
Anonymous Edge Representation for Inductive Anomaly
Detection in Dynamic Bipartite Graph

Lanting Fang
Southeast University and Purple

Mountain Laboratories
China

lantingf@outlook.com

Kaiyu Feng
Beijing Institute of Technology

China
fengky@bit.edu.cn

Jie Gui
Southeast University and Purple

Mountain Laboratories
China

guijie@seu.edu.cn

Shanshan Feng
Harbin Institute of Technology

(Shenzhen)
China

victor_fengss@foxmail.com

Aiqun Hu
Southeast University and Purple

Mountain Laboratories
China

aqhu@seu.edu.cn

ABSTRACT
The activities in many real-world applications, such as e-commerce
and online education, are usually modeled as a dynamic bipartite
graph that evolves over time. It is a critical task to detect anomalies
inductively in a dynamic bipartite graph. Previous approaches either
focus on detecting pre-defined types of anomalies or cannot handle
nodes that are unseen during the training stage. To address this
challenge, we propose an effective method to learn anonymous edge
representation (AER) that captures the characteristics of an edge
without using identity information. We further propose a model
named AER-AD to utilize AER to detect anomalies in dynamic
bipartite graphs in an inductive setting. Extensive experiments on
both real-life and synthetic datasets are conducted to illustrate that
AER-AD outperforms state-of-the-art baselines. In terms of AUC
and F1, AER-AD is able to achieve 8.38% and 14.98% higher results
than the best inductive representation baselines, and 6.99% and
19.59% than the best anomaly detection baselines.

PVLDB Reference Format:
Lanting Fang, Kaiyu Feng, Jie Gui, Shanshan Feng, and Aiqun Hu.
Anonymous Edge Representation for Inductive Anomaly Detection in
Dynamic Bipartite Graph. PVLDB, 16(5): 1154 - 1167, 2023.
doi:10.14778/3579075.3579088

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/fanglanting/AER.

1 INTRODUCTION
With the rapid development of online services, user activities in
many applications can be modeled as a dynamic bipartite graph,
where the nodes can be divided into source nodes and destination
nodes, and each edge connects a source node to a destination node.

Kaiyu Feng is the Corresponding Author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579088

New nodes and edges are inserted into the dynamic bipartite graph
over time. For instance, e-commerce can be modeled as a dynamic
bipartite graph, where consumers and items are the two sets of
nodes, and an edge represents a consumer buying an item. As
another example, student engagements in Massive Open Online
Courses (MOOCs) can also be modeled as a streaming bipartite
graph, where students and courses are the two sets of nodes and
an edge represents a student’s access behavior to a course.

As the dynamic bipartite graph serves as the basis for many im-
portant tasks like query and recommendation in online services, it
has become the focus of various attacks [9, 25, 34, 45]. It is a critical
task to detect anomalies to strengthen protection against attacks es-
pecially on dynamic graphs. In this paper, we focus on the inductive
anomaly detection problem in dynamic bipartite graphs. Specifi-
cally, given a dynamic bipartite graph, we aim to learn from partially
observed data and apply the learned model to predict whether a
newly observed edge is anomalous. The inductive anomaly detec-
tion problem is a daunting task due to the following challenges: (1)
The inductive setting indicates that new nodes that have not been
seen before would appear as the graph evolves. (2)Many graphs in
real world are associated with limited or even none attribute. (3)
There is no explicit definition of anomaly due to its flexible and
dynamic nature.

At first glance, it may seem that existing studies including learning-
based anomaly detectionmethods and graph neural networks (GNN)
can be adopted to address the inductive anomaly detection problem.
Unfortunately, this is not the case, as they cannot address the above
three challenges simultaneously. Specifically, a host of machine
learning based methods [12, 31, 43, 46, 55] assign a learnable vector
for each node in the dynamic graph to capture the time-evolving
patterns of the graph structure. These methods are not inductive,
because the learned model cannot handle new nodes that have not
been seen before. Therefore, they fail to address the first challenge.
Several GNN-based approaches [8, 15, 47] aggregate node/edge fea-
tures to learn edge representations so that they can handle unseen
nodes and conduct inductive anomaly detection. However, in order
to infer edge representations for anomaly detection, all of them are
highly dependent on node/edge attributes, which could be absent
in practice. Thus, they fail to tackle the second challenge. Many
existing anomaly detection methods detect pre-defined anomalous

1154

https://doi.org/10.14778/3579075.3579088
https://github.com/fanglanting/AER
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3579075.3579088
https://www.acm.org/publications/policies/artifact-review-and-badging-current

changes to the graph, such as sudden appearance of subgraphs [11],
burstiness of edges [6], hotspot nodes [50], prompt group change
[5], and sudden arriving of similar edge groups [4]. Though these
methods are capable of handling networks without attributes and
detect anomalies in an inductive setting, it requires us to know
which type of anomaly would occur a priori, which is impractical
in real life. As above existing approaches fail to address all three
challenges, it necessitates a new design of model that can detect
anomalies based on structure information of dynamic graphs in an
inductive setting.

In this paper, we propose a solution named Anonymous Edge
Representation-Anomaly Detection (AER-AD). Note that the term
“anonymous” means that we do not directly utilize the node identity
to encode an edge representation. Instead, we utilize the relation
between the edge and its local graph structure, which makes it
possible for us to infer the representation for a newly observed
edge, even if the node has not been seen before.

AER-AD has two important properties: (1) It uses local graph
structure to represent edges. This guarantees the inductive capabil-
ity. (2) It adopts a mask-based method to select the appropriate local
graph structure to preserve information for anomaly detection. This
guarantees the prediction accuracy. The prediction module predicts
whether the target edge (�̂�, 𝑣, 𝑡) is anomalous. It takes the AERs of
the past edges from �̂� and encodes them with gated recurrent unit.
We conduct extensive experiments on three real-life datasets and
two synthetic datasets. Our empirical evaluation illustrates that
the proposed solution outperforms the best inductive representa-
tion baselines by 14.98% and 8.38% in terms of F1 and AUC, and
outperforms the best anomaly detection baselines by 19.59% and
6.99%. We also show that the proposed solution is highly efficient.
It achieves high throughput and is robust to hyper-parameters.

The main contributions of this paper are summarized as:
• To the best of our knowledge, we are the first to study the

problem of inductive anomaly detection in both dynamic
graphs with and without attributes, which addresses the
limitation of existing anomaly detection methods.

• We design an effective method to learn anonymous edge
representation that capture the characteristics of an edge
without using its identity information while preserving
sufficient information to distinguish anomalous edges from
the normal ones.

• Based on the AER, we further design a model AER-AD to
capture the temporal and structural changes in dynamic bi-
partite graphs. AER-AD is highly efficient, which conduces
to online anomaly detection.

• The experiments demonstrate that AER-AD significantly
outperforms state-of-the-art methods, and is robust in per-
formance and computationally efficient.

2 RELATED WORK

Anomaly detection in dynamic graph. Many efforts have been
devoted to anomaly detection in dynamic graphs. In the following,
we briefly discuss their methodological foundations and related
limitations.

Matrix factorization methods [37, 39, 51] leverage the “lowrank”
property to capture the structural information of graphs. These

Table 1: AER-AD competitors: comparison of our proposed
AER-AD and existing methods for anomaly detection in dy-
namic graphs. ✓/× indicate that the methods are able/not
able to handle the property. * indicates some of this kind
of methods are able to handle the property and some not.
M/D/P represents matrix factorization methods [37, 39, 51],
ML represents machine learning based transductive anomaly
detection methods [12, 31, 43, 46, 55], DGR represents dy-
namic graph representation methods, and DGR-T represents
transductive DGR [21, 40, 56].

Anomaly Detection DGR

Property

M
/D

/P

M
L

A
EG

IS
[8
]

IG
RL

[3
]

D
G
R-
T

TG
AT

[4
7]

CA
W

[4
4]

G
ra
ph

sa
ge

[1
5]

A
ER

- A
D

Unknown anomalies × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Unseen nodes * × ✓ ✓ × ✓ ✓ ✓ ✓
Without attributes ✓ * × ✓ * × ✓ ✓ ✓
With attributes × * ✓ ✓ * ✓ ✓ ✓ ✓
Dynamic graph ✓ * × × ✓ ✓ ✓ × ✓

methods always require a high complexity and cannot provide a
timely detection. Distance-based methods [10, 26, 29, 49, 52, 53] pro-
pose time-evolving measures for nodes, edges or graph structures
and define anomaly as a surge of the change rates of the measures.
Probabilistic methods [1, 4, 23, 33, 42] rely on probabilistic models
to characterize the normal patterns of the temporal graph and de-
termine anomalies based on the pattern deviation from the models.
[17] focuses on detecting spot fraudsters in the presence of camou-
flage or hijacked accounts based on a density metric. [36] identifies
dense subtensors created within a short time. All these methods
rely on measures for pre-defined type of anomalies. In contrast, our
solution is capable of detecting unknown anomalies.

Recently, some machine learning methods [12, 31, 43, 46, 55]
propose to detect undefined anomalies by learning a vector rep-
resentation for each node in the graph. These methods are trans-
ductive and cannot handle unseen node. AEGIS [8] first studies the
problem of inductive anomaly detection in graphs by proposing a
graph differentiation network (GDN) to learn node representations
from arbitrary-order neighborhoods. This method heavily depends
on the node features and thus can only be used for graphs with
rich attributes. IGRL [3] applies existing inductive representations
to solve the anomaly detection problem. This method highly rely
on the quality of representation. In contrast, our proposed AER
represents an edge based on the graph structure , which makes it
capable of handling unseen nodes in both graphs with and without
attributes.

Dynamic graph representation. A host of work [27, 28, 30, 54]
has been proposed to learn representations for nodes in dynamic
graphs for various tasks. Most of them aggregate the sequence
of edges within consecutive time windows into network snap-
shots, and use machine learning models to encode the snapshots
[14, 16, 19, 32, 35]. However, these approaches need to predetermine
a time granularity for edge aggregation, which is difficult to learn

1155

structural dynamics in different time scales. Therefore, approaches
that directly work on edge streams have been proposed recently.
DyRep [40] proposes a two-time scale deep temporal point pro-
cess model to capture the information of two processes, namely
dynamics of the network and dynamics on the network. JODIE [21]
proposes a novel embedding technique to learn joint user and item
embeddings from sequential data for dynamic graphs. Dynamic-
Triad [56] studies on the triadic closure process to catch how open
triads evolve into closed triads. However, all of the above models
are not inductive as they assign a learnable vector to each node in
the dynamic graph.

Recently, some inductive representation methods such as TGAT
[47] propose to identify a node by aggregating features from its
neighborhood. However, in these methods, the over smoothing be-
tween connected nodes may lead to a reduction of distinguishable
information that can be preserved to support anomaly detection.
CAW [44] inductively represents temporal networks based on tem-
poral random walks. It adopts a novel anonymization strategy that
replaces node identities with the hitting counts of the nodes based
on a set of sampled walks to keep the method inductive. However,
CAW is inexpressive for characterizing the edge abnormality. As
each node on a random walk is encoded separately, CAW disre-
gards the relationship between a node’s interactions history and
the normal pattern. Such information plays an important role in
anomaly detection. Therefore, the performance of CAW is limited.

Table 1 compares AER-AD to existing methods.

3 PROBLEM FORMULATION
In this section, we formally introduce the inductive anomaly detec-
tion problem in dynamic bipartite graphs.

Definition 3.1 (Dynamic bipartite graph). Abipartite graph stream
is an unbounded time-evolving sequence of edges S = ⟨𝑒1, . . . , 𝑒𝑛⟩,
where each edge 𝑒𝑖 = (𝑢, 𝑣, 𝑡) indicates an interaction from a source
node 𝑢 to a destination node 𝑣 at time 𝑡 . The stream S forms a
dynamic bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸), where 𝑈 and 𝑉 are the sets
of source nodes and destination nodes, and 𝐸 is the set of edges. We
use 𝑓 (𝑢) ∈ R𝑑𝑛 and 𝑓 (𝑢, 𝑣, 𝑡) ∈ R𝑑𝑒 to denote the feature of a node
𝑢 and an edge (𝑢, 𝑣, 𝑡), respectively.

User activities in many real-life applications can be modeled as
a dynamic bipartite graph. For instance, we can model the transac-
tions in e-commerce as a dynamic bipartite graph, where the source
and the destination nodes are consumers and items, and an edge
(𝑢, 𝑣, 𝑡) represents that a consumer 𝑢 purchases an item 𝑣 at time 𝑡 .
As another example, the learning activities in Massive Open Online
Courses (MOOC) can also be modeled as a dynamic bipartite graph,
where an edge (𝑢, 𝑣, 𝑡) represents a student 𝑢’s access behavior to a
course at time 𝑡 .

Anomaly detection in dynamic bipartite graphs is critical for
many application scenarios. In e-commerce, we could identify and
prevent fraudulent transactions to protect consumers and busi-
nesses. In MOOC, we could predict students’ dropout to provide
early intervention. In the aforementioned examples, the destination
nodes are managed by enterprises and are unlikely to be anom-
alies. We focus on predicting whether a newly-arrived edge from a
source node in the stream is anomalous. In addition, as the dynamic
bipartite graph is evolving, new nodes and edges are inserted into

the graph. For example, new customers continuously sign up and
appear in the e-commence stream. It is necessary to handle unseen
nodes. Therefore, we investigate the inductive anomaly detection
problem in dynamic bipartite graphs.

Definition 3.2 (Inductive Anomaly Detection Problem). Consider
a dynamic bipartite graph 𝐺 (𝑈 ,𝑉 , 𝐸). Let 𝐺𝑡 = (𝑈𝑡 ,𝑉𝑡 , 𝐸𝑡) ⊆
𝐺 be a subgraph of 𝐺 which is observed for training and 𝐺 ′ =

(𝑈 ′,𝑉 ′, 𝐸 ′) ⊆ 𝐺 is a subgraph of 𝐺 which is newly observed for
testing. The inductive anomaly detection problem aims to learn
a model from 𝐺𝑡 and use the model to predict whether a newly
observed edge 𝑒 = (�̂�, 𝑡, 𝑡) ∈ 𝐸 ′ is anomalous.

4 INDUCTIVE ANOMALY DETECTION
In this section, we present the details of our proposed model named
AER-AD for inductive anomaly detection.

4.1 Overview
Challenges. Due to the evolution of the dynamic bipartite graph,
new nodes that are not seen before may appear. Therefore, it is
a major challenge for inductive anomaly detection to represent
the edges: The edge representation has to be independent from node
identity and preserve enough information so that we can distinguish
an anomalous edge from the normal ones even if the nodes are not
seen before. To handle unseen nodes, previous work [8, 47] aggre-
gates temporal neighborhood features to infer representation for
new nodes and edges. However, these methods rely on node/edge
features and cannot be generalized to graphs with no additional
features, which are very common in real life.

In this paper, we design an effective solution named Anonymous
Edge Representation-Anomaly Detection (AER-AD) for inductive
anomaly detection. Specifically, we design Anonymous Edge Rep-
resentation (AER), which captures the characteristics of an edge
without using the node identities. AER is the key to guarantee the
inductive capability of our solution.
Solution Overview. The architecture of the proposed solution
AER-AD is illustrated in Figure 1. Given the bipartite graph stream,
let (�̂�, 𝑣, 𝑡) be the recent edge that represents a source node �̂� inter-
acting with a destination node 𝑣 at time 𝑡 . AER-AD first encodes the
recent edges from �̂� through the representation module (Figure 1 A).
Specifically, since the node identity information cannot be utilized
due to the inductive setting, the edges are first anonymized based on
the relation between the edge and the local graph structure via edge
anonymization (Figure 1 A.1). The anonymization is conducted from
both the source and the destination nodes’ aspects, respectively.
The anonymized description of the edge is then passed to represen-
tation learning (Figure 1 A.2), which outputs the anonymous edge
representation (AER) of the edge. The AERs of the retrieved edges
from �̂� are fed into the prediction module (Figure 1 B) to predict
whether the target edge (�̂�, 𝑣, 𝑡) is anomalous.

4.2 Representation Module
The representation module is designed to generate anonymous
edge representations (AERs). The AERs are expected to be inde-
pendent from node identities and preserve sufficient information
to distinguish the anomalous edges from the normal ones. To this

1156

Figure 1: Illusion of the anomaly detection framework AER-AD. (A) Representation Module; (A.1) Edge Anonymization module;
(A.2) Representation Learning Module; (B) Prediction Module.

end, the representation module consists of two components: (1)
Edge Anonymization removes node identities and generates an
anonymized description of the edge. (2) Representation Learning
learns an anomaly-aware compact representation for each edge
from the anonymized description.

For the ease of presentation and consistency, we always use
𝑢 and 𝑣 to denote the source and destination nodes of the edge
whose AER we aim to learn. Before we present the design of the
representation module, we first introduce two definitions that will
be used later.

Definition 4.1 (Partners). Let (𝑢, 𝑣, 𝑡) whose AER we aim to learn.
The partners 𝑃𝑢,𝑣,𝑡 is the set of source nodes which have already
visited 𝑣 before time 𝑡 : 𝑃𝑢,𝑣,𝑡 = {𝑢𝑖 | (𝑢𝑖 , 𝑣, 𝑡𝑖) ∈ 𝐸 ∧ 𝑡𝑖 ≤ 𝑡 ∧ 𝑢𝑖 ≠ 𝑢}

In the remaining of this section, we use 𝑃 to denote the part-
ners for simplicity when the edge (𝑢, 𝑣, 𝑡) can be inferred from the
context.

Definition 4.2 (History). Let (𝑢, 𝑣, 𝑡) be the edge whose AER we
aim to learn, and 𝑃 be the partners. For each 𝑢𝑖 ∈ 𝑃 , its history
𝐻 (𝑢𝑖) is the sequence of destination nodes visited by𝑢𝑖 till𝑢𝑖 visited
𝑣 , in the descending order of time. 𝐻 (𝑢𝑖) = [𝑣, 𝑣1, . . . , 𝑣𝑙], where
∀𝑗 ∈ [1, 𝑙], (𝑢𝑖 , 𝑣 𝑗 , 𝑡 𝑗) ∈ 𝐸, 𝑡 𝑗 ≤ 𝑡 , and 𝑡𝑖+1 ≤ 𝑡𝑖 .

We use the following example to explain partners and their
histories.

Example 4.3. Consider the example in Figure 2, where we aim
to get the AER of (𝑢, 𝑣, 𝑡). The partners are 𝑃 = {𝑢1, 𝑢2}, as both
𝑢1 and 𝑢2 visited 𝑣 before time 𝑡 = 10. History is defined for 𝑢 and
the partners. The histories of 𝑢, 𝑢1 and 𝑢2 are shown in the figure.
Since 𝑢3 is not a partner, we do not consider the destination nodes
that 𝑢3 visited.

Next, we elaborate on the two components, namely edge anonymiza-
tion and representation learning in turn.

Figure 2: An example bipartite graph, where (𝑢, 𝑣, 10) is the
edge whose AER we aim to get.

4.2.1 Edge Anonymization. As new nodes may appear due to the
involvement of the dynamic bipartite graph, the inductive anomaly
detection model cannot utilize the identity information of the nodes
or edges. Edge anonymization module is thus designed to remove
node identities and generate an anonymized description of the
edge. The anonymized description keeps sufficient information
from which we can learn the anomaly-aware AER for the edge.

The high level idea is as follows: Given an edge (𝑢, 𝑣, 𝑡), we
remove the node identities by utilizing the relation between the
source/destination nodes and their local graph structures, respec-
tively. Such a relation gives the node a relative identity, which
preserves the characteristics of the edges and their correlations.
A question to be asked is: What local graph structure should we
consider in removing node identities? In fact, as source node and des-
tination node play different roles in the bipartite graph, their local
graph structures should be treated differently. We next elaborate
on how to choose the local graph structure and utilize the relation

1157

to anonymize node identities for source node and destination node
in turn.
Removing source node’s identity.Asmentioned above, wewould
like to utilize the relation between 𝑢 and its local graph structure to
remove the source node 𝑢’s identity. According to Definition 4.1, 𝑢
and the partners 𝑃 have interacted with 𝑣 . It is observed that nodes
sharing common neighbors in a bipartite graph are expected to ex-
hibit similar behaviors [24, 38]. Motivated by this, we may remove
the source node identity and generate an anonymized description
of 𝑢 based on the behaviors of 𝑢 and the partners 𝑃 . Intuitively,
the behavior of a source node is reflected in its history, i.e., the se-
quence of destination nodes that the source node has visited before.
Therefore, it is a natural idea to encode the histories of 𝑢 and the
partners 𝑃 and group them as the anonymized description of 𝑢.

A naive idea for encoding a history is as follows: We first assign
each destination node a unique id. The sequence of destination
node in the history is converted to a vector directly, where the 𝑖-th
dimension of the vector corresponds to the 𝑖-th node in the history.
For instance, in Figure 2, history 𝐻 (𝑢) is encoded as [0, 1, 2] if we
assign 0, 1, 2 as the id for 𝑣 , 𝑣1 and 𝑣2, respectively.

However, there is an issue with this naive idea. Consider an ex-
ample in e-commerce, where the source nodes and the destinations
are customers and products, respectively. Let [Iphone,AirPods]
and [Ipad,AirPods] be two histories. Though Iphone and Ipad cor-
respond to different destination nodes in the bipartite graph, they
are actually highly related. It is very likely that the two customers
who record the above histories have similar preference. The naive
idea disregards the similarity between destination nodes and fails
to fully utilize the correlation across histories.

The above example tells us that good encodings of histories
should capture the similarity between destination nodes from dif-
ferent histories. However, this is non-trivial. Given two histories𝐻1
and 𝐻2, we can make |𝐻1 | · |𝐻2 | pairs of destination nodes from the
two histories. It is expensive to enumerate all pairs and it is not easy
to design an encoding that incorporates all the similarities. In order
to address this challenge, we design “alias” for each destination
node. Specifically, we select 𝑣 , the destination node of the edge to
be represented, as the pivot. For each destination node, the alias
𝐴𝑣 (𝑣𝑖) is defined as

𝐴𝑣 (𝑣𝑖) =
|𝑁𝑒𝑖 (𝑣𝑖) ∩ 𝑁𝑒𝑖 (𝑣) |
|𝑁𝑒𝑖 (𝑣𝑖) ∪ 𝑁𝑒𝑖 (𝑣) | (1)

, where 𝑁𝑒𝑖 (𝑣) denotes the set of source nodes that are adjacent
to 𝑣 . Our design has the following consideration: (1) The alias of
a destination node 𝑣𝑖 evaluates the Jaccard similarity between the
neighbors of 𝑣𝑖 and 𝑣 . It is solely based on graph structure and
is independent from node identities. (2) The similarity between
destination nodes are captured by their aliases. For instance, in the
previous example, both the customers who bought Iphone and the
customers who bought Ipad are likely to buy AirPods. Since the
alias of Iphone (Ipad) evaluates the overlap between the buyers of
Iphone (Ipad) and AirPods, it is very likely that the alias of Iphone
is close to the alias of Ipad, which captures the similarity between
Iphone and Ipad.

With the alias defined, we encode the history of 𝑢𝑖 for each
𝑢𝑖 ∈ 𝑃 ∪ {𝑢} as follows:

ℎ𝑢𝑖 = [𝐴𝑣 (𝑣), 𝐴𝑣 (𝑣1), . . . , 𝐴𝑣 (𝑣𝑙)], (2)

where [𝑣, 𝑣1, . . . , 𝑣𝑙] is the history of 𝑢𝑖 .
We encode the histories of 𝑢 and the partners and group the

history encodings as the anonymized description of 𝑢:

D𝑠 (𝑢) = [ℎ𝑢 , ℎ𝑢1 , . . . , ℎ𝑢𝑝], (3)

where ℎ𝑢 /𝑎𝑢𝑖 is the history encoding of 𝑢/𝑢𝑖 and 𝑃 = {𝑢1, . . . , 𝑢𝑝 }
is the set of partners.

Example 4.4. Figure 2 shows an example of removing the source
node’s identity from the edge (𝑢, 𝑣, 10). In the example, the partners
are 𝑃 = {𝑢1, 𝑢2}. Destination node 𝑣 is selected as the pivot for alias
computation. Take node 𝑣1 as an example. The neighbors of 𝑣1 is
𝑁𝑒𝑖 (𝑣1) = {𝑢,𝑢2}, while the neighbors of 𝑣 is 𝑁𝑒𝑖 (𝑣) = {𝑢,𝑢1, 𝑢2}.
Thus, the alias of 𝑣1 is 𝐴𝑣 (𝑣1) =

|𝑁𝑒𝑖 (𝑣)∩𝑁𝑒𝑖 (𝑣1) |
|𝑁𝑒𝑖 (𝑣)∪𝑁𝑒𝑖 (𝑣1) | = 2

3 . With the
aliases computed, we extract the history of 𝑢 and the partners
and encode the histories, as shown in Figure 2(b). Note that all
history encodings should have the same length. Since the length of
the history 𝐻 (𝑢2) is 2, we extend its history encoding with zero-
padding.

Removing destination node’s identity. Next, we present how
to utilize 𝑣 and its local graph structure to remove the destination
node 𝑣 ’s identity. We observe that the associations between 𝑣 and
other destination nodes that 𝑢 has visited before implies the dy-
namic rule of how the graph evolves. For instance, it is very likely
that a user purchases a phone case after buying a mobile phone.
Such associations are useful for describing the destination node
anonymously.

For each 𝑣𝑖 ∈ 𝐻 (𝑢), if the pair ⟨𝑣, 𝑣𝑖 ⟩ is often co-visited by other
source nodes, then it is less suspicious for 𝑢 to visit 𝑣 at time 𝑡 .
Motivated by this, we propose to enumerate the pairs ⟨𝑣, 𝑣𝑖 ⟩ for any
𝑣𝑖 ∈ 𝐻 (𝑢) and encode the popularity of the pairs as the anonymized
description of 𝑣 .

A straightforward idea for encoding the popularity of the pairs is
to use the frequency of the pairs directly. Specifically, let 𝑣𝑖 ∈ 𝐻 (𝑢)
be a destination node that 𝑢 visited before. For each pair ⟨𝑣, 𝑣𝑖 ⟩,
we compute the set𝑈 (𝑣, 𝑣𝑖) of source nodes which have interacted
with both 𝑣 and 𝑣𝑖 :

𝑈 (𝑣, 𝑣𝑖) = {𝑢 𝑗 |∃(𝑢 𝑗 , 𝑣, 𝑡1) ∈ 𝐸 ∧ ∃(𝑢 𝑗 , 𝑣𝑖 , 𝑡2) ∈ 𝐸 ∧ 𝑢𝑖 ≠ 𝑢} (4)

We can then encode the popularity of all pairs as D ′
𝑑
= [|𝑈 (𝑣, 𝑣1) |,

. . . , |𝑈 (𝑣, 𝑣𝑙) |], where [𝑣1, . . . , 𝑣𝑙] is the history 𝐻 (𝑢), and the 𝑖-th
dimension is the number of source nodes that visited both 𝑣 and 𝑣𝑖 .

Example 4.5. Reconsider the example in Figure 2. Source node 𝑢
has visited 𝑣 , 𝑣1, and 𝑣2. Thus, we can make two pairs ⟨𝑣, 𝑣1⟩, and
⟨𝑣, 𝑣2⟩. We observe that 𝑈 (𝑣, 𝑣1) = {𝑢2}, and 𝑈 (𝑣, 𝑣2) = {𝑢1, 𝑢3}.
Thus, we can encode the popularity of all pairs as D ′

𝑑
= [1, 2].

Though the idea of using frequency to encode the popularity of
all associations is easy to implement, it suffers from the following
issue: It treats the source nodes equally and disregards the differ-
ences across the source nodes. Take e-commerce as an example.
Assume that a computer scientist purchases a keyboard after buy-
ing a laptop and a football. There are two pairs of associations:
⟨keyboard, laptop⟩ and ⟨keyboard, football⟩. We assume that a soft-
ware engineer also buys a keyboard and a laptop, and a student buys
a keyboard and a football. The frequency-based method encodes
the popularity as [1, 1], since each pair is co-visited by only one

1158

source node. However, as computer scientist has a lot in common
with software engineer, the association between ⟨keyboard, laptop⟩
should be more strong.

To address the aforementioned problem,we propose a distribution-
based method to encode the association pairs and anonymize the
destination nodes. We incorporate the relation between 𝑢 and other
source nodes that have the association pairs into the encoding of the
association popularity. Specifically, for each association pair ⟨𝑣, 𝑣𝑖 ⟩,
we compute the similarity between 𝑢 and every 𝑢 𝑗 ∈ 𝑈 (𝑣, 𝑣𝑖). We
build a histogram from the similarities and use the distribution of
the similarities as the encoding of the association popularity.

ℎ𝑣𝑖 = ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚(𝑆𝑖𝑚(𝑢,𝑢 𝑗) |𝑢 𝑗 ∈ 𝑈 (𝑣, 𝑣𝑖)), (5)

where the similarity between two source nodes is the Jaccard simi-
larity between their neighbors, i.e., 𝑆𝑖𝑚(𝑢,𝑢 𝑗) =

𝑁𝑒𝑖 (𝑢)∩𝑁𝑒𝑖 (𝑢 𝑗)
𝑁𝑒𝑖 (𝑢)∪𝑁𝑒𝑖 (𝑢 𝑗) .

The anonymized description of the destination node is the en-
codings of the popularity all all association pairs.

D𝑑 (𝑣) = [ℎ𝑣1 , . . . , ℎ𝑣𝑙] (6)

where [𝑣1, . . . , 𝑣𝑙] is the sequence of destination nodes that 𝑢 has
visited before (𝑢, 𝑣, 𝑡).

Example 4.6. Reconsider the example in Figure 2. The anonymiza-
tion of the destination node is shown in Figure 2. The pair ⟨𝑣, 𝑣1⟩ is
co-visited by 𝑢2. Thus, we compute the similarity between 𝑢 and 𝑢2,
𝑆𝑖𝑚(𝑢,𝑢2) = 2

3 . Assume that we use a histogram with three equal-
sized bins [0, 1/3), [1/3, 2/3), [2/3, 1] to group the similarities. The
similarity 𝑆𝑖𝑚(𝑢,𝑢2) falls in the bin [2/3, 1]. Thus, the popularity
of ⟨𝑣, 𝑣1⟩ is encoded as [0, 0, 1]. In a similar way, the popularity of
⟨𝑣, 𝑣2⟩ is encoded as [0, 1, 0].

The anonymized descriptions of the source node and the desti-
nation node [D𝑠 ,D𝑑] together forms the anonymized description
of the edge. The anonymized description is solely dependent on the
graph structure and is irrelevant to the node identity. Even if the
nodes in the edge are not seen before, we can still generate such
description.
Partners and history truncation. When the bipartite graph is
dense, there could be many nodes that have visited 𝑣 before, leading
to a very large size of partners and histories. It would be inefficient
to use all nodes in 𝑃 and𝐻 (𝑣). Intuitively, the nodes that are visited
recently have a higher impact than the nodes that are visited long
time ago. Therefore, we only keep the most recent 𝑝 and 𝑙 nodes as
the partners and history, respectively.

Sometimes graphs need a large partner size to achieve best per-
formance, this will harm the efficiency of the propose model. For
these scenarios, we propose an efficient partners sampling method
to improve the performance of the proposed model w.r.t. small part-
ner size. Given a node 𝑣 , we assume nodes with similar degree or
time span of all interactions to 𝑣 are more important. Hence, we
sample a partner with probability proportional to 𝑒𝛽 |Δ𝑑 | or 𝑒𝛽 |Δ𝑡 | ,
where 𝛽 is a hyper-parameter, Δ𝑑 and Δ𝑡 are degree and time span
distance between node 𝑣 and its partner, respectively.

4.2.2 Representation Learning. The representation learning mod-
ule is designed to learnAERs for the edge (𝑢, 𝑣, 𝑡) from its anonymized

description [D𝑠 ,D𝑑]. The learned AERs are expected to highlight
the distinguishable information for anomaly detection.

To learn good AERs, we need to answer the question: How does
𝑢 visiting 𝑣 at time 𝑡 conform to normal pattern? This question
can be answered from two perspectives. From the source node 𝑢’s
perspective, the normal pattern could be implied by the behaviors
of the source nodes which share common interest. A simple idea
is to directly infer the normal pattern from the partners. However,
this idea is oversimplified. A source node may have multiple roles
in the bipartite network. For instance, a computer scientist who just
starts hiking may buy the same hiking stick as a hiking enthusiast.
However, the behaviors of the computer scientist could be very
different from the hiking enthusiast. This example indicates that
we need to eliminate inappropriate partners when inferring the
normal pattern for the source nodes.

From the destination node 𝑣 ’s perspective, the normal pattern is
implied in the popularity of the association rules, i.e., how normal
it is for a source node to visit 𝑣 after visiting 𝑣𝑖 . However, similar to
the source node, not all association pairs should be used. Sometimes
the two destination nodes in a pair are irrelevant. For instance, the
computer scientist may just bought a graphics card before he buys
the hiking stick. The associations between graphics card and hiking
stick are noises and should be eliminated.

The aforementioned issues motivate us to design partner mask
and association mask to eliminate inappropriate partners and asso-
ciation pairs.
Partner Mask and Association Mask. Let𝑀𝑝 ∈ R𝑠 and𝑀𝑎 ∈ R𝑙
denote the partner mask and the association mask, respectively.
Both masks are binary vectors, where 𝑀𝑝 [𝑖] = 1 (𝑀𝑎 [𝑖] = 1)
indicates the 𝑖-th partner 𝑢𝑖 ∈ 𝑃 (the 𝑖-th association pair ⟨𝑣, 𝑣𝑖 ⟩) is
selected.

We assume that the two masks are subject to the Bernoulli distri-
bution 𝑀∗ [𝑖] ∼ 𝐵𝑒𝑟𝑛(𝜃𝑖) (𝑀∗ ∈ {𝑀𝑝 , 𝑀𝑎}), where the probability
of 𝑀∗ [𝑖] = 1 is equal to 𝜃𝑖 . This stochastic binary mask captures
more variability information compared with methods that uses
deterministic functions to generate masks [48].

In order to learn the two masks, we adopt a re-parameterization
trick [18] to approximate the sampling process and generate the
mask matrix by:

𝑈𝑛𝑖 ∼ Uniform(0, 1),
𝐿 = log(𝛼) + log(𝑈𝑛𝑖) − log(1 −𝑈𝑛𝑖),

�̂�
∗
𝑖 =

1
1 + 𝑒𝑥𝑝 (−𝐿/𝜆)

(7)

where 𝑀∗ ∈ {𝑀𝑝 , 𝑀𝑎} is one of the masks, log(𝛼) is the location
parameter (to be explained later) and 𝜆 is the temperature parameter
that controls the degree of approximation. As 𝜆 → 0, the random
variable �̂�

∗
𝑖 converges to Bernoulli distribution with parameter

𝛼
1−𝛼 .
The location parameter log(𝛼) is generated in a data-driven way.

Specifically, for the partner mask, log(𝛼) is generated as follows.

log𝛼 =𝑊𝑚
2 · Relu(𝑊𝑚

1 · ([𝑎𝑢 | |𝑎𝑢𝑖 | |Γ𝑢]) + 𝑏𝑚1) + 𝑏𝑚2 (8)

For the association mask, log(𝛼) is generated as follows.

log𝛼 =𝑊𝑚
4 · Relu(𝑊𝑚

3 · ([𝑎𝑣𝑖 | |Γ𝑣]) + 𝑏𝑚3) + 𝑏𝑚4 , (9)

1159

Here, Γ𝑢 = 1
|𝑃 |

∑︁
𝑢𝑖 ∈𝑃 𝑎𝑢𝑖 is the center of the encodings in the

anonymized description D𝑠 of 𝑢, Γ𝑢 = 1
|𝑃 |

∑︁
𝑢𝑖 ∈𝑃 𝑎𝑢𝑖 is the center

of the encodings in the anonymized description D𝑑 of 𝑣 ·| |· is the
concatenation operation, and𝑊𝑚

∗ and 𝑏𝑚∗ are learnable parameters.
As we mentioned before, the nodes in the bipartite graph may

have multiple roles. Therefore, we generate multiple masks. A pair
of a partner mask and a association mask selects a group of appro-
priate partners/association pairs. The selected group of partners
and association pairs forms a scene of the anonymized description,
from which we will learn an AER for the edge. Specifically, we
generate 𝑛𝑠 partner masks and 𝑛𝑑 association masks, leading to
𝑛𝑠 ·𝑛𝑑 pairs of masks. We use𝑀𝑖

𝑝 and𝑀 𝑗
𝑎 to denote the 𝑖-th partner

mask and the 𝑗-th association mask, respectively.
With the two sets ofmasks, we can learnAERs from the anonymized

description. We design two different networks to learn 𝐴𝐸𝑅𝑠 and
𝐴𝐸𝑅𝑑 from D𝑠 and D𝑑 separately and fuse them to get the final
AER.
Learning 𝐴𝐸𝑅𝑠 from D𝑠 . Inspired by previous work [41, 52], we
design an S-Encoder that learns a compact representation of 𝑢 from
D𝑠 for each partner mask 𝑀𝑘

𝑝 . Specifically, the S-Encoder first
encodes the partners that are selected by the mask into a latent
space as follows.

𝑥𝑘𝑃 = CNN𝑠 ({𝑀𝑘
𝑝 [𝑖] · 𝑎𝑢𝑖 |∀𝑢𝑖 ∈ 𝑃}) (10)

Here, 𝑎𝑢𝑖 is the encoding of 𝑢𝑖 ’s history in D𝑠 , 𝑃 is the set of part-
ners,𝑀𝑘

𝑝 is the 𝑘-th partner mask, and CNN𝑠 (·) is a 1D convolution
that aggregates the selected partners.

Next, we extract anomaly-aware information based on the re-
lation between 𝑢 and the selected partners. We concatenate the
history encoding 𝑎𝑢 and 𝑥𝑃 after a linear translation. The concate-
nation is fed through a fully-connected layer with a non-linear
activation function to get the representation 𝑥𝑢 of 𝑢 as follows.

𝑥𝑘𝑢 = 𝜎 (𝑊𝑠 · [𝑊1 · 𝑎𝑢 | |𝑊2 · 𝑥𝑘𝑃]), (11)

where 𝑎𝑢 is the encoding of 𝑢’s history in D𝑠 , 𝜎 is the non-linear
activation function, ·| |· represents the concatenation operation, and
𝑊1,𝑊2 and𝑊𝑠 are the parameters to be learned.

Since we have 𝑛𝑠 partner masks, we get a set of representations
𝑋𝑢 = [𝑥1𝑢 , . . . , 𝑥

𝑛𝑠
𝑢] for 𝑢.

Learning 𝐴𝐸𝑅𝑑 from D𝑑 .With the association mask, we design a
D-Encoder to learn a compact representation for 𝑣 fromD𝑑 for each
association mask 𝑀𝑘

𝑎 . The D-Encoder aggregates the association
pairs selected by the association mask and feeds the aggregation
through a fully-connected layer with a non-linear activation func-
tion to get the representation of 𝑣 as follows.

𝑥𝑘𝑣 = 𝜎 (𝑊𝑑 · CNN𝑑 ({𝑀𝑘
𝑎 [𝑣𝑖] · 𝑎𝑣𝑖 ,∀𝑣𝑖 ∈ 𝐻 (𝑢)})), (12)

where 𝑎𝑣𝑖 is the encoding of the popularity of pair ⟨𝑣, 𝑣𝑖 ⟩, 𝐻 (𝑢)
is the history of 𝑢, 𝑀𝑘

𝑎 is the 𝑘-th association mask, CNN𝑑 is 1D
convolution, 𝜎 is the activation function, and𝑊𝑑 is the parameter
to be learned.

As we have 𝑛𝑑 association masks, we get a set of representation
𝑋𝑣 = [𝑥1𝑣 , . . . , 𝑥

𝑛𝑑
𝑣] for node 𝑣 .

Learning 𝐴𝐸𝑅. We have presented 𝑋𝑢 and 𝑋𝑣 that captures the
characteristics of an edge from the source and the destination nodes’

perspectives, respectively. Given 𝑥𝑖𝑢 ∈ 𝑋𝑢 and 𝑥
𝑗
𝑣 ∈ 𝑋𝑣 , we fuse

them as follows.

𝑥
𝑖, 𝑗
𝑒 = 𝑓3 ([𝑓1 (𝑥𝑖𝑢) | |𝑓2 (𝑥

𝑗
𝑣)]) (13)

where 𝑓1, 𝑓2 and 𝑓3 are feed-forward networks.
We enumerate all 𝑛𝑠 · 𝑛𝑑 combinations from 𝑋𝑢 and 𝑋𝑣 and fuse

every combination. The final AER of the edge is𝑋𝑒 = [𝑥1𝑒 , . . . , 𝑥
𝑛𝑠 ·𝑛𝑑
𝑒]

Remark. In real-world applications, sometimes graphs are asso-
ciated with additional node/edge attribute features. Anomaly de-
tection would benefit from such features if we integrate them into
edge representation. Hence, when additional features are offered,
we alternate Equation (13) by:

𝑥
𝑖, 𝑗
𝑒 = 𝑓4 ([𝑓1 (𝑥𝑖𝑢) | |𝑓2 (𝑥

𝑗
𝑣) | |𝑓3 (𝑥 𝑓)]) (14)

where 𝑥 𝑓 represents additional node/edge features.

4.3 Prediction Module
Previously, we have introduced the representation module that
learns AERs for each edge. In this subsection, we present how to
predict whether the target edge (�̂�, 𝑣, 𝑡) is anomalous based on AER.

We first present how to prepare the input to the prediction mod-
ule. Intuitively, the past edges from a source node reveal the change
of the its preference. Therefore, in order to predict whether (�̂�, 𝑣, 𝑡)
is anomalous, we retrieve the past edges from �̂� to capture the struc-
tural dynamics. Specifically, let 𝑆 denote the sequence of past edges
from �̂� in the descending order of time, i.e., 𝑆 = ⟨(�̂�, 𝑣, 𝑡), (�̂�, 𝑣1, 𝑡1),
. . . , (�̂�, 𝑣𝑠−1, 𝑡𝑠−1)⟩. We next generate 𝑛𝑠 · 𝑛𝑑 sequences of AERs for
𝑆 . The 𝑘-th AER sequence is generated as follows.

�̂�
𝑘
= [𝑥𝑘1 , . . . , 𝑥

𝑘
𝑠], (15)

where 𝑥𝑘
𝑖
is the 𝑘-th AER of the 𝑖-th edge in 𝑆 . The prediction

module takes as input an AER sequence and encode the sequence
with a sequence encoder, e.g., Gated Recurrent Unit (GRU) [7]. One
may use other RNNs or transformer networks instead of GRU to
encode the sequences. The experimental results show the GRU have
achieved good enough performance.

With the encoded vector ℎ
�̂�

𝑘 , we pass it through a two-layer
fully-connected neural network to predict the anomaly score of the
target edge. Specifically, we calculate the anomaly score as follows.

𝑠𝑐𝑜𝑟𝑒𝑘 = Sigmoid(𝑊 𝑜
2 · Relu(𝑊 𝑜

1 · ℎ𝑋 + 𝑏𝑜1) + 𝑏
𝑜
2) (16)

where𝑊 𝑜
∗ and 𝑏𝑜∗ are learnable parameters.

Note that each combination of masks defines a scene of the
anonymized description. The target edge (�̂�, 𝑣, 𝑡) should be normal
as long as it is normal in at least one scene. Thus, the final prediction
score for edge (�̂�, 𝑣, 𝑡) is defined as follows.

�̂� = max(𝑠𝑐𝑜𝑟𝑒1, . . . , 𝑠𝑐𝑜𝑟𝑒𝑛𝑠 ·𝑛𝑑) (17)

4.4 The AER-AD Model
The whole procedure of AER-AD is summarized as follows.It first
retrieves the past edges 𝑆 . Then, for each edge in 𝑆 , it generate 𝑛𝑠
partition masks and 𝑛𝑑 association masks. Based on the generated
masks, it learns𝐴𝐸𝑅𝑠 and𝐴𝐸𝑅𝑑 and fuse them to get the AER. Then
it builds 𝑛𝑠 · 𝑛𝑑 AER sequences for 𝑆 . For each AER sequence, it
predicts the anomaly score. The final prediction score is computed
by a pooling layer over all anomaly scores.

1160

Figure 3: Data augmentation

The final score �̂� is computed by a pooling layer over all anom-
aly scores (lines 15-16). To learn the parameters of AER-AD, we
minimize the cross-entropy value:

𝐿𝜃 = −𝑦 · log(�̂�) − (1 − 𝑦) · log(1 − �̂�) (18)

where 𝜃 denotes all learnable parameters in the entire neural net-
work and 𝑦 is the true label of the edge (𝑢, 𝑣, 𝑡). We choose the
Adam optimizer to learn 𝜃 as it can determine the learning rate
adaptive.
Data augmentation. In many real life datasets for anomaly detec-
tion, the class labels are usually imbalanced, which may affect the
performance of the learned model. In order to improve the perfor-
mance, we adopt the down-sampling technique to randomly remove
samples from the majority class. We also adopt up-sampling tech-
niques to randomly re-sample from the minority class to balance
the two classes.

The abovemethodworkswell onmost of the imbalanced datasets.
However, when the dataset is extremely imbalanced, i.e., the abso-
lute number of the minority class is very small, we may face the
over-fitting problem. We propose to inject synthetic data into the
original graph to balance the labels. Specifically, we first randomly
sample an edge (𝑢, 𝑣𝑘 , 𝑡𝑘) with anomalous label (the minority label) .
Let 𝐸𝑢 be the set of edges from𝑢 until time 𝑡𝑘 , and 𝑡𝑚𝑖𝑛/𝑡𝑚𝑎𝑥 be the
earliest/latest time of edges in 𝐸𝑢 . We generate a new node 𝑢 ′ and
let 𝐸𝑢′ be the set of replicated edges from 𝐸𝑢 , i.e., ∀(𝑢, 𝑣𝑖 , 𝑡𝑖) ∈ 𝐸𝑢 ,
we add an edge (𝑢 ′, 𝑣𝑖 , 𝑡𝑖) into 𝐸𝑢′ . Next, we conduct six operations
to modify 𝐸𝑢′ while keeping (𝑢 ′, 𝑣𝑘 , 𝑡𝑘) fixed: (1) removing random
edges from 𝐸𝑢′ , (2) adding edges from 𝑢 to random destination
nodes outside of 𝐸𝑢′ with time between 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 , (3) swap-
ping the time of random pair of edges in 𝐸𝑢′ , (4) replicating random
edges in 𝐸𝑢′ , (5) removing random edges after operation (2) and (6)
removing random edges after operation (4). The above six opera-
tions make the interaction pattern of 𝑢 ′ differ from 𝑢. Finally, we
inject 𝑢 ′ and the edges in 𝐸𝑢′ into the original graph.

The proposed synthetic sample generation method can be com-
bined with down-sampling to tackle the imbalance of the dataset.

4.5 Complexity
Complexity of Representation Module In edge anonymization
step, it takes𝑂 (𝑝𝑙 ′) time to computeℎ𝑢𝑖 for a source node𝑢𝑖 , where
𝑙 ′ is the number of destination nodes that are visited by 𝑢 and its
partners. Note that 𝑙 ≤ 𝑙 ′ ≤ 𝑝𝑙 . It takes 𝑂 (𝑝𝑙) time to compute ℎ𝑣𝑖
for a destination node 𝑣𝑖 . Hence, it takes 𝑂 (𝑝𝑙 ′) time for the edge
anonymization step.

In representation learning step, it takes 𝑂 (𝑛𝑝1) time to generate
masks and output the AER, where 𝑛𝑝1 is the number of learnable
parameters in the representation module.

Table 2: Summary of dataset statistics.

Type Real Anomalies Syn. Anomalies
Dataset Mooc Reddit Amazon Enron Wikitemp
#edge 411,749 672,447 1,554,400 137,758 8,616,454
#anom. 4,066 366 155,300 12,523 783,314
#source 7,047 10,000 769,595 181 251,154
#dest. 98 984 529,279 365 1,120,716
#deg𝑠 106 73 2 2,171 893
#deg𝑑 7,229 4,905 4 1,163 91
attr. dim 4 172 0 0 0

Complexity of Prediction Module Assume it takes 𝑂 (𝑡𝑟𝑢) time
for a recurrent unit encoder to encode the AER sequence. It takes
𝑂 (𝑘 ·𝑛𝑝2) time to compute the 𝑘 scores through the two-layer fully
connected network, where 𝑛𝑝2 is the number of parameters in the
two-layer network. Hence, the time complexity of the prediction
module is 𝑂 (𝑡𝑟𝑢 + 𝑛𝑝2).

Putting above together, it takes 𝑂 (𝑝𝑙 ′ + 𝑡𝑟𝑢 + 𝑛𝑝) time for AER-
AD to make a prediction, where 𝑛𝑝 = 𝑛𝑝1 + 𝑛𝑝2 is the number
of parameters in the representation module and in the two-layer
network.

5 EXPERIMENTS
In this section, we conduct extensive experiments on five different
anomaly detection datasets to demonstrate the effectiveness and
efficiency of our model. Our experiments are designed to answer
the following questions:
• RQ1. How well is AER-AD able to detect anomaly in dynamic
bipartite graphs compared to state-of-the-art methods in the induc-
tive setting?
• RQ2. How does each component of AER-AD contribute to the
final detection performance?
• RQ3. Is AER-AD robust to the hyper-parameters and iteration
numbers?
• RQ4. Is AER-AD efficient in detecting anomalies?

5.1 Datasets
We conduct experiments on five datasets that can be divided into
two types: datasets with real anomalies and datasets with synthetic
anomalies. The details of the datasets are reported in Table 2, where
#source, #dest, #edge and #anom. represent the number of source
nodes, destination nodes, edges, and edges with anomalous labels,
respectively. #deg𝑠 represents median of source node degree, #deg𝑑
represents median of destination node degree, attr. dim represents
the dimensionality of the additional attributes.
Datasets with real anomalies. We use three datasets with real
anomalies. MOOC1[21] consists of a set of students and a set of
courses. An edge pointing from a student to a course corresponds to
an action, such as submitting an answer. An edge is labeled as anom-
aly if it is the last interaction before the student drops out of the
course. Each edge is additionally associated with a 4-dimensional
feature vector. Reddit1 [21] collects posts on subreddits in one
month. The source and destination nodes are users and subreddits,
1http://snap.stanford.edu/jodie

1161

Table 3: Comparing the performance of AER-AD in terms of AUC with state of the art algorithms in inductive setting. Bold
font† and bold font highlight the best performance among all methods and each type of methods, respectively.

Real Anomalies Syn. Anomalies
Model Mooc Reddit Amazon Enron Wikitemp

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
Midas 50.09 48.50 49.23 51.62 50.04 50.21 73.39 91.19 52.16 52.60
F-Fade 50.17 54.24 49.98 49.90 50.62 50.97 45.10 13.53 50.23 51.48
AEGIS 62.29 67.42 50.78 62.99 n.a. n.a. n.a. n.a. n.a. n.a.
IGRL-FI 68.38 81.82 44.77 59.67 48.61 64.12 31.92 76.01 out out
IGRL-GS 67.01 74.02 49.88 62.66 53.76 71.50 40.97 78.68 60.88 85.69
TGAT 36.53 58.62 38.43 62.94 40.61 53.17 49.17 53.38 48.86 50.21
FI-GRL 64.52 73.26 35.58 62.49 36.68 63.23 56.74 74.68 out out
Graphsage 72.19 79.32 36.39 61.45 36.18 62.09 57.03 77.69 31.29 62.41
CAW 74.79 82.19 37.92 62.86 51.59 66.78 64.95 77.17 62.25 80.42
AER-AD 77.38† 83.01† 55.31† 80.15† 59.35† 75.38† 82.25 95.49 80.51 86.13

respectively. An edge represents a user making a post in a subreddit.
An anomalous edge represents the last interaction before the user is
banned by Reddit. Each edge is associated with a 172-dimensional
feature vector extracted from the context of the post. Amazon 1 is a
user-product review graph. The label of each edge is determined
based on the helpfulness votes. Following previous work [20],we
define a review is normal if the fraction of helpful-to-total votes
is ≤ 0.75, and anomaly if < 0.25. We extract the reviews with at
least 20 votes and users whose reviews is more than three from the
original dataset.
Datasets with synthetic anomalies.We use two datasets with
synthetic anomalies. Enron2 is an email graph that collects emails
exchanged among 151 employees over 3 years in ENRON Corpora-
tion. Wikitemp3 [22] is a temporal network representing wikipedia
users editing each other’s talk page. Since there is no anomaly
label for the edges in Enron and Wikitemp, we follow previous
work [2, 5, 49] to inject anomalies into these two datasets by ran-
domly rewiring edges. Specifically, we inject 10% fake edges uni-
formly at random, the timestamp of an edge is generated within
the range between the first and last edge uniformly at random.

5.2 Experimental setting
All the experiments are run on a computer with Intel(R) Core(TM)
i7-9700K CPU @3.60 GHz processor, 64 GB RAM and two Geforce
RTX 2080Ti graphics cards.
Evaluation and training protocols. Inductive anomaly detection
aims to predict whether a newly-arrived edge in the bipartite graph
stream is anomalous, where the source node is not observed before.
We split the source node into 60%-10%-30% and use their associated
edge as the training, validation and testing sets. This guarantees
that the source nodes of the edges encountered in the test set are
not observed during the training stage. We use binary cross entropy
loss and Adam optimizer to train all the models. At training stage,
we use down-sampling to balance the labels in MOOC, Amazon, Enron
and Wikitemp. For Reddit, we adopt synthetic labels generation
proposed in section 4.3 before down-sampling. Due to the skew

1http://jmcauley.ucsd.edu/data/amazon/
2https://www.kaggle.com/wcukierski/enron-email-dataset
3https://snap.stanford.edu/data/wiki-talk-temporal.html

of label distribution, we employ the Macro F1 and Area Under the
ROC Curve (AUC) as the metrics.

Baselines: We compare our method with nine state-of-the-art
methods, including two anomaly detection methods that proposed
to detect pre-defined anomalies (Midas [4] and F-Fade[5]), two
representation based anomaly detection methods (AEGIS [8] and
IGRL [3]) and four inductive graph representation methods (TGAT
[47], FI-GRL [13], GraphSage [15] and CAW [44]).

•Midas uses a hypothesis testing-based framework to detect ar-
riving groups of suspicious edges (microcluster anomalies).
• F-Fade leverages a novel frequency-factorization technique for
detection of anomalies in edge streams. This model is able to handle
prompt group change and burst of interactions.
•AEGIS proposes a construct graph differentiation network (GDN)
aggregate information in attributed graph. AEGIS is an unsuper-
vised method that proposed for anomaly detection in static graphs.
To fairly comparison, we adapt the AEGIS model by using GD
to generate the edge representation and GRU network to make
prediction.
• IGRL is a fraud detection model based on inductive graph repre-
sentation. This model apply two promising inductive graph repre-
sentation learning techniques: GraphSAGE [15] and Fast Inductive
Graph Representation Learning [13], referred to as IGRL-GS and
IGRL-FI, respectively.
• TGAT leverages GAT to extract node representations where
the nodes’ neighbors are sampled from the history and encodes
temporal information. TGAT recognizes the node embeddings as
functions of time and is able to inductively infer embeddings for
unseen node.
• FI-GRL consists of two stages: decoupling and feature extraction.
The first stage is designed for decoupling nodes’ relations and the
second stage extracts meaningful feature by low rank approxima-
tion. FI-GRL obtains representations for seen nodes with provable
theoretical guarantees and can easily generalize to unseen nodes.
• Graphsage learns node representations by aggregating its neigh-
boring attributes. Graphsage focuses on attribute-rich graphs, this
approach can also applied to graphs without additional attribute
by making use of node degrees.

1162

• CAW extracts temporal random walks and work as temporal
network motifs to represent network dynamic. It encodes node
identities with the counts of the nodes based on a set of sampled
walks to keep the method inductive.

For all graph representation methods, we first adopt their models
to generate the node representations. Thenwe predict their anomaly
score for each edgewith GRU network. Noted that some static graph
baselines (IGRL, FI-GRL and GraphSage) are not easy to be adapted
to support dynamic graphs. Hence, for those baselines, given an
edge (𝑢, 𝑣, 𝑡), we use the whole graph to predict its anomaly score
instead the edges occurred before the time 𝑡 .

5.3 Overall evaluation (RQ1)
Table 3 shows the anomaly detection results of AER-AD and state-
of-the-art baselines, where “n.a.” represents the method cannot be
aplied on this dataset, and “out” represents out of memory.

Midas and F-Fade perform worst in the experiments. This is be-
cause Midas and F-Fade focus on specific anomalous types and fail
to capture the unknown types of anomalies. We observe that Midas
outperforms all baselines on Enron dataset. This may because Mi-
das is specially designed to detect the arriving groups of suspicious
edges, which is the similar to the manually injected anomalies in
Enron. Recall that Midas cannot handle unknown anomaly patterns,
which explains why Midas performs much worse on the datasets
with real anomalies. AEGIS and TGAT heavily depend on attributes
and the structural dynamics are not captured essentially. There-
fore, they achieve poor performance on graphs without attributes
(Amazaon, Enron and Wikitemp) or insufficient attributes (Mooc).

IGRL (IGRL-FI and IGRL-GS) achieves the best performance
among all anomaly detection baselines. This method leverages
inductive graph representation learning techniques to enhance
the anomaly detection performance. However, this method relies
on existing inductive edge representations, which is not specially
designed for anomaly detection. Hence, its performance is still
worse than AER-AD.

CAW achieves the best performance among all representation
based baselines. Meanwhile, AER-AD is 14.98% and 8.38% higher
than CAW on average w.r.t. F1 and AUC, respectively. CAW can
successfully capture the structural changing information in the
dynamic graph. However, it does not highlight the distinguishable
information in the representation and further fails to preserve suffi-
cient information for anomaly detection. Therefore, its performance
is much worse than AER-AD.

We draw the following conclusions from the results. (1) Meth-
ods designed for detecting pre-defined anomalies fail to detect
anomalies in datasets without prior knowledge; (2) Representation
methods that rely on additional attributes cannot handle graphs
associated with limited or even none attribute; (3) Highlighting dis-
tinguishable information in the representation can greatly improve
the performance of anomaly detection.

5.4 Effect of each component (RQ2)
Ablation study with AER-AD.We conduct ablation studies by
removing𝐴𝐸𝑅𝑠 ,𝐴𝐸𝑅𝑑 , additional attributes (only MOOC and Reddit
have attributes), andmasks. Table 4 shows the ablation study results.
We observe that the full solution achieves the best performance,

which justifies the design of our solution. In addition, we observe
that 𝐴𝐸𝑅𝑠 and 𝐴𝐸𝑅𝑑 learned from the anonymized description for
the source and destination nodes contribute most to the perfor-
mance, though the additional attributes also helps. Moreover, we
observe that incorporating partition mask and association mask
improves the performance w.r.t. F1 score.
Comparison with variants. In order to justify the design of
the proposed representation module, we compare AER-AD with
its variants in Table 5. We first compare the proposed method
with Straightforward method (naive/straightforward representation
method mentioned in Section 4.2.1). The straightforward solution
generates two vectors 𝐴𝐸𝑅ˆ 𝑠 ∈ R𝑝 and 𝐴𝐸𝑅ˆ 𝑑 ∈ R𝑙 , where the 𝑖-th
dimension in𝐴𝐸𝑅ˆ 𝑠 is the Jaccard similarity between the interaction
history of 𝑢 and its 𝑖-th partner 𝑢𝑖 , and the 𝑗-th dimension in 𝐴𝐸𝑅ˆ 𝑑

is calculated by Equation (4). We concatenate 𝐴𝐸𝑅ˆ 𝑠 and 𝐴𝐸𝑅ˆ 𝑑 and
pass it to the prediction module directly. We report the AUC and F1
score of this straightforward solution in the three real-life datasets
in Table 5. By comparing its performance with our final solution, we
observe that AER-AD outperforms this straightforward solution.
This demonstrates the effectiveness of Edge Anonymization and
Representation Learning components in our framework, which also
justifies our design.

Next, we evaluate the effect of proposed stochastic mask gen-
eration method. In this set of experiments, we use deterministic
functions [48] to replace the proposed mask generation module.
Table 5 reports the performance with deterministic functions (de-
terministic). We observe that the proposed stochastic method for
generating mask improves the F1 score by up to 7.12%.

Finally, we conduct experiments to investigate the effect of using
different prediction layer in AER-AD. We consider three predic-
tion operations: LSTM, Transformer, and GRU. As the shown in
Table 5, we observe the proposed edge representation method is
robust to predict methods, all of the test operations achieve good
performances.
Effect of data augmentation. As mentioned in Section 4.4, we
generate and inject synthetic samples to address the imbalance
of dataset. In this experiment, we use the extremely imbalanced
Reddit to evaluate the effect of the data augmentation method.
After synthetic sample generation, the number of anomalous edges
is 1547 (each of the six operations generates 221 anomalous edges).
Table 6 reports the AUC w.r.t. different augmentation operations,
where “none” represent using the training data without data aug-
mentation. aug1 to aug6 represent using the training data with
augmentation type 1 to 6, respectively. “All” represents using all
types of data augmentation. We observe each augmentation oper-
ation contribute to the performance. With the all augmentation
operations, the AUC of the learned model is significantly improved
by 39.47% and 24.65%, respectively.
Effect of number of bins in histogram. In the distribution-based
method for anonymizing the destination node, we build histogram
to encode the popularity of association pairs. We next evluate how
the number of bins in the histogram affect the performance. Table 7
reports the results. We observe that our solution is robust to the
number of bins in the histogram.

1163

Table 4: Comparing the performance of ablation study.

Real Anomalies Syn. Anomalies
Model Mooc Reddit Amazon Enron Wikitemp

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
remove 𝐴𝐸𝑅𝑠 74.85 78.72 36.66 61.25 48.64 61.36 61.85 80.66 69.62 75.83
remove 𝐴𝐸𝑅𝑑 77.29 82.38 53.48 81.76 55.41 73.91 80.45 93.31 80.66 86.07
remove attr. 77.99 82.87 50.49 77.56 n.a. n.a. n.a. n.a. n.a. n.a.
remove mask 76.95 82.16 53.24 81.63 50.94 73.56 82.14 95.17 80.21 85.47
original 77.38 83.01 55.31 80.15 59.35 75.38 82.25 95.49 80.72 86.98

Figure 4: Varying hyper-parameters.

Figure 5: Throughput of whole model w.r.t hyper-parameters.

Table 5: Comparison with variants.

Model Mooc Reddit Amazon
F1 AUC F1 AUC F1 AUC

Straightforward 78.95 84.52 51.17 60.68 36.11 63.72
Deterministic 75.52 82.39 53.37 82.30 53.95 73.19
AER-LSTM 76.97 83.88 55.82 77.44 57.14 74.88
AER-Transformer 78.60 84.59 44.82 73.78 48.11 74.52
AER-AD 77.38 83.0 55.31 80.15 59.35 75.38

Table 6: Effect of data augmentation.

none aug1 aug2 aug3 aug4 aug5 aug6 all
F1 42.41 50.41 49.19 45.21 48.52 46.82 44.65 55.31
AUC 75.47 80.00 79.28 76.42 78.86 80.70 78.85 80.15

5.5 Robustness (RQ3)
Hyper-parameter sensitivity.We analyze the effect of the hyper-
parameters, including the partner size 𝑠 , the history length 𝑑 , the

Table 7: Effect of the number of bins in histogram.

Number 5 10 15 20
F1 55.32 59.35 59.34 59.34
AUC 65.30 75.38 74.76 75.24

Figure 6: AUC w.r.t number
of iterations

Figure 7: AUC w.r.t
throughput.

edge numbers 𝑙 source masks numbers 𝑛𝑠 and destination masks
numbers 𝑛𝑑 on the performance of the proposed model. When

1164

(a) Wikitemp (b) Amazon

Figure 8: Average running time per edge.

Table 8: Effect of sampling methods in Amazon dataset.
+(−)𝑥% represent improve (decreae) 𝑥 inference ratio com-
pared with the model with the partner size (𝑝 = 16) that
generate best performance.

𝑝 = 2 𝑝 = 3 𝑝 = 4

Truncate TP 2258 (+95%) 2109 (+82%) 1942 (+68%)
AUC 70.51 (-6.72%) 70.71 (-6.46%) 72.40 (-4.22%)

Degree TP 2120 (+83%) 2033 (+76%) 1941 (+68%)
AUC 71.79 (-5.03%) 71.54 (-5.36%) 73.47 (-2.80%)

TimeSpan TP 2111 (+82%) 2027 (+75%) 1932 (+67%)
AUC 71.64 (-5.23%) 71.57 (-5.32%) 73.44 (-2.84%)

investigating each hyper-parameter, we set the rest ones to an opti-
mal value found by grid search, and report the AUC performances
on all test sets. As shown in Figure 4, AER-AD achieves the best
performance when 𝑠 , 𝑑 and 𝑙 are small. For most datasets, AUC
achieves the best performance when 𝑠 < 16, 𝑑 < 16 and 𝑙 < 4. For
dense graphs (Mooc,Reddit,Wikitemp and Enron), AUC become
saturate when 𝑠 > 16 and 𝑙 > 16. For sparse graph (Mooc), AUC
first increases as 𝑠 and 𝑙 increases, and the AUC decreases when 𝑠

and 𝑙 greater than a threshold. We also analyze the effect of mask
number in Figure 4, we observe the model is robust to the number
of masks w.r.t AUC.
Number of iterations. Figure 6 shows the test AUC of AER-AD
w.r.t the number of iterations. We observe the AUC become stable
to iterations number after 1000 iterations.

5.6 Efficiency (RQ4)
Comparison with baselines. Figure 8 shows the efficiency of our
method w.r.t all baselines (exclude IGRL-FI and FI-GRL). IGRL-FI
and FI-GRL are matrix factorization based methods, they require
a high complexity and cannot provide a timely detection. Both of
IGRL-FI and FI-GRL take 37.2𝑠 to detect an edge in Amazon and out
of memory when handle Wikitemp. We observe Midas and TGAT
are more efficient than AER-AD. However, their AUC and F1 are
much worse than AER-AD. AER-AD are more efficient than CAW
and are comparable with F-Fade, IGRL-SG and Graphsage.
Throughputw.r.t hyper-parameters. Figure 5 shows the through-
put of our proposed solution by varying hyper-parameters. We
observe that the throughput of our solution is sublinear to all the
hyperparameters. This is because the bottleneck of the solution
is the edge anonymization, which involves frequent retrieval of
partners, histories and set union/intersection operations. When

generating the AERs for two consecutive edges, there are many re-
dundant computations. In our implementation, we have optimized
to avoid redundant computations and we anonymize the edges in a
collective manner. Thus, when the hyperparameters increase, the
throughput degrades sublinearly.
Tradeoff between AUC and throughput. In addition, we have
conducted experiments to investigate the tradeoff between accuracy
and throughput on Amazon dataset. Specifically, we set 𝑠 (the length
of AER sequence) as 2, 4, and 8, respectively. By varying the partner
size and history length from 2 to 16, we report the tradeoff between
throughput and AUC in Figure 7. We observe that the throughput
decreases as AUC increases at first. When AUC reaches about 72%–
75%, the throughput degrades drastically. It is difficult to improve
AUC after AUC reaches 75%.
Effect of sampling methods. In section 4.2.1, we propose a sam-
pling method to improve the performance of the proposed method
with small partner size. As shown in Figure 4, Amazon achieve best
performance when partner size 𝑝 = 16 and its AUC is decrease
6.72% inference ratio when 𝑝 = 2. Hence, we use Amazon dataset
to test our sampling method. Table 8 show the throughput (TP)
and AUC w.r.t different sampling method. We can draw the fol-
lowing conclusions from Table 8: (1) AER-AD can achieve good
performance when the partner small; (2) Compared with the best
performance hyper-parameters, smaller partner size will sacrifice
accuracy and improve throughput; (3) Compared with deterministic
method, the proposed sampling methods can improve the AUC at
a small partner size.
Memory, CPU and GPU usage.We use a Python package Psutil4
to keep track of the memory and CPU usage and GPUtil5 to collect
the GPU usage. The maximum memory usage of the proposed
method is 9.04 GB. The total CPU utilization is 91.6% (Note that
the CPU has 8 cores and full CPU utilization is 800%). The GPU
utilization rate is 8%.

6 CONCLUSION
Inductive anomaly detection is a challenging but critical task nowa-
days. To address this problem, we propose an effective method to
learn anonymous edge representation, which captures the charac-
teristics of an edge without using its identity. AER enables us to
represent edges while preserving sufficient information to discover
anomalies. Based on AER, we design a model named AER-AD for
inductive anomaly detection in dynamic bipartite graphs. The ex-
periments demonstrate that AER-AD is computationally efficient,
robust in performance and outperforms state-of-the-art methods
significantly.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foun-
dation of China under Grant 61906039, Grant 62202124 and Grant
62172090, Youth Scholar Program of SEU, the Fundamental Research
Funds for the Central Universities under Grant 2242022k30007,
CAAI-Huawei MindSpore Open Fund and Alibaba Group through
Alibaba Innovative Research Program.

4https: //pypi.org/project/psutil/
5https://pypi.org/project/GPUtil/

1165

REFERENCES
[1] C. C. Aggarwal, Y. Zhao, and S. Y. Philip. Outlier detection in graph streams. In

Proceedings of the IEEE 27th international conference on data engineering, pages
399–409, 2011.

[2] L. Akoglu, H. Tong, and D. Koutra. Graph based anomaly detection and descrip-
tion: a survey. Data mining and knowledge discovery, 29(3):626–688, 2015.

[3] R. V. Belle, C. V. Damme, H. Tytgat, and J. D. Weerdt. Inductive graph represen-
tation learning for fraud detection. Expert Syst. Appl., 193:116463, 2022.

[4] S. Bhatia, B. Hooi, M. Yoon, K. Shin, and C. Faloutsos. Midas: Microcluster-based
detector of anomalies in edge streams. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 3242–3249, 2020.

[5] Y. Y. Chang, P. Li, R. Sosic, M. Afifi, M. Schweighauser, and J. Leskovec. F-FADE:
Frequency factorization for anomaly detection in edge streams. In Proceedings
of the 14th ACM International Conference on Web Search and Data Mining, pages
589–597, 2021.

[6] Z. Chen and A. Sun. Anomaly detection on dynamic bipartite graph with
burstiness. In IEEE International Conference on Data Mining, pages 966–971, 2020.

[7] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using rnn encoder-decoder for
statistical machine translation. arXiv preprint arXiv:1406.1078, 2014.

[8] K. Ding, J. Li, N. Agarwal, and H. Liu. Inductive anomaly detection on attrib-
uted networks. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 1288–1294, 2021.

[9] M. Eslami, G. Zheng, H. Eramian, and G. Levchuk. Anomaly detection on bipartite
graphs for cyber situational awareness and threat detection. In IEEE International
Conference on Big Data, pages 4741–4743, 2017.

[10] D. Eswaran and C. Faloutsos. Sedanspot: Detecting anomalies in edge streams.
In IEEE International Conference on Data Mining, pages 953–958, 2018.

[11] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra. Spotlight: Detecting anomalies
in streaming graphs. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 1378–1386, 2018.

[12] Y. Fan, Y. Ye, Q. Peng, J. Zhang, Y. Zhang, X. Xiao, C. Shi, Q. Xiong, F. Shao,
and L. Zhao. Metagraph aggregated heterogeneous graph neural network for
illicit traded product identification in underground market. In IEEE International
Conference on Data Mining, pages 132–141, 2020.

[13] J. Fei, Z. Lei, X. Jin, and Y. Philip. Fi-grl: Fast inductive graph representation
learning via projection-cost preservation. In IEEE International Conference on
Data Mining, pages 1067–1072. IEEE, 2018.

[14] P. Goyal, S. R. Chhetri, and A. Canedo. dyngraph2vec: Capturing network dy-
namics using dynamic graph representation learning. Knowledge-Based Systems,
187:104816, 2020.

[15] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning
on large graphs. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 1025–1035, 2017.

[16] A. Hasanzadeh, E. Hajiramezanali, K. Narayanan, N. Duffield, M. Zhou, and
X. Qian. Variational graph recurrent neural networks. Advances in Neural
Information Processing Systems, 32, 2019.

[17] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos. Fraudar:
Bounding graph fraud in the face of camouflage. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
895–904, 2016.

[18] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

[19] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. arXiv preprint arXiv:1609.02907, 2016.

[20] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Subrahmanian.
Rev2: Fraudulent user prediction in rating platforms. In Proceedings of the
Eleventh ACM International Conference on Web Search and Data Mining, pages
333–341. ACM, 2018.

[21] S. Kumar, X. Zhang, and J. Leskovec. Predicting dynamic embedding trajectory
in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pages 1269–
1278, 2019.

[22] J. Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
international conference on World Wide Web, pages 1343–1350, 2013.

[23] B. Le Bars and A. Kalogeratos. A probabilistic framework to node-level anomaly
detection in communication networks. In IEEE INFOCOM 2019-IEEE Conference
on Computer Communications, pages 2188–2196, 2019.

[24] W. Lei, X. He, M. de Rijke, and T.-S. Chua. Conversational recommendation:
Formulation, methods, and evaluation. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 2425–2428, 2020.

[25] R. Li, P. Wang, P. Jia, X. Zhang, J. Zhao, J. Tao, Y. Yuan, and X. Guan. Approxi-
mately counting butterflies in large bipartite graph streams. IEEE Transactions
on Knowledge and Data Engineering, 2021.

[26] C. Luo and A. Shrivastava. Arrays of (locality-sensitive) count estimators (ace)
anomaly detection on the edge. In The World Wide Web Conference, pages

1439–1448, 2018.
[27] F. Manessi, A. Rozza, and M. Manzo. Dynamic graph convolutional networks.

Pattern Recognition, 97:107000, 2020.
[28] C. Meng, S. C. Mouli, B. Ribeiro, and J. Neville. Subgraph pattern neural networks

for high-order graph evolution prediction. In Proceedings of the AAAI Conference
on Artificial Intelligence, pages 3778–3787, 2018.

[29] V. Miz, B. Ricaud, K. Benzi, and P. Vandergheynst. Anomaly detection in the
dynamics of web and social networks using associative memory. In The World
Wide Web Conference, pages 1290–1299, 2019.

[30] N. Noorshams, S. Verma, and A. Hofleitner. Ties: Temporal interaction embed-
dings for enhancing social media integrity at facebook. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 3128–3135, 2020.

[31] G. Pang, L. Cao, and C. Aggarwal. Deep learning for anomaly detection: chal-
lenges, methods, and opportunities. In Proceedings of the 14th ACM International
Conference on Web Search and Data Mining, pages 1127–1130, 2021.

[32] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler,
T. Schardl, and C. Leiserson. Evolvegcn: Evolving graph convolutional net-
works for dynamic graphs. In Proceedings of the AAAI Conference on Artificial
Intelligence, pages 5363–5370, 2020.

[33] L. Peel and A. Clauset. Detecting change points in the large-scale structure
of evolving networks. In Proceedings of the 29th AAAI Conference on Artificial
Intelligence, pages 2914–2920, 2015.

[34] Y. Ren, H. Zhu, J. Zhang, P. Dai, and L. Bo. Ensemfdet: An ensemble approach to
fraud detection based on bipartite graph. In IEEE 37th International Conference
on Data Engineering, pages 2039–2044, 2021.

[35] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang. Dysat: Deep neural represen-
tation learning on dynamic graphs via self-attention networks. In Proceedings of
the 13th International Conference on Web Search and Data Mining, pages 519–527,
2020.

[36] K. Shin, B. Hooi, J. Kim, and C. Faloutsos. Densealert: Incremental dense-
subtensor detection in tensor streams. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1057–
1066, 2017.

[37] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs: dynamic tensor
analysis. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 374–383, 2006.

[38] J. Sun, Y. Zhang, W. Guo, H. Guo, R. Tang, X. He, C. Ma, and M. Coates. Neighbor
interaction aware graph convolution networks for recommendation. In Proceed-
ings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 1289–1298, 2020.

[39] X. Teng, Y. R. Lin, and X. Wen. Anomaly detection in dynamic networks using
multi-view time-series hypersphere learning. In The Conference on Information
and Knowledge Management, pages 827–836, 2017.

[40] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha. Dyrep: Learning representations
over dynamic graphs. In International Conference on Learning Representations,
2019.

[41] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang, and Y. Qi.
A semi-supervised graph attentive network for financial fraud detection. In IEEE
International Conference on Data Mining, pages 598–607, 2019.

[42] T. Wang, C. Fang, D. Lin, and S. F. Wu. Localizing temporal anomalies in large
evolving graphs. In Proceedings of the 2015 SIAM International Conference on
Data Mining, pages 927–935, 2015.

[43] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui, Y. Yang,
B. Sun, et al. Apan: Asynchronous propagation attention network for real-time
temporal graph embedding. In Proceedings of the 2021 International Conference
on Management of Data, pages 2628–2638, 2021.

[44] Y. Wang, Y. Y. Chang, Y. Liu, J. Leskovec, and P. Li. Inductive representation learn-
ing in temporal networks via causal anonymous walks. International Conference
on Learning Representations, 2021.

[45] Y. Wang, J. Zhang, S. Guo, H. Yin, C. Li, and H. Chen. Decoupling representation
learning and classification for gnn-based anomaly detection. In Proceedings of
the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 1239–1248, 2021.

[46] W. Xia, Y. Li, J. Wu, and S. Li. DeepIS: Susceptibility estimation on social networks.
In Proceedings of the 14th ACM International Conference on Web Search and Data
Mining, pages 761–769, 2021.

[47] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan. Inductive representation
learning on temporal graphs. In Proceedings of the International Conference on
Learning Representations, 2020.

[48] M. Yang, Y. Shen, H. Qi, and B. Yin. Soft-mask: Adaptive substructure extractions
for graph neural networks. In Proceedings of the Web Conference 2021, pages
2058–2068, 2021.

[49] M. Yoon, B. Hooi, K. Shin, and C. Faloutsos. Fast and accurate anomaly detection
in dynamic graphs with a two-pronged approach. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages
647–657, 2019.

1166

[50] W. Yu, C. C. Aggarwal, S. Ma, and H. Wang. On anomalous hotspot discovery
in graph streams. In IEEE 13th International Conference on Data Mining, pages
1271–1276, 2013.

[51] W. Yu, C. C. Aggarwal, and W. Wang. Temporally factorized network modeling
for evolutionary network analysis. In Proceedings of the 10th ACM International
Conference on Web Search and Data Mining, pages 455–464, 2017.

[52] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang. Netwalk: A
flexible deep embedding approach for anomaly detection in dynamic networks.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 2672–2681, 2018.

[53] D. Zambon, C. Alippi, and L. Livi. Concept drift and anomaly detection in graph
streams. IEEE transactions on neural networks and learning systems, 29(11):5592–
5605, 2018.

[54] Z. Zhang, J. Bu, M. Ester, J. Zhang, C. Yao, Z. Li, and C. Wang. Learning tem-
poral interaction graph embedding via coupled memory networks. In The Web
Conference, pages 3049–3055, 2020.

[55] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao. Addgraph: Anomaly detection in dynamic
graph using attention-based temporal gcn. In International Joint Conference on
Artificial Intelligence, pages 4419–4425, 2019.

[56] L. Zhou, Y. Yang, X. Ren, F. Wu, and Y. Zhuang. Dynamic network embedding
by modeling triadic closure process. In Proceedings of the AAAI Conference on
Artificial Intelligence, pages 571–578, 2018.

1167

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Inductive Anomaly Detection
	4.1 Overview
	4.2 Representation Module
	4.3 Prediction Module
	4.4 The AER-AD Model
	4.5 Complexity

	5 Experiments
	5.1 Datasets
	5.2 Experimental setting
	5.3 Overall evaluation (RQ1)
	5.4 Effect of each component (RQ2)
	5.5 Robustness (RQ3)
	5.6 Efficiency (RQ4)

	6 Conclusion
	Acknowledgments
	References

