑃𝑋 (𝑇 )).

𝑀𝑅(𝑄,𝑇 ) denotes the results returned by MATCH_RECOGNIZE
with a query pattern 𝑄 , an input relation 𝑇 , and some arbitrary
AFTER MATCH SKIP clause. The above proposition can be proved by
analyzing the four different cases of 𝑓 (𝑡1, 𝑡𝑘 ). The proof is detailed
in our technical report [16].

3.1.2 General Case. We move on to the general case when the
pattern may contain Concatenation, Alternation3, and Kleene op-
erators. In such case, a prefilter can be generated following two
steps: (1) decompose the general pattern Q into special patterns
{𝑄1, 𝑄2 ...𝑄𝑚} and let 𝜒 𝑗 be the the ordered set of pattern symbols
in each 𝑄 𝑗 ; (2) generate a prefilter 𝑃𝑋 𝑗

for each special pattern 𝑄 𝑗

following Definition 3.7 where 𝑋 𝑗 ⊆ 𝜒 𝑗 and union the prefilters to
generate a prefilter for Q, i.e., ∪𝑚

𝑗=1𝑃𝑋 𝑗
. We detail each step below.

Step 1 (Decomposition).Given a pattern Q, we first construct a
corresponding NFA state transition graph, such as those in Figure 4,
then perform a depth-first graph traversal to generate all possible
2𝜌𝑡1/𝑡 and 𝜌𝑡𝑘 /𝑡 means renaming column 𝑡 as 𝑡1 and 𝑡𝑘 , respectively; 𝜋𝑓 (𝑡1,𝑡𝑘 ) [19]
denotes an extended projection that takes attributes 𝑡1 and 𝑡𝑘 , applies some calculation
(e.g., 𝑡𝑘 − 𝑤 and 𝑡𝑘 in the second case), and renames them to 𝑡𝑠 and 𝑡𝑒 respectively; 𝛿
is a deduplication operator removing duplicate rows from overlapping time ranges.
3Permutation is mapped to Alternations. E.g., PERM(A, B) === (A B)|(B A).
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WITH ranges AS (
SELECT R.datetime as t_s, M.datetime as t_e
FROM Crimes AS R, Crimes AS M
WHERE R.datetime <= M.datetime

AND R.primary_type = 'ROBBERY'
AND M.primary_type = 'MOTOR VEHICLE THEFT'
AND M.lon BETWEEN R.lon - 0.05 AND R.lon + 0.05
AND M.lat BETWEEN R.lat - 0.02 AND R.lat + 0.02
AND M.datetime - R.datetime <= INTERVAL '30' MINUTE

), prefilter AS (
SELECT DISTINCT Crimes.* FROM Crimes, ranges AS r
WHERE datetime BETWEEN r.t_s AND r.t_e

) SELECT * FROM prefilter MATCH_RECOGNIZE (/* same as before */);

Figure 5: A rewrite Figure 1 using symbol set {R, M}.

paths from the start node to finish node. From each path, we con-
struct a special pattern. We note that the number of special patterns
derived from Q can be exponential in the query size. Figure 4a is
an example of decomposing pattern ((A|B) (C|D)).

To handle cycles introduced by Kleene operators (e.g., Figure 4b),
the algorithm exits any cycle after encountering one Split(+)
node or a Split(*) node for the second time.

Step 2 (Prefilter Union). Let {𝑄1, 𝑄2, ..., 𝑄𝑚} be the set of spe-
cial patterns and let 𝜒𝑖 be the ordered set of pattern symbols in each
𝑄 𝑗 . For each 𝑄 𝑗 , construct a prefilter 𝑃𝑋 𝑗

following Definition 3.7
where 𝑋 𝑗 ⊆ 𝜒 𝑗 . A prefilter for Q can be constructed as ∪𝑚

𝑗=1𝑃𝑋 𝑗
.

Proposition 3.3. Given a relation 𝑇 without duplicates, a query
pattern Q with conditions self-contained, and a prefilter ∪𝑚

𝑗=1𝑃𝑋 𝑗

constructed using the steps above,𝑀𝑅(Q,∪𝑚
𝑗=1𝑃𝑋 𝑗

(𝑇 )) = 𝑀𝑅(Q,𝑇 ).

This can be proved by showing that although the union of special
patterns, ∪𝑚

𝑗=1𝑄 𝑗 , is not equivalent to the input query pattern Q
if Q has any Kleene operator, ∪𝑚

𝑗=1𝑄 𝑗 is sufficient for creating a
prefilter for Q: since for each 𝑄 ′ (e.g., (A C C C) in Figure 4b)
created by a path going over a cycle, there exists a 𝑄 𝑗 (e.g., (A C))
returned by the decomposition procedure such that any prefilter
constructed for 𝑄 𝑗 following Definition 3.7 is also a valid prefilter
for 𝑄 ′. The complete proof is in our technical report [16].

We further optimize ∪𝑚
𝑗=1𝑃𝑋 𝑗

by removing redundant compo-
nents. Using the pattern in Figure 4b as an example, one possible
prefilter for Q is 𝑃 (A,C) ∪ 𝑃 (C) , where 𝑃 (A,C) is constructed from 𝑄1
and 𝑃 (C) from 𝑄2. Using the fact that 𝑃 (A,C) ⊆ 𝑃 (C) we can safely
eliminate 𝑃 (A,C) in the union, which turns out to be just 𝑃 (C) .

Figure 5 shows an example rewrite using prefilter for symbol set
(R, M) in SQL: the ranges expression finds all pairs of [R.datetime,
M.datetime] satisfying the conditions stated in the original query;
the prefilter expression produces a subset of the input table rows
that fall into at least one of the ranges produced by ranges.

This prefilter also handles queries with the optional PARTITION
BY clause, which specifies the pattern to be found within every
partition (see our technical report [16]).

3.1.3 Symbol Set Search Space. Given a special pattern 𝑄 , we still
need to choose a symbol set 𝑋 for the prefilter. We use a simple
procedure to produce the choices of symbol sets that satisfy Defini-
tion 3.7 for a special pattern 𝑄 with symbols 𝜒 = (𝑠1, 𝑠2, ..., 𝑠𝑛):
(1) Mark (𝑠1, 𝑠𝑛) as a symbol set, where 𝑠1 and 𝑠𝑛 are the first and

last symbols.

(2) If there exists a window condition between 𝑠1 and 𝑠𝑛 , i.e., pat-
tern window condition, mark all subsets of 𝜒 as symbol sets.

For a special pattern (R B M), it has the following symbol sets:
(R), (B), (M), (R, B), (R, M), (B, M), (R, B, M). For subset selection, in
practice we mark only 1, 2 and 3-symbol subsets to limit the number
of choices and to avoid the possible large estimation error when
involving more than 3 joins.

When there is at least one symbol set, we estimate the costs of
all rewrites plus the original plan (no rewrite), and choose the plan
with the lowest cost. This is presented in Section 4.

For a general pattern Q, we first generate symbol sets for each
decomposed special pattern {𝑄1, 𝑄2, ..., 𝑄𝑚} using the procedure
above, and then generate the𝑚-combinations of symbol sets. If any
one of the special patterns produces no symbol set, we terminate the
rewrite rule. To bound the optimization cost, we limit the number
of distinct combinations to 100 and prioritize small symbol sets
for each 𝑄 𝑗 . For now we focus on the effectiveness of our prefilter
strategy, and improving optimizer efficiency is left as a separate
work for future research.

3.2 Bucketized Prefilter
Indexes speed up Joins in prefilter generated following Defini-
tion 3.7 but indexes are not always available. Relational systems
designed for data analysis workload today are mostly using column-
oriented storage format [54], instead of row-oriented storage with
indexes designed for transaction workload. Thus, it is important to
handle scenarios with no indexes.

Our insight is that a row should only join with other rows belong-
ing to the same match, and by combining a sequential condition
(Definition 3.4) with a pattern window condition (Definition 3.6),
we can create a new equality Join condition to aggressively prune
out other rows outside the window-sized neighborhood of that row.

To assign a window-sized neighborhood to each row, we add a
new computed column called bucket:

Definition 3.8. When there exists a pattern window condition,
a bucket is given by the expression ⌊𝑡/𝑤⌋ where 𝑡 is the primary
ORDER BY key and𝑤 the pattern window size.

Combining the window condition with the sequential conditions,
we introduce a new condition that points two rows in the same
temporal neighborhood to the same bucket.

Definition 3.9. A bucket condition is an dependent condition
derived from a pattern window condition and a sequential condition
between symbols𝐴 and 𝐵 where𝐴 precedes 𝐵, in a form equivalent to

⌊𝐴.𝑡/𝑤⌋ = ⌊𝐵.𝑡/𝑤⌋ OR ⌊𝐴.𝑡/𝑤⌋ + 1 = ⌊𝐵.𝑡/𝑤⌋

where𝑤 is the window size of the pattern window condition.

With the above we update the basic prefilter (Definition 3.7) to
use bucket and bucket conditions, and create a new prefilter using
the following definition.

Definition 3.10. Given a relation 𝑇 with or without duplicates
and a query pattern 𝑄 , if the query pattern 𝑄 is self-contained and
has a pattern window condition with size𝑤 , the bucketized prefilter
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𝐵𝑋 for symbol set 𝑋 = [𝑠𝑖1 , 𝑠𝑖2 , ..., 𝑠𝑖𝑘 ] can be created as4:

𝐵𝑋 = 𝛿

(︂(︂
𝜋𝑔 (𝑡1,𝑡𝑘 )

(︂
𝜎𝐶𝑠𝑖1 ,..,𝑠𝑖𝑘

(︂
𝜌𝑡1/𝑡

(︂
𝜎𝐶𝑠𝑖1

(𝑇 )
)︂
⋈︁𝑏𝑠𝑖1 ,𝑠𝑖2

...

⋈︁𝑏𝑠𝑖1 ,..,𝑠𝑖𝑘
𝜌𝑡𝑘/𝑡

(︂
𝜎𝐶𝑠𝑖𝑘

(𝑇 )
)︂ )︂)︂)︂

× 𝑆𝑒𝑞(𝑏𝑘𝑠 , 𝑏𝑘𝑒 )𝑏𝑘
)︂
⋈︁𝑏𝑘=⌊𝑡/𝑤 ⌋ 𝑇

where𝑏𝑠𝑖1 ,...,𝑠𝑖 𝑗 is the set of bucket conditions among 𝑠𝑖1 , .., 𝑠𝑖 𝑗 ∈ 𝑋 ;𝑏𝑘
is the bucket attribute; 𝑆𝑒𝑞(𝑏𝑘𝑠 , 𝑏𝑘𝑒 )𝑏𝑘 is a table-valued function that
produces a relation with a single 𝑏𝑘 attribute with values 𝑏𝑘𝑠 , 𝑏𝑘𝑠 +
1, .., 𝑏𝑘𝑒 5; and the tuple-valued function 𝑔(𝑡1, 𝑡𝑘 ) =⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(⌊𝑡1/𝑤⌋→ 𝑏𝑘𝑠 , ⌊𝑡𝑘/𝑤⌋→ 𝑏𝑘𝑒 ) if (𝑖1 = 1) ∧ (𝑖𝑘 = 𝑛)
(⌊𝑡𝑘/𝑤⌋ − 1→ 𝑏𝑘𝑠 , ⌊𝑡𝑘/𝑤⌋→ 𝑏𝑘𝑒 ) else if 𝑖𝑘 = 𝑛

(⌊𝑡1/𝑤⌋→ 𝑏𝑘𝑠 , ⌊𝑡1/𝑤⌋ + 1→ 𝑏𝑘𝑒 ) else if 𝑖1 = 1
(⌊𝑡𝑘/𝑤⌋ − 1→ 𝑏𝑘𝑠 , ⌊𝑡1/𝑤⌋ + 1→ 𝑏𝑘𝑒 ) else

Similar to the basic prefilter (Definition 3.7 and Proposition 3.2),
any row in a match must also be part of a bucketized prefilter, i.e.,
𝑀𝑅(𝑄, 𝐵𝑋 ) = 𝑀𝑅(𝑄,𝑇 ). See our technical report [16] for the proof.
Different from the basic prefilter, a bucketized prefilter accepts input
table with duplicates. This is because 𝛿 is applied on the buckets
𝑏𝑘 and each input table’s row belongs to one bucket, joining the
input table with distinct buckets does not introduce new duplicate
rows. Thus, the duplicate rows in the input table is preserved as
they were never removed.

We can follow the same procedure in Section 3.1.2 to construct
a bucketized prefilter for a general pattern Q, i.e., ∪𝑚

𝑗=1𝐵𝑋 𝑗
.

Figure 6 gives an example in SQL. The input_bucketized ex-
pression assigns the computed column bk using Definition 3.8. The
ranges expression is a union of two equality Joins, one for each
part of the bucket condition’s OR. By generating equality Joins,
we make it possible for the host system to execute this plan using
efficient algorithms such as hash Join [21] rather than a nested
loop Join. The buckets expression produces the set of buckets
from the ranges produced earlier. Seq is commonly available in
many relational systems such as Trino (sequence) and PostgreSQL
(generate_series) and easy to add if needed6. The prefilter ex-
pression produces the set or rows for MATCH_RECOGNIZE by joining
the bk column of the input with buckets.

Bucketized prefilter uses “lower-resolution” ranges on buckets so
it produces more rows, but it is a small price for significantly faster
Join algorithms. Indeed, the previous rewrite (Figure 5) clocked 19s
in SQL Server with columnar storage format, while this rewrite
finished in 2s under the same setting.

3.3 Rule Implementation
Given a MATCH_RECOGNIZE query, the rewrite follows these steps:
(1) Extract symbol sets, terminate if no symbol set was found.
(2) Extract independent, dependent, sequential, window, and bucket

conditions, terminate if Definitions 3.7 and 3.10 are infeasible.
(3) For each symbol set, generate a candidate plan (Figure 7).
(4) Use cost model to select a plan (Section 4).
4𝛿 is a duplicate-elimination operator [19].
5Because 𝑆𝑒𝑞 (𝑏𝑘𝑠 , 𝑏𝑘𝑒 ) takes a tuple (𝑏𝑘𝑠 , 𝑏𝑘𝑒 ) from the other side of the cross-
product Join, the “×” in Definition 3.10 is implemented as a lateral Join.
6Note that any sequence is at most length 3 due to 𝑔 (𝑡1, 𝑡𝑘 ) in Definition 3.10, so the
cost of generating it is minimal. It is also possible to use UNION instead.

WITH input_bucketized AS (
SELECT *, cast(datetime / '30' MINIUTE AS bigint) AS bk
FROM Crimes

), ranges AS (
SELECT R.bk as bk_s, M.bk as bk_e
FROM input_partitioned AS R, input_partitioned AS M
WHERE R.bk = M.bk /* rest same as before */
UNION
SELECT R.bk as bk_s, M.bk as bk_e
FROM input_bucketized AS R, input_bucketized AS M
WHERE R.bk + 1 = M.bk /* rest same as before */

), buckets AS (
SELECT DISTINCT bk FROM ranges
CROSS JOIN Seq(bk_s, bk_e) AS t(bk)

), prefilter AS (
SELECT i.* FROM input_partitioned AS i, buckets AS b
WHERE i.bk = b.bk

) SELECT * FROM prefilter MATCH_RECOGNIZE (/* same as before */);

Figure 6: A rewrite of the query in Figure 1 using symbol set
{R, M} using bucketized prefilter.

Figure 7: A candidate plan generated by the rewrite rule using
bucketized prefilter given a symbol set.

As shown in Figure 7, a candidate plan using bucketized prefilter
has two major components: the prefilter and the MATCH_RECOGNIZE
node. The prefilter has two sub-components: (a) bucket generation,
which includes the Joins to identify ranges that contain all matches
followed by flattening the ranges to obtain the buckets, and (b)
filtering, which joins the input table with the buckets to obtain
the prefiltered rows. For flattening ranges in bucket generation,
we create a lateral Join followed by a distinct aggregation node as
exemplified by Figure 6.

When the input table follows a row-oriented layout and has a
clustered index on the ORDER BY key of the query, we use basic pre-
filter, simply by removing the fattening step and replacing buckets
with ranges in Figure 7.

3.4 Rule Applicability
A basic prefilter applies when the input table rows are made dis-
tinct and the dependent conditions in the query pattern are self-
contained (Definition 3.7). To make the input rows distinct, one
simple way is to add an auto-increment ID column to the input
table. Our technical report [16] describes a more efficient solution
to handle duplicates utilizing windows functions.

A bucketized prefilter accepts duplicate rows but requires a pat-
tern window condition in addition to self-contained dependent
conditions (Definition 3.10). Existing research work [33] assumed
pattern window, and both Oracle’s [42] and Apache Flink’s [6]
MATCH_RECOGNIZE syntax has a WITHIN clause for specifying a pat-
tern window.
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Intuitively, the prefilter-based rewrite is useful when there exists
selective symbols or selective combinations of symbols, and less
useful when there are too many alternations in the query pattern.
We rely on the optimizer to decide whether to trigger the rewrite
based on estimated cost, and the optimizer is integrated with our
cost model to obtain a more accurate estimation as detailed in
Section 4 below.

4 SYMBOL SELECTION
In this section, we present our cost-based approach to select symbols
for creating prefilter. We first detail the cost models for each stage,
i.e., prefilter and MATCH_RECOGNIZE (Section 3.3), followed by how
we consolidate them into one unified cost model. Even though a
bucketized prefilter does not rely on indexes and tends to have less
pruning power than a corresponding basic prefilter, we model a
basic prefilter’s cost “pessimistically” under the assumption of it
being a bucketized prefilter to be more confident that a rewrite,
when triggered, brings performance improvement. We focus on the
CPU cost, since under the bucketized prefilter scenario, the I/O cost
is dominated by scanning the input table in Filtering step and is
the same for all symbol sets.

4.1 Cost Model for the Prefilter
We focus on the cost model of 𝐵𝑋 for a special pattern 𝑄 . For a
general pattern Q, we can calculate the cost of ∪𝑚

𝑗=1𝐵𝑋 𝑗
as the

summation of each 𝐵𝑋 𝑗
’s cost. As illustrated in Figure 7, a bucke-

tized prefilter consists of two steps: (1) Bucket Generation; and (2)
Filtering. The prefilter’s CPU cost is a sum of the two steps’ costs.

𝐶prefilter = 𝐶bucket generation +𝐶filtering (1)

In the cost model, each Join operator’s CPU cost is the sum of
the input and output cardinalities multiplied by respective record
sizes, so accurate cardinality estimation is crucial.

We found that the approach of recursively applying existing
operator-level cardinality estimators [36] in each step cannot cor-
rectly differentiate the pruning power of candidate symbol sets.
Figure 8a illustrates SQLServer’s estimated cardinality of prefilter
output on a synthetic dataset (y-axis), compared with the true car-
dinality (x-axis). The detailed setting can be found in our technical
report [16]. We found that SQLServer tends to overestimate the
prefilter cardinalities by a large margin. We have also tried the car-
dinality estimate in Trino and PostgreSQL, but all provide unsatis-
factory estimate due to the challenges in estimating SQL constructs
like UNNEST and DISTINCT: Trino does not provide an estimate
since it is lacking estimators for such SQL construct; PostgreSQL
provides the same estimate for all candidate symbol sets due to its
constant estimator for DISTINCT, i.e., 200. Given this, we employ
a specialized cardinality estimator that incorporates the unique
semantic of prefilter. As shown in Figure 8a, in general our esti-
mated cardinality (blue dots) increases as the increase of the true
cardinality. Quantitatively, our estimator’s median Q-Error [15],
i.e., max( 𝑒𝑠𝑡𝑡𝑟𝑢𝑒 ,

𝑡𝑟𝑢𝑒
𝑒𝑠𝑡 ), is 1.93 while SQLServer’s is 8.46.

4.1.1 Bucket Generation. Bucket Generation takes a table 𝑇 with
buckets computed following Definition 3.8 and a symbol set 𝑋 =

[𝑠𝑖1 , 𝑠𝑖2 , .., 𝑠𝑖𝑘 ] as the inputs, and outputs a set of buckets where pat-
tern matches might occur. Our goal here is to estimate the number

of buckets in the output. First, assuming even distribution of rows
over the buckets, we estimate the number of buckets with rows
satisfying each symbol 𝑠𝑖 𝑗 ’s independent conditions 𝐶𝑠𝑖 𝑗 :

|𝐵𝜎𝐶𝑠𝑖 𝑗

| = (1 − (1 − 1
𝛽
)
|𝜎𝑐𝑠𝑖 𝑗

(𝑇 ) |
) · 𝛽 (2)

where 𝛽 refers to the total number of buckets and is estimated as
𝛽 = 𝑡 .𝑚𝑎𝑥−𝑡 .𝑚𝑖𝑛

𝑤 ; 𝑡 .𝑚𝑎𝑥 and 𝑡 .𝑚𝑖𝑛 are maximum and minimum of
𝑡 . By assuming independence of the independent conditions, we
then estimate the number of buckets each satisfies all independent
conditions 𝐶𝑠𝑖1 ...𝐶𝑠𝑖𝑘 – the intersection:

|𝐵𝜎𝐶𝑠𝑖1 ...𝐶𝑠𝑖𝑘

| = 𝛽 · Π𝑘
𝑗=1

|𝐵𝜎𝐶𝑠𝑖 𝑗

|

𝛽
(3)

Lastly, we estimate the number of buckets that satisfy both inde-
pendent and dependent conditions of all symbols in 𝑋 – the output
of Bucket Generation:

|𝐵𝜎𝐶𝑋
| = (1 − (1 − 𝛿 ) (

|𝑇 |
𝛽
)𝑘 ) · |𝐵𝜎𝐶𝑠𝑖1 ...𝐶𝑠𝑖𝑘

| (4)

where 𝛿 =
|𝜎𝐶𝑋

(⋈︁𝑇 ) |
Π𝑘

𝑗=1 |𝜎𝐶𝑠𝑖 𝑗
(𝑇 ) | represents the selectivity of all dependent

conditions, and |𝜎𝐶𝑋
(⋈︁ 𝑇 ) | the estimate of Join cardinality pro-

duced by the host system. (1 − 𝛿) (
|𝑇 |
𝛽
)𝑘 is the probability that no

row combination in a bucket satisfies all dependent conditions.
What is unique about this cardinality estimator is that it consid-

ers the Joins and Flatten as a single step without analyzing the many
relational operators involved. This enables a more accurate cardinal-
ity estimate that is inline with the semantic of Bucket Generation.
With the cardinality we calculate the CPU cost estimate:

𝐶bucket generation =

𝑘∑︂
𝑗=1
|𝑟𝑠𝑖 𝑗 | · |𝜎𝐶𝑠𝑖 𝑗

(𝑇 ) |

+𝐶join ( |𝜎𝐶𝑠𝑖1
(𝑇 ) |, .., |𝜎𝐶𝑠𝑖𝑘

(𝑇 ) |, |𝜎𝐶𝑋
(⋈︁ 𝑇 ) | )

+ |𝑟bucket | · |𝐵𝜎𝐶𝑋
|

(5)

where𝐶join is the minimum join CPU cost estimate given the input
and output cardinalities; |𝑟𝑠𝑖 𝑗 | is the byte size of a projected row
matching with symbol 𝑠𝑖 𝑗 ; |𝑟bucket | is the byte size of a bucket row.

4.1.2 Filtering. Filtering takes input a set of buckets output by
Bucket Generation and joins them with the original input table to
obtain the prefiltered rows as the output. Because each bucket from
Bucket Generation is unique and corresponds to a temporal range
in the input table, we can estimate the number of prefiltered rows
as |𝐵𝜎𝐶𝑋

| · |𝑇 |
𝛽

assuming uniform distribution of these buckets. The
CPU cost estimate is calculated as:

𝐶filtering = |𝑟bucket | · |𝐵𝜎𝐶𝑋
| + |𝑟 | · |𝑇 | + |𝑟 | · |𝐵𝜎𝐶𝑋

| · |𝑇 |
𝛽

(6)

where |𝑟 | is the byte size of a projected row with attributes used in
MATCH_RECOGNIZE.

4.1.3 Required Stat. To make system integration simpler, these es-
timators only require a few common statistics. For each column: (1)
the maximum and minimum (for 𝛽); (2) distinct count or histogram
(for |𝜎𝐶𝑠𝑖 𝑗

(𝑇 ) | and |𝜎𝐶𝑋
(⋈︁ 𝑇 ) |), (3) null fraction and (4) byte size

for cost estimate; and for each table the total number of rows.
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Figure 8: Cost Modeling

4.2 Cost Model for MATCH_RECOGNIZE
The second piece of the puzzle to complete the cost model of the
rewrite is a cost model for MATCH_RECOGNIZE. Trino has a physical
operator for MATCH_RECOGNIZE but it has no cost model. In the
index-accelerated MATCH_RECOGNIZE approach [33], cost is modeled
as a linear function of input cardinality with a fixed parameter. This
model counters our observation that different query patterns have
vastly different execution times. For instance, pattern (R Z* B
Z* M) in Figure 1 takes 60s, while (R) only takes 5s in Trino. We
propose to model the CPU cost of MATCH_RECOGNIZE using not only
input cardinality but also the query pattern (i.e., NFA structure).

Algorithm 1: NFA Matching
input :NFA, relation R sorted by datetime
output :All matches

1 matches← [] ; partial_matches← [(Start,∅)] ;
2 for r ∈ T do
3 next_partial_matches← [(Start,∅)] ;
4 for pm ∈ partial_matches do
5 for e ∈ pm.state.out_edges do
6 if e.transit_func(r, pm.info) then
7 state← 𝑒.out_node ;
8 info← Update(pm.info) ;
9 next_partial_matches.Add((state,info)) ;

10 if state.out_edges == ∅ then
11 matches.Add(info) ;

12 partial_matches← next_partial_matches

13 return matches ;

4.2.1 Cost Model Analysis. MATCH_RECOGNIZE is implemented us-
ing NFA. Algorithm 1 illustrates a simplified matching process
with NFA. partial_matches in line 1 maintains a list of partial
matches available so far and is updated after processing each new
row (line 9 and 12). Each partial match pm consists of two main
components: (1) current state in NFA denoted as pm.state; (2) past
matching information, denoted as pm.info. Depending on the de-
tailed implementation, different matching information is stored.
For instance, Trino keeps a full sequence of symbol names that this
partial match 𝑝𝑚 has ever matched; while AFA [9] keeps only some
necessary matching information with a predefined schema. Initially,

partial_matches contains one dummy partial match with Start
state and empty past matching information. Next, let us see how
the matching procedure works (line 2-12). Rows from the input
relation are consumed in ascending order of t. When a new row
comes in (line 2), for each partial match pm in partial_matches
and each out-edge of its state pm.state, we evaluate the transit
function (line 6). If the transit function returns true, a new partial
match with updated state and info (line 7-8) is created and in-
serted into partial_matches for the next iteration’s consumption
(line 9). Line 10-11 updates the matching results when the partial
match pm has reached any finish state with no out-going edges.

The transit function (line 6) is evaluated for every iteration look-
ing up for partial matches to extend or terminate. It is reasonable to
model the CPU cost of MATCH_RECOGNIZE as the total cost of transit
function evaluations. We use the row size, which is calculated as the
total byte size of participating columns, as a proxy for estimating
the unit CPU cost of transit function: 𝐶MATCH_RECOGNIZE = 𝛾 · |𝑟 |,
where 𝛾 is the total number of transit function evaluations and |𝑟 |
is the row size. We experimentally validate this cost function on
a synthetic dataset as shown in Figure 8b, where x-axis denotes
𝐶MATCH_RECOGNIZE and y-axis is the CPU time for MATCH_RECOGNIZE
with single thread. The detailed setting can be found in our techni-
cal report [16]. In both systems, i.e., Trino + Hive and SQLServer
+ Col as detailed in Section 5.1, 𝐶𝑃𝑈MATCH_RECOGNIZE is generally
linear to 𝐶MATCH_RECOGNIZE with high 𝑅2 score. However, the linear
coefficient differs from system to system.

4.2.2 Estimating the Number of Transit Function Evaluations (𝛾 ) in
NFA. Since we have expressed the cost of MATCH_RECOGNIZE as the
cost of transit function evaluations, our task becomes estimating
the number of transit calls in NFA, i.e., 𝛾 . Note that 𝛾 depends on
both the data and query pattern. See examples in [16].

As described in Section 4.1.3, query optimizer relies on statistics
on base table to estimate intermediate statistics for each operator
and their cost. So we employ existing base profiles for estimating 𝛾 .
Since 𝛾 also depends on the query pattern, our approach simulates
the NFA matching process with base statistical profiles as follow:
(1) Given base profiles, estimate the transit probabilities between

NFA states, denoted as 𝑝 .
(2) Given transit probabilities 𝑝 , simulate the matching process for

𝜓 iterations and count the number of transit functions evalu-
ated, denoted as 𝛾𝜓 .

(3) Given 𝛾𝜓 and𝜓 , estimate 𝛾 .
The main challenge lies in step (1). In particular, window condi-

tion in Definition 3.5 is highly correlated with sequential conditions
in Definition 3.4. Naively considering window conditions in esti-
mating state transition probabilities is error-prone, as sequential
conditions have already been encoded in NFA. To tackle this, we
propose a window-based simulation in step (2) to take care of win-
dow conditions, so we can safely ignore window conditions when
calculating transit probabilities in step (1). See details below.
Step (1). we apply Join selectivity estimation to estimate the state
transition probability between two states. Each state (or node) in
NFA corresponds to a symbol 𝑠𝑖 ∈ S or some utility state like
𝑠𝑠𝑡𝑎𝑟𝑡 and 𝑠𝑠𝑝𝑙𝑖𝑡 . We traverse the NFA state transition graph in a
breath-first manner: for each edge 𝑒 = (𝑢, 𝑣), we estimate 𝑝𝑒 as the
selectivity of 𝑢 ⋈︁ 𝑣 , and update 𝑣 ’s statistical profile as the output
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relation’s profile. Mathematically, we have

𝑝𝑒 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if 𝑣 = 𝑠𝑠𝑝𝑙𝑖𝑡

Selectivity(𝜎𝐶𝑣
) elif 𝑢 = 𝑠𝑠𝑡𝑎𝑟𝑡

Selectivity(𝑢 ⋈︁𝐶𝑢𝑣
(𝜎𝐶𝑣
(𝑣))) else

where the Selectivity is calculated using existing estimators for
selection (𝜎) and Join (⋈︁).
Step (2). with transit probability 𝑝 from Step (1), we can now
introduce our window-based simulation. Note that the simulation
process does not use actual data, rather, it evaluates the transit
functions randomly according to the probabilities.

To fulfill the window constraint, we fix a starting row and simu-
late the matching process within its time window. In other words,
the simulation is performed within one sliding window. Specifically,
we first translate the time window constraint, i.e., 𝐵.𝑡 −𝐴.𝑡 ≤ 𝑤 in
Definition 3.5, into row window constraint, i.e., 𝐵.𝑟𝑖𝑑 −𝐴.𝑟𝑖𝑑 ≤ 𝜓
where 𝑟𝑖𝑑 refers to row id in ascending order of 𝑡 and we call 𝜓
row window size. Row window size 𝜓 is estimated as |𝑇 | ·𝑤

t.max−t.min
by assuming records are evenly spaced in domain 𝑡 . Having ob-
tained 𝑝𝑒 for each edge in NFA and the row window size𝜓 , we can
then conduct NFA simulation starting from row 1 to row 𝜓 . The
simulation is similar to Algorithm 1 but with a few modifications:
(1) partial_matches (and next_partial_matches) maintains the
number of partial matches at each state without distinguishing their
past matching information at each state; (2) instead of iterating over
all records in𝑇 (line 2), our simulation is conducted for𝜓 iterations;
(3) next_partial_matches is initialized as empty in line 3 since
the starting row is fixed in our window-based simulation; (4) with-
out checking the transit function on each row (line 6), we always
add (state, 𝑝𝑒 ) to next_partial_matches (line 9); (5) we count
the number of times we hit line 6 in variable 𝛾𝜓 . An example can
be found in our technical report [16].
Step (3). 𝛾𝜓 calculates the number of transit function evaluated
when matching from a fixed starting row. In total, there are |𝑇 | slid-
ingwindows starting at each record. Thus, we extrapolate𝛾=𝛾𝜓×|𝑇 |,
where |𝑇 | is the total number of records in 𝑇 .

4.3 Rewrite Cost Model and Calibration
We use a linear model for the total CPU cost of the rewrite combin-
ing the cost models of the prefilter and MATCH_RECOGNIZE:

𝐶rewrite = 𝐶prefilter + 𝜔 ·𝐶MATCH_RECOGNIZE (7)

where 𝜔 is a scale calibration parameter depending on the host
system and platform. 𝜔 is needed because the two cost models are
developed using different estimators.

We use a bootstrapping calibration process to estimate 𝜔 for
a new environment. First, for prefilter stage, using a synthetic
table and a query, we measure the execution CPU time of a num-
ber of rewrites by varying the symbol sets and estimate the costs
based on Section 4.1. We then fit a linear model, 𝐶𝑃𝑈prefilter =

𝜔prefilter ·𝐶prefilter, on the CPU time and the estimated costs. Then,
for MATCH_RECOGNIZE stage, we run MATCH_RECOGNIZE on the ma-
terialized results from the prefilter stage, measure the CPU time and
estimated costs based on Section 4.2. Similarly, fit another linear
model 𝐶𝑃𝑈MATCH_RECOGNIZE = 𝜔MATCH_RECOGNIZE · 𝐶MATCH_RECOGNIZE.

Table 1: Query patterns for the Crimes dataset.

Query Patterns Note

(A Z* B Z* C)
Three crime reports optionally separated
by undefined reports Z

(A B C D E F G) 7 consecutive and defined crime reports

(A B+ C D+ E F+)
At least 6 consecutive and defined crime
reports with possible repeats for B, D and F

(A (B+ C)+ D)
Consecutive defined crime reports with a
repeating sub-sequence

((A|B) (C|D))
Two consecutive crime reports with two
alternative definitions for each report

(A Z* (B+|C+) Z* D)
Defined first and last; two alternatives for a
repeating sub-sequence

Finally, we use 𝜔 =
𝜔MATCH_RECOGNIZE

𝜔prefilter
to bring both cost models into

the same scale. 𝜔 is approximately 5 in both Trino and SQLServer.

5 EXPERIMENTS
In this section we present an empirical evaluation of our approach.
The end-to-end assessment of our rewrite rule is presented in Sec-
tion 5.2. An evaluation of our cost model is presented in Section 5.3.
Comparisons with existing systems are presented in Section 5.4.

5.1 Setup
In this section we present the details of our experimental setup.
Dataset We used the Crimes datasets from the existing work on
index-accelerated MATCH_RECOGNIZE [33]. Crimes records crimes
in Chicago from January 2001 to June 2020. There are 6.5M records,
each representing a crime report with 22 attributes, including [Pri-
mary_Type], [District], [Beat], [Longitude], and [Latitude].
Queries For the Crimes dataset, we tested 6 query patterns listed in
Table 1. Among those, (A Z* B Z* C) is from [33]. For each pattern,
we tested 3 pattern variable definitions (i.e., DEFINE clause):
1 WithinDistrict: every crimes report (except for Z) has a user-

specified [Primary_Type] and all of them within the same user-
specified [District]. Window size is 30 minutes as in [33].

2 PartByBeat: similar to WithinDistrict but instead of the con-
ditions on [District] it uses PARTITION BY [Beat], which specifies
the pattern to be found within every [Beat].

3 DyGeoBox: similar to WithinDistrict but the [District] condi-
tions are replaced by latitude-longitude proximity conditions
with respect to the first report (e.g., Figure 1). It is based on a
definition from [33] that uses a constant geo-boundary.

As such, we tested 18 query templates for the Crimes dataset.
MethodsWe evaluate the following methods:
• BaseNFA: the NFA-based MATCH_RECOGNIZE with pattern win-

dow conditions propagated to every symbol (Definition 3.1).
• JoinNFA: the rewrite using our Join-based prefilter selected by

the cost model. For basic prefilter, we use additional optimization
see our technical report [16].

• IndexNFA: the index-accelerated MATCH_RECOGNIZE [33]. It is
only applicable when there exist both primary clustered in-
dex and secondary indexes. In a nutshell, it (1) uses indexes
to first identify feasible ranges, then (2) executes the NFA-based
MATCH_RECOGNIZE on the feasible ranges.
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The rewrite rule and cost model was implemented as SQL rewrite
in Python, using statistics obtained from Trino (SHOW STATS) and
SQL Server (DBCC SHOW_STATISTICS).
Host Systems We tested the following host systems:
• Trino (v373): a distributed SQL query engine with a NFA-based

MATCH_RECOGNIZE implementation, i.e., BaseNFA. Trino connects
to separate storage via connectors. In this evaluation we mainly
use the Hive connector [7] to access data stored as ORC files on
Hadoop Distributed File System (HDFS) because this is the most
common setup for Trino.

• SQLServer (2019): a commercial database from Microsoft. Be-
cause SQLServer currently does not support MATCH_RECOGNIZE,
we implemented a NFA-based MATCH_RECOGNIZE (i.e., BaseNFA),
as a user-defined aggregate (UDA), using the augmented finite
automaton (AFA) [9]. We experimented with two physical lay-
outs supported by SQLServer: (1) SQLServerCol, column store
created using the “clustered columnstore index” [2], and (2)
SQLServerRow, row store with clustered indexes on timestamp
and secondary indexes on query columns.

• Flink (v1.14.4): a stream-processing engine with a SQL API
supporting MATCH_RECOGNIZE [6], implemented using BaseNFA.

Platform We conduct experiments on a Windows 11 PC with
Intel® CoreTM i7-9800X CPU @3.80GHz and 64GB memory at
2666MHz. All host systems are run with all available cores (8).

5.2 End-to-End Performance Improvement
We compared JoinNFA against the baselines hosted in Trino and
SQLServer.We evaluated 18 query templates for the Crimes dataset.
For each of the pattern definitions, we generated 100 query in-
stances by uniformly sampling [District] and [Primary_Type], while
skipping [Primary_Type] with less than 10k reports to avoid empty
matches. For DyGeoBox, the longitudinal difference between a spec-
ified report and the first report in the same match must be less than
0.025 based on the original definition [33]. Same for latitude.

5.2.1 Performance across host systems. We first look at the over-
all speedups of JoinNFA over BaseNFA in the three host systems
we tested, each covering 1,800 query instances across 6 patterns
and 3 pattern variable definitions. Figure 9a is a box-plot7 of our
results. Out of the three, Trino saw the lowest median speedup,
5.4× with 95% of query instances seeing speedup better than 1.4×.
SQLServerCol hit the highest median speedup of 57.5× and the
highest 5th percentile of 3.2×. Both of them use column-oriented
storage which allows the use of bucketized prefilter (Section 3.2).
The hash join between buckets and the input table in the bucketized
prefilter has relatively stable performance as it depends primarily
on the size of the input table.

SQLServerRow experienced the highest 95th percentile speedup
of 184.8× and a second highest 5th percentile of 2.2×. SQLServerRow
uses the basic prefilter (Section 3.1) so the prefilter’s output rows are
produced by nested loop join between the time ranges and the input
table using the index on timestamp, and the resulting performance

7Each box shows the 25th percentile (lower border), median (middle line), and 75th
percentile (upper border), with the median annotated at the top; lower and upper
whiskers extend to the 5th and 95th percentiles respectively; the remaining are dots.
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Figure 9: Performance by host systems

is primarily influenced by the number of time ranges produced.
Hence, we see a wider distribution of speedups in SQLServerRow.

Comparing host systems, the prefiltering strategy yields more
performance gain when integrated with host systems that are faster
at executing joins, such as SQLServer. In addition, column stores’
performance is generally more stable.

5.2.2 Performance across different patterns. We report the speedups
of JoinNFA across different patterns and pattern variable defini-
tions, and results are illustrated in Figure 10.

Grouping the results by different patterns, as shown in Figure 10a,
10c and 10e, it is clear that the median speedups are mostly in the
same order of magnitude across patterns. The notable exceptions
are the pattern ((A|B) (C|D)), which has the lowest speedup in
all host systems, and the pattern (A Z* (B+|C+) Z* D) has the
second lowest speedup in all. What they have in common is that
both contain alternation, which introduces unions in the prefilter
(Section 3.1.2). Having unions in the prefilter leads to larger join
cost and larger input to the MATCH_RECOGNIZE step, thus lowering
the eventual speedup.

Grouping the results by different pattern definitions, as in Fig-
ure 10b, 10d and 10f, we get a different perspective. Across all host
systems, WithinDistrict has the highest median speedup, up to
126.5×. This is because the independent conditions on [District]
combined with those on [Primary_Type] greatly reduced the selec-
tivity of input rows to the prefilter, making the join much cheaper
to execute. PartByBeat does not have the conditions on [District],
making the input to the prefilter larger. We note that in Trino, since
the native implementation of MATCH_RECOGNIZE already executes
partitions defined by PARTITION BY in parallel, the speedup is more
limited as the benefit of parallel join execution is less significant.
DyGeoBox has the lowest speedup in SQLServer. This is because
not only it does not have very selective independent conditions,
the dependent conditions among participating rows in a match are
purely inequality conditions. For Trino and SQLServerCol, they
can still rely on the equality conditions on buckets in their bucke-
tized prefilters to have efficient joins. For SQLServerRow however,
because there is no equality join condition, the performance of the
joins in the prefilter can suffer, thus DyGeoBox’s median speedup is
a magnitude lower than the other two definitions.

5.2.3 Impact of pattern length and window size. Nowwe investigate
JoinNFA for different pattern lengths and window sizes.

To construct variable pattern lengths, we took the pattern (A Z*
B Z* C) from [33], and varied its length by changing the number
of defined symbols (i.e., symbols other than Z) from 2 to 6, as going
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Figure 10: JoinNFA speedups grouped by 6 patterns and 3
pattern definitions

beyond 6 all queries have no match. We also took the alternation
pattern ((A|B) (C|D)), and varied its length by changing the
number of rows in a match, e.g., (A|B) matches exactly one row,
((A|B) (C|D))matches exactly two rows, and so on. We tested the
patterns using WithinDistrict, 30-minute window, and for every
length, we generated 100 query instances using the random process
discussed earlier. We report the median query times in Figure 11. In
summary, JoinNFAmaintains its higher performance over BaseNFA
as pattern length increases.

The results show an increasing trend for the query time of
BaseNFA with respect to increasing pattern length. This is because
for the two patterns we tested, the longer the pattern the more
possible partial matching states that need to be processed by an
NFA-based MATCH_RECOGNIZE operator, thus taking more time.

For the (A Z* B Z* C) family of patterns, the median time of
JoinNFA is approximately constant for all lengths. This is because
the prefilter uses at most 3 symbols, so the effect of increasing
pattern length has no impact on its execution time. For the ((A|B)
(C|D)) family of patterns, the median time of JoinNFA decreases
until the length reaches 3, and then increases. When the length
increases from 1 to 3, the prefilter becomes more selective because
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terns defined using WithinDistrict (Trino)
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Figure 12:Median query time versus window size for patterns
defined using WithinDistrict (Trino)

there are more symbols in the pattern providing more constraints
– conditions on two rows is more strict than on one. However, at
length 3 and above, selecting an optimal symbol set combination
becomes very difficult: the possible combinations to construct the
union prefilter is 78 (7 possible symbol sets per path in the NFA
graph and 8 possible paths in total). The optimizer stops at 100
distinct combinations (using ∼25ms), thus it is unlikely to find
the optimal so the performance regresses slightly, although still
maintaining at least 3.7× speedup.

Let us turn to the effect of window size. For both patterns in
their original form, we varied the window size from 1 to 24 hours
to “stress test” our approach. For (A Z* B Z* C), the median
query time increases from 5.4s to 126s for BaseNFA as window
size increases from 1 to 24 hour, due to more matches and partial
matching states allowed by larger windows. In comparison, the
increase in the median query time for JoinNFA is much less – from
0.7s to 18.5s, due to the prefilter aggressively pruning the input to
the NFA-based operator. A different picture is shown for ((A|B)
(C|D)): BaseNFA’s median query time barely moves but JoinNFA’s
increases and converges to the BaseNFA’s. Window size does not
affect the NFA-based operator’s execution because ((A|B) (C|D))
matches two consecutive rows so the number of partial matches
during execution is bounded at two – a partial match of either an
A or a B. For JoinNFA, the median query time increases because
prefilter cannot enforce the consecutive condition (e.g., A or B is
followed directly by C or D). The median query time of JoinNFA
gradually converges to that of BaseNFA because the estimated cost
of rewrite becomes higher than no rewrite, and JoinNFA’s optimizer
chooses to avoid rewrite and revert to BaseNFA.
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Table 2: Median percentage reduction in speedup from the
true optimal plan for (A Z* B Z* C).

Pattern Definition Trino SQLServerCol SQLServerRow

WithinDistrict -21% -13% -0.0%
PartByBeat -27% -0.0% -5.3%
DyGeoBox -0.0% -0.0% -0.0%

5.3 Cost Model Evaluation
So far we have discussed the end-to-end speedup given by JoinNFA
integrated with our cost model. In this section, we dive deeper
to the effectiveness of our cost model when it comes to choosing
symbol sets for rewrite, and to avoiding regression.

5.3.1 Speedup Analysis. First, to understand the effectiveness of
our cost model when it comes to choosing a good symbol set, for
every query instance, we compared the results of JoinNFA which
selects a symbol set for rewrite (or no rewrite) using our cost model,
with that of the true optimal plan selected based on the actual exe-
cution times of all possible rewrites including no rewrite. We used
only pattern (A Z* B Z* C) because finding the true optimal plan
takes excessive amount of time for some other patterns. For each
query instance, we calculated the percentage reduction in speedup
from the optimal. Table 2 lists the medians of percentage reductions.
The median reduction in speedup is at most -21% in Trino; at most
-13% in SQLServerCol, and at most -5.3% in SQLServerRow. This
tells us that the optimizer was not always picking the best prefilter.
Nevertheless, the optimizer still displays respectable utility, e.g., at
-27% median reduction for WithinDistrict in Trino, the median
speedup for (A Z* B Z* C) is 2.3×, down from 3.8× achieved by the
optimal prefilter. Moreover, for DyGeoBox, all of the query instances
observed 0% reduction – the optimal prefilter were picked.

5.3.2 Regression Analysis. A regression happens when JoinNFA
is slower than BaseNFA– the chosen rewritten plan ends up being
slower than no rewrite. Figure 9b shows the slowdowns of queries
experiencing regression. Specifically, 7 and 12 out of 1,800 queries
respectively experienced regression for Trino and SQLServerCol,
and their largest slowdowns were 1.11× (from 7.3s to 8.2s) for Trino
and 1.15× (from 8.9s to 10.3s) for SQLServerCol. For SQLServerRow,
11 out of 1,800 queries experienced regressions but only 3 of them
saw greater than 1.2× slowdowns, and the largest slowdown were
1.3× (from 10.5s to 13.7s). In summary, the regressions are insignif-
icant comparing to the performance improvement.

5.4 Comparison with Existing Systems
To put our proposal in the context of existing work in speeding
up MATCH_RECOGNIZE, we compare with IndexNFA [33] and Flink.
For Crimes dataset we used pattern (A Z* B Z* C) from [33],
and their pattern definition WithinBeat (same as WithinDistrict
except specifying the [Beat] rather than [District] for each report).
This is in IndexNFA’s favor because beat is a smaller patrol unit
than district so an index on [Beat] has lower selectivity.

5.4.1 Comparison with IndexNFA. We compared JoinNFA with
IndexNFA [33] on SQLServerRow, since IndexNFA requires access
to data with a clustered index on timestamp and secondary indexes
for other query attributes. Specifically, we followed the original
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Figure 13: JoinNFA speedups over IndexNFA and Flink

work’s procedure [33] to run IndexNFA on databases: we first ran
IndexNFA on its original Java-based engine [3] to obtain ranges,
then joined the ranges to the input table on SQLServerRow, and
executed the NFA-based MATCH_RECOGNIZE on the resulting rows.
To be more favorable to IndexNFA, we only counted the time for
index selection and feasible range generation, and the time for
executing MATCH_RECOGNIZE on SQLServer. We omitted the time
for reading indexes and the time for importing ranges to SQLServer.

Figure 13a shows the speedups: JoinNFA outperformed IndexNFA
up to 102× with a median of 2.4×. Because JoinNFA can incorpo-
rate dependent conditions on query attributes such as longitude
and latitude while IndexNFA cannot, its prefilter has more prun-
ing power. Take DyGeoBox 1 as an example, the number of rows
after the prefilter in JoinNFA is 10× less than IndexNFA when both
selected symbol set (A, B, C). We used the original parameter sets
from [3] for WithinBeat 2. For WithinBeat 1, we kept the same
[beat] and switched the [Primary_Type] conditions of A and B in
WithinBeat 1, and we did the same to create two parameter sets
for each of WithinDistrict, which uses the parent district of the
beat, and DyGeoBox. IndexAccel does not support PARTITION BY
in MATCH_RECOGNIZE hence it cannot run PartByBeat.

5.4.2 Comparison with Flink. Because Flink is a streaming sys-
tem, it is not easy to integrate JoinNFA with it. For a fair compari-
son, we connected both Flink and Trino to a PostgreSQL database
with the benchmark tables stored in column store via the Citus
extension [1]. Figure 13b shows the speedups: JoinNFA on Trino
outperformed BaseNFA on Flink with a median speed up of 6.4×.

6 CONCLUSION
In this work we explored using a Join-based prefilter to accelerate
MATCH_RECOGNIZE in relational systems under historical analysis
setting. To realize this approach with minimal system integration
effort, we put forward 1) a logical plan rewrite rule to implement
the prefilter using symbols and conditions extracted from the orig-
inal query, and 2) a cost model to choose a subset of symbols for
prefilter construction. In experiments we observed 5.4× to 57.5×me-
dian query time speedups over the NFA-based MATCH_RECOGNIZE
implementations on Trino (v373) and SQL Sever (2019), using a
benchmark of 1,800 query instances. It performed better than the
index-based prefilter [33] on their benchmarks when indexes were
available. In the future, we will investigate further speedup poten-
tial through operator-level parallelism.
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