
FARGO: Fast Maximum Inner Product Search via Global
Multi-Probing

Xi Zhao
Huazhong University of Science and

Technology
zhaoxi@hust.edu.cn

Bolong Zheng∗

Huazhong University of Science and
Technology

bolongzheng@hust.edu.cn

Xiaomeng Yi
Zilliz

xiaomeng.yi@zilliz.com

Xiaofan Luan
Zilliz

xiaofan.luan@zilliz.com

Charles Xie
Zilliz

charles.xie@zilliz.com

Xiaofang Zhou
Hong Kong University of Science and

Technology
zxf@cse.ust.hk

Christian S. Jensen
Aalborg University

csj@cs.aau.dk

ABSTRACT

Maximum inner product search (MIPS) in high-dimensional spaces

has wide applications but is computationally expensive due to the

curse of dimensionality. Existing studies employ asymmetric trans-

formations that reduce the MIPS problem to a nearest neighbor

search (NNS) problem, which can be solved using locality-sensitive

hashing (LSH). However, these studies usually maintain multiple

hash tables and locally examine them one by one, which may cause

additional costs on probing unnecessary points. In addition, LSH

is applied without taking into account the properties of the inner

product. In this paper, we develop a fast search framework FARGO

for MIPS on large-scale, high-dimensional data. We propose a global

multi-probing (GMP) strategy that exploits the properties of the

inner product to globally examine high quality candidates. In addi-

tion, we develop two optimization techniques. First, different with

existing transformations that introduce either distortion errors or

data distribution imbalances, we design a novel transformation,

called random XBOX transformation, that avoids the negative ef-

fects of data distribution imbalances. Second, we propose a global

adaptive early termination condition that finds results quickly and

offers theoretical guarantees. We conduct extensive experiments

with real-world data that offer evidence that FARGO is capable of

outperforming existing proposals in terms of both accuracy and

efficiency.

PVLDB Reference Format:

Xi Zhao, Bolong Zheng, Xiaomeng Yi, Xiaofan Luan, Charles Xie, Xiaofang

Zhou, Christian S. Jensen. FARGO: Fast Maximum Inner Product Search via

Global Multi-Probing. PVLDB, 16(5): 1100 - 1112, 2023.

doi:10.14778/3579075.3579084

∗Bolong Zheng is the corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579084

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/Jacyhust/FARGO_VLDB23.

1 INTRODUCTION

Given a query point 𝑞 ∈ R𝑑 and a dataset D ⊆ R𝑑 , the maximum

inner product search (MIPS) problem aims to find a point 𝑥 in D
that has the maximum inner product 𝑞�𝑥 . The MIPS problem in

high-dimensional spaces is core functionality in a wide variety of

applications, such as matrix factorization based recommendation

[1, 34], multi-class label prediction [11, 21], similar-item retrieval

[44], structural SVM [22], and deep learning [17], to name but a

few.

A basic solution to the MIPS problem is the space partitioning

tree-basedmethod [23, 24, 36], whichworkswell in low dimensional

spaces. However, when the dimensionality increases to several

hundred or higher, the search time increases exponentially [2, 6,

8]. A more efficient alternative is to find the approximate MIPS

result. If we consider the inner product as a similarity metric, the

approximate MIPS problem is similar to the approximate nearest

neighbor search (NNS). As locality-sensitive hashing (LSH) has

demonstrated its superiority on solving approximate NNS [4, 25,

27, 42, 46, 47], it is natural to apply LSH for approximate MIPS

[4, 25, 27, 42, 46, 47]. However, to work correctly, LSH requires that

the metric satisfies the condition that for any point 𝑞, the point that
has the largest similarity to 𝑞 is 𝑞 itself. Unfortunately, the inner

product does not satisfy this condition. That is, a point 𝑥 always

exists that is different from 𝑞 and such that 𝑞�𝑥 > 𝑞�𝑞.
Existing studies adopt asymmetric transformations that convert

the MIPS problem into NNS, and then use LSH to solve the NNS

problem. Specifically, they employ the basic (𝐾, 𝐿)-bucketing [3] to
construct hash tables, and they use Multi-Probe [31] that maintains

a local probing sequence for each hash table. For each hash table,

they examine the candidates from “more promising" hash buckets

to “less promising" ones based on the local probing sequence. This

process is repeated in all hash tables so that many “less promising"

hash buckets in different hash tables are unnecessarily examined,

1100

https://www.acm.org/publications/policies/artifact-review-and-badging-current

which may cause additional costs and affect the query performance.

We develop a fast search framework FARGO forMIPS on large-scale,

high-dimensional data. Unlike Multi-Probe, FARGO incorporates

an accurate and efficient global multi-probing strategy (GMP) that

generates a global probing sequence from all 𝐿 hash tables so that

we enable to examine the candidates from “more promising" hash

buckets across all hash tables in prior to “less promising" ones. To

improve the quality of candidates in the global probing sequence,

we exploit the strong relationship between the inner product and

a so-called quantization distance between the query point and a

candidate point.

In addition, we develop two optimization techniques to fur-

ther improve the performance. First, we develop a novel asymmet-

ric transformation, called random XBOX-Transformation (RXT),

that maps the points in two different directions randomly so that

the points are distributed more evenly. There exist three main

asymmetric transformation methods: (1) the L2-Transformation

[38], (2) the Correlation-Transformation [39], and (3) the XBOX-

Transformation [5, 45]. However, each of these transformations suf-

fers from shortcomings that impact their performance negatively.

The L2-Transformation and Correlation-Transformation introduce

distortion errors. The XBOX-Transformation avoids distortion er-

rors, but brings data distribution imbalances to the transformed

dataset. So we develop RXT that eliminates these issues. Second, we

develop a novel and training-free adaptive early termination strat-

egy that enables a better trade-off between accuracy and efficiency.

Although existing studies adopt an adaptive early termination con-

dition for the approximate NNS problem [15, 26, 29, 30] to trade-off

between accuracy and efficiency, they are either time-consuming

on training or not well-adapted for solving the MIPS problem.

The major contributions of FARGO are as follows:

• We propose an efficient and accurate method called GMP to

answer MIPS queries that exploits the properties of the inner

product to examine high quality candidates.

• We develop two optimization techniques to further improve the

performance. One is a novel asymmetric transformation method

RXT that reduces data distribution imbalance. The other is a

global adaptive early termination that determines its termination

conditions adaptively.

• We conduct an extensive performance study using real datasets

that covers the state-of-the-art methods for MIPS, finding that

FARGO is efficient as well as accurate in terms of both the overall

ratio and recall.

2 PRELIMINARIES

In this section, we introduce the preliminary knowledge. Frequently

used notation is summarized in Table 1.

2.1 Problem Definition

Definition 1 (Maximum Inner Product Search). Given a

dataset D ⊆ R𝑑 that contains 𝑛 points (a.k.a. vectors) and a query

point 𝑞 ∈ R𝑑 , the maximum inner product search (MIPS) returns a

point 𝑝 ∈ D that has the maximum inner product with 𝑞, i.e.,

𝑝 = arg max
𝑥∈D

𝑞�𝑥 . (1)

Table 1: Summary of Notations

Notation Definition

D Dataset of points in R𝑑

𝑛 = |D| Dataset cardinality

𝑑 Dimensionality

𝑥 A point in D
ℎ(𝑥) Hash functions

𝑞 The query point

𝑞�𝑥 The inner product between 𝑞 and 𝑥

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1
x2

x3

x4

x5

x6
x7

x8

x9

x10
x11

x12

q

Figure 1: A Running Example

The MIPS problem can be transformed to the nearest neighbor

search (NNS) problem that aims to find a point 𝑥 closest (most

similar) to 𝑞. For example, the NNS problem in terms of Cosine

similarity is as follows:

𝑝 = arg max
𝑥∈D

𝑞�𝑥
‖𝑞‖‖𝑥 ‖ = arg max

𝑥∈D
𝑞�𝑥
‖𝑥 ‖ . (2)

It is well known that finding the exact NN in high-dimensional

space is inherently computational expensive due to the ‘curse of di-

mensionality’. A more attractive and generally sufficient alternative

is to find an approximate nearest neighbor. In this paper, we focus

on the transformation that converts an approximate maximum in-

ner product search (𝑐-MIPS) to an approximate nearest neighbor

search (𝑐-ANNS). We define them formally as follows:

Definition 2 (𝑐-Approximate Nearest Neighbor Search).

Given a query point 𝑞 ∈ R𝑑 and an approximation ratio 0 < 𝑐 < 1,

let sim(·) be the similarity metric and 𝑥∗ ∈ D be the exact nearest

neighbor of 𝑞. A 𝑐-approximate nearest neighbor search (𝑐-ANNS)
returns a point 𝑥 ∈ D satisfying sim(𝑥, 𝑞) ≥ 𝑐 · sim(𝑥∗, 𝑞).

Definition 3 (𝑐-Maximum Inner Product Search). Given a

query point 𝑞 ∈ R𝑑 and an approximation ratio 0 < 𝑐 < 1, let

𝑥∗ ∈ D be the point that has the maximum inner product with 𝑞.
A 𝑐-maximum inner product search (𝑐-MIPS) returns a point 𝑥 ∈ D
satisfying 𝑞�𝑥 ≥ 𝑐 · 𝑞�𝑥∗.

Without confusion, we use MIPS and 𝑐-MIPS interchangeably in

the following.

Example 1. Fig. 1 shows a query point 𝑞 and a dataset with 12

points. 𝑥9 is the exact MIPS of 𝑞 with 𝑞�𝑥9 = 22. When 𝑐 = 0.5,
the 𝑐-MIPS returns any point in {𝑥6, 𝑥9, 𝑥10, 𝑥11} because the inner
product is larger than 0.5 × 22 = 11.

1101

2.2 Asymmetric Transformation

Given that the definitions of 𝑐-MIPS and 𝑐-ANNS are similar, the

idea of considering the inner product as a similarity metric and

then applying locality sensitive hashing (LSH), one of the most

popular tools for 𝑐-ANNS, to solve 𝑐-MIPS is natural. However, a

study [38] shows that the classical LSH framework is restrictive

when solving MIPS. The existing proposals adopt an asymmetric

transformation that maps the data points from the original space

to a transformed space, then apply LSH to return the 𝑐-ANN in the

transformed space as the results of the 𝑐-MIPS.

For better understanding, we briefly introduce an existing asym-

metric transformation method, called XBOX-Transformation (XT)

[19, 23, 33, 45], that consists of a function 𝑃 (𝑥) for data point 𝑥 and

a function 𝑄 (𝑞) for query point 𝑞.

𝑃 (𝑥) = [𝑥 ;
√
𝑀2 − ‖𝑥 ‖2], (3)

𝑄 (𝑞) = [𝑞; 0], (4)

where [;] is the concatenation and𝑀 = max𝑥 ‖𝑥 ‖. Then, the Cosine
similarity and Euclidean distance between 𝑃 (𝑥) and 𝑄 (𝑞) can be

computed as follows:

sim(𝑃 (𝑥), 𝑄 (𝑞)) = 𝑞�𝑥
‖𝑞‖ ·𝑀 , cos < 𝑃 (𝑥), 𝑄 (𝑞) >= 𝑞�𝑥

‖𝑞‖ ·𝑀 , (5)

dist(𝑃 (𝑥), 𝑄 (𝑞)) = ‖𝑃 (𝑥), 𝑄 (𝑞)‖2 = ‖𝑞‖2 +𝑀2 − 2𝑞�𝑥 . (6)

Unlike the other transformationmethods, such as L2-Transformation

[38] and Correlation-Transformation [39] whose distances in the

transformed space are approximations, XBOX-Transformation is

an exact transformation, since both the Cosine similarity and Eu-

clidean distance between 𝑃 (𝑥) and 𝑄 (𝑞) can be computed as the

inner product between 𝑥 and 𝑞 without distortion.

2.3 Locality Sensitive Hashing

Locality Sensitive Hashing (LSH) is a family of hash functions that

enables 𝑐-ANNS in sublinear time with constant probability. An

important property of LSH is that points with larger similarity have

higher collision probability on their hash values.

Definition 4 (Locality Sensitive Hashing). Given a simi-

larity 𝑆0, an approximation ratio 0 < 𝑐 < 1, probability values 𝑝1
and 𝑝2, where 𝑝1 > 𝑝2, a family H = {ℎ : R𝑑 → 𝑈 } is called

(𝑆0, 𝑐𝑆0, 𝑝1, 𝑝2)-locality sensitive, if for any 𝑥,𝑦 ∈ R𝑑 , it satisfies the
following two conditions:

(1) If sim(𝑥,𝑦) ≥ 𝑆0 then 𝑃𝑟 [ℎ(𝑥) = ℎ(𝑦)] ≥ 𝑝1
(2) If sim(𝑥,𝑦) ≤ 𝑐𝑆0 then 𝑃𝑟 [ℎ(𝑥) = ℎ(𝑦)] ≤ 𝑝2

LSH is a generic framework and two LSH families for different

similarity metrics are adopted widely.

(1) One study [7] proposes an LSH family, called signed random

projection (SRP), for Cosine similarity, which is defined as fol-

lows.

ℎ(𝑥) = 𝑠𝑖𝑔𝑛(𝑎�𝑥), (7)

where 𝑎 is a random vector with each dimension 𝑎𝑖 ∼ 𝑁 (0, 1).
(2) Another study [10] proposes an LSH family, called fixedwindow

𝑤 random projection (𝑤-RP), for Euclidean distance, which is

defined as follows.

ℎ(𝑥) = �𝑎
�𝑥 + 𝑏
𝑤

�, (8)

where 𝑎 is a random vector with each dimension 𝑎𝑖 ∼ 𝑁 (0, 1),
𝑏 is a real number uniformly drawn from [0,𝑤), and 𝑤 is a

user-specified window size.

After the transformation, a 𝑐-MIPS query is converted to a 𝑐′-
ANNS query that can be solved using existing LSH methods. Note

that 𝑐 ≠ 𝑐′ and the approximation ratio 𝑐′ is a key factor that deter-

mines the difficulty of answering the 𝑐′-ANNS query when using

the (𝐾, 𝐿)-bucketing strategy [14, 16, 20], which has complexity

𝑂 (𝑛1/𝑐′). Moreover, 𝑐′ differs for similarity metrics, and a small 𝑐′
incurs a high complexity.

Assume that ‖𝑞‖ = 𝑀 and 𝑥∗ is 𝑞’s exact MIPS point, so 𝑃 (𝑥∗) is
𝑄 (𝑞)’s exact NNS point in the transformed space. Since 𝑞�𝑥∗ < 𝑀2,

we assume 𝑞�𝑥∗ = 𝑙 ·𝑀2 and 0 < 𝑙 < 1. The 𝑐-MIPS query returns

a point 𝑥 where 𝑃 (𝑥) is the result of the 𝑐′-ANNS query, and we

have 𝑞�𝑥 = 𝑐 · 𝑙 ·𝑀2. Let 𝑐1 = 𝑐′ be the approximate ratio of 𝑥 for

Cosine similarity and 𝑐2 = 𝑐′ be that of 𝑥 for Euclidean distance. We

demonstrate that 𝑐1 is always larger than 𝑐2 as follows. According
to Eq. 3, we know that ‖𝑃 (𝑥)‖ = ‖𝑃 (𝑥∗)‖ = 𝑀 .

For Cosine similarity, we have:

𝑐1 =
𝜃𝑃 (𝑥),𝑄 (𝑞)
𝜃𝑃 (𝑥∗),𝑄 (𝑞)

=
arccos

𝑞�𝑥
𝑀 ·𝑀

arccos
𝑞�𝑥∗
𝑀 ·𝑀

=
arccos (𝑐 · 𝑙)
arccos (𝑙) .

For Euclidean distance, we have:

𝑐2 =
‖𝑃 (𝑥), 𝑄 (𝑞)‖
‖𝑃 (𝑥∗), 𝑄 (𝑞)‖ =

√
2𝑀2 − 2𝑐 · 𝑙 ·𝑀2

√
2𝑀2 − 2 · 𝑙 ·𝑀2

=

√
1 − 𝑐 · 𝑙√
1 − 𝑙

.

It holds that 𝑐1 > 𝑐2 for any 𝑐, 𝑙 ∈ (0, 1). Therefore, we choose
Cosine similarity as the metric and SRP as the LSH family for the 𝑐-
ANNS in the transformed space, which incurs a smaller complexity.

3 OUR SOLUTION

We proceed to introduce a fast search framework FARGO for MIPS

on large-scale, high-dimensional data. First, we present the data

preprocessing and indexing. For the data preprocessing, we adopt

a norm ranging strategy [19, 45] that divides the data points into

𝑠 disjoint partitions based on the norm, and processes them in

descending order of the maximum norm. For index construction,

we employ the (𝐾, 𝐿)-bucketing strategy [3] that builds hash tables

for each partition. Second, we develop global multi-probing (GMP)

for computing 𝑐-MIPS queries. Unlike Multi-Probe that maintains a

local probing sequence for each hash table and examine them one

by one, we maintain only a global probing sequence for all hash

tables so that improves the query efficiency.

3.1 Data Preprocessing and Indexing

3.1.1 Data Preprocessing. Intuitively, a large norm ‖𝑥 ‖ leads
to a large inner product 𝑞�𝑥 with high probability, since 𝑞�𝑥 is

directly proportional to the norm ‖𝑥 ‖. Existing studies use so-called
norm ranging to divide the data points into disjoint partitions,

D1,D2, . . . ,D𝑠 , according to their norms. We follow a strategy

similar to that of an existing study [19] that uses two parameters

𝑏0 and 𝑁0 to bound the range of norms, where 𝑏0 is the norm ratio,

and 𝑁0 is the maximum number of points in each partition. The

partitions satisfy three conditions:

(1) For any two points 𝑥 ∈ D𝑖 and 𝑦 ∈ D𝑗 , if 𝑖 < 𝑗 , we have

‖𝑥 ‖ ≤ ‖𝑦‖.

1102

(2) For any two points 𝑥,𝑦 ∈ D𝑖 , if ‖𝑥 ‖ ≤ ‖𝑦‖, we have 𝑏0 · ‖𝑦‖ <
‖𝑥 ‖, 𝑏0 ∈ (0, 1).

(3) For each partition D𝑖 , we have |D𝑖 | < 𝑁0.

Example 2. Assuming 𝑁0 = 6 and 𝑏0 = 0.7, the dataset in Fig. 1

is divided into three partitions, as indicated by three different colors.

After partitioning the data, we apply XBOX-Transformation in

each partition D𝑖 , so we have 𝑃 (𝑥) = [𝑥 ;
√
𝑀2
𝑖 − ‖𝑥 ‖2], where

𝑀𝑖 = max𝑥∈D𝑖
‖𝑥 ‖ is the maximum norm of points in D𝑖 . Given a

query point 𝑞, the maximum inner products between points in D𝑖

and 𝑞 are smaller than𝑀𝑖 ‖𝑞‖. We conduct ANNS from partitions

D𝑠 to D1, i.e., the partition with a larger norm will be examined

earlier. Before examining a partition D𝑖 , we estimate whether we

can find a better result with the condition 𝑞�𝑥0 ≥ 𝑐𝑀𝑖 ‖𝑞‖, where
𝑥0 is the best-found result. If the condition is satisfied, there does

not exist a point in the remaining partitions whose inner product

to 𝑞 times 𝑐 is greater than 𝑞�𝑥0, so we can safely terminate the

query processing.

3.1.2 Building Hash Tables. As mentioned, for each data point

𝑃 (𝑥) in the transformed space, we adopt SRP as the LSH family

so that ℎ(𝑃 (𝑥)) = 𝑠𝑖𝑔𝑛(𝑎�𝑃 (𝑥)). For simplicity, we denote ℎ(𝑃 (𝑥))
by ℎ(𝑥). Let 𝜃𝑃 (𝑥),𝑄 (𝑞) be the angular distance between 𝑃 (𝑥) and
𝑄 (𝑞), and we have

𝜃𝑃 (𝑥),𝑄 (𝑞) = arccos
𝑄 (𝑞)�𝑃 (𝑥)

‖𝑄 (𝑞)‖ · ‖𝑃 (𝑥)‖ = arccos
𝑞�𝑥

‖𝑞‖ ·𝑀 . (9)

We use the angular distance and the Cosine similarity interchange-

ably when this does not cause ambiguity. According to the property

of SRP, we have the following lemma.

Lemma 1. For a query point 𝑞 and a data point 𝑥 , let 𝜃 be the

angular distance between 𝑄 (𝑞) and 𝑃 (𝑥) in the transformed space.

Without loss of generality, we assume that ‖𝑞‖ = 1. From Eq. 9, since

𝑀 is a constant, the inner product of𝑥 and𝑞 is inversely proportional to
the angular distance between𝑄 (𝑞) and 𝑃 (𝑥). The collision probability
of ℎ(𝑥) and ℎ(𝑞) is computed as follows [33].

Pr[ℎ(𝑥) = ℎ(𝑞)] = 1 − 𝜃

𝜋
(10)

Next, we build hash tables using the (𝐾, 𝐿)-bucketing strategy.
After the norm ranging, for each partition D𝑖 , we build 𝐿 hash

tables and choose 𝐾 hash functions H = {ℎ1, · · · , ℎ𝐾 } for each
hash table. This yields 𝐾 · 𝐿 hash functions and 2𝐾𝐿 hash buckets

for each partition. To simplify the computation and reduce the

number of hash functions, all 𝑠 partitions use the same 𝐾 · 𝐿 hash

functions to build the index.

3.2 Global Multi-Probing

We proceed to introduce our query processing algorithm, GMP,

for computing 𝑐-MIPS queries. To examine candidate points, we

use a global multi-probing strategy to generate a probing sequence.

Specifically, we evaluate the probability that a hash bucket 𝐵 con-

tains the nearest neighbor via a so-called quantization distance

(QD). The smaller the QD is, the higher the probability that 𝐵 con-

tains the nearest neighbor is. We determine which bucket to probe

next based on the global probing sequence.

x1

x11

x9
x5
x4

x8

x6 x10
x3

x7

x2
x12

T1B1:(-1,1)

T1B3:(-1,-1)

q

T1B4:(-1,1)

T1B2:(1,1)

(a) The First Hash Table

x1 x11
x9

x5
x4

x8

x6

x10
x3

x7 x2

x12

T2B1:(-1,1)

T2B3:(-1,-1)

q

T2B4:(-1,1)

T2B2:(1,1)

(b) The Second Hash Table

Figure 2: Point Projection on Two Hash Tables

Buckets T1B1 T1B2 T1B3 T1B4 T2B1 T1B2 T2B3 T2B4
QD 0 2.7 5.8 8.5 0 9.0 6.6 15.6

(a) QDs of buckets

T1B1 T1B2 T1B3 T1B4

T2B1 T2B3 T2B2 T2B4

(b) GMP

T1B1 T1B2 T1B3 T1B4

T2B1 T2B3 T2B2 T2B4

(c) Multi-Probe

Figure 3: Probing Sequences of GMP and Multi-Probe

3.2.1 Overview of Global Multi-Probing. Unlike Multi-Probe

[31] that maintains a local probing sequence for each hash table,

GMP generates a global probing sequence from all 𝐿 hash tables.

We illustrate the advantage of GMP over Multi-Probe with the

following example.

Example 3. Fig. 2 shows two hash tables after the projection by

using SRP. Assume that for the first hash table, we have 𝑎1,1 =
(1.0, 0.1,−0.8), 𝑎2,1 = (0.2, 0.9,−1.3). For the second hash table, we

have 𝑎1,2 = (0.6,−0.6, 1.1) and 𝑎2,2 = (0.4, 0.9,−1.2). The projected
values of 𝑞 are (𝜁1,1 (𝑞), 𝜁2,1 (𝑞)) = (−1.6, 2.4) and (𝜁1,2 (𝑞), 𝜁2,2 (𝑞)) =
(−3.0, 2.6). We denote by T𝑖B 𝑗 the 𝑗-th bucket in the 𝑖-th hash ta-

ble. The QD between 𝑞 and each hash bucket is shown in Fig. 3(a)

(The computation of QD is introduced in Sec. 3.2.2). By examining

the same number of candidate points (excluding the repeated points),

say 8 points, we compare the accuracy of GMP and Multi-Probe. In

Multi-Probe, we examine 4 candidate points in each hash table based

on the local probing sequence in 3(c). In GMP, we examine 8 candidate

points based on the global probing sequence in 3(b). We indicate the

examined buckets with red color. In GMP, we examine T1B1, T2B1,

T1B2, and T1B3, and we return 𝑥9. In Multi-Probe, we examine T1B1,

T1B2, T2B1, T2B3, and T2B2, and we return 𝑥6. Note that, 𝑥9 is a better
result than 𝑥6, which shows that GMP achieves a higher accuracy

than Multi-Probe when examining a same number of points.

In the query phase, we first compute 𝑄 (𝑞) based on Eq. 15 and

then project 𝑄 (𝑞) with the 𝐾 hash functions for each hash table.

Since the dataset is divided into 𝑠 partitions, we examine them in

descending order of the maximum norm. For each partition D𝑖 , we

determine which bucket to probe next among all 𝐿 · 2𝐾 buckets

based on the global probing sequence. This process ends when

1103

a termination condition is satisfied. We address three important

aspects of the GMP:

(1) Why is QD an effective indicator for probing hash buckets in

all hash tables? (see Sec. 3.2.2)

(2) How to efficiently find the next hash bucket to probe among

all unseen hash buckets? (see Sec. 3.2.3)

(3) How to set a proper termination condition to balance the accu-

racy and the efficiency? (see Secs. 3.2.5 and 4.2)

3.2.2 QuantizationDistance. We proceed to show that the quan-

tization distance (QD) is an effective indicator for probing, where a

hash bucket 𝐵 has a high QD is supposed to have high probability

that contains the nearest neighbor. The key point is that QD is legal

for ranking buckets from not only the same hash table, but also

from different hash tables, which makes it possible to generate an

effective global probing sequence.

Let 𝜁 (𝑥) be the projected vector of 𝑃 (𝑥) under 𝐾 hash functions,

where ℎ𝑖 (𝑥) = 𝑠𝑖𝑔𝑛(𝜁𝑖 (𝑥)) and 𝜁𝑖 (𝑥) = 𝑎�𝑖 𝑃 (𝑥), 1 ≤ 𝑖 ≤ 𝐾 . The
quantization distance is defined as follows.

Definition 5 (Quantization Distance). For a query point 𝑞
and a bucket 𝐵 = (𝑏1, 𝑏2, · · · , 𝑏𝐾), the quantization distance between
them is computed as follows.

QD(𝑞, 𝐵) =
∑

ℎ𝑖 (𝑞)≠𝑏𝑖
|𝜁𝑖 (𝑞) |2, 1 ≤ 𝑖 ≤ 𝐾 (11)

QD(𝑞, 𝐵) is a random variable because it is the sum of a set of

random variables 𝜁𝑖 (𝑞). Let𝐵(𝑥) be the hash bucket of a data point𝑥 ,
we use the cumulative distribution function Pr[QD(𝑞, 𝐵(𝑥)) ≤ 𝜔]
to describe the distribution of QD(𝑞, 𝐵(𝑥)). Note that QD between

𝑞 and 𝐵(𝑥) is computed by using the same 𝐾 hash functions in the

same hash table. To show that QD is legal for ranking buckets from

different hash tables, we first establish that Pr[QD(𝑞, 𝐵(𝑥)) ≤ 𝜔] is
only dependent on 𝑞 and 𝑥 , and is not dependent on hash functions

in different hash tables. For simplicity, we denote the cumulative

distribution function Pr[QD(𝑞, 𝐵(𝑥)) ≤ 𝜔] of QD by 𝜑 (𝜔 ;𝜃).
Lemma 2. Given a data point 𝑥 with the angle 𝜃𝑃 (𝑥),𝑄 (𝑞) = 𝜃

between 𝑞 and 𝑥 in the transformed space, the cumulative distribution

function of QD(𝑞, 𝐵(𝑥)) is determined only by 𝜃 and is independent

on the hash table of 𝐵(𝑥).
Lemma 3. 𝜑 (𝜔 ;𝜃) monotonically decreases with 𝜃 . In other words,

for 0 ≤ 𝜃1 < 𝜃2 ≤ 𝜋 and 𝜔 > 0, we have 𝜑 (𝜔 ;𝜃1) > 𝜑 (𝜔 ;𝜃2).
Lemma 3 indicates that the smaller 𝜃𝑃 (𝑥),𝑄 (𝑞) is, the smaller

QD(𝑞, 𝐵(𝑥)) is likely to be. Lemmas 2 and 3 reveal that the quanti-

zation distance is an effective indicator for global probing in FARGO.

The proofs of Lemmas 2 and 3 are provided in Section 5.1.

3.2.3 Generating Global Probing Sequence. Obviously, it is

expensive to compute the QDs of all 2𝐾 · 𝐿 buckets to 𝑞 and sort

them to construct a complete global probing sequence. Fortunately,

by maintaining a small-sized heap, we are able to obtain efficiently

the bucket with the least QD among all unseen buckets.

Let 𝜁𝑖, 𝑗 (𝑞) be the 𝑖-th entry of the projected vector in the 𝑗-th
hash table. For a bucket 𝐵 = (𝑏1, · · · , 𝑏𝐾), from Eq. 11, we know

that only the entries 𝜁𝑖, 𝑗 (𝑞) that have ℎ𝑖, 𝑗 (𝑞) ≠ 𝑏𝑖 contribute to

QD between 𝑞 and 𝐵. Therefore, we can represent 𝐵 by a set 𝑆 𝑗 (𝐵)

that only records the indexes of the entries that differ from those

of ℎ𝑖, 𝑗 (𝑞).
𝑆 𝑗 (𝐵) = {𝑖 |𝑏𝑖 ≠ ℎ𝑖, 𝑗 (𝑞), 1 ≤ 𝑖 ≤ 𝐾}

We reformulate Eq. 11 as follows.

QD(𝑞, 𝐵) =
∑

|𝜁𝑖, 𝑗 (𝑞) |2, 𝑖 ∈ 𝑆 𝑗 (𝐵) (12)

For simplicity, given the projected vector of 𝑞, we assume that

|𝜁𝑖, 𝑗 (𝑞) | < |𝜁𝑖′, 𝑗 (𝑞) | for any 𝑖 < 𝑖′. If not, we store their ascend

order. As a result, the smaller the entries in 𝑆 𝑗 (𝐵) are or the fewer
entries 𝑆 𝑗 (𝐵) has, the smaller QD(𝑞, 𝐵) is. Note that by recording

the indexes of the corresponding entries in the original projected

vector of 𝑞, it is easy to reconstruct the hash bucket for a given set.

Therefore, we proceed to generate a sequence of sets.

In the probing phase, we first probe the 𝐿 buckets, where 𝑞 is

located in the 𝐿 hash tables. We maintain a min-heap 𝐻 that stores

the candidate sets in ascending order of QD. Initially, we insert the

set 𝑆 𝑗 (𝐵) = {1} into 𝐻 for each hash table, since the hash bucket

𝐵 that corresponds to 𝑆 𝑗 (𝐵) = {1} has the smallest QD to 𝑞 in the

𝑗-th hash table. Next, we continue to process the top set of 𝐻 and

insert two sets into 𝐻 that are generated by operations Shift() and

Expand().

Let 𝑖𝑚𝑎𝑥 be the maximum entry of the current top set 𝑆 𝑗 (𝐵).
(1) Shift(𝑆 𝑗 (𝐵)) replaces 𝑖𝑚𝑎𝑥 by 𝑖𝑚𝑎𝑥 + 1 in 𝑆 𝑗 (𝐵) and returns

𝑆 𝑗 (𝐵′), which ensures that 𝑆 𝑗 (𝐵′) is the set to generate that

contains 𝑆 𝑗 (𝐵)/{𝑖𝑚𝑎𝑥 } and that has the smallest QD.

(2) Expand(𝑆 𝑗 (𝐵)) inserts the entry 𝑖𝑚𝑎𝑥 +1 into 𝑆 𝑗 (𝐵) and returns
𝑆 𝑗 (𝐵′), which ensures that 𝑆 𝑗 (𝐵′) is the set to generate that

contains 𝑆 𝑗 (𝐵) with the smallest QD.

When 𝑖𝑚𝑎𝑥 = 𝐾 , no new set is inserted into 𝐻 . The operations
Shift() and Expand() ensure the correctness of the generated probing

sequence.

3.2.4 From 𝑐-MIPS to (𝐼 , 𝑐)-MIPS. After the transformation, a

𝑐-MIPS query is converted to a 𝑐′-ANNS query. An LSH method

cannot solve a 𝑐′-ANNS problem directly, but can solve it by con-

ducting a sequence of threshold-based (𝜃, 𝑐′)-ANNS queries for

angular distance by increasing the angle 𝜃 . Therefore, to answer a

𝑐-MIPS query, we need to execute a sequence of (𝐼 , 𝑐)-MIPS queries

as defined below while decreasing the inner product 𝐼 .

Definition 6 ((𝐼 , 𝑐)-MIPS). Assume a query point 𝑞, a dataset

D, an inner product threshold 𝐼 , and an approximation factor 𝑐 < 1.

The (𝐼 , 𝑐)-MIPS query returns the following result:

(1) If at least one point 𝑥 exists in D such that 𝑞�𝑥 > 𝐼 , it returns a
point 𝑥 ′ in D such that 𝑞�𝑥 ′ > 𝑐 · 𝐼 ;

(2) If no point 𝑥 exists in D such that 𝑞�𝑥 > 𝑐 · 𝐼 , it returns nothing.
Specifically, we set an initial value 𝐼max and keep compressing

𝐼 with 𝑐 in multiple rounds, i.e., 𝐼 = 𝐼𝑚𝑎𝑥 , 𝑐𝐼𝑚𝑎𝑥 , 𝑐
2𝐼𝑚𝑎𝑥 , . . . , until

the termination condition is satisfied, where 𝐼max is the maximum

possible inner product. Each (𝐼 , 𝑐)-MIPS query corresponds to a

(𝜃, 𝑐′)-ANNS query as defined below that can be answered via LSH.

Definition 7 ((𝜃, 𝑐′)-ANNS). Assume a query point 𝑞, a dataset
D, an angle threshold 𝜃 , and an approximation factor 𝑐′ > 1. The

(𝜃, 𝑐′)-ANNS query returns the following result:

(1) If at least one point 𝑥 exists in D such that 𝜃𝑞,𝑥 < 𝜃 , it returns a
point 𝑥 ′ in D such that 𝜃𝑞,𝑥 ′ < 𝑐′ · 𝜃 ;

1104

(2) If no a point 𝑥 exists in D such that 𝜃𝑞,𝑥 < 𝑐′ · 𝜃 , it returns an
empty set.

To ensure that the (𝐼 , 𝑐)-MIPS query is correctly answered via

the (𝜃, 𝑐′)-ANNS query, we consider two points 𝑥1 and 𝑥2 where
𝑞�𝑥1 = 𝐼 and 𝑞�𝑥2 = 𝑐𝐼 . If 𝑥1 is the exact MIP result, 𝑥2 would be a
correct (𝐼 , 𝑐)-MIPS result. Therefore, we can set 𝜃 and 𝑐′ to make

𝑃 (𝑥1) be the exact NNS result and 𝑃 (𝑥2) be the correct (𝜃, 𝑐′)-ANNS
result. That is,{

𝜃 = 〈𝑄 (𝑞), 𝑃 (𝑥1)〉 = arccos(𝐼
𝑀 · ‖𝑞 ‖)

𝑐′𝜃 = 〈𝑄 (𝑞), 𝑃 (𝑥2)〉 = arccos(𝑐𝐼
𝑀 · ‖𝑞 ‖)

By solving the equations, we have:

𝜃 = arccos(𝐼

𝑀 · ‖𝑞‖), 𝑐
′ =

arccos(𝑐 ·𝐼
𝑀 · ‖𝑞 ‖)

arccos(𝐼
𝑀 · ‖𝑞 ‖)

(13)

3.2.5 Termination Condition. Let 𝑇 be the maximum number

of points to probe and let 𝑡 be a QD threshold. For a (𝜃, 𝑐′)-ANNS
query, the process terminates when one of the following conditions

is satisfied:

(1) We verify 𝑇 candidate points;

(2) With 𝐵∗ being the bucket to probe next, QD(𝑞, 𝐵∗) > 𝑡 .
To ensure that FARGO returns correct (𝜃, 𝑐′)-ANNS result, we

determine the values of 𝑇 and 𝑡 as follows.{
(1 − 𝜑 (𝑡 ;𝜃))𝐿 = 1/𝑒
𝑇 = 2𝑛𝐿 · 𝜑 (𝑡 ; 𝑐′𝜃) (14)

The intuition of Eq. 14 is that when the first condition is satisfied,

we have found a correct (𝜃, 𝑐′)-ANNS result with at least probability
1 − 1/𝑒; and when the second condition is satisfied, since there is

at most 𝑛 · 𝜑 (𝑡 ; 𝑐′𝜃) false positive points in a hash table, by using

Markov’s inequality, we have examined all false positive points in

𝐿 hash tables with probability at least 1/2. That is,

1 − 1 − (1 − 𝜑 (𝑡 ; 𝑐′𝜃))𝐿
2𝐿 · 𝜑 (𝑡 ; 𝑐′𝜃) > 1 − 𝐿 · 𝜑 (𝑡 ; 𝑐′𝜃)

2𝐿 · 𝜑 (𝑡 ; 𝑐′𝜃) =
1

2
.

We call such a termination condition as the normal termination

condition (NT). NT is designed in a similar way asmanymainstream

LSHmethods [10, 14, 42, 46], which guarantees to answer a 𝑐2-MIPS

problem with a constant probability 1/2 − 1/𝑒 [14]. As mentioned,

we answer a 𝑐2-MIPS query by conducting multiple (𝐼 , 𝑐)-MIPS

queries. With 𝑥∗ being 𝑞’s exact MIPS point with 𝑞�𝑥∗ = 𝐼𝑚𝑎𝑥 ,

we set 𝐼 = 𝐼𝑚𝑎𝑥 for the first (𝐼 , 𝑐)-MIPS query. For each (𝐼 , 𝑐)-
MIPS query, we convert the (𝐼 , 𝑐)-MIPS query to a (𝜃, 𝑐′)-ANNS
query based on Eq. 13 and use NT to terminate the probing process.

Once we find a point 𝑥 with 𝑞�𝑥 ≥ 𝑐𝐼 , we return it as the result.

Otherwise, we decrease 𝐼 to 𝑐𝐼 and conduct a (𝑐𝐼, 𝑐)-MIPS query.

4 OPTIMIZATIONS

We proceed to introduce two optimization techniques to further im-

prove the performance. First, we propose a novel asymmetric trans-

formation method, called random XBOX-Transformation (RXT),

that reduces data distribution imbalance. Second, we develop a

global adaptive early termination (AET) that determines its termi-

nation conditions adaptively.

(a) XT (b) RXT

Figure 4: Comparison of RXT with XT

4.1 Random XBOX-Transformation

Wedevelop a novel randomXBOX-Transformation (RXT) to convert

a 𝑐-MIPS query into a 𝑐′-ANNS query, which eliminates distortion

errors and reduces data distribution imbalances when compared

with existing asymmetric transformations.

Fig. 4(a) shows an example of XT. The horizontal half-pane is

the original space, and the points on it are the data points. After

transformation, all points are mapped to the upper sphere with

an identical length. The inclined half-pane is a hash function that

partitions the points to two sides. We can see that most points locate

in one side, and only a few points are in the other side. Therefore,

this distribution imbalance may impact the performance negatively.

Similar to XT, our RXT has two functions 𝑃 (𝑥) : R𝑑 ↦→ R𝑑+1
and 𝑄 (𝑞) : R𝑑 ↦→ R𝑑+1 that are defined as follows.

𝑃 (𝑥) = [𝑥 ; 𝑟 ·
√
𝑀2 − ‖𝑥 ‖2]

𝑄 (𝑞) = [𝑞; 0],
(15)

where 𝑟 ∈ {1,−1} is a random variable and Pr[𝑟 = 1] = Pr[𝑟 =
−1] = 1

2 . Note that RXT still satisfies Eq. 5, so it is an exact trans-

formation without distortion errors. The difference of RXT from

XT is that the sign of the (𝑑 + 1)-st dimension of each transformed

point 𝑃 (𝑥) has 50% probability to be −1. Fig. 4(b) shows an example

of RXT where the points are mapped to both the upper and lower

spheres with equal probability, and the points are more evenly

distributed between the two sides partitioned by the hash function.

We analyze the advantage of RXT over XT by considering the

probabilities of ℎ(𝑥) = 1 and ℎ(𝑥) = −1.
Lemma 4. Using XT, the number of points with hash value 1 is

always different with the number of points with hash value −1; while
using RXT, it is likely that the number of points with hash value 1

equals to the number of points with hash value −1.

Proof. For XT,we haveℎ(𝑥) = 𝑠𝑖𝑔𝑛(𝑎�𝑃 (𝑥)) = 𝑠𝑖𝑔𝑛(∑𝑑
𝑖=1 𝑥𝑖𝑎𝑖+√

𝑀2 − ‖𝑥 ‖2 ·𝑎𝑑+1). Let𝐴 =
∑𝑑

𝑖=1 𝑥𝑖𝑎𝑖
‖𝑥 ‖ , we have𝐴 ∼ 𝑁 (0, 1) accord-

ing to the property of the sum of the normal distribution since

𝑎𝑖 ∼ 𝑁 (0, 1). Thus, ℎ(𝑥) = 𝑠𝑖𝑔𝑛(‖𝑥 ‖𝐴 +
√
𝑀2 − ‖𝑥 ‖2 · 𝑎𝑑+1).

Pr[ℎ(𝑥) = −1] = Pr[𝐴 < −
√
𝑀2 − ‖𝑥 ‖2 · 𝑎𝑑+1

‖𝑥 ‖]

1105

Consider the conditional probability Pr[ℎ(𝑥) = −1 | 𝑎𝑑+1 = 𝑢] =
𝜙 (−

√
𝑀2−‖𝑥 ‖2 ·𝑢

‖𝑥 ‖), where 𝜙 (·) is the cumulative distribution func-

tion of the standard normal distribution. If𝑢 > 0,−
√
𝑀2−‖𝑥 ‖2 ·𝑢

‖𝑥 ‖ < 0

and Pr[ℎ(𝑥) = −1 | 𝑎𝑑+1 = 𝑢] < 1/2 for any point 𝑥 . In this case,

it is likely that more than 𝑛/2 points have hash value 1. Likewise,

if 𝑢 < 0, it is likely that more than 𝑛/2 points have hash value −1.
For RXT, since Pr[𝑟 = 1] = Pr[𝑟 = −1] = 1/2, we have:

Pr[ℎ(𝑥) = −1|𝑎𝑑 + 1 = 𝑢] = 𝜙 (−𝑟
√
𝑀2 − ‖𝑥 ‖2 · 𝑢

‖𝑥 ‖)

=
1

2

[
𝜙 (−

√
𝑀2 − ‖𝑥 ‖2 · 𝑢

‖𝑥 ‖) + 𝜙 (
√
𝑀2 − ‖𝑥 ‖2 · 𝑢

‖𝑥 ‖)
]
=

1

2
.

No matter what 𝑎𝑑+1 is, it is expected that 𝑛/2 points have hash
value 1, which completes the proof. �

Lemma 4 implies that the points are more likely to be mapped to

one side of the hyperplane using XT and that they are likely to be

mapped evenly to the two sides of the hyperplane when using RXT.

Although RXT is a slight modification from XT, it reduces the data

distribution imbalance after the transformation, which benefits the

subsequent point probing process. The experiments also suggest

that RXT is an effective replacement of XT.

4.2 Global Adaptive Early Termination

NT employs two parameters 𝑇 and 𝑡 that are fixed for all queries.

However, the number of points to probe to reach a given accuracy

varies across query points, which lowers the performance when

facing data skew. Motivated by this, we develop a global adaptive

early termination (AET) strategy that “adaptively” takes both the

best-found result and QD(𝑞, 𝐵) into consideration. Assume that 𝐵∗
is the next bucket to probe and 𝐼0 is the currently found maximum

inner product. We define two events according to 𝐼0 and QD(𝑞, 𝐵∗).
• E1: For a point 𝑥 with 𝑞�𝑥 ≥ 𝐼0/𝑐 , the hash bucket in which 𝑥 is

located in a certain hash table remains unseen.

• E2: For a point 𝑥 with 𝑞�𝑥 ≥ 𝐼0/𝑐 , in 𝐿 hash buckets in which 𝑥
is located, there is at least one that remains unseen.

When the probability that E2 happens, Pr[𝐸2], is small enough,

the probability that we find a better result in the remaining buckets

is small. It is then reasonable to terminate the query process. So we

design AET by setting a failure probability 𝑝𝜏 as follows:⎧⎪⎪⎨⎪⎪⎩
𝛼1 = 1 − 𝜑 (QD(𝑞, 𝐵∗); arccos(𝐼0

𝑐 ·𝑀𝑖 · ‖𝑞‖
))

𝛼2 = 1 − (1 − 𝛼1)𝐿 < 𝑝𝜏

(16)

Here, 𝛼1 equals Pr[𝐸1] and 𝛼2 = 1− (1−Pr[𝐸1])𝐿 equals Pr[𝐸2].
Based on the intermediate query results, QD(𝑞, 𝐵∗) and 𝐼0, AET
verifies whether Pr[𝐸2] is within the allowed failure probability 𝑝𝜏 .
When AET is satisfied, this indicates that the found results in D𝑖

are correct results of the 𝑐-MIPS query.

We describe how to compute a 𝑐-MIPS query using our solution

that adopts AET as the termination condition in Algorithm 1. We

conduct the 𝑐-MIPS query from partitions D𝑠 to D1 (Line 3). In

each partition 𝐷𝑖 , we probe the buckets in ascending order of their

QD to 𝑞 (Line 8). The approach of generating the probing sequence

described in Sec. 3.2.3 is used to determine the next buckets to

Algorithm 1: Global Multi-Probing (GMP)

Input: A query point 𝑞, partitions D1,D2, · · · ,D𝑠 , 𝑐 , 𝑝𝜏 ,
and 𝐿 hash tables

Output: A point

1 Compute the hash values of 𝑞;

2 Let 𝑥0 be the best-found MIPS result;

3 for 𝑖 = 𝑠 → 1 do

4 𝑀𝑖 ← max𝑥∈D𝑖
‖𝑥 ‖;

5 if 𝑞�𝑥0 ≥ 𝑐𝑀𝑖 ‖𝑞‖ then
6 Break;

7 while AET is not satisfied do

8 𝐵∗ ← the bucket with the smallest QD in all the

unseen buckets;

9 Verify the points in 𝐵∗ and update 𝑥0;

10 return 𝑥0;

be examined. If AET is satisfied after examining the bucket, we

terminate the query in 𝐷𝑖 (Line 7). From Algorithm 1, AET has

the following advantages compared to NT: (1) the establishment of

AET depends not on a fixed, predefined threshold 𝑇 and 𝑡 , but on
the intermediate query results, which eliminates many unnecessary

candidates, especially when the data is skewed. (2) AET is simpler

and more efficient since we do not need to evaluate an initial 𝐼𝑚𝑎𝑥

and conduct multiple (𝜃, 𝑐′)-ANNS queries.
GMP can be adapted easily to return 𝑘 points with maximum in-

ner products. We call the 𝑐-MIPS with 𝑘 results (𝑐, 𝑘)-MIPS. Specif-

ically, to answer a (𝑐, 𝑘)-MIPS query, we only need to set 𝑥0 in

Algorithm 1 to be the best-found 𝑘-th MIPS result. We give an

example of computing a (0.5, 2)-MIPS query next.

Example 4. In Fig. 1, we have D1 = {𝑥4, 𝑥5, 𝑥8, 𝑥12}, D2 =
{𝑥1, 𝑥2, 𝑥6, 𝑥7, 𝑥10, 𝑥11}, and D3 = {𝑥3, 𝑥9}. When a query 𝑞 comes,

we consider D3 first. We probe the hash tables according to the global

probing sequence in Fig. 3(b). In this process, 𝑥3 is found in T1B2,

and 𝑥9 is found in T1B3. Next, we consider D2. AET is satisfied after

probing 𝑥6 in T1B2. Then, the 2nd best-found MIPS result is 𝑥6 and

𝑞�𝑥6 = 16 > 0.5‖𝑞‖ ·𝑀1 =
√
85/2, we terminate the query process

and return 𝑥9 and 𝑥6.

Remark.AET is simpler yetmore efficient than existing adaptive

termination strategies by only considering the relationship between

the projection distance and the current best-found result. Studies

[15] and [26] train learning models to predict when the search

terminates, which is time-consuming on training. In contrast, AET

is training-free and designed directly according to the property

of quantization distance, which is easier to use without a large

preprocessing time. EI-LSH [30] develops an adaptive termination

condition by exploiting a smaller search radius and exploring a

tighter quality guarantee, but it is only applicable for QA-LSH [18]

and is difficult to extend to other LSH methods.

5 THEORETICAL ANALYSIS

We proceed to provide a theoretical analysis. First, we present theo-

retical guarantees. Second, we derive the time and space complexity

of the algorithm.

1106

5.1 Theoretical Guarantees

We prove Lemmas 2 and 3 that reveal that the quantization distance

is an effective indicator for probing.

5.1.1 Proof of Lemma 2.

Proof. Assume a query point 𝑞 and a data point 𝑥 whose angle

with 𝑞 is 𝜃 ∈ (0, 𝜋), sinceQD(𝑞, 𝐵(𝑥)) is the sum of a set of random

variables, to determine the distribution of QD(𝑞, 𝐵(𝑥)), we first

analyze the distribution of each random variable in QD(𝑞, 𝐵(𝑥)).
Let ℎ𝑖, 𝑗 be the 𝑖-th hash function in the 𝑗-th hash table. We define

each item in QD(𝑞, 𝐵(𝑥)) as follows.

𝜇𝑖, 𝑗 (𝑞, 𝑥) =
{
|𝜁𝑖, 𝑗 (𝑞) |2, ℎ𝑖, 𝑗 (𝑞) ≠ ℎ𝑖, 𝑗 (𝑥)
0, ℎ𝑖, 𝑗 (𝑞) = ℎ𝑖, 𝑗 (𝑥)

According to the property of a normal distribution, the cumulative

distribution function of 𝜇𝑖, 𝑗 (𝑞, 𝑥), Pr[𝜇𝑖, 𝑗 (𝑞, 𝑥) ≤ 𝜔], is

𝜓 (𝜔 ;𝜃) = 1 − 𝜃

𝜋
+
∫ √

𝜔

0
2𝜙 (−𝑢 · cot𝜃)𝑑𝜙 (𝑢), (17)

where 𝜙 (𝑥) is the cumulative distribution function of the stan-

dard normal distribution. Then, the probability density function of

𝜇𝑖, 𝑗 (𝑞, 𝑥) can be written as 𝑔(𝜔 ;𝜃) = 𝜕𝜓 (𝜔 ;𝜃)
𝜕𝜔 . For any two different

hash buckets in which 𝑥 is located in two hash tables, since 𝜁𝑖, 𝑗 (𝑞)
are independently and identically distributed, where 𝑗 ∈ {1, 2}
identifies the table and 𝑖 ∈ [1, 𝐾], the distribution of QD(𝑞, 𝐵(𝑥))
can be expressed as:

Pr[QD(𝑞, 𝐵(𝑥)) ≤ 𝜔] = Pr[
𝐾∑
𝑖=1

𝜇𝑖, 𝑗 (𝑞, 𝑥) ≤ 𝜔] =
∫ 𝜔

0
𝑔𝐾∗(𝑢;𝜃)𝑑𝑢,

where 𝑔𝐾∗(𝑢;𝜃) is the 𝐾-fold convolution of 𝑔(𝑢;𝜃) [43] on 𝑢. The
distribution of QD(𝑞, 𝐵(𝑥)) is independent on a specific hash table,

which indicates that no matter which hash table 𝐵(𝑥) belongs to,
QD(𝑞, 𝐵(𝑥)) has the same distribution. �

5.1.2 Proof of Lemma 3.

Proof. Let 𝜑 (𝑚) (𝜔 ;𝜃) be the cumulative distribution function

of QD(𝑞, 𝐵(𝑥)) when we have𝑚 hash functions in each hash ta-

ble. Let State(𝑚) be the statement that 𝜑 (𝑚) (𝜔 ;𝜃) monotonically

decreases with 𝜃 . We prove Lemma 3 by induction on𝑚.

Base case: We show that the statement State(1) holds for the

smallest positive integer number 𝑚 = 1. Specially, when 𝑚 = 1,

𝜑 (1) (𝜔 ;𝜃) = Pr[𝜇𝑖, 𝑗 (𝑞, 𝑥) ≤ 𝜔]. Since
𝜕𝜓 (𝜔 ;𝜃)
𝜕𝜃

= − 1

𝜋
+ 1

𝜋
[1 − exp(− 𝜔

2 sin2 𝜃
)] < 0,

𝜓 (𝜔 ;𝜃) monotonically decreases with 𝜃 , and State(𝑚) is true.
Inductive step: We show that for any 𝑚 ≥ 1, if State(𝑚) holds,
then State(𝑚 + 1) also holds. The probability density function of

𝜇𝑖, 𝑗 (𝑞, 𝑥) can be written as 𝑔(𝜔 ;𝜃) = 𝜕𝜓 (𝜔 ;𝜃)
𝜕𝜔 . According to the

distribution of the sum of variables,

𝜑 (𝑚+1) (𝜔 ;𝜃1) =
∫ 𝜔

0
𝑔 (𝑚+1)∗ (𝑢;𝜃1)𝑑𝑢,

where 𝑔𝑚∗(𝑢;𝜃) is the𝑚-fold convolution of 𝑔(𝑢;𝜃) [43] on 𝑢.∫ 𝜔

0
𝑔 (𝑚+1)∗ (𝑢;𝜃1)𝑑𝑢 =

∫ 𝜔

0
𝑔(𝑢;𝜃1) ∗ 𝑔𝑚∗(𝑢;𝜃1)𝑑𝑢

=
∫ 𝜔

0

∫ 𝑢

0
𝑔(𝑡 ;𝜃1)𝑔𝑚∗(𝑢 − 𝑡 ;𝜃1)𝑑𝑡𝑑𝑢

Interchanging the order of the integrals, we get:∫ 𝜔

0

∫ 𝑢

0
𝑔(𝑡 ;𝜃1)𝑔𝑚∗(𝑢 − 𝑡 ;𝜃1)𝑑𝑡𝑑𝑢

=
∫ 𝜔

0
𝑔(𝑡 ;𝜃1)𝑑𝑡

∫ 𝜔

𝑡
𝑔𝑚∗(𝑢 − 𝑡 ;𝜃1)𝑑𝑢

=
∫ 𝜔

0
𝑔(𝑡 ;𝜃1)𝑑𝑡 · 𝜑 (𝑚) (𝜔 − 𝑡 ;𝜃1)

>

∫ 𝜔

0
𝑔(𝑡 ;𝜃1)𝜑 (𝑚) (𝜔 − 𝑡 ;𝜃2)𝑑𝑡 =

∫ 𝜔

0
𝑔(𝑢;𝜃1) ∗ 𝑔𝑚∗(𝑢;𝜃2)𝑑𝑢

Similarly, we have:∫ 𝜔

0
𝑔(𝑢;𝜃1) ∗ 𝑔𝑚∗(𝑢;𝜃2)𝑑𝑢

>

∫ 𝜔

0
𝑔(𝑢;𝜃2) ∗ 𝑔𝑚∗(𝑢;𝜃2)𝑑𝑢 = 𝜑 (𝑚+1) (𝜔 ;𝜃2)

This shows that the statement State(𝑚 + 1) also holds true, estab-

lishing the inductive step.

Conclusion: Having shown the base case and the inductive step,

statement State(𝑚) holds for every positive integer𝑚. �

5.2 Algorithm Analysis

Assume that the dataset D is divided into partitions D1, . . . ,D𝑠 .

Given 𝑛𝑖 = |D𝑖 |, we have 𝑛𝑖 = 𝑂 (1), following Huang et al. [19].

Therefore, we set 𝐿 and 𝐾 as constants to compute MIPS on D𝑖 . To

build the indexes inD𝑖 , we require computing 𝐾 · 𝐿 hash values for

each point, which incurs 𝑂 (𝐾𝐿𝑑) cost. Hence, the space consump-

tion and indexing time of FARGO for D𝑖 are 𝑂 (𝑛𝑖) and 𝑂 (𝑛𝑖𝑑).
Hence, FARGO has space cost 𝑂 (𝑛) and indexing time 𝑂 (𝑛𝑑).

The query cost depends on how many false positive points we

verify during the search. Assume that AET is satisfied and the query

terminates at the bucket 𝐵∗ and returns 𝑥 with𝑞�𝑥 = 𝐼0, we will not
access any bucket 𝐵 that QD(𝑞, 𝐵) > QD(𝑞, 𝐵∗). However, Multi-

Probe cannot guarantee to skip accessing these buckets, which

makes it always access more buckets than that with GMP. For

instance, if 𝐵∗ is in the second hash table and 𝑥 is found in the

third table, the bucket 𝐵 in the first and second hash tables are

both likely to be accessed even though QD(𝑞, 𝐵) > QD(𝑞, 𝐵∗).
Since 𝑥 is not found when we probe the first two hash tables. This

demonstrate the superiority of GMP over Multi-Probe. Next, we

analysis the query cost of FARGO. We denote by 𝛽 the probability

that a false positive point is verified, 𝛽 = 1 − (1 − 𝛼)𝐿 where

𝛼 = 𝜑 (QD(𝑞, 𝐵∗); arccos(𝐼0
𝑀𝑖 · ‖𝑞‖

)). Then, the point accessed is at
most𝑂 (𝛽𝑛). Although it is nearly impossible to simplify 𝛽 due to the
complex formation of 𝜑 , we can easily find that 𝛽 < 1−𝑝𝜏 since 𝛼 <

𝛼1. Moreover,𝜑 (𝑡 ;𝜃) decreases rapidly with 𝜃 and arccos(𝐼0
𝑀𝑖 · ‖𝑞‖

)

is always much smaller than arccos(𝐼0
𝑐 ·𝑀𝑖 · ‖𝑞‖

). Thus, 𝛽 is usually

1107

Table 2: Datasets

Dataset 𝑛 (×103) 𝑑 Dataset 𝑛 (×103) 𝑑
Audio 54 192 YahooMusic 625 300

MNIST 60 784 GIST 1,000 960

Cifar 60 1,024 Tiny5M 5,000 384

Trevi 100 4,096 Tiny80M 79,302 384

much greater than 1 − 𝑝𝜏 . Given 𝑐 = 0.5, 𝑀𝑖 = ‖𝑞‖ = 1.0, and
𝐼0 = 0.48, by setting 𝑝𝜏 = 0.1, we have 𝛽 ≈ 0.06.

Theorem 1. FARGO has space cost 𝑂 (𝑛), indexing time 𝑂 (𝑛𝑑)
and query cost 𝑂 (𝛽𝑛𝑑), where 𝛽 is much smaller than 1.

Proof. Since 𝐿 and 𝐾 are constants, the space consumption is

𝑂 (𝑛). The query time cost comes from two parts: 1) generating

probing sequences; and 2) verifying the inner products between

candidate points and 𝑞. In each partition D𝑖 , the former has cost

𝑂 (𝑛𝑖 log𝑛𝑖), and the latter has cost 𝑂 (𝛽𝑛𝑖𝑑). Note that the prob-
ing sequence is the same in all partitions since we use the same

𝐾 · 𝐿 hash functions to build the index. So, we only have to gener-

ate the probing sequence once. Therefore, the total query time is

𝑂 (𝑛𝑖 log𝑛𝑖 +
∑𝑠
𝑖=1 𝛽𝑛𝑖𝑑) = 𝑂 (𝛽𝑛𝑑). �

6 EXPERIMENTAL STUDY

We report on extensive experiments with real-world datasets that

offer insight into the performance of FARGO. In particular, we aim

to answer the following questions:

Q1: Why is RXT a better transformation method than XT in

FARGO?

Q2: How does FARGO benefit from the adaptive early termina-

tion (AET) strategy?

Q3: Why is GMP a better probing sequence than Multi-Probe?

Q4: How does FARGO perform on the index size and indexing

time relative to the competitors?

Q5: How does FARGO perform on the query processing relative

to the competitors under default settings?

Q6: How does FARGO compare with the competitors in the

Recall-Time dimensions and the Ratio-Time dimensions?

6.1 Experimental Settings

All algorithms are implemented in C++ and are compiled with g++

using -Ofast optimization. All experiments are run on a Ubuntu

Server with 4 Intel(R) Xeon(R) Gold 6248 CPUs and 1.5 TB RAM.

6.1.1 Datasets and Query Sets. We use 8 real-world datasets

varying in types, cardinality and dimensionality as shown in Table

2. Most of them are used in our competitor algorithms. Specifically,

YahooMusic are often used in recommendation systems [6, 12, 24].

The other datasets are used widely in similarity search [19, 27, 46].

For queries, we randomly select 200 points from each dataset

and repeat each experiment 20 times. We vary the value of 𝑘 in

{1, 10, 20, . . . , 100} and set the default value to 50. We vary the value

of 𝑐 in {0.1, 0.2, . . . , 0.9} and set the default value to 0.8.

6.1.2 Competing Algorithms. We have 6 state-of-the-art com-

petitors for solving the 𝑐-MIPS problem:

(1) Simple-LSH [33] uses XBOX-Transformation and the (𝐾, 𝐿)-
bucketing strategy.

(2) Range-LSH [45] applies norm-ranging strategy to partition

the dataset and then employs Simple-LSH [33] in each partition.

(3) H2-ALSH [19] uses the XBOX-Transformation and QALSH

[18] after applying norm-ranging.

(4) RPT [23] uses the XBOX-Transformation and randomized par-

tition trees.

(5) ProMIPS [40] projects high-dimensional data points to low-

dimensional ones and accesses them by the ascending order of

their distance to query point in the low-dimensional space.

(6) CeoMIPS [35] chooses a few projections associated with the

extreme values of the query signature and yields a sublinear

query cost with search recall guarantee. Among three algo-

rithms provided in [35], we adopts 𝐶𝑜𝐶𝐸𝑂𝑠 as our competitor.

6.1.3 Parameter Settings. FARGO needs to consider the param-

eters 𝑏0, 𝑁0, 𝐿, 𝐾 , and 𝑝𝜏 . We set 𝐾 = 12, 𝐿 = 5, 𝑁0 = 20480,

𝑏0 =
√
0.95 and 𝑝𝜏 = 0.1 by default. For H2-ALSH, we set 𝑐0 = 2.0

and 𝑁0 = 5000. For ProMIPS, we are advised to set 𝑝 = 0.5,𝑚 = 10,

𝑘𝑝 = 5, 𝑁𝑘𝑒𝑦 = 40 and 𝑘𝑠𝑝 = 10. For CeoMIPS, we set 𝐷 = 1024,

𝑠 = 5 and 𝐵 = 𝑛/10. For the other three algorithms, we perform

tuning to obtain parameter settings that achieve best performance.

6.1.4 Evaluation Metrics. We use three performance metrics:

query time (ms), overall ratio, and recall, where the query time

evaluates efficiency and the overall ratio and recall evaluate result

quality. For a query 𝑞, we denote the result of a (𝑐, 𝑘)-MIPS query

by 𝑅 = {𝑥1, 𝑥2, · · · , 𝑥𝑘 }. Let 𝑅∗ = {𝑥∗1 , 𝑥∗2 , · · · , 𝑥∗𝑘 } be the exact 𝑘
MIPS points. The overall ratio and recall are computed as follows.

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑅𝑎𝑡𝑖𝑜 =
1

𝑘

∑𝑘

𝑖=1

𝑞�𝑥𝑖
𝑞�𝑥∗𝑖

(18)

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅 ∩ 𝑅∗ |
|𝑅∗ | (19)

6.2 Self Evaluation

To evaluate the performance of FARGO, we first demonstrate that

RXT and AET are better choices for the transformation method and

termination condition than are XT and NT. Then, we compare the

performance of FARGO with Multi-Probe.

6.2.1 Comparison of RXT and XT (Q1). To compare RXT and

XT, we denote by FARGO-XT our solution with XT as the trans-

formation method. For each dataset, we repeat the experiment

100 times and plot the running time of FARGO and FARGO-XT

via box-plot by normalizing them with the average query time of

FARGO. The results of all dataset are shown in Fig. 5. We observe

that FARGO is faster and more stable than FARGO-XT because the

query time of FARGO usually has a smaller average value and a

standard deviation in the box-plot. Two observations explain this.

(1) In each experiment, the data distribution after applying RXT

is more even. (2) For the 100 experiments, FARGO generates simi-

lar data partitions. That is, the index structure changes only little

across the experiments.

6.2.2 Comparison of AET and NT (Q2). To compare the per-

formance of AET and NT, we denote by FARGO-NT our solution

with NT as the termination condition. We plot the recall-time and

1108

Table 3: Performance Overview

FARGO H2-ALSH Simple-LSH Range-LSH RPT ProMIPS CeoMIPS

Audio

Query Time (ms) 1.160 4.520 9.319 3.080 9.022 1.960 1.197

Recall 0.9860 0.9782 0.9148 0.9500 0.9382 0.5504 0.8654

Overall Ratio 0.9994 0.9991 0.9919 0.9968 0.9945 0.9095 0.9887

MNIST

Query Time (ms) 1.720 5.519 17.76 7.720 9.399 7.560 2.426

Recall 0.8954 0.8790 0.7410 0.8396 0.712 0.7804 0.2732

Overall Ratio 0.9974 0.9967 0.9866 0.9928 0.9826 0.9889 0.9411

Cifar

Query Time (ms) 0.08 2.439 15.80 0.641 12.99 2.720 2.425

Recall 0.9984 0.9982 0.9302 0.9860 0.9114 0.5498 0.9042

Overall Ratio 1.0000 1.0000 0.9971 0.9996 0.9972 0.9618 0.9985

Trevi

Query Time (ms) 0.16 7.159 9.9985 3.280 41.95 18.32 -

Recall 0.9996 0.9994 0.9552 0.9876 0.7406 0.0042 -

Overall Ratio 1.0000 1.0000 0.9993 0.9997 0.9918 0.9055 -

YahooMusic

Query Time (ms) 9.8427 21.88 72.47 17.20 27.92 71.48 12.56

Recall 0.9982 0.9958 0.492 0.9586 0.3794 0.3716 0.9936

Overall Ratio 0.9998 0.9997 0.6208 0.9859 0.4868 0.6324 0.9989

GIST

Query Time (ms) 0.4421 3.880 4.520 2.760 6.719 174.7 43.35

Recall 0.9998 0.9998 0.1954 0.7952 0.4822 0.97 0.5868

Overall Ratio 1.0000 1.0000 0.8104 0.9837 0.9239 0.9985 0.9560

TinyImages5M

Query Time (ms) 0.5594 8.279 26.63 75.11 37.16 464.5 102.5

Recall 0.9874 0.9498 0.2214 0.5650 0.3662 0.7258 0.3296

Overall Ratio 0.9999 0.9994 0.9551 0.9871 0.9706 0.9931 0.9722

TinyImages80M

Query Time (ms) 4.439 252.95 65.28 156.9 262.3 9960 1982

Recall 0.8936 0.8218 0.1348 0.3794 0.2144 0.7712 0.2206

Overall Ratio 0.9989 0.9980 0.9440 0.9848 0.9648 0.9960 0.9759

Audio MNIST Cifar Trevi Yahoo GIST Tiny5M Tiny80M0.5

1.0

1.5

2.0

R
at

io
 o

f T
im

e

FARGO FARGO-XT

Figure 5: Comparison on RXT and XT

2 4 6
Time (ms)

0.4

0.6

0.8

1.0
Recall FARGO FARGO-NT

(a) Recall-Time Curve

2 4 6
Time (ms)

0.6

0.7

0.8

0.9

1.0
Ratio FARGO FARGO-NT

(b) Ratio-Time Curve

Figure 6: Comparison on AET and NT

ratio-time curves on YahooMusic when varying 𝑝𝜏 for FARGO and

varying𝑇 and 𝑡 for FARGO-NT – see Fig. 6. We observe that FARGO

takes less time than FARGO-NT to reach the same recall or overall

2 4 6
Time (ms)

0.4

0.6

0.8

Recall FARGO FARGO-MP

(a) Recall-Time Curve

2 4 6
Time (ms)

0.6
0.7
0.8
0.9
1.0

Ratio FARGO FARGO-MP

(b) Ratio-Time Curve

Figure 7: Comparison on GMP and Multi-Probe

ratio. Especially when the recall or overall ratio is higher, the time

difference is larger. A key reason is that AET adaptively decides

when to terminate so that fewer candidates are verified. Normally,

to achieve a certain accuracy, the number of candidate points that

need to be examined differs for each query point. NT does not

consider this issue.

6.2.3 Comparison of GMP and Multi-Probe (Q3). To demon-

strate that GMP is a better probing sequence than Multi-Probe,

we denote by FARGO-MP our solution with Multi-Probe as the

probing strategy. We compare the performance of FARGO and

FARGO-MP with the same number of candidate points 𝑇 . In this

setting, FARGO examines 𝑇 points according to the global probing

sequence; FARGO-MP examines 𝑇 /𝐿 points in each hash table ac-

cording to each local probing sequence. We plot the recall-time and

ratio-time curves on YahooMusic when varying 𝑇 – see Fig. 7. We

1109

observe that FARGO always takes less time than Multi-Probe to

reach the same recall or overall ratio. This indicates that with the

same number of candidate points, the results returned by FARGO

are more accurate than those returned by FARGO-MP.

6.3 Comparison on Indexing Performance (Q4)

To evaluate the indexing performance of all algorithms, we com-

pare the index size and indexing time in all datasets with default

settings. The results are shown in Fig. 8. CeoMIPS fails to build

indexes on Trevi since Trevi dataset has many identical points.

(1) The index sizes of all algorithms except for ProMIPS depend

directly on the number of indexes. FARGO only adopts 𝐿 = 5 multi-

dimensional hash tables and does not need to store the hash values,

and thus always has the smallest index size. ProMIPS adopts an

𝑚-dimensional indexes (𝑚 = 10) but requires storing𝑚 projected

values of all points, which brings it a larger index size than FARGO.

H2-ALSH adopts𝑚 = 62 hash indexes for all datasets and always

has the largest index size. (2) As for the indexing time, since FARGO,

Simple-LSH and Range-LSH adopt hash tables as indexes, their con-

struction time for each index is the lowest. Their total indexing time

depends on the number of indexes. FARGO always achieves the

lowest indexing time among all algorithms. H2-ALSH has a small

indexing time because it just requires building indexes dimension

by dimension. The indexing time of ProMIPS is also not high due

to the small value of𝑚. RPT and CeoMIPS have the much higher

indexing time than other algorithms. The reason is that RPT needs

to build the multi-dimensional partition-based trees, which is more

time-consuming than other data structures. CeoMIPS needs to com-

pute the extreme order statistics for 𝐷 = 1024 projection functions,

which incurs a extremely high computational cost.

6.4 Comparison on Query Performance (Q5, Q6)

6.4.1 Performance Overview. We report the query time (ms),

overall ratio, and recall of all algorithms with default settings on all

datasets in Table 3. FARGO has better query time than all competi-

tors in all datasets, and the overall ratio and recall are also better

than those of the competitors. We observe that Cifar, Trevi and GIST

incur the smallest query time, which are less than 0.5 ms and several

times smaller than our competitors. These datasets have different

cardinalities, which indicates that the query time is not heavily

affected by the dataset cardinality. This can be explained by the

norm-ranging that eliminates the effect of cardinality. Another in-

teresting observation is that the algorithms without norm-ranging,

i.e., Simple-LSH, RPT, ProMIPS and CeoMIPS, have much higher

query time than the algorithms with norm-ranging, i.e., FARGO,

H2-ALSH, and Range-LSH, especially in large-scale dataset, such

as GIST, Tiny5M and Tiny80M. This reveals that the norm-ranging

plays an important role in MIPS. CeoMIPS fails to build indexes on

Trevi since Trevi has many identical points.

6.4.2 Recall-Time and OverallRatio-Time Curves. We plot

the recall-time and overall ratio-time curves for all algorithms in

four datasets when varying 𝑐 – see Fig. 9. The previous experiments

show that FARGO, H2-ALSH, and Range-LSH are always the three

best algorithms and perform much better than the others, so, we

only report the results of these three algorithms. Since the results

of these three algorithms have been almost close to the exact MIP,

we adopt the log-log plot to show the Recall-Time and OverallRatio-

Time curves to make the performance difference more clear. From

the figures we can see that all algorithms return more accurate

results with larger query times. FARGO again performs the best

on all metrics, and H2-ALSH has the second best performance.

When compared among different datasets, we find the query time

of FARGO remains nearly unchanged with the data cardinality

increasing. For example, the cardinality of GIST is 20 times of that

of MNIST, while GIST incurs less query time than MNIST to reach

the same recall. The query time of H2-ALSH and Range-LSH also

increases gradually. This is because the norm-ranging allows us to

terminate the query processing after only checking a few partitions.

It suffices to find good results in enough points with large norms.

Moreover, with the data cardinality increasing, the performance

difference between FARGO and its competitors greatly increases.

On Tiny5M, to reach the same recall or overall ratio, the query time

of FARGO is one or two orders of magnitude lower than H2-ALSH

and Range-LSH, which demonstrates the superiority of FARGO on

large-scale datasets. This can be explained as follows: First, FARGO

has a more accurate distance estimator. Second, FARGO has a better

transformation method and termination condition.

7 RELATEDWORK

The MIPS problem is a classic problem in the database commu-

nity. Early methods employ space-partitioning trees, such as the

M-tree [24] and cone-tree [36]. However, these methods are com-

putationally expensive in high-dimensional spaces due to the curse

of dimensionality. Therefore, lots of approximate solutions to the

MIPS problem have been proposed [5, 23, 35, 38].

LSH is a mainstream approximation method for solving the MIPS

problem. Since the inner product is not a metric, asymmetric trans-

formation based methods are applied to convert the MIPS problem

into NNS. Shrivastava et al. propose the L2-Transformation [38] and

Correlation-Transformation [39]. However, these two transforma-

tions bring distortion errors, and thus limit the query performance.

XBOX-Transformation [5] eliminates the distortion errors and is

widely adopted by many studies, such as Simple-LSH [33], Range-

LSH [45], H2-ALSH [19], RPT [23] and CeoMIPS [35]. Based on

the observation that a large norm ‖𝑥 ‖ is more likely to lead to a

large inner product 𝑞�𝑥 , Range-LSH [45] and H2-ALSH [19] de-

velop the norm-ranging strategy to partition the dataset according

to their norms, which allows us to quickly probe the high-quality

MIPS results in a small part of partitions and greatly improve the

query performance. In addition, many studies aim to terminate the

query processing earlier based on the intermediate query status

and demonstrate their effectiveness [26, 26, 29, 30, 40]. Li et al. [26]

adopt a lightweight learning method to predict the minimal amount

of search for each query to reach a target recall. Gogolou et al. [15]

provide guarantees with probabilistic bounds along different dimen-

sions for each query. These two studies train models with a small

training set but bring a high improvement on query performance.

EI-LSH [29, 30] designs a training-free adaptive termination on

top of QA-LSH [18] by exploiting a smaller search radius in each

dimension and exploring a tighter quality guarantee.

Recently, learning-based methods are proposed for MIPS [9, 13,

37]. Shen et al. [37] propose a binary code learning framework that

1110

1 00
FARGO H2-ALSH Simple-LSH RPT Range-LSH ProMIPS CeoMIPS

Audio MNIST Cifar Trevi YahooMusic GIST Tiny5M Tiny80M10−1

101

103
In

de
x

Si
ze

 (M
B)

Audio MNIST Cifar Trevi YahooMusic GIST Tiny5M Tiny80M10−1

101

103

In
de

xi
ng

 T
im

e
(s

)

Figure 8: Indexing Performance in All Datasets

FARGO H2_ALSH RPT Range_LSH ProMIPS Simple_LSH CeoMIPS

1 2 4 8
Time (ms)

.9

.99Recall

(a) MNIST

0.25 0.5 1 2 4 8
Time (ms)

.9

.99

.999

.9999
Recall

(b) GIST

0.5 2 8 32 128
Time (ms)

.9

.99

Recall

(c) Tiny5M

2 8 32 128 512
Time (ms)

0

.9

.99Recall

(d) Tiny80M

1 2 4 8
Time (ms)

.9

.99

.999
Ratio

(e) MNIST

0.25 0.5 1 2 4 8
Time (ms)

.9

.99

.999

.9999

Ratio

(f) GIST

0.5 2 8 32 128
Time (ms)

.99

.999

.9999
Ratio

(g) Tiny5M

2 8 32 128 512
Time (ms)

.9

.99

.999

Ratio

(h) Tiny80M

Figure 9: Recall-Time and OverallRatio-Time Curves

preserves the inner product among raw data vectors. CeoMIPS [35]

chooses a few projections associated with the extreme values of

the query signature to answer MIPS problem. Moreover, neighbor

graph-based methods are also proposed for MIPS [28, 32, 41] that

were originally used to solve approximate NNS problems. However,

both these learning-based and graph-basedmethods have extremely

high training or construction cost, which is one or two order of

magnitude higher than LSH methods and limits their usages on

large-scale datasets.

8 CONCLUSION

We propose FARGO for maximum inner product search with the-

oretical guarantees. An experimental study shows that FARGO

outperforms all its competitors in terms of both efficiency and ac-

curacy. Specifically, FARGO improves the query time by an average

of 35% when compared to the closest competitor. When all com-

petitors take approximately the same query time, FARGO improves

recall by 20–40% over the closest competitor.

ACKNOWLEDGMENTS

This work was supported in part by National Key Research and

Development Program of China under Grant No. 2021YFC3300303,

NSFC (Grants No. 61902134, 62072125), Zilliz, Hong Kong Research

Grants Council (Grant No. 16202722), and was partially conducted

in the JC STEM Lab of Data Science Foundations funded by The

Hong Kong Jockey Club Charities Trust.

1111

REFERENCES
[1] Mohamed Hussein Abdi, George Onyango Okeyo, and Ronald Waweru Mwangi.

2018. Matrix Factorization Techniques for Context-Aware Collaborative Filtering
Recommender Systems: A Survey. Sci 11, 2 (2018), 1–10.

[2] Thomas Dybdahl Ahle, Rasmus Pagh, Ilya P. Razenshteyn, and Francesco Silvestri.
2016. On the Complexity of Inner Product Similarity Join. In PODS. 151–164.

[3] Alexandr Andoni. 2004. E2lsh: Exact euclidean locality-sensitive hashing.
http://web. mit. edu/andoni/www/LSH/ (2004).

[4] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya P. Razenshteyn. 2014.
Beyond Locality-Sensitive Hashing. In SODA. 1018–1028.

[5] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam
Koenigstein, Nir Nice, and Ulrich Paquet. 2014. Speeding up the Xbox recom-
mender system using a Euclidean transformation for inner-product spaces. In
RecSys. 257–264.

[6] Robert M. Bell and Yehuda Koren. 2007. Lessons from the Netflix prize challenge.
SIGKDD Explorations 9, 2 (2007), 75–79.

[7] Moses Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In STOC. 380–388.

[8] Lijie Chen. 2018. On The Hardness of Approximate and Exact (Bichromatic)
Maximum Inner Product. Electronic Colloquium on Computational Complexity
(ECCC) 25 (2018), 26.

[9] Xinyan Dai, Xiao Yan, Kelvin Kai Wing Ng, Jiu Liu, and James Cheng. 2020.
Norm-Explicit Quantization: Improving Vector Quantization for Maximum Inner
Product Search. In AAAI. 51–58.

[10] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004.
Locality-sensitive hashing scheme based on p-stable distributions. In SoCG. 253–
262.

[11] Thomas L. Dean, Mark A. Ruzon, Mark Segal, Jonathon Shlens, Sudheendra
Vijayanarasimhan, and Jay Yagnik. 2013. Fast, Accurate Detection of 100, 000
Object Classes on a Single Machine. In CVPR. 1814–1821.

[12] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. 2012. The
Yahoo! Music Dataset and KDD-Cup ’11. In KDD Cup (JMLR, Vol. 18). 8–18.

[13] Marco Fraccaro, Ulrich Paquet, and Ole Winther. 2016. Indexable Probabilistic
Matrix Factorization for Maximum Inner Product Search. In AAAI. 1554–1560.

[14] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In VLDB. 518–529.

[15] Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Anastasia Bezerianos,
and Themis Palpanas. 2020. Data Series Progressive Similarity Search with
Probabilistic Quality Guarantees. In SIGMOD. 1857–1873.

[16] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. 2012. Approximate Nearest
Neighbor: Towards Removing the Curse of Dimensionality. Theory Comput. 8, 1
(2012), 321–350.

[17] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. InWWW. 173–182.

[18] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-Aware Locality-Sensitive Hashing for Approximate Nearest Neighbor
Search. PVLDB 9, 1 (2015), 1–12.

[19] Qiang Huang, Guihong Ma, Jianlin Feng, Qiong Fang, and Anthony K. H. Tung.
2018. Accurate and Fast Asymmetric Locality-Sensitive Hashing Scheme for
Maximum Inner Product Search. In KDD. 1561–1570.

[20] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In STOC. 604–613.

[21] Prateek Jain and Ashish Kapoor. 2009. Active learning for large multi-class
problems. In CVPR. 762–769.

[22] Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu. 2009. Cutting-plane
training of structural SVMs. Mach. Learn. 77, 1 (2009), 27–59.

[23] Omid Keivani, Kaushik Sinha, and Parikshit Ram. 2018. Improvedmaximum inner
product search with better theoretical guarantee using randomized partition
trees. Machine Learning 107, 6 (2018), 1069–1094.

[24] Noam Koenigstein, Parikshit Ram, and Yuval Shavitt. 2012. Efficient retrieval of
recommendations in a matrix factorization framework. In CIKM. 535–544.

[25] Naama Kraus, David Carmel, Idit Keidar, and Meni Orenbach. 2016. NearBucket-
LSH: Efficient Similarity Search in P2P Networks. In SISAP (Lecture Notes in
Computer Science, Vol. 9939). 236–249.

[26] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020. Im-
proving Approximate Nearest Neighbor Search through Learned Adaptive Early
Termination. In SIGMOD. 2539–2554.

[27] Jinfeng Li, Xiao Yan, Jian Zhang, An Xu, James Cheng, Jie Liu, Kelvin Kai Wing
Ng, and Ti-chung Cheng. 2018. A General and Efficient Querying Method for
Learning to Hash. In SIGMOD. 1333–1347.

[28] Jie Liu, Xiao Yan, Xinyan Dai, Zhirong Li, James Cheng, and Ming-Chang Yang.
2020. Understanding and Improving Proximity Graph Based Maximum Inner
Product Search. In AAAI. 139–146.

[29] Wanqi Liu, Hanchen Wang, Ying Zhang, Wei Wang, and Lu Qin. 2019. I-LSH: I/O
Efficient c-Approximate Nearest Neighbor Search in High-Dimensional Space.
In ICDE. 1670–1673.

[30] Wanqi Liu, HanchenWang, Ying Zhang,WeiWang, LuQin, and Xuemin Lin. 2021.
EI-LSH: An early-termination driven I/O efficient incremental c-approximate
nearest neighbor search. VLDB J. 30, 2 (2021), 215–235.

[31] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. 2007. Multi-
Probe LSH: Efficient Indexing for High-Dimensional Similarity Search. In VLDB.
950–961.

[32] Stanislav Morozov and Artem Babenko. 2018. Non-metric Similarity Graphs for
Maximum Inner Product Search. In NeurIPS. 4726–4735.

[33] Behnam Neyshabur and Nathan Srebro. 2015. On Symmetric and Asymmetric
LSHs for Inner Product Search. In ICML, Vol. 37. 1926–1934.

[34] Jennifer Nguyen and Mu Zhu. 2013. Content-boosted matrix factorization tech-
niques for recommender systems. Stat. Analysis and Data Mining 6, 4 (2013),
286–301.

[35] Ninh Pham. 2021. Simple Yet Efficient Algorithms for Maximum Inner Product
Search via Extreme Order Statistics. In KDD. ACM, 1339–1347.

[36] Parikshit Ram and Alexander G. Gray. 2012. Maximum inner-product search
using cone trees. In KDD. 931–939.

[37] Fumin Shen, Wei Liu, Shaoting Zhang, Yang Yang, and Heng Tao Shen. 2015.
Learning Binary Codes for Maximum Inner Product Search. In ICCV. 4148–4156.

[38] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for Sublinear
Time Maximum Inner Product Search (MIPS). In NIPS. 2321–2329.

[39] Anshumali Shrivastava and Ping Li. 2015. Improved Asymmetric Locality Sensi-
tive Hashing (ALSH) forMaximum Inner Product Search (MIPS). InUAI. 812–821.

[40] Yang Song, Yu Gu, Rui Zhang, and Ge Yu. 2021. ProMIPS: Efficient High-
Dimensional c-Approximate Maximum Inner Product Search with a Lightweight
Index. In ICDE. IEEE, 1619–1630.

[41] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2019. On Efficient Retrieval
of Top Similarity Vectors. In EMNLP/IJCNLP (1). 5235–5245.

[42] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. 2009. Quality and efficiency in
high dimensional nearest neighbor search. In SIGMOD. 563–576.

[43] Christoph Haehling von Lanzenauer and William N Lundberg. 1974. The n-fold
convolution of a mixed density and mass function. ASTIN Bulletin: The Journal
of the IAA 8, 1 (1974), 91–103.

[44] Mengshuang Wang, Jun Ma, Shanshan Huang, and Peizhe Cheng. 2015. Com-
bining Positive and Negative Feedbacks with Factored Similarity Matrix for
Recommender Systems. InWAIM, Vol. 9098. 233–246.

[45] Xiao Yan, Jinfeng Li, Xinyan Dai, Hongzhi Chen, and James Cheng. 2018. Norm-
Ranging LSH for Maximum Inner Product Search. In NeurIPS. 2956–2965.

[46] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu,
and Christian S. Jensen. 2020. PM-LSH: A Fast and Accurate LSH Framework
for High-Dimensional Approximate NN Search. PVLDB 13, 5 (2020), 643–655.

[47] Yuxin Zheng, Qi Guo, Anthony K. H. Tung, and Sai Wu. 2016. LazyLSH: Approx-
imate Nearest Neighbor Search for Multiple Distance Functions with a Single
Index. In SIGMOD. 2023–2037.

1112

