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ABSTRACT

Differential privacy (DP) is the state-of-the-art and rigorous notion
of privacy for answering aggregate database queries while preserv-
ing the privacy of sensitive information in the data. In today’s era
of data analysis, however, it poses new challenges for users to un-
derstand the trends and anomalies observed in the query results: Is
the unexpected answer due to the data itself, or is it due to the extra
noise that must be added to preserve DP? In the second case, even
the observation made by the users on query results may be wrong.
In the first case, can we still mine interesting explanations from
the sensitive data while protecting its privacy? To address these
challenges, we present a three-phase framework DPXPlain, which
is the first system to the best of our knowledge for explaining group-
by aggregate query answers with DP. In its three phases,DPXPlain
(a) answers a group-by aggregate query with DP, (b) allows users to
compare aggregate values of two groups and with high probability
assesses whether this comparison holds or is flipped by the DP
noise, and (c) eventually provides an explanation table containing
the approximately ‘top-k’ explanation predicates along with their
relative influences and ranks in the form of confidence intervals,
while guaranteeing DP in all steps. We perform an extensive ex-
perimental analysis of DPXPlain with multiple use-cases on real
and synthetic data showing that DPXPlain efficiently provides
insightful explanations with good accuracy and utility.
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1 INTRODUCTION

Differential privacy (DP) [14, 40–42] is the gold standard for pro-
tecting privacy in query processing and is critically important for
sensitive data analysis. It has been widely adopted by organiza-
tions like the U.S. Census Bureau [3, 38, 58, 84] and companies
like Google [44, 97], Microsoft [29], and Apple [89]. The core idea
behind DP is that a query answer on the original database cannot
be distinguished from the same query answer on a slightly different
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database. This is usually achieved by adding random noise to the
query answer to create a small distortion in the answer. Recent
works have made significant advances in the usability of DP, al-
lowing for complex query support [32, 56, 59, 60, 69, 90, 97], and
employing DP in different settings [32, 45, 48, 77, 90, 99]. These
works assist in bridging the gaps between the functionality of non-
DP databases and databases that employ DP.

Automatically generating meaningful explanations for query
answers in response to questions asked by users is an important
step in data analysis that can significantly reduce human efforts
and assist users. Explanations help users validate query results,
understand trends and anomalies, and make decisions about next
steps regarding data processing and analysis, thereby facilitating
data-driven decision making. Several approaches for explaining
aggregate and non-aggregate query answers have been proposed
in database research, including intervention [81, 82, 98], Shapley
values [67], counterbalance [75], (augmented) provenance [5, 65],
responsibility [73, 74], and entropy [43] (discussed in Section 6).

One major gap that remains wide open is to provide explanations
for analyzing query answers from sensitive data under DP. Several
new challenges arise from this need. First, in DP, the (aggregate)
query answers shown to users are distorted due to the noise that
must be added for preserving privacy, so the explanations need
to separate the contributions of the noise from the data. Second,
even after removing the effect of noise, new techniques have to be
developed to provide explanations based on the sensitive data and
measure their effects. For instance, standard explanation methods
in non-DP settings are typically deterministic, while it is known
that DP methods must be randomized. Therefore, no deterministic
explanations can be provided, and even no deterministic scores or
ranks of explanations can be displayed in response to user questions
if we want to guarantee DP in the explanation system. Third, the
system needs to ensure that the returned explanations, scores, and
ranks still have high accuracy while being private.

In this paper, we propose DPXPlain, a novel three-phase frame-
work that generates explanations 1 under DP for aggregate queries
based on the notion of intervention [82, 98] 2 .DPXPlain surmounts
the aforementioned challenges and is the first system combining
DP and explanations to the best of our knowledge. We illustrate
DPXPlain through an example.

Example 1.1. Consider the Adult (a subset of Census)
dataset [35] with 48,842 tuples. We consider the following
attributes: age, workclass, education, marital-status,
occupation, relationship, race, sex, native-country,

1The explanations we provided should not be considered causal explanations.
2A graphical user interface for DPXPlain is an ongoing work.
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marital-status occupation . . . education high-income
Never-married Machine-op-inspct . . . 11th 0
Married-civ-spouse Farming-fishing . . . HS-grad 0
Married-civ-spouse Machine-op-inspct . . . Some-college 1
. . . . . . . . . . . . . . .

(a) Example of the Adult dataset.

Question-Phase-1:

SELECT marital-status, AVG(high-income) as avg-high-income
FROM Adult GROUP BY marital-status;

Answer-

Phase-1:

group Priv-answer True-answer

marital-status avg-high-income (hidden)
Never-married 0.045511 0.045480

Separated 0.064712 0.064706
Widowed 0.082854 0.084321

Married-spouse-absent 0.089988 0.092357
Divorced 0.101578 0.101161

Married-AF-spouse 0.463193 0.378378
Married-civ-spouse 0.446021 0.446133

(b) Phase-1 of DPXPlain: Run a query and receive noisy answers by DP.

True-answers are not visible to the user and for illustration only.

Question-Phase-2: Why avg-high-income of group
"Married-civ-spouse" > that of group "Never-married"?

Answer-Phase-2: The 95% confidence interval of group difference is
(0.399, 0.402) , hence the noise in the query is possibly not the reason.

(c) Phase-2 of DPXPlain: Ask a comparison question and receive a

confidence interval of the comparison.

Answer-Phase-3:

explanation predicate Rel Influ 95%-CI Rank 95%-CI

L U L U

occupation = "Exec-managerial" 3.25% 10.12% 1 9
education = "Bachelors" 2.93% 9.80% 1 8
age = "(40, 50]" 2.76% 9.63% 1 8
occupation = "Prof-specialty" 0.94% 7.81% 1 18
relationship = "Own-child" -0.49% 6.38% 1 96

(d) Phase-3 of DPXPlain: Receive an explanation table from data for

the previous question that passed Phase-2.

Figure 1: Database instance and the three phases of the DPXPlain framework.

and high-income, where high-income is a binary attribute in-
dicating whether the income of a person is above 50K or not; some
relevant columns are illustrated in Figure 1a.

In the first phase (Phase-1) of DPXPlain, the user sub-
mits a query and gets the results as shown in Figure 1b. This
query is asking the fraction of people with high income in each
marital-status group. As Figure 1b shows, the framework re-
turns the answer with two columns: group and Priv-answer. Here
group corresponds to the group-by attribute marital-status.
However, since the data is private, instead of seeing the actual
aggregate values avg-high-income, the user sees a perturbed an-
swer Priv-answer for each group as output by some differentially
private mechanism with a given privacy budget (here computed by
the Gaussian mechanism with privacy budget 𝜌 = 0.1 [14]). The
third column True-answer shown in grey (hidden for users) in
Figure 1b shows the true aggregated output for each group.

In the second phase (Phase-2) of DPXPlain, the user se-
lects two groups to compare their aggregate values and asks for
explanations. However, unlike standard explanation frameworks
[43, 65, 75, 82, 98] where the answers to a query are correct and
hence the question asked by the user is also correct, in the DP
setting, the answers that the users see are perturbed. Therefore, the
user question and the direction of comparison may not be valid.
Hence our system first tests the validity of the question. If the ques-
tion is valid, our system provides a data-dependent explanation of
the user question. We explain this below with the running example.

First, consider the question in Figure 2 comparing the last
two groups in Figure 1b (spouse in armed forces vs. a civil-
ian). In this example, even though the noisy avg-high-income
for "Married-AF-spouse" is larger than the noisy value for
"Married-civ-spouse", this might not be true in the real data (as
is the case in the True-answer column). Hence, our system tests
whether the user question could potentially be explained just using
the noise introduced by DP rather than from the data itself. To do

Question-Phase-2: Why avg-high-income of group
"Married-AF-spouse" > that of group "Married-civ-spouse"?

Answer-Phase-2: The 95% confidence interval of group difference is
(−0.259, 0.460) , hence the noise in the query is possibly the reason.

Figure 2: A user question explained by high noise.

this, our system tests the validity of the user question by computing
a confidence interval around the difference between these two out-
puts. In this case, the confidence interval is (−0.259, 0.460). Since it
includes 0 and negative values, we cannot conclude with high prob-
ability that "Married-AF-support" > "Married-civ-spouse" is
true in the original data. Since the validity of the user question

is uncertain, we know that any further explanationmight not

be meaningful and the user may choose to stop here. In other
words, the explanation for the comparison in the user question is
primarily attributed to the added noise by the DP mechanism. If the
user chooses to proceed to the next phase for further explanations
from the data, they might not be meaningful.

Now consider the comparison between two other groups
"Never-married" and "Married-civ-spouse", in Figure 1c. In
this case, the confidence interval about the difference does not
include zero and is tight around a positive number of 0.4, which
indicates that the user question is correct with high probability. No-
tice that it is still possible for a valid question to have a confidence
interval that includes zero given sufficiently large noise. Since the
question is valid, the user may continue to the next phase.

In the third phase (Phase-3) of DPXPlain, for the questions
that are likely to be valid, DPXPlain can provide a further detailed
data-dependent explanation for the question. To achieve this again
with DP, our framework reports an “Explanation Table”3 to the
3We note that our notion of explanation table is unrelated to that described by Gebaly
et al. [43] for summarizing dimension attributes to explain a binary outcome attribute.
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user as Figure 1d shows, which includes the top-5 explanation pred-

icates. The explanation predicates explain the user question using
the notion of intervention as done in previous work [82, 98] for ex-
plaining aggregate queries in the non-DP setting. Intuitively, if we
intervene in the database by (hypothetically) removing tuples that
satisfy the predicate, and re-evaluate the query, then the difference
in the aggregate values of the two groups mentioned in the ques-
tion will reduce. In the simplest form, explanation predicates are
singleton predicates of the form “attribute = <value>”, while
in general, our framework supports more complex predicates in-
volving conjunction, disjunction, and comparison (>, ≥ etc.). In
Figure 1d, the top-5 simple explanation predicates, as computed by
DPXPlain, are shown out of 103 singleton predicates, according to
their influences on the question but perturbed by noises to satisfy
DP. The amount of noise is proportional to the sensitivity of the
influence function, the maximum possible change of the influence
of any explanation predicate when adding or removing a single
tuple from the database. Once the top-5 predicates are selected,
the explanation table also shows both their relative influence (intu-
itively, how much they affect the difference of the group aggregates
in the question) and their ranks (that might be far away from the
true top-5) in the form of confidence interval under DP.

From this table, occupation = "Exec-managerial" is re-
turned as the top explanation predicate, indicating that the people
with this job contribute more to the average high income of the
married group compared to the never-married group. In other
words, managers tend to earn more if they are married than those
who are single, which probably can be attributed to the intuition
that married people might be older and have more seniority, which
is consistent with the third explanation age = "(40, 50]" in
Figure 1d as well. Although these explanations are chosen at
random, we observe that the first three explanations are almost
constantly included. This is consistent with the narrow confidence
interval of rank for the first three explanation predicates, which
are all around [1, 8]. Looking at the confidence intervals of the
relative influence and ranks in the explanation table, the user also
knows that the first three explanations are likely to have some
effect on the difference between the married and unmarried groups.
However, for the last two explanations, the confidence intervals
of influences are closer to 0 and the confidence intervals of ranks
are wider, especially for the fifth one which includes negative
influences in the interval and has a wide range of possible ranks
(96 out of 103 simple explanation predicates in total).

Our contributions.

• We develop DPXPlain, the first framework, to our knowledge,
that generates explanations for query answers under DP adapting
the notion of intervention [82, 98]. It explains user questions
comparing two group-by aggregate query answers (COUNT, SUM,
or AVG)with DP in three phases: private query answering, private
user question validation, and private explanation table.

• We develop multiple novel techniques that allow DPXPlain to pro-
vide explanations under DP including (a) computing confidence
intervals to check the validity of user questions, (b) choosing
explanation predicates, and (c) computing confidence intervals
around the influence and rank of the predicates.

• We design a low sensitivity influence function inspired by previ-
ous work on non-private explanations [98], which is the key to
the accurate selection of the top-k explanation predicates.

• We design an algorithm that uses a noisy binary search technique
to find the confidence intervals of the explanation ranks, which
overcomes the high sensitivity challenge of the rank function.

• We have implemented a prototype of DPXPlain [2] to evalu-
ate our approach. We include two case studies on a real and a
synthetic dataset showing the entire process and the obtained ex-
planations. We have further performed a comprehensive accuracy
and performance evaluation, showing that DPXPlain correctly
indicates the validity of the question with 100% accuracy for 8
out of 10 questions, selects at least 80% of the true top-5 explana-
tion predicates correctly for 8 out of 10 questions, and generates
descriptions about their influences and ranks with high accuracy.

2 PRELIMINARIES

We now give the necessary background for our model. The
DPXPlain framework supports single-block SELECT - FROM -
WHERE - GROUP BY queries with aggregates (Figure 3) on sin-
gle tables4. Hence the database schema A = (𝐴1, . . . , 𝐴𝑚) is a
vector of attributes of a single relational table. Each attribute
𝐴𝑖 is associated with a domain dom(𝐴𝑖 ), which can be continu-
ous or categorical. A database (instance) 𝐷 over a schema A is
a bag of tuples (duplicate tuples are allowed) 𝑡𝑖 = (𝑎1, . . . , 𝑎𝑚),
where 𝑎𝑖 ∈ dom(𝐴𝑖 ) for all 𝑖 . The domain of a tuple is denoted
as dom(A) = dom(𝐴1) × dom(𝐴2) × . . . × dom(𝐴𝑚). We denote
𝐴𝑚𝑎𝑥
𝑖

= max{|𝑎 | | 𝑎 ∈ dom(𝐴𝑖 )} as the maximum absolute value of
𝐴𝑖 . The value of the attribute 𝐴𝑖 of tuple 𝑡 is denoted by 𝑡 .𝐴𝑖 .

𝑞 = SELECT 𝐴𝑔𝑏, agg(𝐴𝑎𝑔𝑔) FROM D WHERE 𝜙 GROUP BY 𝐴𝑔𝑏;

Figure 3: Group-by query with aggregates supported by DPX-
Plain. The true results are denoted by (𝛼𝑖 , 𝑜𝑖 ) and the noisy

results released by a DP mechanism are denoted by (𝛼𝑖 , 𝑜𝑖 )
where 𝛼𝑖 is the value of 𝐴𝑔𝑏 and 𝑜𝑖 , 𝑜𝑖 are aggregate values.

We consider group-by aggregate queries 𝑞 of the form shown
in Figure 3. Here 𝐴𝑔𝑏 is the group-by attribute and 𝐴𝑎𝑔𝑔 is the
aggregate attribute, 𝜙 is a predicate without subqueries, and agg ∈
{𝐶𝑂𝑈𝑁𝑇, 𝑆𝑈𝑀,𝐴𝑉𝐺} is the aggregate function. When query 𝑞 is
evaluated on database 𝐷 , its result is a set of tuples (𝛼𝑖 , 𝑜𝑖 ), where
𝛼𝑖 ∈ dom(𝐴𝑔𝑏 ) and 𝑜𝑖 = 𝑎𝑔𝑔({𝑡 .𝐴𝑎𝑔𝑔 | 𝑡 ∈ 𝐷,𝜙 (𝑡) = 𝑡𝑟𝑢𝑒, 𝑡 .𝐴𝑔𝑏 =

𝛼𝑖 }). For brevity, we will use 𝜙 ′ (𝐷) to denote {𝑡 | 𝜙 ′ (𝑡) = 𝑡𝑟𝑢𝑒}
for any predicate 𝜙 ′, and 𝑎𝑔𝑔(𝐴𝑎𝑔𝑔, 𝐷

′), or simply 𝑎𝑔𝑔(𝐷′) when
it is clear from context, to denote 𝑎𝑔𝑔({𝑡 .𝐴𝑎𝑔𝑔 | 𝑡 ∈ 𝐷′}) for any
𝐷′ ⊆ 𝐷 . Hence, 𝑜𝑖 = 𝑎𝑔𝑔(𝐴𝑎𝑔𝑔, 𝑔𝑖 (𝐷)), where 𝑔𝑖 = 𝜙 ∧ (𝐴𝑔𝑏 = 𝛼𝑖 ).

Example 2.1. Consider Example 1.1. The schema is A
= (marital-status, occupation, age, relationship, race,
workclass, sex, native-country, education, high-income).
All the attributes are categorical attributes and the domain of

4Unlike some standard explanation framework [98], in DP, we cannot consider mate-
rialization of join-result for multiple tables, since the privacy guarantee depends on
sensitivity, and removing one tuple from a table may change the join and query result
significantly. We leave it as an interesting future work.
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high-income is {0, 1}. The query is shown in Figure 1b and the true
result for each group is shown in the True-answer column. Here
𝐴𝑔𝑏 = marital − status, 𝐴𝑎𝑔𝑔 = high − income, and agg = 𝐴𝑉𝐺 .

Differential Privacy. In this work, we consider query-answering
and providing explanations using differential privacy (DP) [41] to
protect private information in the data. In standard databases, a
query result can give an adversary the option to find the presence
or absence of an individual in the database, compromising their pri-
vacy. DP allows users to query the database without compromising
the privacy by guaranteeing that the query result will not change
too much (defined in the sequel) even if it is evaluated on any two
different but neighboring databases defined below.

Definition 2.2 (Neighboring Database). Two databases 𝐷 and 𝐷′

are neighboring (denoted by𝐷 ≈ 𝐷′) if𝐷′ can be transformed from
𝐷 by adding or removing 5 a tuple in 𝐷 .

In this paper, we consider a relaxation of DP called 𝜌-zero-

concentrated differential privacy (zCDP) [14, 42] for several
reasons, and refer to it simply as DP if not otherwise stated. First,
we use Gaussian noise to perturb query answers and derive confi-
dence intervals, which does not satisfy pure 𝜖-DP [41] but satisfies
approximate (𝜖, 𝛿)-DP [41] and 𝜌-zCDP. Second, 𝜌-zCDP only has
one parameter 𝜌 , compared to (𝜖, 𝛿)-DP which has two parameters,
so it is easier to understand and control. Third, 𝜌-zCDP allows for
tighter analyses for tracking the privacy budget (controlled by 𝜌)
over multiple private releases, which is the case for this framework.
A lower 𝜌 value implies a lower privacy loss.

Definition 2.3 (Zero-Concentrated Differential Privacy (zCDP) [14]).

AmechanismM is said to be 𝜌-zero-concentrated differential private,
or 𝜌-zCDP for short, if for any neighboring datasets 𝐷 and 𝐷′ and
all 𝛼 ∈ (1,∞) it holds that

𝐷𝛼 (M(𝐷)∥ M(𝐷′)) ≤ 𝜌𝛼

where 𝐷𝛼 (M(𝐷)∥ M(𝐷′)) denotes the Rényi divergence of the
distribution M(𝐷) from the distribution M(𝐷′) at order 𝛼 [76].

A popular approach for providing zCDP to a query result is to
add Gaussian noise to the result before releasing it to a user. This
approach is called Gaussian mechanism [14, 41].

Definition 2.4 (GaussianMechanism). Given a query𝑞 and a noise
scale 𝜎 , Gaussian mechanism M𝐺 is given as:

M𝐺 (𝐷 ;𝑞, 𝜎) = 𝑞(𝐷) + 𝑁 (0, 𝜎2)

where 𝑁 (0, 𝜎2) is a random variable from a normal distribution6
with mean zero and variance 𝜎2.

Example 2.5. Suppose there is a database 𝐷 with 100 tuples.
Consider a query 𝑞 = “SELECT COUNT(*) FROM D”, which counts
the total number of tuples in a database 𝐷 . Here 𝑞(𝐷) = 100. Now
we use Gaussian mechanism to release 𝑞(𝐷), which is to randomly
sample a noise 𝑧 from distribution 𝑁 (0, 𝜎2). Here we assume 𝜎 = 1.
5There are two variants of neighboring databases. The definition by addition/deletion
of tuples is called “unbounded DP”, and by updating tuples is called “bounded DP”,
since the size of data is fixed. In this work, we assume the unbounded version, while
DPXPlain can be adapted also for the bounded version by adapting the noise scale.
6The probability density function of a normal distribution 𝑁 (𝜇, 𝜎2 ) is given as
𝑒𝑥𝑝 (−( (𝑥 − 𝜇 )/𝜎 )2/2)/(𝜎

√
2𝜋 ) .

Finally, we got a noisy result �̂�(𝐷) = 102.32, which we may round
to an integer in postprocessing without sacrificing the privacy
guarantee (Proposition 2.9 below).

The privacy guarantee from the Gaussian mechanism depends
on both the noise scale it uses and the sensitivity of the query.
Query sensitivity reflects how sensitive the query is to the change
of the input. More noise is needed for a more sensitive query to
achieve the same level of privacy protection.

Definition 2.6 (Sensitivity). Given a scalar query 𝑞 that outputs a
single number, its sensitivity is defined as:

Δ𝑞 = sup
𝐷≈𝐷 ′

|𝑞(𝐷) − 𝑞(𝐷′) |

Example 2.7. Continuing Example 2.5, since the query 𝑞 returns
the database size, for any two neighboring databases, their sizes
always differ by 1, so the sensitivity of 𝑞 is 1.

Theorem 2.8 (Gaussian Mechanism [14]). Given a query 𝑞 with

sensitivity Δ𝑞 and a noise scale 𝜎 , its Gaussian mechanism M𝐺

satisfies (Δ2
𝑞/2𝜎2)-zCDP. Equivalently, given a privacy budget 𝜌 ,

choosing 𝜎 = Δ𝑞/
√
2𝜌 in Gaussian mechanism satisfies 𝜌-zCDP.

Composition Rules. In our analysis, we will use the following
standard composition rules and other known results from the liter-
ature of DP [72] (in particular, zCDP [14]) frequently:

Proposition 2.9. The following holds for zCDP [14, 72]:
• Parallel composition: if mechanisms take disjoint data as input,

the total privacy loss is the maximum privacy loss from each.

• Sequential composition: if mechanisms take overlapping data

as input, the total privacy loss is the sum of each privacy loss.

• Post-processing: if we run a mechanism and post-process the

result without accessing the data, the total privacy loss is only the

privacy loss from the mechanism.

Private Query Answering. Recall that we have group-by ag-
gregation query of the form 𝑞 = SELECT 𝐴𝑔𝑏, agg(𝐴𝑎𝑔𝑔) FROM
D WHERE 𝜙 GROUP BY 𝐴𝑔𝑏 , and it returns a list of tuples (𝛼𝑖 , 𝑜𝑖 )
where 𝛼𝑖 ∈ dom(𝐴𝑔𝑏 ) and 𝑜𝑖 is the corresponding aggregate value.
Since no single tuple can exist in more than one group, adding or
removing a single tuple can at most change the result of a single
group. As mentioned earlier, Phase-1 returns noisy aggregate values
𝑜𝑖 for each 𝛼𝑖 instead of 𝑜𝑖 . The following holds:

Observation 2.1. According to the parallel composition rule (Propo-
sition 2.9), if for each 𝛼𝑖 , its (noisy) aggregate value 𝑜𝑖 is released

under 𝜌𝑞-zCDP, the entire release of results including all groups

{𝛼𝑖 , 𝑜𝑖 : 𝛼𝑖 ∈ dom(𝐴𝑔𝑏 )} satisfies 𝜌𝑞-zCDP.
For a 𝐶𝑂𝑈𝑁𝑇 or 𝑆𝑈𝑀 query, we use the Gaussian mechanism

for each group 𝛼𝑖 : 𝑜𝑖 = 𝑜𝑖 + 𝑁 (0, 𝜎2), where the noise scale 𝜎 =

Δ𝑞/
√︁
2𝜌𝑞 to satisfy 𝜌𝑞-zCDP by Theorem 2.8. The sensitivity term

Δ𝑞 is 1 for 𝐶𝑂𝑈𝑁𝑇 and 𝐴𝑚𝑎𝑥
𝑎𝑔𝑔 for 𝑆𝑈𝑀 , the maximum absolute

value of the aggregation attribute in its domain. For an 𝐴𝑉𝐺 query,
since 𝐴𝑉𝐺 = 𝑆𝑈𝑀/𝐶𝑂𝑈𝑁𝑇 , we decompose it into a 𝑆𝑈𝑀 and
a 𝐶𝑂𝑈𝑁𝑇 query, privately answer each of them by half of the
privacy budget 𝜌𝑞/2 to get 𝑜𝑆𝑖 and 𝑜𝐶𝑖 for each group 𝛼𝑖 , and release
𝑜𝑖 = 𝑜𝑆𝑖 /𝑜

𝐶
𝑖 as a post-processing step. The noisy query answers of

the group-by query with AVG satisfy 𝜌𝑞-zCDP by the sequential
composition rule (Proposition 2.9).
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Confidence Level and Interval. Confidence intervals are com-
monly used to determine the error margin in uncertain computa-
tions and are used in various fields including machine learning [55]
and DP [46]. In our context, we use confidence intervals to measure
the uncertainty in the user question and our explanations.

Definition 2.10 (Confidence Level and Interval [96]). Given a con-
fidence level 𝛾 and an unknown but fixed parameter 𝜃 , a random
interval I = (I𝐿,I𝑈 ) is said to be its confidence interval, or CI,
with confidence level 𝛾 if the following holds:

𝑃𝑟 [I𝐿 ≤ 𝜃 ≤ I𝑈 ] ≥ 𝛾

Example 2.11. Let 𝜃 = 0. Suppose with probability 50% we have
𝐼𝐿 = −1 and 𝐼𝑈 = 1, and with another probability 50% we have
𝐼𝐿 = 1 and 𝐼𝑈 = 2. Therefore, 𝑃𝑟 [I𝐿 ≤ 𝜃 ≤ I𝑈 ] = 50%, and we
can conclude that the random interval I = (I𝐿,I𝑈 ) is a 50% level
confidence interval for 𝜃 .

3 PRIVATE EXPLANATIONS IN DPXPLAIN
In this section, we provide the model for private explanations of
query results at the center of DPXPlain.
User Question and Standard Explanation Framework. In
Phase-2 of DPXPlain, given the noisy results of a group-by aggre-
gation query from Phase-1, users can ask questions comparing the
aggregate values of two groups7:

Definition 3.1 (User Question). Given a database 𝐷 , a group-by
aggregate query 𝑞 as shown in Figure 3, a DP mechanismM, and
two noisy answer tuples (𝛼𝑖 , 𝑜𝑖 ), (𝛼 𝑗 , 𝑜 𝑗 ) ∈ M(𝐷 ;𝑞) where 𝑜𝑖 > 𝑜 𝑗 ,
a user question has the form “why is the (noisy) aggregate value 𝑜𝑖
of group 𝛼𝑖 larger than the aggregate value 𝑜 𝑗 of group 𝛼 𝑗 ?”), which
is denoted by “why (𝛼𝑖 , 𝛼 𝑗 , >)?”.

Example 3.2. The question from Figure 1c is denoted as “why
(‘Married-civ-spouse’, ‘Never-married’, >)?”.

To explain a user question, several previous approaches return
top-k predicates that have the highest influences over the group
difference in the question [43, 65, 82, 98]. We follow this paradigm
and define explanation predicates.

Definition 3.3 (Explanation Predicate). Given a database 𝐷 with a
set of attributes A, a group-by aggregation query 𝑞 (Figure 3) with
group-by attribute𝐴𝑔𝑏 and aggregate attribute𝐴𝑎𝑔𝑔 and a predicate
size 𝑙 , an explanation predicate 𝑝 is a Boolean expression of the
form 𝑝 = 𝜑1 ∧ ...∧𝜑𝑙 , where each 𝜑𝑖 has the form𝐴𝑖 = 𝑎𝑖 such that
𝐴𝑖 ∈ A \ {𝐴𝑔𝑏 , 𝐴𝑎𝑔𝑔} is an attribute, and 𝑎𝑖 ∈ dom(𝐴𝑖 ) is its value.

We assume dom(𝐴𝑖 ) is discrete, finite, and data-independent. We
focus here on the conjunction of equality predicates. However, our
framework can also handle predicates that contain disjunctions and
inequalities of the form 𝐴𝑖 ◦ 𝑎𝑖 where ◦ ∈ {>, <, ≥, ≤,≠} when the
constant 𝑎𝑖 is from a finite and data-independent set.
New challenges for explanations with DP. Unlike standard ex-
planation framework on aggregate queries [65, 82, 98], the existing
frameworks are not sufficient to support DP and need to be adapted:
(i) the question itself might not be valid due to the noise injected

7Our framework can handle more general user questions involving single group or
more than two groups; details are deferred to the full version [2].

into the queries, (ii) the selection of top-k explanation predicates
needs to satisfy DP, which further requires the influence function
to have low sensitivity so that the selection is less perturbed, and
(iii) since the selected explanation predicates are not guaranteed to
be the true top-k, it is also necessary to output extra descriptions
under DP for each selected explanation predicate about their actual
influences and ranks. We detail the adjustments as follows.
Question Validation with DP (Phase-2).While the user is asking
“why is 𝑜𝑖 > 𝑜 𝑗 ?”, in reality, it may be the case that the true results
satisfy 𝑜𝑖 ≤ 𝑜 𝑗 , i.e., they have opposite relationship than the one
observed by the user. This indicates that 𝑜𝑖 > 𝑜 𝑗 is the result of
the noise being added to the results. In this scenario, one option
to explain the user’s observation of 𝑜𝑖 > 𝑜 𝑗 will be releasing the
true values (equivalently, the added exact noise values), which will
violate DP. Instead, to provide an explanation in such scenarios, we
generate a confidence interval for the difference of two (hidden)
aggregate values 𝑜𝑖 − 𝑜 𝑗 , which can include negative values (dis-
cussed in detail in Section 4.1). This leads to the first problem we
need to solve in the DPXPlain framework:

Problem 1 (Private Confidence Interval of Question). Given a

dataset 𝐷 , a query 𝑞, a DP mechanism M, a privacy budget 𝜌𝑞 , a

confidence level 𝛾 , and a user question (𝛼𝑖 , 𝛼 𝑗 , >) on the noisy query

answers output by M satisfying 𝜌𝑞-zCDP, find a confidence interval

(see Definition 2.10) for the user questionI𝑢𝑞 = (I𝐿
𝑢𝑞,I𝑈

𝑢𝑞) for 𝑜𝑖−𝑜 𝑗
at confidence level 𝛾 without extra privacy cost.

In Phase-2, the framework returns a confidence interval of 𝑜𝑖 −𝑜 𝑗
to the user. If it includes zero or negative numbers, it is possible
that 𝑜𝑖 ≤ 𝑜 𝑗 , and the user’s observation of 𝑜𝑖 > 𝑜 𝑗 is the result of
the noise added by the DP mechanism. In such cases, the user may
stop at Phase-2. If the user is satisfied with the confidence interval
for the validity of the question, she can proceed to Phase-3.
Influence Function (Phase-3).When considering DP, the order
of the explanation predicates is perturbed by the noise we add to
the influences according to the sensitivity of the influence function
(discussed in detail in Section 4.3.1). To provide useful explanations,
this sensitivity needs to be low, which means the influence does
not change too much by adding or removing a tuple from the
database. For example, a counting query that outputs the database
size 𝑛 has sensitivity 1, since its result can only change by 1 for
any neighboring databases. Following this concept, we propose the
second and a core problem for the DPXPlain framework, which is
also critical to the subsequent problems defined below.

Problem 2 (Influence Function with Low Sensitivity). Find an

influence function Inf : P → R that maps an explanation predicate

to a real number and has low sensitivity.

Private Top-𝑘 Explanations (Phase-3). In DPXPlain, to satisfy
DP, in Phase-3 we output the top-𝑘 explanation predicates ordered
by the noisy influences, and release the influences and ranks of
these predicates in the form of confidence intervals to describe the
uncertainty. To achieve this goal, we tackle the following three
sub-problems.

Problem 3 (Private Top-𝑘 Explanation Predicates). Given a set

of explanation predicates P, an integer 𝑘 , and a privacy parameter

𝜌𝑇𝑜𝑝𝑘 , find the top-k highest influencing predicates 𝑝1, 𝑝2, . . . , 𝑝𝑘
from P while satisfying 𝜌𝑇𝑜𝑝𝑘 -zCDP.
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Problem4 (Private Confidence Interval of Influence). Given a confi-
dence level𝛾 , k explanation predicates 𝑝1, 𝑝2, . . . , 𝑝𝑘 , and a privacy pa-
rameter 𝜌𝐼𝑛𝑓 𝑙𝑢 , find a confidence interval I𝑖𝑛𝑓 𝑙𝑢 = (I𝐿

𝑖𝑛𝑓 𝑙𝑢
,I𝑈

𝑖𝑛𝑓 𝑙𝑢
)

for influence Inf(𝑝𝑢 ) at confidence level 𝛾 for each 𝑢 ∈ {1, . . . , 𝑘}
satisfying 𝜌𝐼𝑛𝑓 𝑙𝑢 -zCDP (overall privacy budget).

Problem 5 (Private Confidence Interval of Rank). Given a confi-

dence level 𝛾 , k explanation predicates 𝑝1, 𝑝2, . . . , 𝑝𝑘 , and a privacy
parameter 𝜌𝑅𝑎𝑛𝑘 , find a confidence interval I𝑟𝑎𝑛𝑘 = (I𝐿

𝑟𝑎𝑛𝑘
,I𝑈

𝑟𝑎𝑛𝑘
)

for rank of 𝑝𝑢 at confidence level 𝛾 for each 𝑢 ∈ {1, . . . , 𝑘} satisfying
𝜌𝑅𝑎𝑛𝑘 -zCDP (overall privacy budget).

4 COMPUTING EXPLANATIONS UNDER DP

Next we provide solutions to problems 1, 2, 3, 4, and 5 in Sections 4.1,
4.2, 4.3.1, 4.3.2, and 4.3.3 respectively, and analyze their properties.
We summarize the entire DPXPlain framework in Section 4.4.

4.1 Confidence Interval for a User Question

For Problem 1, the goal is to find a confidence interval of 𝑜𝑖 −
𝑜 𝑗 for the user question at the confidence level 𝛾 without extra
privacy cost in Phase-2. We divide the solution into two cases. (1)
When the aggregation is COUNT or SUM, the noisy difference
𝑜𝑖 − 𝑜 𝑗 follows Gaussian distribution, which leads to a natural
confidence interval. (2) When the aggregation is AVG, the noisy
difference does not follow Gaussian distribution, but we show that
the confidence interval in this case can be derived through multiple
partial confidence intervals. The solutions below only take the
noisy query result as input, which does not incur extra privacy loss
according to the post-processing property of DP (Proposition 2.9).
The pseudo codes can be found in the full version [2].
Confidence interval for COUNT and SUM. For a COUNT or
SUM query, recall from Section 2 that 𝑜𝑖 and 𝑜 𝑗 are produced by
adding Gaussian noises to 𝑜𝑖 and 𝑜 𝑗 with some noise scale 𝜎 . There-
fore, the difference between 𝑜𝑖 and 𝑜 𝑗 also follows Gaussian distri-
bution with mean 𝑜𝑖 − 𝑜 𝑗 and scale

√
2𝜎 (since the variance is 2𝜎2).

Following the standard properties of Gaussian distribution, the in-
terval with center 𝑐 as 𝑜𝑖 −𝑜 𝑗 and margin𝑚 as

√
2(
√
2𝜎) erf−1 (𝛾) 8,

or (c-m, c+m), is a 𝛾 level confidence interval of 𝑜𝑖 − 𝑜 𝑗 [96].
Confidence interval for AVG. For an AVG query, even the single
noisy answer 𝑜𝑖 does not follow Gaussian distribution, because it is
a division between two Gaussian variables as described in Section 2:
𝑜𝑖 = 𝑜𝑆𝑖 /𝑜

𝐶
𝑖 . However, we can still infer a range for 𝑜𝑖 based on

the confidence intervals of 𝑜𝑆𝑖 and 𝑜𝐶𝑖 . More specifically, we first
derive partial confidence intervals for 𝑜𝑆

𝑖
and 𝑜𝐶

𝑖
as discussed above,

denoted by I𝑆 and I𝐶 , individually at some confidence level 𝛽 . Let
𝐼𝐴 = I𝑆/I𝐶 ≔ {𝑥/𝑦 | 𝑥 ∈ I𝑆 , 𝑦 ∈ I𝐶 } 9 to be the set that includes
all possible divisions between any numbers from I𝑆 and I𝐶 . If 𝐼𝐶
contains zero, we return a trivial confidence interval (∞,−∞) that
is always valid. Otherwise, 𝐼𝐴 is a 2𝛽 − 1 level confidence interval
for the division, as stated in the following proposition.

8erf−1 is the inverse function of the error function erf 𝑧 = (2/
√
𝜋 )

∫ 𝑧

0 𝑒−𝑡
2
𝑑𝑡 .

9In the algorithm, we only need the maximum and the minimum of the set to construct
the interval, which can be solved by a numerical optimizer.

Lemma 4.1. GivenI𝑆
andI𝐶

as two 𝛽 level confidence intervals of

𝑜𝑆
𝑖
and 𝑜𝐶

𝑖
separately, the derived interval I𝐴 = {𝑥/𝑦 | 𝑥 ∈ I𝑆 , 𝑦 ∈

I𝐶 } is a 2𝛽 − 1 level confidence interval of 𝑜𝑆
𝑖
/𝑜𝐶

𝑖
.

Proof. The following holds:
𝑃𝑟 [𝑜𝑆

𝑖
/𝑜𝐶

𝑖
∈ I𝐴 ] ≥ 𝑃𝑟 [𝑜𝑆

𝑖
∈ I𝑆 ∧𝑜𝐶

𝑖
∈ I𝐶 ] ≥ 1 − (𝑃𝑟 [𝑜𝑆

𝑖
∉ I𝑆 ] +

𝑃𝑟 [𝑜𝐶
𝑖

∉ I𝐶 ] ) ≥ 1 − ( (1 − 𝛽 ) + (1 − 𝛽 ) ) = 2𝛽 − 1 The first inequality
above is due to fact that the second event is sufficient for the first
event: if two numbers are from I𝑆 and I𝐶 , their division belongs
to the set I𝐴 by definition. The next inequality holds by applying
the union bound. The third inequality is by definition. □

Furthermore, the difference 𝑜𝑖 − 𝑜 𝑗 is a subtraction between two
ratios of two Gaussian variables, which can be expressed as an
arithmetic combination of multiple Gaussian variables: 𝑜𝑖 − 𝑜 𝑗 =

𝑋𝑖/𝑌𝑖 − 𝑋 𝑗/𝑌𝑗 , where 𝑋𝑡 = 𝑁 (𝑜𝑆𝑡 , 𝜎2𝑆 ) and 𝑌𝑡 = 𝑁 (𝑜𝐶𝑡 , 𝜎2𝐶 ) for
𝑡 ∈ {𝑖, 𝑗}. Similar to Lemma 4.1, we can derive the confidence
interval for 𝑜𝑖 − 𝑜 𝑗 based on 4 partial confidence intervals of 𝑜𝑆

𝑖
,

𝑜𝐶
𝑖
, 𝑜𝑆

𝑗
, and 𝑜𝐶

𝑗
instead of 2. The confidence level we set for each

partial confidence interval is 𝛽 = 1 − (1 − 𝛾)/4 by applying union
bound on the failure probability 1 −𝛾 that one of the four variables
is outside its interval. After we have 4 partial confidence intervals
I𝑆
𝑖 , I

𝐶
𝑖 , I

𝑆
𝑗 , and I𝐶

𝑗 for 𝑜𝑆
𝑖
, 𝑜𝐶

𝑖
, 𝑜𝑆

𝑗
, and 𝑜𝐶

𝑗
separately, similar to

Lemma 4.1, we combine them together as I𝐴 = I𝑆
𝑖 /I

𝐶
𝑖 −I𝑆

𝑗 /I
𝐶
𝑗

and derive the confidence interval for 𝑜𝑖 − 𝑜 𝑗 as (inf I𝐴, supI𝐴),
which is guaranteed to be at confidence level 𝛾 . If 0 is included
in either I𝐶

𝑖 or I𝐶
𝑗 , we set the confidence interval to be (∞,−∞)

instead. Although there is no theoretical guarantee of the interval
width, from two case studies in Section 5.2, we demonstrate narrow
confidence intervals of AVG queries in practice, and observe no
extreme case (∞,−∞) in the experiments.

4.2 Influence Function with Low Sensitivity

For Problem 2, the goal is to design an influence function that has
low sensitivity. Inspired by PrivBayes [100], we start by adapting a
known influence function to our framework.

Our influence function of an explanation predicate with respect
to a comparison user question is inspired by the Scorpion frame-
work [98], where the user questions seek explanations for outliers
in the results of a group-by aggregate query. Scorpion identifies
predicates on the input that cause the outliers to disappear from the
output. Given the group-by aggregation query shown in Figure 3
and a group 𝛼𝑖 ∈ dom(𝐴𝑔𝑏 ), recall from Section 2 that the true aggre-
gate value for𝛼𝑖 is𝑜𝑖 = 𝑎𝑔𝑔(𝐴𝑎𝑔𝑔, 𝑔𝑖 (𝐷)), where𝑔𝑖 = 𝜙∧(𝐴𝑔𝑏 = 𝛼𝑖 ),
i.e., 𝑔𝑖 (𝐷) denotes the set of tuples that contribute to the group 𝛼𝑖 .

Scorpion measures the influence of an explanation predicate 𝑝 to
some group 𝛼𝑖 as the ratio between the change of output aggregate
value and the change of group size:

𝑎𝑔𝑔 (𝑔𝑖 (𝐷 ) ) − 𝑎𝑔𝑔 (𝑔𝑖 (¬𝑝 (𝐷 ) ) )
|𝑔𝑖 (𝑝 (𝐷 ) ) | (1)

Here ¬𝑝 (𝐷) denotes 𝐷 − 𝑝 (𝐷), i.e., the set of tuples in 𝐷 that
do not satisfy the predicate 𝑝 . To adapt this influence function to
DPXPlain, we make the following two changes.
• First, it should measure the influence w.r.t. the comparison from

the user question (𝛼𝑖 , 𝛼 𝑗 , >) instead of a single group. A natural
extension is to change the target aggregate on𝑔𝑖 in the numerator
in (1) to the difference between the aggregate values of two groups
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𝑔𝑖 , 𝑔 𝑗 before and after applying the explanation predicate 𝑝 , and
change the denominator as the maximum change in𝑔𝑖 or𝑔 𝑗 when
𝑝 is applied, which gives the following influence function:(︁
𝑎𝑔𝑔 (𝑔𝑖 (𝐷 ) ) − 𝑎𝑔𝑔 (𝑔𝑗 (𝐷 ) )

)︁
−
(︁
𝑎𝑔𝑔 (𝑔𝑖 (¬𝑝 (𝐷 ) ) ) − 𝑎𝑔𝑔 (𝑔𝑗 (¬𝑝 (𝐷 ) ) )

)︁
max( |𝑔𝑖 (𝑝 (𝐷 ) ) |, |𝑔𝑗 (𝑝 (𝐷 ) ) | ) (2)

• Second and more importantly, in DPXPlain, we need to preserve
DP when we use influence function to sort and rank multiple
explanation predicates, or to release the influence and rank of an
explanation predicate. Therefore, we need to account for the

sensitivity of the influence function, which is determined
by the worst-case change of influence when a tuple is added
or removed from the database. If the predicate only selects a
small number of tuples, the denominator in (2) is small and thus
changing the denominator in (2) by one (when a tuple is added or
removed) can result in a big change in the influence as illustrated
in the following example, making (2) unsuitable for DPXPlain.

Example 4.2 (The Issue of the Influence Sensitivity). Suppose there
are two groups 𝛼𝑖 and 𝛼 𝑗 in 𝐷 with 1000 tuples in each, aggregate
function 𝑎𝑔𝑔 = 𝑆𝑈𝑀 on attribute 𝐴𝑎𝑔𝑔 with domain [0, 100], and
the explanation predicate 𝑝 matches only 1 tuple from the group
𝛼𝑖 with 𝐴𝑎𝑔𝑔 = 100 and no tuple from 𝛼 𝑗 . Suppose 𝑎𝑔𝑔(𝑔𝑖 (𝐷)) =
20, 000, 𝑎𝑔𝑔(𝑔 𝑗 (𝐷)) = 10, 000, then 𝑎𝑔𝑔(𝑔𝑖 (¬𝑝 (𝐷))) = 19, 900 and
𝑎𝑔𝑔(𝑔 𝑗 (¬𝑝 (𝐷))) = 10, 000. Therefore, from Equation (2), the influ-
ence of 𝑝 is ((20, 000−10, 000)−(19, 900−10, 000))/max{1, 0} = 100
on the original database 𝐷 . However, suppose a new tuple that sat-
isfies 𝑝 and belongs to group 𝛼𝑖 is added with 𝐴𝑎𝑔𝑔 = 2. Now the
influence in Equation (2) becomes ((20, 002 − 10, 000) − (19, 900 −
10, 000))/max{2, 0} = 102/2 = 51. Note that while we added a tuple
contributing only 2 to the sum, it led to a change of 100-51 = 49 to
the influence function because of the small denominator.

Therefore, we propose a new influence function that is inspired
by Equation (2) but has lower sensitivity. Note that the denom-
inator in Scorpion’s influence function in Equation (2) acts as a
normalizing factor, whose purpose is to penalize the explanation
predicate that selects too many tuples, e.g., to prohibit the removal
of the entire database by a dummy predicate. To have a similar nor-
malizing factor with low sensitivity, we multiply the numerator in
Equation (2) by min( |𝑔𝑖 (¬𝑝 (𝐷 ) ) |, |𝑔𝑗 (¬𝑝 (𝐷 ) | )

max( |𝑔𝑖 (𝐷 ) |, |𝑔𝑗 (𝐷 ) | )+1 . From this new normal-
izing factor, the numerator captures the minimum of the number of
tuples that are not removed from each group, and the denominator
keeps the normalizing factor in the interval [0, 1] and does not
change for different explanation predicates. Similar to Scorpion,
if 𝑝 (𝐷) constitutes a large fraction of 𝐷 (e.g., if 𝑝 (𝐷) = 𝐷), then
the normalizing factor is small, reducing the value of the influence.
Also note that, unlike standard SQL query answering where only
non-empty groups are shown in the results, in DP, all groups from
the actual domain have to be considered, hence unlike Equation (1),
𝑔𝑖 (𝐷), 𝑔 𝑗 (𝐷) could be zero, hence 1 is added in the denominator to
avoid division by zero. When 𝑎𝑔𝑔 = 𝐴𝑉𝐺 , we remove the constant
denominator to boost the signal of the influence and keep the sen-
sitivity low, which will be discussed in the sensitivity analysis after
Proposition 4.4 and in Example 4.5.

Definition 4.3 (Influence of Explanation Predicates). Given a data-
base 𝐷 , a query 𝑞 as shown in Figure 3, and a user question
(𝛼𝑖 , 𝛼 𝑗 , >), the influence of an explanation predicate 𝑝 is defined as

Inf(𝑝; (𝛼𝑖 , 𝛼 𝑗 , >), 𝐷), or simply Inf(𝑝) when clear from context:
Inf(𝑝 ) =

(︁ (︁
𝑎𝑔𝑔 (𝑔𝑖 (𝐷 ) ) − 𝑎𝑔𝑔 (𝑔𝑗 (𝐷 ) )

)︁
−
(︁
𝑎𝑔𝑔 (𝑔𝑖 (¬𝑝 (𝐷 ) ) ) − 𝑎𝑔𝑔 (𝑔𝑗 (¬𝑝 (𝐷 ) ) )

)︁ )︁
×
{︄ min( |𝑔𝑖 (¬𝑝 (𝐷 ) ) |,|𝑔𝑗 (¬𝑝 (𝐷 ) |)

max( |𝑔𝑖 (𝐷 ) |,|𝑔𝑗 (𝐷 ) |)+1 for 𝑎𝑔𝑔 ∈ {𝐶𝑂𝑈𝑁𝑇, 𝑆𝑈𝑀 }
min( |𝑔𝑖 (¬𝑝 (𝐷 ) ) |, |𝑔𝑗 (¬𝑝 (𝐷 ) | ) for 𝑎𝑔𝑔 = 𝐴𝑉𝐺

(3)

The next proposition summarizes the sensitivity of eq. (3).

Proposition 4.4. [Influence Function Sensitivity] Given an ex-

planation predicate 𝑝 and a user question with respect to a group-by

query with aggregation 𝑎𝑔𝑔, the following holds:

(1) If 𝑎𝑔𝑔 = 𝐶𝑂𝑈𝑁𝑇 , the sensitivity of Inf(𝑝) is 4.
(2) If 𝑎𝑔𝑔 = 𝑆𝑈𝑀 , the sensitivity of Inf(𝑝) is 4 𝐴𝑚𝑎𝑥

𝑎𝑔𝑔 .

(3) If 𝑎𝑔𝑔 = 𝐴𝑉𝐺 , the sensitivity of Inf(𝑝) is 16 𝐴𝑚𝑎𝑥
𝑎𝑔𝑔 .

We give an intuitive proof as follows, where the formal
proofs are deferred to the full version [2] due to space restric-
tions. When 𝑎𝑔𝑔 = COUNT, we combine two group differences(︁
𝑎𝑔𝑔(𝑔𝑖 (𝐷)) − 𝑎𝑔𝑔(𝑔 𝑗 (𝐷))

)︁
−
(︁
𝑎𝑔𝑔(𝑔𝑖 (¬𝑝 (𝐷))) − 𝑎𝑔𝑔(𝑔 𝑗 (¬𝑝 (𝐷)))

)︁
into a single group difference as 𝑎𝑔𝑔(𝑔𝑖 (𝑝 (𝐷)) − 𝑎𝑔𝑔(𝑔 𝑗 (𝑝 (𝐷)),
which is considered as a subtraction between two counting queries.
We prove that the sensitivity of a counting query after a multiplica-
tion with the normalizing factor will multiply its original sensitivity
by 2. Since we have two counting queries, the final sensitivity is 4.
When 𝑎𝑔𝑔 = 𝑆𝑈𝑀 , the proof is similar except we need to multiply
the final sensitivity by𝐴𝑚𝑎𝑥

𝑎𝑔𝑔 , the maximum absolute domain value
of 𝐴𝑎𝑔𝑔 . For AVG, we view it as a summation of 4 AVG queries that
times with min( |𝑔𝑖 (¬𝑝 (𝐷)) |, |𝑔 𝑗 (¬𝑝 (𝐷) |). Intuitively, we change
AVG to SUM and bound the sensitivity. This sensitivity now be-
comes relatively small since we have amplified the influence.

Intuitively, the sensitivity of Inf(𝑝) is low compared to its value.
When 𝑎𝑔𝑔 = 𝐶𝑂𝑈𝑁𝑇 , Inf(𝑝) is 𝑂 (𝑛) and ΔInf is 𝑂 (1), where
𝑛 is the size of database. When 𝑎𝑔𝑔 ∈ {𝑆𝑈𝑀,𝐴𝑉𝐺}, Inf(𝑝) is
𝑂 (𝑛𝐴𝑚𝑎𝑥

𝑎𝑔𝑔 ) and ΔInf is 𝑂 (𝐴𝑚𝑎𝑥
𝑎𝑔𝑔 ). Therefore, the sensitivity of in-

fluence ΔInf is low compared to the influence itself. However, as
the example below shows, if we define the influence function for
𝐴𝑉𝐺 the same way as𝐶𝑂𝑈𝑁𝑇 or 𝑆𝑈𝑀 , both Inf(𝑝) and ΔInf will
become 𝑂 (𝐴𝑚𝑎𝑥

𝑎𝑔𝑔 ), which makes the sensitivity (relatively) large.

Example 4.5 (The Issue with 𝐴𝑉𝐺 Influence.). Consider an 𝐴𝑉𝐺

group-by query where the domain of the aggregate attribute is
[0, 100], and an explanation predicate 𝑝 such that for group 𝛼𝑖 we
have 2 tuples with 𝐴𝑉𝐺 (𝑔𝑖 (𝐷)) = 100/2 = 50, 𝐴𝑉𝐺 (𝑔𝑖 (¬𝑝 (𝐷))) =
0/1 = 0, and for group 𝛼 𝑗 we have two tuples with 𝐴𝑉𝐺 (𝑔 𝑗 (𝐷)) =
100/2 = 50 and𝐴𝑉𝐺 (𝑔 𝑗 (¬𝑝 (𝐷))) = 100/2 = 50. Suppose we define
the influence function for 𝐴𝑉𝐺 the same way as 𝐶𝑂𝑈𝑁𝑇 or 𝑆𝑈𝑀 ,
therefore the influence of 𝑝 in Equation (3) is Inf(𝑝) = ((50− 50) −
(0 − 50)) (min(1, 2)/(max(2, 2) + 1) = 50/3. However, suppose we
remove the single tuple from 𝑔𝑖 , so |𝑔𝑖 (¬𝑝 (𝐷)) | becomes 0, now
the influence in Equation (3) (for COUNT/SUM) becomes 0. Note
that a single removal of a tuple completely changes the influence to
0, and this change is equal to the influence itself, which is relatively
large and therefore is not a good choice for AVG.

Note that the user question “why (𝛼𝑖 , 𝛼 𝑗 , >)” is asked based
on the noisy results 𝑜𝑖 > 𝑜 �̂� , while the influence function uses
the true results, i.e., even if 𝑜𝑖 ≤ 𝑜 𝑗 , we still consider 𝑎𝑔𝑔(𝑔𝑖 (𝐷)) −
𝑎𝑔𝑔(𝑔 𝑗 (𝐷)) in Inf(𝑝). Hence Inf(𝑝) can be positive or negative and
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removing tuples satisfying 𝑝 can make the gap smaller or larger. In
the full version [2], we show that Inf(𝑝) is not monotone with 𝑝-s.

4.3 Private Top-k Explanations

In this section, we discuss the computation of the top-k explanation
predicates and the confidence intervals of influences and ranks.

4.3.1 Problem 3: Private Top-k Explanation Predicates. The
goal is to find with DP the top-𝑘 explanation predicates from a
set of explanation predicates P in terms of their (true) influences
Inf(𝑝), which is the first step in Phase-3 of DPXPlain (Figure 1).
Note that simply choosing the true top-𝑘 explanation predicates in
terms of their Inf(𝑝) is not differentially private.

In DPXPlain, we adopt the One-shot Top-k mechanism

[36, 37] to privately select the top-𝑘 . It works as follows. For each ex-
planation predicate 𝑝 ∈ P, it adds a Gumbel noise 10 to its influence
with scale 𝜎 = 2ΔInf

√︂
𝑘/(8𝜌𝑇𝑜𝑝𝑘 ), where ΔInf is the sensitivity

of the influence function (discussed in Proposition 4.4), reorders
all the explanation predicates in descending order by their noisy
influences, and outputs the first 𝑘 explanation predicates. It satisfies
𝜌𝑇𝑜𝑝𝑘 -zCDP [16, 31, 36, 37, 79], since it is equivalent to iteratively
applying 𝑘 exponential mechanisms [41], where each satisfies 𝜖2/8-
zCDP [16, 31, 37, 79] and 𝜖 =

√︂
8𝜌𝑇𝑜𝑝𝑘/𝑘 [36, 37]. Therefore, in

total it satisfies (𝑘𝜖2/8)-zCDP by the sequential composition prop-
erty (Proposition 2.9) which is also 𝜌𝑇𝑜𝑝𝑘 -zCDP. The returned list
of top-k predicates is close to that of the true top-k in terms of
their influences; the proof is based on the utility proposition of the
exponential mechanism in Theorem 3.11 of [41]. Since this algo-
rithm iterates over each explanation predicate, the time complexity
is proportional to the size of the explanation predicate set P. By
Definition 3.3, this number is 𝑂 (

(︁𝑚
𝑙

)︁
𝑁 𝑙 ), where 𝑁 is the maximum

domain size of an attribute, 𝑙 is the number of conjuncts in the
explanation predicate and 𝑚 is the number of attributes. In our
experiments (Section 5), we fix 𝑙 = 1 and use all the singleton pred-
icates as the set P, so its size is linear in the number of attributes.
We summarize the properties of this approach in the following
proposition and defer the pseudo codes and proofs to [2].

Proposition 4.6. Given an influence function Inf with sensitivity
ΔInf, a set of explanation predicates P, a privacy parameter 𝜌𝑇𝑜𝑝𝑘
and a size parameter 𝑘 , the following holds:

(1) One-shot Top-k mechanism finds k explanation predicates

while satisfying 𝜌𝑇𝑜𝑝𝑘 -zCDP.

(2) Denote by 𝑂𝑃𝑇 (𝑖 )
the 𝑖-th highest (true) influence, and by

M (𝑖 )
the 𝑖-th explanation predicate selected by the One-shot

Top-k mechanism. For ∀𝑡 and ∀𝑖 ∈ {1, 2, . . . , 𝑘}, we have

𝑃𝑟 [Inf(M (𝑖 ) ) ≤ 𝑂𝑃𝑇 (𝑖 ) − 2ΔInf√︁
8𝜌𝑇𝑜𝑝𝑘/𝑘

(ln( | P | ) + 𝑡 ) ] ≤ 𝑒−𝑡 (4)

Example 4.7. Reconsider the user question in Figure 1c. For this
question, we have in total 103 explanation predicates as the set of
explanation predicates. The privacy budget 𝜌𝑇𝑜𝑝𝑘 = 0.05, the size
parameter 𝑘 = 5, and the sensitivity ΔInf = 16. For each of the
explanation predicate, we add a Gumbel noise with scale 𝜎 = 113 to
their influences. For example, for the predicates shown in Figure 1d,
10For a Gumbel noise𝑍 ∼ 𝐺𝑢𝑚𝑏𝑒𝑙 (𝜎 ) , its CDF is𝑃𝑟 [𝑍 ≤ 𝑧 ] = exp(− exp(−𝑧/𝜎 ) ) .

their noisy influences are 990, 670, 645, 475, 440, which are the
highest 5 among all the noisy influences. The true influences for
these five ones are 547, 501, 555, 434, 118. To see how close it is
to the true top-5, we compare their true influences with the true
highest five influences: 555, 547, 501, 434, 252, which shows the
corresponding differences in terms of influence are 8, 46, 54, 0,
134. By Equation (4), the probability that such difference is beyond
864 is at most 5% for each explanation predicate. Finally, we sort
explanation predicates by their noisy influences and report the top-
k. These 𝑘 predicates will be reordered as discussed in Section 4.4.

4.3.2 Problem 4: Private Confidence Interval of Influence.

The goal is to generate a confidence interval of influence Inf(𝑝)
(Definition 4.3) of each explanation predicate Inf(𝑝1), Inf(𝑝2), . . .,
Inf(𝑝𝑘 ) from the selected top-k (Section 4.3.1). For each Inf(𝑝𝑖 ),
we apply the Gaussian mechanism (Theorem 2.8) with privacy
budget 𝜌𝐼𝑛𝑓 𝑙𝑢/𝑘 to release a noisy influence ˆ︂Inf𝑖 with noise scale

𝜎 = ΔInf/
√︂
2𝜌𝐼𝑛𝑓 𝑙𝑢/𝑘 . The sensitivity term ΔInf is determined

by Proposition 4.4. Following the standard properties of Gaussian
distribution, for each Inf(𝑝𝑖 ), we set the confidence interval by a
center 𝑐 as ˆ︂Inf𝑖 and a margin𝑚 as

√
2𝜎 erf−1 (𝛾), or (c-m, c+m), as

a 𝛾 level confidence interval of Inf(𝑝𝑖 ) [96]. Together, it satisfies
𝜌𝐼𝑛𝑓 𝑙𝑢 -zCDP according to the composition property by Proposi-
tion 2.9. Pseudo codes can be found in the full version [2].

4.3.3 Problem 5: Private Confidence Interval of Rank. The
goal is to find the confidence interval of the rank of each explana-
tion predicate from the selected top-k (Section 4.3.1). We denote
rank(𝑝) as the rank of 𝑝 ∈ P by the natural ordering of the predi-
cates imposed by their (true) influences according to the influence
function Inf, and denote rank−1 (𝑡) (for an integer 1 ≤ 𝑡 ≤ |P|) as
the predicate ranked in the 𝑡-th place according to Inf. One trivial
example of a confidence interval of rank is [1, |P |], which has no
privacy loss and always includes the true rank.

Unlike the sensitivity of the influence function, the sensitivity
of rank(𝑝) is high, since adding one tuple could possibly change
the highest influence to be the lowest and vice versa. Fortunately,
we can employ a critical observation about rank and influence.

Proposition 4.8. Given a set of explanation predicates P, an

influence function Inf with global sensitivity ΔInf, and an integer

1 ≤ 𝑡 ≤ |P|, Inf(rank−1 (𝑡)) has sensitivity ΔInf.

The intuition behind this proof (details in [2]) is that, fixing an
explanation predicate 𝑝 = rank−1 (𝑡), for a neighboring database, if
its influence is increased, its rank will be moved to the top which
pushes down other explanation predicates with lower influences,
so the influence at the rank 𝑡 in the neighboring database is still
low. For a target explanation predicate 𝑝 , since both Inf(𝑝) and
Inf(rank−1 (𝑡)) have low sensitivity as ΔInf, intuitively we can
check whether 𝑡 is close to the rank of 𝑝 by checking whether their
influences Inf(𝑝) and Inf(rank−1 (𝑡)) are close by adding a little
noise to satisfy DP. Given this observation, we devise a binary-
search-based strategy to find the confidence interval of rank.
Noisy binary search mechanism.We decompose the problem
into finding two bounds of the confidence interval separately by
a subroutine RankBound(𝑝, 𝜌, 𝛽, 𝑑𝑖𝑟 ) that guarantees that it will
find a lower (𝑑𝑖𝑟 = −1) or upper (𝑑𝑖𝑟 = +1) bound of rank with
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probability � for the explanation predicate � using privacy budget
� . We divide the privacy budget � into two parts by a parameter � ∈
(0, 1) and return (RankBound(�� , ��, �,−1), RankBound(�� , (1−
�)�, �, +1)) as the confidence interval of rank for each predicate ��
for � ∈ {1, . . . , �}, where � = �����/� to divide the total privacy
budget equally, and � = (� + 1)/2 to ensure a confidence of � .

The subroutine RankBound(�, �, �, ��� ) works as follows. It is a
noisy binary search with at most � = �log2 |P |� loops. We initialize
the search pointers ���� = 1 and �ℎ��ℎ = |P | as the two ends
of possible ranks. Within each loop, we check the difference of
influences at � = �(�ℎ��ℎ + ����)/2� by adding a Gaussian noise:

�̂ = Inf(�) − Inf(rank−1 (�)) + N (0, �2) (5)

The noise scale is set as � = (2ΔInf)/
√
2(�/� ) to satisfy �/� -zCDP.

Instead of comparing the noisy difference �̂ with 0 to check whether
� is a close bound of rank(�), we compare it with the following
slack constant � so that w.h.p. � is a true bound of rank(�).

� = �
√
2 ln(� /(1 − �)) × ��� (6)

We update the binary search pointers by the comparison as follows:
if �̂ ≥ � , we set �ℎ��ℎ = max{� − 1, 1}, otherwise ���� = min{� +
1, |P |}. The binary search stops when �ℎ��ℎ ≤ ���� and returns
�ℎ��ℎ as the rank bound. We defer the pseudo codes to [2].

Example 4.9. Figure 4 shows an example of RankBound for
finding the upper bound of the confidence interval for rank(�) for
some explanation predicate � (with true rank 3 shown in red). The
upper part of the figure shows the influences of all the explanation
predicates in descending order, and the lower part shows the status
of the binary search pointers in each loop. The search contains
three loops starting from ���� = 1 and �ℎ��ℎ = 15. Within each loop,
to illustrate the idea, it is equivalent to adding a Gaussian noise to
Inf(rank−1 (�)), which is shown as a blue circle, compare it with
Inf(�) −� , which is shown as a dashed line, and update the pointers
accordingly. For example, in loop 1, the blue circle 1 is in the green
region, so the pointer �ℎ��ℎ is moved from 15 to 7 (shown in the
lower part). Finally, it breaks at ���� = �ℎ��ℎ = 5.

We now show that noisy binary search mechanism satisfies
the privacy requirement, and outputs valid confidence intervals. In
Section 5, we show that the interval width is empirically small.

Theorem 4.10. Given a database � , a predicate space P, an

influence function Inf with sensitivity ΔInf, explanation predi-

cates �1, �2, . . . , �� , a confidence level � , and a privacy parameter

����� , noisy binary search mechanism returns confidence intervals

I1,I2, . . . ,I� such that

(1) Noisy binary search mechanism satisfies ����� -zCDP.

(2) For ∀� ∈ [1, �], I� is a � level confidence interval of

rank(�� ).

The proof of item 1 follows from the composition theorem and
the property of Gaussian mechanism [14]. The proof of item 2 is
based on the property of the random binary search. We defer the
formal proofs and a weak utility bound to the full version [2].

4.4 Putting it All Together

We now show how all the steps fit together into DPXPlain.

Figure 4: The execution of RankBound for finding the upper

bound of the confidence interval of rank for the predicate �

(with true rank 3 shown in red) from a toy example.

Relative Influence. Recall that the influence defined by Defini-
tion 4.3 is the difference of (
� − 
 � ) before and after removing the
tuples related to an explanation predicate (first term), and multiplies
with a normalizer to penalize trivial predicates (second term). Since
the absolute value of influence is hard to interpret, to help user
better understand the confidence interval of influence, we show the
relative influence compared to the original difference |
� − 
 � | as a
percentage. However, we cannot divide the influence by |
� − 
 � |
since using the actual data values will incur additional privacy
loss, hence, for SUM and COUNT we divide the true influence by
|
̂� − 
̂ � | as an approximation since the normalizer in the second
term is bounded in [0, 1]. However, when ��� = 
	� , the normal-
izermin( |�� (¬� (�)) |, |� � (¬� (�) |) (second term) is not bounded in
[0, 1], so we further divide the influence by another constant, the
minimum of the noisy counts/sizes of the groups, i.e., |min(
̂�� , 
̂

�
� ) |

(approximating the upper bound min( |�� (�) |, |� � (�) |) of the nor-
malizer to avoid additional privacy loss). In summary, we define the
relative influence Ĩnf(� ; (�� , � � , >), �), or simply Ĩnf(�), as follows,
which is only used for display purposes.

Ĩnf(�) = Inf(�)/
{
|�̂� − �̂ � | for ��� ∈ {�����, 
�� }
|�̂� − �̂ � | × |min(�̂�� , �̂�� ) | for ��� = �
	

Explanation Table.We define the explanation table as follows.

Definition 4.11 (Explanation Table containing top-� explanations).

Given a database � , a group-by aggregate query � as shown in Fig-
ure 3, a user question (�� , � � , >), a predicate space P, a confidence
level � , and an integer � , a table of top-� explanations is a list of
� 5-element tuples (�� ,I�

������ ���
,I�

������ ���
,I�

�����
,I�

�����
) for

� = 1, 2, . . . , � such that �� is an explanation predicate, (I�
������ ���

,

I�
������ ���

) is a confidence interval of relative influence Ĩnf(�� )
with confidence level � , and (I�

�����
, I�

�����
) is a confidence in-

terval of rank(�� ) with confidence level �

Sorting the explanations in the explanation table. Since this
table contains the bounds of the influences and ranks it is natural to
present the table as a sorted list. Since the numbers in the table are
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generated by random processes, each column may imply a different
sorting. In this paper, we sort the selected top-k explanations by
the upper bound of the relative influence CI (the third column in
Figure 1d) in descending order; if there is a tie, we break it using
the upper bound of the rank confidence interval (the fifth column
in Figure 1d). Finding a principled way for sorting the explanation
predicates is an intriguing subject of future work.
Overall DP guarantee.We summarize the privacy guarantee of
DPXPlain as follows: (i) the private noisy query answers returned
by Gaussian mechanism in Phase-1 satisfy 𝜌𝑞-zCDP together (see
Section 2) ; (ii) Phase-2 only returns the confidence intervals of
the noisy answers in Phase-1 with zero additional privacy loss (dis-
cussed in Section 4.1) ; (iii) Phase-3 returns 𝑘 explanation predicates
and their upper and lower bounds on relative influence and ranks
given a required confidence interval with three privacy parameters
𝜌𝑇𝑜𝑝𝑘 , 𝜌𝐼𝑛𝑓 𝑙𝑢 , 𝜌𝑅𝑎𝑛𝑘 (discussed in Section 4.3.1, 4.3.2 and 4.3.3). The
following theorem summarizes the total privacy guarantee.

Theorem 4.12. Given a group-by query 𝑞 and a user question

comparing two aggregate values in the answers of 𝑞, the DPXPlain
framework guarantees (𝜌𝑞 + 𝜌𝑇𝑜𝑝𝑘 + 𝜌𝐼𝑛𝑓 𝑙𝑢 + 𝜌𝑅𝑎𝑛𝑘 )-zCDP.

5 EXPERIMENTS

In this section, we evaluate the quality and efficiency of the expla-
nations generated by DPXPlain. To our knowledge, there are no
existing benchmarks for explanations for query answers (even with-
out privacy consideration) in the database research literature. We
have implemented DPXPlain [1] in Python 3.7.4 using the Pandas
[92], NumPy [51], and SciPy [95] libraries. All experiments were
run on Intel i7-7700 CPU @ 3.60GHz with 32 GB of RAM.

5.1 Experiment Setup

We first detail the data, queries, questions, and parameters.
Datasets. We consider two datasets in our experiments.
• IPUMS-CPS (real data): A dataset of Current Population Survey

from the U.S. Census Bureau [47] with 1,146,552 tuples from the
year 2011 to 2019. The dataset contains 8 categorical attributes
where domain sizes vary from 3 to 36 and one numerical attribute.
The attribute AGE is discretized as 10 years per range, e.g., [0,10]
is considered a single value. To set the domain of numerical
attributes, we only include tuples with attribute INCTOT (the total
income) smaller than 200k as a domain bound.

• Greman-Credit (synthetic data): A corrected collection of
credit data [50]. It includes 20 attributes where the domain sizes
vary from 2 to 11 and a numerical attribute. Attributes duration,
credit-amount, and age are discretized. The domain of attribute
good-credit is zero or one. We synthesize the dataset to 1 mil-
lion rows by combining a Bayesian network learner [7] and XG-
Boost [13] following the strategy of QUAIL [80].

Queries and Questions. The queries and questions used on the
experiments are shown in Table 1.
Default setting of DPXPlain. Unless mentioned otherwise, the
following default parameters are used (also for the motivating ex-
ample) : 𝜌𝑞 = 0.1, 𝜌𝑇𝑜𝑝𝑘 = 0.5, 𝜌𝐼𝑛𝑓 𝑙𝑢 = 0.5, 𝜌𝑅𝑎𝑛𝑘 = 1.0, 𝛾 = 0.95,
𝑘 = 5, 𝜂 = 0.1, and the number of conjuncts in explanation pred-
icates 𝑙 = 1 (Definition 3.3). We choose 𝜂 = 0.1 to allocate more

Table 1: Queries and questions for the experiments; Valid
indicates if it is a valid question on the hidden true data.

Data Query Question Valid

IPUMS-

CPS

𝑞1 : AVG(INCTOT) by SEX I1: Why Male > Female ? Yes

𝑞2 : INCTOT by RELATE
I2: Why Grandchild > Foster children ? Yes
I3: Why Head/householder > Spouse ? No

𝑞3 : INCTOT by EDUC
I4: Why Bachelor > High school ? Yes
I5: Why Grade 9 > None or preschool ? No

German-

Credit

𝑞4 : AVG(good-credit) by
status

G1: Why no balance > no chk account ? Yes

𝑞5 : AVG(good-credit) by
purpose

G2: Why car (new) > car (used)? Yes
G3: Why business > vacation ? No

𝑞6 : AVG(good-credit) by
residence

G4: Why "< 1 yr" > ">= 7 yrs" ? Yes
G5: Why "[1, 4) yrs" > "[4, 7) yrs" ? No

explanation predicate Rel Influ 95%-CI Rank 95%-CI Rel Influ Rank
L U L U (hidden) (hidden)

RELATE = "Head/householder" 12.18% 12.52% 1 1 12.41% 1
EDUC = "Bachelor’s degree" 7.10% 7.45% 2 3 7.32% 2
RACE = "White" 6.41% 6.75% 2 5 6.54% 3
RELATE = "Spouse" 5.70% 6.04% 2 5 6.01% 4
CLASSWKR = "NIU" 3.83% 4.18% 2 6 4.22% 5

Figure 5: Phase-3 of DPXPlain for the case IPUMS-CPS.

privacy budget for the rank upper bound by our observation that
the scores of explanation predicates have a long and flat tail, which
intuitively means that a tight rank upper bound indicates a precise
score and, thus, costs more privacy. For the total privacy budget,
which is 2.1 by default, we provide experiments to show that reduc-
ing the budget of each component can still lead to a high utility for
all questions except I2 and I5 in Table 1 (Figures 7, 8a, 9a, 9b).

5.2 Case Studies

Case-1, IPUMS-CPS. In Phase-1, the user submits a query𝑞1 from
Table 1, and gets a noisy result: ("Female", 31135.25) and ("Male",
45778.46). The hidden true values are ("Female", 31135.78) and
("Male", 45778.39). Next, inPhase-2, since there is a gap of 14643.21
between two groups, the user asks a question I1 from Table 1. The
framework then quantifies the noise in the question by reporting
a confidence interval of the gap as (14636.63, 14649.79). Since the
interval does not include zero, DPXPlain suggests that this is a
valid question, which is correct. Finally, in Phase-3, the framework
presents top-5 explanations to the user as Figure 5 shows. The last
two columns are the true relative influences and ranks. We correctly
find the top-5 explanation predicates, and the first and fourth expla-
nations together suggests that a married man tends to earn more
than a married woman, which is supported by the wage disparities
in the labor market [94]. The second and third explanations also
match the wage disparities within the educated group and white
people. The total runtime for preparing the explanations in Phase-2
and Phase-3 is 67 seconds.
Case-2, German-Credit. In Phase-1, the user submits a query 𝑞4
from Table 1, and gets a noisy result: ("no checking account",
0.526571) and ("no balance", 0.574447). The true hidden re-
sult is ("no checking account", 0.526574) and ("no balance",
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explanation predicate Rel Influ 95%-CI Rank 95%-CI Rel Influ Rank
L U L U (hidden) (hidden)

existing-credits = "1" 77.90% 78.99% 1 1 78.16% 1
job = "skilled employee / official" 71.21% 72.29% 1 2 71.83% 2
sex-marst = "male : married/widowed" 54.34% 55.42% 2 4 55.10% 3
credit-amount = "(500, 2500]" 50.01% 51.10% 2 5 50.27% 4
credit-history = "no credits
taken/all credits paid back duly"

49.07% 50.16% 4 5 49.14% 5

Figure 6: Phase-3 of DPXPlain for the case German-Credit.
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Figure 7: The probability of correctly validating user ques-

tions. All questions except I2 and I5 (Figure 7) are at 100%.

0.574466). Next, in Phase-2, since there is a gap of 0.047876 be-
tween two groups, the user asks a question G1 from Table 1. The
framework then quantifies the noise in the question by reporting
a confidence interval of the gap as (0.047786, 0.047967). Since the
interval does not include zero, the framework suggests that this is a
valid question, which is correct. Finally, in Phase-3, the framework
presents top-5 explanations to the user as Figure 6 shows. The last
two columns are the true relative influences and ranks. We correctly
find the top-5 explanations, and the first explanation suggests that
for a person who already has a credit in the bank, the bank tends
to mark the credit as good with a higher probability than the case
of no account if she has a checking account even with zero balance,
which follows the intuition that a person having a credit account
but no checking account is risky to the bank. The total runtime for
preparing the explanations in Phase-2 and Phase-3 is 40 seconds.

5.3 Accuracy and Performance Analysis

We detail our experimental analysis for the different questions and
configurations of DPXPlain. All results are averaged over 10 runs.
Correctness of noise interval. In Phase-2 of DPXPlain, the valid-
ity of the question is suggested as follows: if the confidence interval
contains non-positive numbers, the question is invalid, otherwise
valid. From Figure 7, we find that 8 out of 10 questions (plotted
together for clarity) from Table 1 are classified correctly with an
accuracy of 100% given a wide range of privacy budget of query
�� . However, there are two questions, I2 and I5, only show high
accuracy given a large privacy budget of �� = 10. One reason is
that the minimum group size involved in I2 and I5 is at least 600
and 60 times smaller compared to other questions, and, therefore,
the partial confidence intervals in the denominators of the 
	�
query are low, which makes the final confidence intervals wider
including negative numbers when it should not.
Accuracy of top-k explanation predicates. In Phase-3 of DPX-
Plain, we first select top-k explanation predicates. We measure
the accuracy of the selection by Precision@k [52], the fraction of

the selected top-k explanation predicates that are actually ranked
within top-k. Another experiment on the full ranking is included
in the full version [2]. From Figure 8a, we find that the privacy
budget of top-k selection ����� has a positive effect to Precision@k
at k = 5 for various questions. When ����� = 1.0, all the questions
except I2 and I5 have Precision@k ≥ 0.8. The selection accuracy of
question I2 and I5 are generally lower because of small group sizes,
and, therefore, the influences of explanation predicates are small
and the rankings are perturbed by the noise more significantly.

From Figure 8b, we find that the trend of Precision@k by k is dif-
ferent across questions and there is no clear trend that Precision@k
increases as k increases. For example, for G3, it first decreases
from k=3 to k=5, but increases from k=5 to k=6. When k = 3, most
questions have high Precision@k; this is because the highest three
influences are much higher than the others, which makes the prob-
ability high to include the true top three. With larger k, explanation
predicates that have similar scores have an equal probability to be
included in top-k and therefore the top-k selected by the algorithm
are different from the true top-k selections. The relationship be-
tween Precision@k and k depends on the distribution of all the
explanation predicate influences.
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Figure 8: Precision@k of top-k selection by DPXPlain.

Precision of relative influence and rank confidence Interval

(CI). In Phase-3, the last step is to describe the selected top-k ex-
planation predicates by a CI of relative influence and rank for each.
To measure the precision of the description, we adopt the measure
of interval width [46]. Figure 9 illustrates the average width of
� CIs of relative influence and rank. From Figure 9a and 9b, we
find that the increase of privacy budget ���� �� and ����� shrinks
the interval width of relative influence CI and rank CI separately.
In particular, when ���� �� ≥ 0.5, 6 out of 10 questions have the
interval width of relative influence CI ≤ 0.025 ; when ����� ≥ 1.0,
2 questions have the interval width of rank CI ≤ 2 and 6 questions
have this number ≤ 10. We also measure the effect of confidence
level � to the CI by changing � from 0.1 to 0.9 by step size 0.1 and
from 0.95 and 0.99. Figures can be found in the full version [2].
The results show that it has a non-significant effect to the interval
width, as it changes < 0.03 for the influence CI of 6 questions, and
changes < 5 for the rank CI of 8 questions.
Runtime analysis.We analyze the runtime ofDPXPlain for gener-
ating Phase-2 and Phase-3. Figure 10a shows a runtime breakdown
on average for all the questions from Table 1 with total runtime of
32 seconds on average. 88% of the time is used for the top-k expla-
nation predicate selection procedure, especially on computing the
influences for all the explanation predicates. The next highest run-
time is for computing the confidence interval of influence, which
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Figure 9: The width of confidence intervals by DPXPlain. The
numbers are beyond 2 for the relative influence of I2 and I5.

needs to evaluate each sub queries. For the step noise quantification
and confidence interval of rank, the time usage is not significant
since the first only needs to find the image of two intervals and the
second is a binary search. Figure 10b, shows that the runtime is lin-
early proportional to the size of explanations � , and the difference
between questions is due to the difference of group sizes. We also
find the runtime grows exponentially with the number of conjuncts
� as the number of explanation predicates grows exponentially: for
� = 1, 2, 3, the runtime about question I1 is 67, 3078 and 79634, and
for question G1 it is 40, 1587 and 39922 seconds.
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Figure 10: Runtime analysis of DPXPlain.

6 RELATEDWORK

We next survey related work in the fields of DP and explanations
for query results. To the best of our knowledge, DPXPlain is the first

work that explains aggregate query results while satisfying DP.

Explanations for query results. The database community has
proposed several approaches to explaining aggregate and non-
aggregate queries in multiple previous works. Proposed approaches
include provenance [17, 26, 27, 53, 54, 62, 63, 93], intervention
[81, 82, 98], entropy [43], responsibility [73, 74], Shapley values
[67, 78], counterbalance [75] and augmented provenance [65], and
several of these approaches have used predicates on tuple values
as explanations like DPXPlain, e.g., [43, 65, 82, 98]. We note that
any approaches that consider individual tuples or explicit tuple
sets in any form as explanations (e.g., [26, 63, 67, 73]) cannot be
applied in the DP setting since they would violate privacy. Among
the other summarization or predicate-based approaches, Scorpion
[98] explains outliers in query results with the intervention of
most influential predicates. Our influence function (Section 4.2)
is inspired by the influence function of Scorpion, but has been
modified to deliver accurate results while satisfying DP. Another
intervention-based work [82] that also uses explanation predicates,

models inter-dependence among tuples from multiple relations
with causal paths. DPXPlain does not support joins in the queries,
which is a challenging future work (see Section 7).
Differential privacy. Private SQL query answering systems [32–
34, 56, 59, 60, 69, 90, 97] consider a workload of aggregation queries
with or without joins on a single or multi-relational database, but
none supports explanation under differential privacy. The selec-
tion of private top-k candidates is well-studied by the community
[8, 10, 11, 15, 18, 30, 37, 61, 66, 70, 71, 77, 91].We adopt One-shot Top-
k mechanism [77] since it is easy to understand. Private confidence
interval is a new trend of estimating the uncertainty under differ-
ential privacy [12, 21, 45], however, the current bootstrap based
methods measure the uncertainty from both the sampling process
and the noise injection, of which the first part is unnecessary, and
we only focus on the second part. The most relevant work to the
private rank estimation is private quantile [4, 20, 39, 48, 57, 64, 86],
which is to find the value given a position such as median, but the
problem of rank estimation in our setting is reversed.
Privacy and provenance. As mentioned earlier, data prove-
nance is often used for explaining query results, mainly for non-
aggregate queries. Within the context of provenance privacy
[6, 9, 19, 22, 23, 83, 85, 88], one line of work [22–24] studied the
preservation of workflow privacy (privacy of data transferred in
a workflow with multiple modules or functions), with a privacy
criterion inspired by �-diversity [68]. A recent work [28] explored
what can be inferred about the query from provenance-based ex-
planations and found that the query can be reversed-engineered
from the provenance in various semirings [49]. To account for this,
a follow-up paper [25] proposed an approach for provenance ob-
fuscation that is based on abstraction. This work uses �-anonymity
[87] to measure how many ‘good’ queries can generate concrete
provenance that can be mapped to the abstracted provenance, thus
quantifying the privacy of the underlying query. Devising tech-
niques for releasing provenance of non-aggregate and aggregate
queries while satisfying DP is an interesting research direction.

7 FUTUREWORK

There are several interesting future directions. Extending DPX-
Plain to more general queries (like joins) and questions is an im-
portant future work. Unlike standard explanation frameworks like
[98] where the join results can be materialized before running the
explanation mechanism, a careful sensitivity analysis of adding/re-
moving tuples frommultiple tables is needed in the DP settings [90].
Second, the complexity of the top-k selection algorithm links to the
number of explanation predicates that could be exponentially large,
leaving room for future improvements. Additionally, other inter-
esting notions of explanations for query answers (e.g., [65, 67, 75])
can be explored in the DP setting. Finally, evaluating our approach
with a comprehensive user study and examining different metrics
of understandability of the explanations generated by DPXPlain is
also an important direction for future investigation.
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