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ABSTRACT
Sketches are a popular approximation technique for large datasets
and high-velocity data streams. While custom FPGA-based hard-
ware has shown admirable throughput at sketching, the state-of-
the-art exploits data parallelism by fully replicating resources and
constructing independent summaries for every parallel input value.
We consider this approach pessimistic, as it guarantees constant
processing rates by provisioning resources for the worst case.

We propose a novel optimistic sketching architecture for FPGAs
that partitions a single sketch into multiple independent banks
shared among all input values, thus significantly reducing resource
consumption. However, skewed input data distributions can result
in conflicting accesses to banks and impair the processing rate. To
mitigate the effect of skew, we add mergers that exploit temporal
locality by combining recent updates.Our evaluation shows that
an optimistic architecture is feasible and reduces the utilization of
critical FPGA resources proportionally to the number of parallel
input values. We further show that FPGA accelerators provide up
to 2.6𝑥 higher throughput than a recent CPU and GPU, while larger
sketch sizes enabled by optimistic architectures improve accuracy
by up to an order of magnitude in a realistic sketching application.
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1 INTRODUCTION
Sketches are a powerful tool for analyzing large datasets and high-
velocity data streams. They are space-efficient data summaries that
enable error-bounded approximate computation of data character-
istics [9] while also having several other attractive properties such
as single-pass construction, sub-linear memory consumption and
evaluation time in the number of observed tuples, as well as merge-
ability [1]. Consequently, over the last decade, sketches have re-
ceived wide attention. They have been successfully applied to solve

∗Work partially performed while working at TU Berlin
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579085

various tasks such as computation of relational aggregates [8, 25],
heavy hitter and change detection [24], data integration [30] and
efficient large-scale machine learning [15].

As using sketch summaries shifts computational pressure from
analysis to summary construction, maintaining the summaries at
high throughput is critical. Previous work shows that field-program-
mable gate arrays (FPGAs) are particularly suited for sketch main-
tenance [5, 13, 24, 27], providing both high throughput and energy
efficiency. FPGAs allow the construction of custom hardware based
on reconfigurable logic elements, thereby enabling computations
with high degrees of parallelism in deep pipelines. These capabili-
ties perfectly match the embarrassingly parallel computations over
state commonly found in sketching algorithms.

Achieving high throughput for FPGA-based sketching acceler-
ators requires exploiting data parallelism. Recent approaches to
FPGA-accelerated sketching [5, 13, 14] implement data parallelism
pessimistically by replicating the sketching hardware for each input
and, thus, entirely avoiding concurrent accesses to state memory.
However, while replication guarantees the desired throughput, it
also increases resource consumption proportionally to the number
of inputs. This increase severely restricts sketch sizes and resources
for other functionalities such as larger or additional sketches.

This paper proposes a novel optimistic architecture for FPGA-
accelerated sketching with an improved trade-off between through-
put and resource consumption. It makes the scarce state memory
concurrently available to all input values instead of replicating it. As
this architecture stalls to resolve resource conflicts in the presence
of data skew, we additionally exploit temporal locality to merge
multiple updates into a single transaction.

In summary, we make the following contributions:
(1) We propose a novel optimistic sketching architecture. Our

architecture partitions the sketch state into independent
banks available to all inputs, thus, implementing parallelism
while reducing the consumption of the scarce state memory.

(2) We propose merging techniques that mitigate resource con-
gestion due to data skew by exploiting temporal locality.

(3) We discuss and evaluate the impact of architecture parame-
ters on resource utilization. Furthermore, we discuss limita-
tions of our optimistic architecture.

(4) We implement FPGA-accelerated sketching on a Xilinx U250
FPGA data center accelerator for an approximate query pro-
cessing application. We show that the optimistic architecture
outperforms state-of-the-art CPU and GPU implementations’
throughput, while larger summary sizes boost accuracy.

To the best of our knowledge, this is the first work that performs
FPGA-accelerated sketching for a general class of sketches in an
optimistic architecture.
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Figure 1: Update procedure of a Count-Min sketch

2 BACKGROUND
2.1 Sketches in the Select-Update Model
The maintenance process of many popular sketching algorithms
can be generalized as updating one entry per row of a matrix for
each new observation. Based on this property, the Select-Update
model generalizes the sketching process using two functions [13].
The select function selects the entry in a row, and the update function
determines the new value of the selected entry.

Formally, the Select-Update model adapts a sketch matrix 𝑆𝑆 ∈
S𝑚𝑚×𝑛𝑛 for each observation 𝑡𝑡 ∈ T. For each row 𝑖𝑖 ∈ {1 . . .𝑚𝑚}, a
select function 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖 : T → {1, . . . , 𝑛𝑛} determines an entry that
is updated based on an update function 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 : T × S → S. In
short, an update is defined as:

𝑆𝑆 [𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 (𝑡𝑡)] := 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 (𝑡𝑡𝑡𝑡𝑡  [𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 (𝑡𝑡)]) , 𝑖𝑖 ∈ {1 . . .𝑚𝑚} (1)

The domains of the state S and value T are fixed-size bit sequences
that are interpreted by the select and update function. Since sketch-
ing commonly requires hashing, the functions receive an optional
random seed to initialize members of a family of hash functions.
Most sketching algorithms satisfy the mergeability property [1],
which allows combining two sketches of the same size into a single
sketch summarizing the union of their inputs.

In this work, we address sketches that can be generalized by the
Select-Update model. However, to enable additional optimizations,
we also modify the model as described in Section 4.

Example (Count-Min): The Count-Min (CM) sketch is one of
the most popular sketching algorithms [10]. It tracks the frequency
of items appearing in a data stream following a strict turnstile
model [16]. Figure 1 visualizes the update procedure of the CM
sketch. The sketching matrix is zero-initialized. For each new ob-
servation, we increment one entry per row selected by pairwise
independent hash functions. We choose the select function as the
H3 hashing scheme initialized with different random seeds, while
the update function is a simple increment operation.

To estimate the frequency of an item 𝑡𝑡 , we evaluate the hash
functions for 𝑡𝑡 and take the minimum of all selected entries. If
there is at least one bucket without collisions, the estimate 𝑓𝑓 (𝑡𝑡)
is equal to the true frequency of the item 𝑓𝑓 (𝑡𝑡). Otherwise, the
estimate 𝑓𝑓 (𝑡𝑡) > 𝑓𝑓 (𝑡𝑡) is an upper bound. Furthermore, the estimate
has probabilistic guarantees. Given a sketching matrix with𝑚𝑚 =
⌈ln 1/𝑑𝑑⌉ rows, 𝑛𝑛 = ⌈𝑒𝑒/𝜖𝜖⌉ columns, and 𝑁𝑁 updates to the sketch,
𝑓𝑓 (𝑡𝑡) ≤ 𝑓𝑓 (𝑡𝑡) + 𝜖𝜖𝜖𝜖 holds with probability 1 − 𝛿𝛿 .

The Count-Min sketch serves as an example throughout the
paper and is the foundation of our application (cf. Section 7).
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2.2 Pessimistic Sketching on FPGAs
FPGAs enable the construction of custom hardware architectures
from reprogrammable hardware resources. For sketching, these re-
sources are primarily look-up tables (LUTs) to implement logic,
flipflops for pipelining and short-term storage, and BlockRAM
(BRAM) elements, each providing dense storage in the order of Kilo-
bytes. Architectures are traditionally specified using the Register-
Transfer-Level (RTL) abstraction, which describes logic and dataflow
between registers. RTL is given in a hardware-description language,
such as VHDL or Verilog, that is first mapped to FPGA resources and
then placed and routed on the target FPGA by a vendor toolchain in
a compute-intensive process. The overall architecture has to obey
the resource limits of the FPGA and satisfy timing requirements,
e.g., clock frequencies for I/O.

As FPGAs only support operating frequencies of few hundred
Megahertz, exploiting data parallelism is crucial to achieving high
throughput. Prior work implements data parallelism as shown in
Figure 2: Each row corresponds to an independent state memory
and a compute unit performing computations for select and update
functions and manipulating the state. Mergeability allows imple-
menting data parallelism by replicating the entire sketching unit
for each of the 𝑑𝑑 input values and, thus, constructing 𝑑𝑑 separate
sketches to be merged later. We consider this strategy as pessimistic
because it gives hard throughput guarantees by overprovisioning
to prevent stalls.

Prior work showed that state memory is the bottleneck of pes-
simistic architectures [5, 13, 24]. State memory consists of multiple
BRAM elements, each covering a range of the offset space. Figure 3
shows the pipelined memory architecture [5, 13, 24]. It forwards
one read and write request per clock cycle through a daisy chain
of 𝑐𝑐 BRAM-based memory segments with intermediate pipeline
registers. As each read and write request is handled by only one
memory segment, all other segments are idle. These idle memory
segments could potentially process additional requests in parallel.
However, to guarantee the processing rate, pessimistic architectures
cannot resolve multiple accesses to the same segment by stalling
the architecture. Consequently, a pessimistic architecture has to
accept underutilized memory segments and the 𝑑𝑑-fold increase in
resources caused by full replication.
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3 BANKED SKETCHING ARCHITECTURE
In this section, we introduce our novel optimistic banked sketching
architecture. Unlike a pessimistic architecture, the banked archi-
tecture makes the same state memory available to the processing
logic of all 𝑑𝑑 inputs simultaneously. Thereby, it reduces resource
consumption for state memory by a factor of 𝑑𝑑 , freeing resources
for large sketch sizes, additional sketches, or other logic. However,
it can also introduce stalls in case of congestion and thus requires
additional logic to implement conflict resolution.

The banked sketching architecture maintains the sketch state in
𝑏𝑏 pipelined banks, each serving a range of offsets. Figure 4 provides
an overview of an optimistic sketching unit with multiple banks.
Instead of processing each input value in a dedicated replica of the
sketching unit, the same sketching unit processes all 𝑑𝑑 input values.
The per-row compute units calculate the 𝑑𝑑 corresponding offsets
and update the state in the offset’s corresponding bank. As each
bank processes one input value per clock cycle, conflicting accesses
to the same bank require the compute unit to serialize operations
and eventually stall the processing of further values.

3.1 Compute Unit Architecture
Figure 5 shows the optimistic compute unit architecture. It contains
a select unit for each of the 𝑑𝑑 input values that evaluates the select
function. We refer to this part of the architecture as the frontend. A
dispatcher connects the inputs to the corresponding banks, stalls
the pipelines for conflict resolution, and signals stalls to the overall
sketching unit. Each of the 𝑏𝑏 banks consists of an independent set of
stages: The memory read stage retrieves the state for a given offset,
the update function computes the next state, and the memory write
stage issues a write request to persist newly computed state. As
reading and writing from memory has multiple cycles of latency,
a data-forwarding unit (DFU) tracks updates. It ensures that no
updates are lost before a state value enters the update stage. We
refer to all stages behind the dispatcher as the backend.

Except for the dispatcher, all stages are also present in a pes-
simistic architecture. Note, however, that only the select and update
stages are fully replicated for each input value and bank, respec-
tively. The overall number of substages in the read, write, and DFU
stage depends on the number of segments in the state memory and,
thus, only depends on the size of the sketch matrix — but not on
the number of inputs 𝑑𝑑 or banks 𝑏𝑏.

The dispatcher arbitrates the 𝑑𝑑 incoming offset-value pairs and
follows the architecture in Figure 6. First, a 𝑏𝑏-dispatch unit dis-
patches the pair to the corresponding bank based on the offset.
A FIFO queue 𝑞𝑞𝑖𝑖𝑖 𝑖𝑖 buffers the offset-value pair assigned to bank 𝑖𝑖
for input 𝑗𝑗 . A 𝑑𝑑-collect unit for each bank arbitrates conflicts by

Select

Dispatch

DFUMemory
Read

Memory
WriteUpdatev1

Selectvd

ready

DFUMemory
Read

Memory
WriteUpdate

DFUMemory
Read

Memory
WriteUpdate

... ... ...
Bank 1

Bank b

Frontend Backend

Figure 5: Optimistic compute unit architecture
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popping one element from a queue in each clock cycle in a round-
robin fashion and forwards the element to its corresponding bank
in the backend. If at least one queue in a dispatcher is full, the entire
sketching unit stalls to avoid a potential loss of input data.

3.2 Stall Rate
Given a fixed degree of data parallelism 𝑑𝑑 , the banked architecture
has two parameters: The number of banks 𝑏𝑏 and the queue size 𝑞𝑞𝑞𝑞 .
We will discuss the impact of parameters in terms of the stall rate,
which is the fraction of clock cycles lost due to stalls. Choosing
𝑏𝑏 < 𝑑𝑑 eventually causes the architecture to stall when values arrive
at each clock cycle. As the architecture can only process 𝑏𝑏 values
during each clock cycle in the backend, the stall rate will be at least
1 − 𝑏𝑏

𝑑𝑑
. Based on the above observation, we propose two versions of

the banked architecture that are physically capable of processing
as many values as the pessimistic architecture: First, the regular
architecture with 𝑏𝑏 = 𝑑𝑑 has the minimum number of banks for 𝑑𝑑
inputs. Second, the oversubscribed architecture with 𝑏𝑏 = 𝑑𝑑 · 2 can
process twice as many elements in the backend as the architecture
can ingest. While this strategy doubles the number of connections
and queues in the dispatcher, it potentially takes pressure off in-
dividual queues. We assume without loss of generality that 𝑑𝑑 is
a power of two as I/O interfaces commonly provide data at this
granularity. The number of banks 𝑏𝑏 consequently being a power of
two drastically simplifies assigning offsets to banks in hardware.

Given these two architectures, the stall rate depends on the
number of inputs, banks, queue size, and offset distribution. In the
rest of this section, we study their properties in more detail.

3.2.1 Uniform Bank Access. When accesses to the banks are uni-
form, queues prevent stalls due to random collisions. Figure 7a
shows the impact of the queue size on the stall rate for a sketch
with a single row and varying 𝑑𝑑 on uniform offsets. We see stall
rates approaching zero with increasing queue sizes for both archi-
tectures as the additional buffering suffices to prevent stalls due
to offsets colliding on banks randomly. Most importantly, the reg-
ular architecture requires larger queues than the oversubscribed
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Figure 7: Simulated stall rates in a banked architecture

architecture for low stall rates. To reach stall rates below 1% for
all values of 𝑑𝑑 , the regular architecture requires a FIFO queue with
𝑞𝑞𝑞𝑞 = 512 entries, while 𝑞𝑞𝑞𝑞 = 16 suffices to prevent stalls completely
in an oversubscribed architecture. As oversubscribed architectures
can process twice as many input values simultaneously in the back-
end than arrive from the frontend, pressure on individual queues
reduces, leading to smaller queues sufficing for low stall rates.

3.2.2 Impact of Multiple Rows. For𝑚𝑚 > 1 rows, the per-row sketch-
ing units process the input values independently, but stalls required
by an individual row allow all other rows to reduce the number
of buffered elements as well. Figure 7b shows the stall rates for
a banked architecture with 𝑑𝑑 = 16 and𝑚𝑚 ∈ {1, 4, 16} rows for a
uniform offset distribution. Although the probability of at least
one row signaling a stall grows exponentially in a fully indepen-
dent system, the dependent stalls in our architecture only lead to a
moderate increase in the stall rate.

3.2.3 Skewed Bank Access. If there is skew in the distribution of
accessed banks from the backend, e.g., due to heavy hitters and
skewed data distributions, the stall rate can go up as high as 1 − 1

𝑑𝑑
when all offsets target only one bank. Both architectures cannot
sustain the full processing rate if a bank receives more than 1

𝑑𝑑
requests from the frontend, that is, more than one request per
clock cycle on average. This implies that the regular architecture
can only avoid stalls when the bank access pattern is uniform.
The oversubscribed architecture tolerates moderate skew as the
abundance of banks does not require all banks to operate at full
capacity to avoid stalls.

Figure 7c shows the stall rates for a moderately skewed Zipfian
distribution with support 𝜌𝜌 = 1.1. For the regular architecture, we
see that stall rates vary between 16 and 90%, and find that queu-
ing alone is not sufficient to mitigate the impact of skew. For the
oversubscribed architecture with 𝑑𝑑 ∈ {4, 8}, we find that it indeed
substantially mitigates the impact of data skew and achieves a stall
rate of less than 2%, given a sufficient queue size. For 𝑑𝑑 ∈ {16, 32},
the absolute improvement compared to the regular architecture
is between 10 and 30% given a sufficient queue size, but we still
observe stall rates of more than 25%. Furthermore, the skewed dis-
tribution requires a four times larger queue size 𝑞𝑞𝑞𝑞 = 64 for the stall
rates to converge in an oversubscribed architecture.

Based on this analysis, we conclude that dealing with heavy
hitters and skewed access to banks requires additional solutions.
We thus devise techniques that exploit the properties of sketching
algorithms to counter skew.
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4 MERGING IN THE DISPATCHER
Preventing stalls in a banked architecture means either (1) increas-
ing the number of elements popped from queues in each clock cycle
or (2) reducing the number of elements pushed into the queues. In
the following, we will discuss how we trade additional logic in the
dispatcher for fewer stalls in the presence of heavy hitters and data
skew by exploiting temporal locality. The fundamental approach
is to merge the updates for input values affecting the same offset
before dispatching them to the banks.

As the Select-Update model does not provide an appropriate
interface to merge updates, we first establish the theoretical frame-
work by describing the update function in terms of a map and a
reduce function. Second, we introduce two mechanisms to reduce
stalls by merging updates as shown in Figure 8: Vertical merging
extends the 𝑑𝑑-collect unit with logic to merge updates from the
individual queue heads. Horizontal merging buffers updates at each
input as a first processing step in the dispatcher.

4.1 Map-Reduce Updates
We specify the update function in terms of a𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 func-
tion. Intuitively, the 𝑚𝑚𝑚𝑚𝑚𝑚 function translates the input value to
an increment, while the 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 function allows us to merge incre-
ments either with other increments or the state in the sketch matrix.
Formally, an update is defined as:

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖 (𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ) = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 (𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 (𝑡𝑡) , 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) (2)

In addition to the above definition, we require the reduce function
to be associative and commutative. This enables the reduce function
to merge increments from any position in the input stream and out
of order. Furthermore, we require an identity element to the reduce
function that we can assert for inactive inputs.

As pessimistic data parallelism requires mergeability of sketches
and the Select-Update model implies that entries in sketches are
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Figure 9: Map-Reduce merging for a CM sketch

updated and merged independently, the Map-Reduce model does
not impose additional restrictions on our approach.

We evaluate the map function concurrently to the select function,
and the computed increment replaces the value as an input to the
dispatcher. The update stages in the backend reduce the increment
and the current state. However, the properties of the reduce function
allow merging any two increments belonging to the same offset,
which we exploit to reduce congestion for heavy hitters.

Example (Count-Min): Updates to the CM sketch can be de-
scribed in terms of a map and reduce function. We define the map
function as 𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 : 𝑡𝑡  → 1 and the reduce function as 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖 :
𝑥𝑥𝑥𝑥𝑥  → 𝑥𝑥 +𝑦𝑦. Thus, every incoming value contributes an increment
of one, and the reduce function adds the increment to the state. The
identity increment for the reduce function is zero.

The reduce function allows merging increments that affect the
same offset as shown in Figure 9. The offset of the least recent
offset-increment pair is compared with the three following pairs.
Increments with matching offsets enter the reduce function to be
merged. Non-matching increments contribute the identity element.
Finally, we reduce the merged increment with the current state
of the matrix at the given offset. Overall, processing three values
incurs only one update to the row due to increment merging.

4.2 Vertical Merging
Vertical merging pops and merges increments with matching offsets
from all queues belonging to the same bank. To this end, the vertical
merger enhances the𝑑𝑑-collect unit in the banks. As vertical merging
occurs behind the FIFO queues, the mergers operate even if the
architecture is stalled and contribute to ending stalls.

Figure 10 shows the architecture of a vertical merger. In addition
to removing queue elements one by one in a round-robin fashion,
we also check the heads of all other queues for offsets matching
the currently selected one. This functionality is implemented as an
additional stage that performs a compare-forward operation based
on the offset in the currently selected queue. We pop all queues
sharing the selected offset in their head and forward to the next
stage. The heads of all other queues remain untouched, and the
identity increment is forwarded. A pipelined binary tree of reducers
merges the increments in the following stages. After merging, the
vertical merger sends the result to its bank.

Adding vertical merging to the architecture requires implement-
ing additional 𝑏𝑏 (𝑑𝑑 − 1) reducers and 𝑏𝑏 · 𝑑𝑑 compare-forwards for
each compute unit. The reduction potential for vertical merging
depends on the queue heads sharing the current offset. In the best
case, all queues have increments with the same offset at their head,
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Figure 10: Vertical merging with 𝑑𝑑 = 4 input values
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Figure 11: Horizontal merging with look-ahead ℎ = 4

and 𝑑𝑑 increments collapse into one increment. In the worst case,
all queues are empty or have different offsets at their heads, and
vertical merging behaves like the regular 𝑑𝑑-collect.

4.3 Horizontal Merging
Horizontal merging buffers increment-offset pairs and merges them
with matching offsets. Each of the 𝑑𝑑 parallel inputs has one horizon-
tal merger that directly consumes values arriving in the dispatcher.
As horizontal mergers operate in front of the queues, they must
obey stalls requested by the architecture. Thus, they help to prevent
stalls but cannot contribute to ending stalls.

Figure 11 shows the architecture of a horizontal merger. All val-
ues pass through a chain of ℎ registers that buffer the last ℎ values
as a look-ahead. The merger compares the last offset in the chain
with all previous stages in compare-forward logic. If the offsets
are equal, the increment in the register is forwarded, while the
identity increment replaces the increment in the register. Other-
wise, the identity increment is forwarded, and the register remains
untouched. In the following stages, a binary tree of reducers merges
all increments from the compare-forward units and the increment
from the last stage. Finally, the horizontal merger forwards the
result to the 𝑏𝑏-dispatch logic.

Adding horizontal merging to the architecture requires 𝑑𝑑 · (ℎ−1)
additional reducers and 𝑑𝑑 · (ℎ − 1) compare-forwards for a given
look-ahead ℎ ≥ 2. The reduction potential depends on the number
of entries in the register chain that share the same offset. In the
best case, all entries share the same offset, and ℎ values reduce
to a single increment. In the worst case, no merge occurs, and
all ℎ elements enter the queue sequentially. As the look-ahead ℎ
controls the number of reducers in horizontal mergers, we can
apply horizontal merging in a more fine-grained fashion.
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4.4 Discussion
Merging techniques aim at avoiding stalls resulting from full queues.
To prevent full queues, mergers must ensure that at most 1

𝑑
values

result in accesses to the same bank, as only one value per bank
can retire in each clock cycle. If a single heavy hitter appears ex-
clusively on all 𝑑 inputs, we have to be able to merge at least 𝑑
such offset-increment pairs per clock cycle on average. Thus, mak-
ing an optimistic banked sketching architecture resilient against
this pathological case requires applying either vertical merging or
horizontal merging with a look-ahead ℎ ≥ 𝑑 .

Note thatmerging does not adversely impact stall rates or through-
put: Merging optionally allows increment-offset pairs to take effect
earlier, but it does not impair other pairs’ progress through the
pipeline. Furthermore, the associativity and commutativity of the
reduce function guarantee the correctness after merging.

While we can establish that banking favors uniform accesses to
banks and merging effectiveness increases with the frequency of
heavy hitters, the impact of merging is highly dependent on the
actual distribution of bank accesses. Thus, we examine the effect of
merging techniques in Section 8.1, where we provide an extensive
evaluation on various real-world and artificial datasets.

5 DISPATCHER RESOURCE UTILIZATION
The optimistic architecture with banking and merging trades off
a 𝑑-fold lower state memory consumption for increased resource
consumption in the dispatcher. For a sketch with given matrix
shape and sketching functions, architecture parameters have the
following impact on resource consumption in the dispatcher:
Parallel inputs 𝑑: The number of FIFO queues in a regular and
oversubscribed architecture is 𝑑2 and 𝑑2 · 2, respectively. Thus,
resource consumption for queues and vertical merging in the dis-
patcher increases quadratically with 𝑑 . As horizontal mergers cover
each of the 𝑑 inputs, they contribute linearly.
The above shows that the dispatcher eventually becomes the bot-
tleneck of optimistic architectures with an increasing number of
inputs𝑑 . In these cases, we can build hybrid architectures that main-
tain 𝑟 replicas of optimistic sketching units with 𝑑 inputs. These
architectures support 𝑑ℎ𝑦𝑏𝑟𝑖𝑑 = 𝑟 · 𝑑 inputs.
Queue size 𝑞𝑠: Resource consumption in the dispatcher increases
linearly with the queue size 𝑞𝑠 . If the FIFO queue is implemented
solely in BRAM, other resources are not affected.
Vertical merging / Horizontal merger look-ahead ℎ: Enabling
vertical merging adds a constant overhead to an optimistic architec-
ture. The number of reducers and compare-forwards in horizontal
mergers and, thus, the overall resource consumption increases lin-
early with the look-ahead ℎ.
However, horizontal merging additionally impacts domain value op-
timization. Consider the CM sketch in Section 2.1: Vendor toolchains
detect that a single bit is sufficient to encode a {+1, 0} increment.
This optimization can significantly reduce the resources required
for increment handling. In particular, smaller increments decrease
the width of queues. As increments in merge trees increase by one
bit per level, inflated increments due to increasing ℎ in horizontal
merging also affect queues and vertical mergers.

6 LIMITATIONS
While optimistic architectures consume fewer memory resources,
some use cases cannot tolerate processing stalls. Specifically, stalls
become an issue if both of the following two properties hold:
Unidirectional communication: The sketching accelerator lacks
control communication with the data source or may not request
the data source to pause transmitting input data until the sketching
unit recovers from stalls. For example, pausing processing data on
a hard drive is feasible, while we cannot halt streaming data from
network monitoring.
Hard processing guarantees: The application requires that ev-
ery input value is guaranteed to be processed by the sketching
accelerator. For example, the estimates computed by a CM sketch
are only hard upper bounds if the sketch observes every input
element. An application testing whether specific malicious IP ad-
dresses connect to a service may require this guarantee.
Fortunately, hard guarantees for processing at full rate are rarely
required. Streaming engines typically provide soft guarantees as
they employ software queues for backpressure handling [4].

Banking and merging exclude sketches (e.g., CM-CU [7, 11]) or
applications (e.g., heavy change detection in networks [24]) that
require evaluating the sketch on the fly: Due to increments poten-
tially arriving merged and at different clock cycles in each row,
monitoring updates to the sketch in real time cannot be trivially
translated to an optimistic architecture. Bringing all rows to a con-
sistent state requires waiting for all queue elements to be processed.
Thus, optimistic architectures favor applications with a separation
between maintaining and evaluating the sketch.

7 APPLICATION: APPROXIMATE GROUP-BY
ON A XILINX U250 ACCELERATOR

As optimistic sketching architectures reduce the resources neces-
sary to implement state memory, there are more resources available
to implement larger or additional sketches. To show our approach’s
potential, we approximate the result of a grouped aggregate query
as an intuitive application for optimistic FPGA-accelerated sketch-
ing. To that end, we use an ensemble of variations of the CM sketch,
which we explain in Section 7.1. This application can benefit greatly
from the additional available resources, as we exploit them to in-
crease accuracy via the sketch size. Furthermore, it tolerates even-
tual stalls imposed by the optimistic architecture.

We implement sketching on a high-end Xilinx U250 data center
accelerator. Section 7.2 discusses the architecture. As cloud services,
such as AWS or Azure, provide instances with similar hardware,
our approach can enable fast insights into large datasets stored in
cloud storage or cloud-based data warehouses.

7.1 Sketch Ensemble
We construct an ensemble of four variations of the CM sketch over
an input stream 𝑠 of key-value pairs (𝑘, 𝑣). The sketches approxi-
mate the result of the following SQL query:

select k,count(*),sum(v),min(v),max(v) from s group by k

All four sketches use the 𝐻3 family of hash functions in the select
function, but vary in the map, reduce, and evaluation function as
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Table 1: Sketch ensemble for grouped aggregates

Aggregate Map Identity Reduce Evaluation Bound

count(*) +1 0 + 𝑚𝑖𝑛 Upper
sum(𝑣) +𝑣 0 + 𝑚𝑖𝑛 Upper
min(𝑣) 𝑣 𝑣𝑚𝑎𝑥 𝑚𝑖𝑛 𝑚𝑎𝑥 Lower
max(𝑣) 𝑣 𝑣𝑚𝑖𝑛 𝑚𝑎𝑥 𝑚𝑖𝑛 Upper

well as the quantities they estimate. Table 1 lists the functions and
estimated quantities.

The CM sketch shown in Figure 1 constructed over the keys
provides an upper bound on the number of observed tuples 𝑐𝑜𝑢𝑛𝑡 (∗)
in the group for each key 𝑘 . Analogously, incrementing by the value
𝑣 while hashing on the key yields a sketch that provides an upper
bound on the sum of values 𝑠𝑢𝑚(𝑣) grouped by the key 𝑘 . The idea
of scattering aggregate functions using hash functions over multiple
rows and columns to mitigate the impact of collisions extends to
other algebraic aggregate functions, such as the minimum and
maximum. To estimate these quantities, we replace the reduce
function with the minimum and maximum function and set the
identity element to the highest and lowest possible key, respectively.
In the following, we will refer to the sketches by their aggregate
(e.g., sum-sketch, max-sketch).

The count-sketch also allows inclusion tests in the set of keys.
As the sketch provides an upper bound on the number of tuples
with a given key, an estimate of zero provides certainty that the
input data did not include the key, and thus querying the sum, min,
and max sketches is futile.

Optimizing the size of the sketches is essential to improve the
result quality for this application. The expected number of hash
collisions on an entry in each row of a CM sketch is 𝑔

𝑛 , 𝑔 being the
number of groups. Thus, the number of collisions reduces inversely
proportional to the number of columns. The impact of collisions
varies among aggregate functions: While errors for sum and count
accumulate with each collision, min and max errors depend only
on the most extreme value that hashed to a bucket. Each additional
row may improve the estimate, as it represents an independent trial
with different random collisions.

7.2 Accelerator Architecture
We perform sketching on a Xilinx U250 data center accelerator
with a high-end UltraScale+ FPGA.We implement sketching as RTL
kernels in the Xilinx Vitis framework. Vitis enables portability and
reuse of FPGA designs in RTL and high-level languages, implements
I/O on the devices, and exposes GPU-like interfaces to host code.

Figure 12 shows a schematic of the U250 accelerator card and
our sketching implementation on it. We evenly split the input data
and transmit the chunks to the four 8GB DDR4 memory banks
on the device via PCI Express. The FPGA consists of four Super
Logic Regions (SLRs), each directly connecting to a DDR4 memory
bank. As connectivity between SLRs is limited, we run indepen-
dent sketching kernels for each memory bank and lock the kernels
operating Bank 0, Bank 2, and Bank 3 inside their respective SLR.
We only allow the kernel operating Bank 1 to spread over multiple
SLRs because the Vitis platform blocks a significant portion of SLR1
to provide auxiliary functionality.

Bank 0 Bank 1 Bank 2 Bank 3
DDR4

Memory

FPGA

PCIe Gen3 x16

Xilinx U250

Sketches
(to host)

SLR0 SLR1 SLR2

Data
(from host)

SLR3

Sketching
Kernel

Sketching
Kernel

Sketching
KernelSketching

Kernel

Vitis
Platform

Figure 12: Sketching coprocessor for grouped aggregates im-
plemented using Xilinx Vitis.

Each memory bank connects to the kernel via a 512-bit wide
interface operating at 300 MHz, which results in a maximum total
throughput of 600 gbps for all four memory banks. While process-
ing on the U250 accelerator is limited by the 126 gbps theoretical
maximum throughput of PCI Express Gen3 x16, we still provision
for maximum throughput when reading from device memory: Ex-
isting or future FPGA boards with better connectivity, e.g., multiple
100G Ethernet ports or PCIe Gen4/5, can narrow or close the gap.

UltraScale+ provides two types of on-chip high-density memory
elements: Regular BRAM elements provide 18 KB with varying
width and depth; UltraRAM (URAM) provides 288 KB with a fixed
72-bit width and depth 4096. As URAM makes up the largest por-
tion of on-chip memory, we map memory segments to URAM. We
use the more flexible BRAM for the large FIFO queues in the reg-
ular architectures, while we implement the smaller queues in the
oversubscribed architectures with logic resources.

The accelerator assumes 32-bit unsigned input values for the
key and value. In addition to updating four sketches in parallel, we
invest the additional resources provided by the optimistic architec-
ture to implement the count- and sum-sketch with an increased
state size of 64 bits. This increase is necessary as the 32-bit state
commonly used in sketching implementations [5, 13] is prone to
overflows for large skewed datasets.

Overall, we designed the architecture to show the maximum
throughput for our application that is practically achievable on
the FPGA shipped with the U250. As we integrated our approach
with Vitis, our implementation can be adjusted to other boards,
cloud-based FPGAs, throughput requirements, and use cases with
slight to moderate effort.

8 EVALUATION
We investigate the performance of our architecture in terms of
stall rates, resource consumption, maximum operating frequency,
throughput, and accuracy. First, we show the effect of merging
on the stall rate for various real-world and artificial datasets to
devise the degree of merging required to handle data skew. Second,
we show that optimistic architectures are feasible on a modern
FPGA, consume less state memory than pessimistic ones, and can
provide comparable maximum operating frequencies. Third, we
highlight the impact of merging regarding resource consumption
and maximum operating frequency. Finally, we show that a modern
FPGA accelerator can achieve vast throughput for our approximate
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group-by application, while optimistic architectures boost accuracy
due to larger summary sizes.

We evaluate our approach using various sketching implementa-
tions and baselines:
Simulator: A hand-written C++-based software replica of all com-
ponents in the frontend and dispatcher determining the stall rate.
It allows us to validate a broad range of parameters without going
through the time-intensive process of compiling or simulating the
entire sketching RTL.
Dummy: Sketching unit RTL connected to a minimal dummy I/O
template that targets a Xilinx XCVU13P FPGA equivalent to the one
on U250 accelerator boards. It allows us to determine the resource
consumption and maximum operating frequency of sketching units
in isolation and without the overheads of placing and routing with
actual I/O. We use the Vivado 2021.2 toolchain.
U250: A complete sketching accelerator for our group-by applica-
tion based on a Xilinx U250 accelerator card as detailed in Section 7.
We use the Vitis 2022.1 toolchain with the XDMA 4.1 platform.
EPYC: Sketching for our group-by application performed on two
AMD EPYC 7742 CPUs each providing 64 cores with two threads.
We use GCC 9.4 with OpenMP for multithreading and compiler
intrinsics for vectorization (AVX2). Each software thread constructs
an instance of the sketch over a chunk of input data. We evalu-
ate two multithreading strategies: We maintain one sketch (1) per
hardware thread to maximize the potential for instruction level
parallelism, and (2) per core to reduce cache thrashing.
A100: Sketching for our group-by application performed on an
Nvidia A100 GPU using CUDA 11.7. We evaluate two paralleliza-
tion strategies: (1) All threads cooperate at updating each row to
maximize data locality. (2) Each thread applies updates exclusively
for one row in a total of 𝑟 sketch instances. This strategy reduces
conflicting atomic operations to memory. We try increasing powers
of two for 𝑟 until the memory required exceeds device limits.

We generate RTL using Scotch [13] as a representative for pes-
simistic sketching. For optimistic sketching, we adjusted Scotch to
include banking, Map-Reduce updates, and our merging strategies.
Based on the simulation results shown in Section 3, we select a
queue size of 𝑞𝑠 = 512 for the regular and 𝑞𝑠 = 64 for the over-
subscribed architecture. As our optimistic architecture addresses a
design issue of pessimistic data parallelism, comparisons extend to
any pessimistic architecture.

We evaluate our approach using artificial and real-world datasets.
Uniform: Uniformly drawn keys with values fixed to +1.
Zipf(𝜌): Keys drawn from a Zipf distribution generated with sup-
port 𝜌 ∈ {1.05, 1.5} and values fixed to +1.
Caida: Real-world traces collected from the Equinix Chicago in-
ternet exchange [3] in 2011. We use the source IP address as the
key and the package size as the value.
Cup’98: Access logs for the 1998 Football World Cup web site [2].
We use the client ID as the key and the answer size as the value.
NYT: Trips of yellow taxis in New York City between 2009 and
2016 [22]. The key encodes the pickup and dropoff location coordi-
nates on a 256x256 grid. The value is the total amount paid for the
ride. Data is ordered by the dropoff time.

8.1 Impact of Merging on Stall Rates
We explore the merging effort necessary to achieve low stall rates
based on various real-world and artificial datasets using our simula-
tor. This experiment allows us to select good parameters for FPGA
implementations used in the following experiments. In our first
experiment, we give an exhaustive overview of how the stall rates
vary for datasets and increasing merging effort. We enable verti-
cal merging before gradually increasing the horizontal merging
look-ahead ℎ. In a second experiment, we justify this strategy.

We report the mean stall rate for 200 iterations of the simulator
for a sketch with one row and 222 columns.

8.1.1 Merger Configuration. Figure 13 shows the effect of merging
on stall rates for each dataset. We omit uniform data, as Figure 7a
shows that our configuration is sufficient to achieve stall rates
below 1%, and merging has virtually no observable impact. The
Zipfian(1.05) dataset highlights the differences between the regular
and oversubscribed architecture: No merging is required for the
oversubscribed architecture, as the abundance of banks prevents
stalls in almost all cases. However, the regular architecture requires
vertical merging and horizontal merging with a look-ahead of ℎ =
128 to achieve stall rates below 1% for all values of 𝑑 . The more
skewed distribution in Zipf(1.5) causes the regular architecture to
require less merging because the effectiveness of mergers increases.
The oversubscribed architecture now requires vertical merging for
stall rates below 1%, as the most common value in the distribution
constitutes 38% of the dataset and cannot be handled by the banks
alone. For the real-world datasets, we observe that the plot for NYT
is similar to Zipf(1.5) in that stall rates without merging are above
50% and quickly drop to zero with additional merging. In this sense,
Caida and Cup’98 are closer to the less skewed Zipf(1.05) dataset.
This observation is intuitive as we expect pairs of taxi pickup and
dropoff regions to contain obvious heavy hitters while identifiers
in network traffic are less skewed.

Summary: Overall, we see that both architectures require ver-
tical merging to achieve stall rates below 1% on all datasets. The
oversubscribed architecture has stall rates close to zero when there
is additional horizontal merging with a look-ahead ℎ = 2 in our
experiments. The regular architecture with 𝑑 ∈ {4, 8, 16} needs
additional horizontal merging with ℎ = 128 to achieve stall rates
below 1% over all datasets. As only one dataset requires such a large
look-ahead, we select ℎ = 64 as a compromise between merging
effort and robustness. For 𝑑 = 32, a look-ahead of ℎ = 32 suffices in
all cases.

8.1.2 Vertical vs. Horizontal Merging. Next, we justify adding ver-
tical merging before investing resources into the look-ahead ℎ for
horizontal merging. Figure 14 shows the distribution of stall rates
over all datasets and iterations in a boxplot.

For a regular architecture, we compare plain vertical merging
and horizontal merging with the same number of reducers (ℎ = 𝑑).
We see that vertical merging improves the median (except for d=4),
the upper quantile, and the whiskers (1.5 IQR). The effect increases
with 𝑑 and is most remarkable for 𝑑 = 32 where more than half
of runs had a stall rate of 10% and higher for horizontal merging,
while vertical merging reaches this value only in outliers.
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Figure 13: Stall rates for optimistic architectures with increasing merging effort. For Oversubscribed, vertical and horizontal
merging with ℎ = 2 is sufficient to prevent stalls entirely. For Regular, we need ℎ = 128 for stall rates below 1% (dotted line).
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Figure 14: Stall rate distribution for architectures that favor
vertical (v) or horizontalmerging (depthℎ). Favoring vertical
merging is more effective.

For an oversubscribed architecture, we evaluate vertical merging
with minimal horizontal merging (ℎ = 2), as this configuration has
shown to prevent stalls almost entirely in the previous experiment.
We compare against horizontal merging with ℎ = 2𝑑𝑑 resulting in
the same number of reducers. While both strategies indeed suffice
to prevent stalls almost entirely, favoring vertical merging before
horizontal merging prevents several of the remaining outliers.

Summary:Overall, applying vertical merging first leads to more
effective estimators for the same number of reducers.

8.2 Resource Consumption
Next, we explore the resource consumption of our optimistic archi-
tectures for the count-sketch with the dummy I/O template. We set
the merging parameters as determined in the previous section. We
report the consumed fraction of look-up tables, flipflops, BRAM,
and URAM segmented by dispatcher, frontend, backend, and other
(e.g., logic to retrieve the state). We also report the maximum operat-
ing frequency over five different Vivado implementation strategies
to compensate for noise due to randomized algorithms in place-
ment and routing. The operating frequency is likely to be an upper
bound for an implementation with I/O, which introduces additional
constraints and logic. Note that all reported values are attributes of
the implementation and, thus, data-independent.

8.2.1 Optimistic vs. Pessimistic. First, we compare the pessimistic
architecture to our optimistic ones. Figure 15 shows the pessimistic
architecture for 𝑑𝑑 ∈ {4, 8, 16, 32} inputs targeting 80% of the avail-
able URAM compared to a regular and oversubscribed optimistic

architecture with the same sketch size (𝑚𝑚 = 1, 𝑛𝑛 = 4096·1024
𝑑𝑑

). Only
for the oversubscribed architecture with 𝑑𝑑 = 32 inputs, we report
the results for double the number of columns because every bank
needs at least one URAM memory segment. Most importantly, we
see URAM consumption in the backend decreasing by the expected
factor of 𝑑𝑑 when comparing the optimistic and pessimistic archi-
tectures. Second, we observe the backend dominating resource
consumption for the pessimistic architecture. LUTs and flipflop are
between 8 and 9% for all 𝑑𝑑 as the number of memory segments
primarily determines the resource consumption of the whole archi-
tecture and is kept constant. For our optimistic architectures with
𝑑𝑑 ∈ {4, 8, 16} inputs, we see a reduction by a factor of 2.8 and 3.8 in
the LUTs and flipflops consumed as the resource consumption in
the backend decreases due to fewer memory segments used overall.
For 𝑑𝑑 ∈ {16, 32} inputs, we observe a crucial implication of our
optimistic architecture. While the overall resource consumption in
the pessimistic architecture increases linearly with 𝑑𝑑 , resource con-
sumption for the FIFO queues and vertical merging grows quadrati-
cally for optimistic architectures. Thus, the dispatcher can dominate
resource consumption for high values of 𝑑𝑑 . This effect manifests
for accelerators 𝑑𝑑 = 32 for which the oversubscribed architecture
consumes more LUTs than the pessimistic architecture, and the
regular architecture takes 38% of available BRAM.

Figure 16 compares the pessimistic and optimistic architectures
in terms of the maximum operating frequency. First, we observe
that the maximum operating frequency for pessimistic architec-
tures remains between 442 and 478 MHz. As the number of memory
segments is kept constant, varying the number of inputs has only
a minor impact on the complexity of the overall architecture. For
𝑑𝑑 ∈ {4, 8, 16} inputs, we see that an oversubscribed architecture
consistently supports frequencies of more than 500 MHz, while
the pessimistic architecture has a 30 to 40 MHz lower operating
frequency. Thus, the additional complexity introduced by bank-
ing and merging does not outweigh the benefits of reducing the
overall resource consumption. This observation turns for 𝑑𝑑 = 32:
The large dispatcher complicates placement and routing, and the
maximum operating frequency for the oversubscribed architecture
drops to 387 MHz, while the pessimistic architecture still operates
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at 442 MHz. The regular architecture does not achieve higher oper-
ating frequencies than the pessimistic architecture for any 𝑑𝑑 . While
the maximum operating frequency for 𝑑𝑑 = 4 inputs is only a few
percent lower, it decreases in the order of 100 MHz with every dou-
bling of 𝑑𝑑 . Routing becomes increasingly complex as an additional
resource is consumed. For 𝑑𝑑 = 32 inputs, BRAM consumption even
requires the dispatcher to spread over SLRs.

Summary:We confirmed that optimistic architectures reduce
state memory consumption by a factor of 𝑑𝑑 , while consuming fewer
LUTs and flipflops for 𝑑𝑑 ∈ {4, 8, 16}. However, we also observe
that optimistic architectures do not scale arbitrarily with 𝑑𝑑 . In these
cases, hybrid architectures consisting of multiple optimistic replicas
can reduce resource consumption for dispatchers. Furthermore,
we see the oversubscribed architecture outperforming the regular
architecture in terms of maximum operating frequency and overall
resource consumption for this sketch and FPGA.

8.2.2 Merging & Reduce. Next, we investigate the impact of merg-
ing and more involved reduce functions on resource consumption.
We report the resource consumption and set the number of columns
to 4096 · 256 resulting in 20% URAM consumption. Figure 17 com-
pares the count-sketch with the sum-sketch for 𝑑𝑑 = 16 inputs in
a regular architecture. As incrementing state counters by a 32-bit
value causes larger increments that need wider adders and FIFO
queues, maintaining the sum-sketch requires more resources. We
report the resource consumption for no merging, vertical merging
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Figure 17: Resource utilization for regular and oversub-
scribed architecture with 𝑑𝑑 = 16 utilizing 20% of available
URAM for increasing merging effort.

only, and vertical merging with horizontal merging and look-ahead
ℎ ∈ {16, 32, 64}. While BRAM consumption for FIFO queues is twice
as high for the sum-sketch, we also observe up to twice as large
dispatchers in terms of LUTs and flipflops. This increase shows that
the dispatcher is highly affected by the reduce function. Further-
more, we see that the look-ahead ℎ strongly impacts both sketches.
Although adding vertical merging increases LUT and flipflop con-
sumption by 5 to 14% of the available resources, adding a horizontal
merger with ℎ = 16 adds up to 29%. While the added horizontal
mergers with ℎ = 16 have as many reducers as the vertical merger,
the additional merging levels cause an overproportionate demand
for resources. This observation also supports our choice to apply
vertical before horizontal merging. When further doubling ℎ, the
increase is not as high since increments grow by one bit for every
level in the tree of reducers.

Summary: We observe that the reduce function has a large
impact on resource consumption in the dispatcher. Furthermore,
horizontal merging has an overproportionate impact, as growing
increments affect all following components.

8.3 Application
Finally, we evaluate our group-by application on a Xilinx U250
FPGA data center accelerator. Compared to the dummy I/O tem-
plate, this implementation contains the logic to interface with a
host computer via PCIe and to transfer data between host and
device memory. This functionality consumes additional resources
and complicates placement and routing of logic on the FPGA. Fur-
thermore, it instantiates four sketching kernels operating on each
DDR4 memory bank independently. Table 2 lists the accelerators
we implemented on the U250 board.

We set the number of rows to𝑚𝑚 = 2 for all architectures as it is
the largest number of rows for which the oversubscribed architec-
ture fits the device without additional replication in kernels. The
regular accelerator requires a hybrid architecture with two replicas
per kernel to fit the device. Naturally, the pessimistic architecture
requires eight replicas per kernel. To determine the number of
memory segments used, we increase it until compilation fails.

8.3.1 Estimation Error. We compare the accuracy of estimates in
our application based on the summary sizes supported by the regu-
lar, oversubscribed, and pessimistic accelerator over our real-world
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Table 2: Accelerators implemented on U250

Architecture Replicas per kernel Rows Columns

Oversubscribed 1 2 4096 · 32
Regular 2 2 4096 · 16
Pessimistic 8 2 4096 · 5

datasets. We report the cumulative absolute error over 40 iterations
in five scenarios. Error bars denote the standard deviation. First, we
evaluate the count-sketch for the entire range of keys (Full Count).
As all datasets use only a fraction of the entire domain of keys, this
quantifies the ability of the sketch to exclude unseen keys from the
result set. The remaining four scenarios evaluate each sketch over
the set of keys in the dataset (Result).

Figure 18 shows the results. First, we observe that the increased
sketch size translates to increased accuracy in almost all cases. For
Full Count, Result Count, and Result Sum, the accuracy increases
by up to an order of magnitude, with oversubscribed consistently
providing better accuracy. The increase in accuracy for the min
and max sketches varies based on the dataset. For NYT, we see
increases of an order of magnitude for oversubscribed and regular.
For Caida and Cup’98, increased sketch sizes have little impact
and accuracy varies by at most 4%. The different nature of the
datasets explains this: For the NYT dataset with its few distinct
keys (0.0008%), increasing the sketch size reduces the chance of few
extreme groups colliding with others. Caida and WC’98 have more
than 0.02% distinct groups, causing thousands of collisions in each
entry. As the minimum and maximum of many groups have the
same magnitude, these values end up in virtually every bucket of
the min- and max-sketch. Thus, reducing the number of collisions
does not lead to a significant reduction in the estimation error for
min and max estimates for these datasets.

Summary: Increased sketch sizes enabled by optimistic archi-
tectures translate to up to an order of magnitude higher accuracy.

8.3.2 Throughput. We compare regular, oversubscribed, and pes-
simstic accelerators to optimized data-parallel implementations on
two state-of-the-art AMD EPYC CPUs and one Nvidia A100 GPU in
sketching throughput. We report the mean throughput over 10 iter-
ations for all datasets and report results for the best implementation
strategy for the CPU and GPU baselines. Measurements exclude
data transfer to allow for a comparison independent of limitations
due to the interconnect. Error bars denote the standard deviation.

Figure 19 shows the results. First, we see that all FPGA accelera-
tors achieve around 575 gbps over all datasets which is close to the
theoretical optimum of 600 gbps for the 512-bit memory interface
running at 300 MHz. The difference is due to the memory interface
not providing new data in 4% of clock cycles. These breaks reduce
pressure on FIFO queues such that no stall occurs for any dataset.
Our FPGA accelerators outperform the baselines by at least 80 gbps;
for some datasets, even by more than a factor of 2. The throughput
of A100 varies between 320 and 494 gbps, while the EPYC CPU
achieves between 223 and 419 gbps. The throughput of our FPGA
accelerators is very robust with respect to the distribution of the
input data and the sketch size. The performance of the software
baselines varies due to caching effects and the costs of atomic op-
erations. This is an advantage of FPGA implementations, given
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Figure 18: Estimation error for approximate group-by
queries with summary sizes supported by oversubscribed
(O-O), regular (O-R), and pessimistic (P) architectures. The
larger summary sizes provided by optimistic architectures
result in up to an order of magnitude improved accuracy.

that we report the best implementation strategy for our software
baselines and that the best strategy varies for different summary
sizes and datasets.

Our FPGA implementations show one to two gbps higher through-
put for the larger real-world datasets. While the throughput is in-
dependent across data distributions as no stalls occur, there is an
overhead for launching kernels over PCIe. Thus, high throughput
sketching with on-the-side PCIe accelerators such as our A100 and
U250 requires processing data in larger batches to amortize over-
heads. However, FPGAs famously support processing in the data
path, which would avoid such overheads entirely [12].

Note that our implementation supports𝑚 > 2 rows by making
multiple passes over the input data, causing a proportionate de-
crease in throughput. As this behavior is the same for the software
baselines, our results also apply to𝑚 > 2 rows.

Summary: Our optimistic accelerators outperform optimized
data-parallel software implementations on a GPU and a CPU by
up to 352 gbps. We have shown that our FPGA accelerators practi-
cally never stall for various artificial and real-world datasets. Their
performance is robust with respect to the sketch size and data dis-
tribution, while CPU and GPU throughput varies depending on the
implementation strategy, sketch size, and input data.

9 RELATEDWORK
Recent work on FPGA-accelerated sketching focuses on data an-
alytics and exploits data parallelism. Scotch generates sketching
accelerators for a broad class of matrix sketches based on the Select-
Update model [13]. Furthermore, to handle single-column sketches,
Scotch uses the Map-Apply model. To achieve data parallelism,
the Map-Apply model requires the user to manually implement a
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and CPU (EPYC). FPGA accelerators provide robust throughput and outperform GPU and CPU baselines in all experiments.

merger in the apply function, hardcoding the degree of data paral-
lelism 𝑑 > 1. In this work, we replace the update function with a
map and an associative reduce UDF. Thereby, we obtain a model
that is suitable for both column and matrix sketches and allows
generating mergers for arbitrary degrees of 𝑑 . Kulkarni et al. im-
plement the HLL algorithm on an FPGA and parallelize it using
multiple concurrent pipelines [14]. Following a similar architecture,
Chiosa et al. combine HLL, CM, and Fast-AGMS in a single FPGA
accelerator [5]. All of the above techniques implement data par-
allelism pessimistically via replication. In contrast, our approach
maintains a single replica optimistically to save resources.

Chrysos et al. explore various FPGA implementation strategies
for the Exponential CM sketch [6], which maintains exponential
histograms instead of regular counters in the sketch matrix. The
authors exploit the inherent temporal access patterns in exponen-
tial histograms by pipelining updates to the frequently updated
first bucket levels. The infrequent updates to the remaining levels
are applied iteratively and require stalling the frontend. Further-
more, the authors exploit data parallelism by instantiating multiple
backend replicas that operate on the same memory (BRAM and
DRAM), which results in stalls for concurrent accesses to the same
memory location. To avoid stalls, the authors detect heavy hitters
and route them to a fixed number of additional dedicated replicas.
In contrast, the algorithm class that we consider in this work has no
inherent access patterns to exploit. In addition, the map and reduce
functions are simpler than maintaining an exponential histogram,
and the individual states consist of only a few bytes. This allows us
to handle heavy hitters more efficiently by pre-partitioning values
during dispatching and merging them in pipelines.

To save resources and fit more columns into BRAM, Sateesan et
al. replace the simple counters in a CM sketch with approximate
ones [17]. This optimization is orthogonal to the ones we propose
in this work.

Several authors suggest the Map-Reduce paradigm as a general-
purpose programming model for FPGAs [19, 26, 28]. However,
a general-purpose Map-Reduce engine cannot assume common
algorithm-specific optimizations in sketching accelerators, e.g. stream-
ing updates to a sketch matrix. In contrast, we use map and reduce
functions only to replace the update function in the Select-Update
model, thereby allowing in-pipeline merging of heavy hitters.

Finally, the network community has also proposed several FPGA-
accelerated sketching approaches for network monitoring [18, 20,
21, 23, 24, 29]. These approaches assume that only a few fields
of each package need to be processed, and thus it is sufficient to
process a single value per clock cycle. As a result, unlike our work,
the above approaches do not exploit data parallelism.

10 CONCLUSION
This paper introduces an optimistic architecture for data-parallel
sketching on FPGAs that partitions the state memory in multi-
ple banks available to all inputs. As skew in bank accesses is the
Achilles’ heel of this architecture and requires stalling, we propose
in-pipeline merging of updates to mitigate the impact of heavy
hitters by exploiting temporal locality. To enable merging, we in-
troduce a theoretical framework that describes updates in terms of
a map and a reduce function.

Compared to the pessimistic state-of-the-art that fully replicates
the entire sketching unit for each of the 𝑑 parallel inputs, our op-
timistic architecture reduces the consumption of the scarce state
memory by up to a factor of 𝑑 . Furthermore, we apply optimistic
sketching to an approximate query processing application, observ-
ing robust sketching throughput of 575 gbps over various real-
world and artificial datasets, which is up to 352 gbps higher than
the throughput of state-of-the-art CPU and GPU implementations.
Finally, we show that investing the saved state memory in larger
sketch sizes results in better estimates up to an order of magnitude.

Overall, given the widespread availability of FPGA accelerators,
our optimistic architecture paves the path towards more resource-
efficient and accurate big data analytics.
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