FederatedScope: A Flexible Federated Learning Platform
for Heterogeneity

Yuexiang Xie*
Alibaba Group
yuexiang.xyx@alibaba-inc.com

Zhen Wang*
Alibaba Group
jones.wz@alibaba-inc.com

Dawei Gao
Alibaba Group
gaodawei.gdw@alibaba-inc.com

Daoyuan Chen' Liuyi Yao' Weirui Kuang'
Alibaba Group Alibaba Group Alibaba Group
daoyuanchen.cdy@alibaba-inc.com yly287738 @alibaba-inc.com weirui.kwr@alibaba-inc.com
Yaliang Li* Bolin Ding* Jingren Zhou
Alibaba Group Alibaba Group Alibaba Group

yaliang.li@alibaba-inc.com

ABSTRACT

Although remarkable progress has been made by existing fed-
erated learning (FL) platforms to provide infrastructures for de-
velopment, these platforms may not well tackle the challenges
brought by various types of heterogeneity. To fill this gap, in this
paper, we propose a novel FL platform, named FederatedScope,
which employs an event-driven architecture to provide users with
great flexibility to independently describe the behaviors of dif-
ferent participants. Such a design makes it easy for users to de-
scribe participants with various local training processes, learn-
ing goals and backends, and coordinate them into an FL course
with synchronous or asynchronous training strategies. Towards
an easy-to-use and flexible platform, FederatedScope enables rich
types of plug-in operations and components for efficient further
development, and we have implemented several important com-
ponents to better help users with privacy protection, attack sim-
ulation and auto-tuning. We have released FederatedScope at
https://github.com/alibaba/FederatedScope to promote academic
research and industrial deployment of federated learning in a wide
range of scenarios.

PVLDB Reference Format:

Yuexiang Xie, Zhen Wang, Dawei Gao, Daoyuan Chen, Liuyi Yao, Weirui
Kuang, Yaliang Li, Bolin Ding, and Jingren Zhou. FederatedScope: A
Flexible Federated Learning Platform for Heterogeneity. PVLDB, 16(5):
1059 - 1072, 2023.

doi:10.14778/3579075.3579081

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/alibaba/FederatedScope.

*Co-first authors.

TEqual contribution, listed in alphabetical order.

*Corresponding authors.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579081

bolin.ding@alibaba-inc.com

1059

jingren.zhou@alibaba-inc.com

1 INTRODUCTION

As one of the feasible solutions to address the privacy leakage is-
sue when utilizing isolated data from multiple sources, Federated
Learning (FL) [41, 57, 89] has rapidly gained enormous popularity
in both academia and industry [31, 86, 88]. Such widespread adop-
tion of FL is inextricably tied to the support of FL platforms, such
as TFF [10], FATE [89], PySyft [96] and FedML [34], which provide
users with functionalities to get started quickly and develop new
FL algorithms and applications.

Although the existing FL platforms have made remarkable
progress, there are more burgeoning demands from FL research
and deployment, which are mainly brought by the heterogeneity
of FL. Specifically, we summarize the heterogeneity of FL as the
following four aspects.

(1) Heterogeneity in Local Data. The isolated data in FL vary
alot among the FL participants in terms of quality, quantity, under-
lying distributions, etc. Such heterogeneity in data can lead to the
sub-optimal performance when applying the vanilla FedAvg [57],
i.e., producing one global model for all the participants by the same
local training process.

(2) Heterogeneity in Participants’ Resources. Apart from
the heterogeneity of data, the participants’ resources can also be
very different, including computation resources, storage resources,
communication bandwidths, reliability, and so on. Thus, it would
be better if FL platforms allow users to implement/execute FL with
asynchronous training strategies [17, 82] to ensure both efficiency
and effectiveness in real-world FL applications.

(3) Heterogeneity in Participants’ Behaviors. Although par-
ticipants only exchange homogeneous information in vanilla Fe-
dAvg, the practical and recent FL applications often require to ex-
change various types of information among participants and exe-
cute diverse training processes, which leads to rich behaviors. The
heterogeneity in participants’ behaviors prompts the FL platforms
to support flexible expression for rich behaviors of participants.

(4) Heterogeneity in Learning Goals. Towards a more gen-
eral scope of utilizing isolated data, some recent FL studies [56, 69,
85] propose to allow participants to collaboratively learn common
knowledge while optimizing for different learning goals, which
brings new challenges to FL platforms.

https://github.com/alibaba/FederatedScope
https://doi.org/10.14778/3579075.3579081
https://github.com/alibaba/FederatedScope
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3579075.3579081
https://www.acm.org/publications/policies/artifact-review-and-badging-current

Y Simple

Configuration

¥

Plug-ins

&

Different Levels of Programming
Interfaces for Users

Auto-Tuning

Privacy Protection

Algorithms

Asynchronous Training
Hetero-Task Learning

Deep Attack Simulation

Customization

Workers

oo Tomae] vessee] conmunicaor

Trainer

Aggregator

Monitor

Figure 1: FederatedScope provides different levels of pro-
gramming interfaces for users.

The aforementioned aspects of heterogeneity are commonly ob-
served in real-world FL applications. Although we discuss them in
the above four separate aspects, they can appear jointly in a sin-
gle application. Facing such mixed heterogeneity, users are eager
for an FL platform that has great flexibility: Participants should
be allowed to express their diverse behaviors and different learn-
ing goals according to their own local data and system resources,
and these participants can be effortlessly coordinated with syn-
chronous or asynchronous training strategies for completing the
federal training procedure based on a pre-defined consensus.

To provide such flexibility, we propose FederatedScope, a novel
FL platform that employs the event-driven architecture [42, 61] to
frame FL courses into <event, handler> pairs. Note that it is not
trivial to build up a comprehensive FL platform with such a formal-
ization. In particular, considering the heterogeneity of federated
learning, such formalization is expected to express diverse behav-
iors of servers and clients for handling the heterogeneity, and be
well-modularized so that users can conveniently develop new FL al-
gorithms and applications. To fulfill this goal, the events provided
in FederatedScope can be categorized into two types, i.e., events
related to message passing and events related to condition checking,
which are used to describe what happens in the FL courses from the
perspective of an individual participant. The handlers, triggered by
the events, describe what actions should be taken when a specific
event happens. These events happen in the intended logical order
and naturally trigger the corresponding handlers, which can pre-
cisely express various FL algorithms and procedures. All the par-
ticipants can be coordinated with the pre-defined events related to
message passing and condition checking to construct suitable FL
course for specific scenarios and applications.

Besides the flexibility, as an FL platform, FederatedScope also
provide great usability, that is, FederatedScope provides different
levels of programming interfaces to meet different requirements
from users, as demonstrated in Figure 1. For the users who want
to design new FL algorithms, as discussed above, FederatedScope
allows them to add new <event, handler> pairs to implement their
ideas. For the users who want to directly apply existing FL tech-
niques to certain application scenarios, FederatedScope provides
rich sets of events and corresponding handlers, core functional-
ities and several important plug-in components, all of which can

1060

be directly called, and thus users only need to focus on a necessary
set of interfaces to be integrated or implemented. For example, we
have implemented several personalization federated algorithms,
including applying client-wise configuration, maintaining client-
wise sub-modules, global-local fusing, etc, for users’ convenient us-
age. Besides personalization, FederatedScope provides users with
functionalities such as asynchronous training, privacy protection
and cross-backend FL, and several important plug-ins such as at-
tack simulation for protection verification, and auto-tuning for
helping users to automatically seek suitable hyperparameters.

Last but not least, FederatedScope also has great extensibility,
which is brought by the fact that the set of <event, handler> pairs
can be easily extended by adding new ones. Take personalization
again as an example: to add a new personalization, users only need
to add new behaviors (e.g., adopting client-specific training course)
in the corresponding handlers. Such extension convenience also
holds for all the other functions such as federated aggregators,
asynchronous training, privacy-protection, etc. Through this way,
FederatedScope can be easily extended to include new functions
or plug-ins to satisfy new requirements brought by new develop-
ments and support a variety of new scenarios.

Contributions. Our contributions can be summarized as: (1) Mo-
tivated by the heterogeneity challenges from a wide range of FL ap-
plications, we propose and release FederatedScope, a novel FL plat-
form to handle heterogeneity in FL. The proposed FederatedScope
promotes the development of FL techniques and the deployment
of FL applications. (2) With the event-driven architecture, Federat-
edScope provides users with rich yet extendable sets of events and
corresponding handlers, core functionalities such as asynchronous
training, personalization and cross-backend FL, and several impor-
tant plug-in components. These implementations make it easy for
users to apply FL algorithms in both academia and industry appli-
cations. (3) FederatedScope brings great flexibility, usability and
extensibility to users, broadens the application scope and enables
more tasks that would otherwise be infeasible due to challenges
brought by various types of heterogeneity in FL.

2 PRELIMINARY

2.1 Problem Definition

Federated Learning (FL) [41, 57, 89], a learning paradigm for col-
laboratively training models from dispersed data without directly
sharing private information, involves multiple participants who
are willing to contribute their local data and computation re-
sources. We use server to denote the participant(s) who are respon-
sible for coordinating and aggregating, while other participants are
clients. During a typical training round of an FL course, clients up-
date the global model received from the server by training it with
local data, and send the model updates back to the server for col-
laborative aggregation. In repeated training rounds, the (possibly
sensitive) training data is always kept locally in each client; the
server and clients only exchange aggregated and meta informa-
tion. To further satisfy different types of formal privacy protec-
tion requirements, various privacy protection techniques can be
integrated into FL, such as Differential Privacy (DP) [74, 81], Ho-
momorphic Encryption (HE) [26, 32], and Secure Multi-Party Com-
putation (MPC) [11, 59]. In short, the goal of FL is to jointly train a

global model in a privacy-preserving manner and achieve a better
performance compared to that without collaboration.

Formally, there are M clients, and the m-th client owns a private
training dataset Dy, = {(xi(m),yi(m)) eXxY,i=12,...,|Dnl}
where X and Y are the input feature space and the label space,
respectively. Dy, is stored in the m-th client’s private space, and
n= Zﬁ\n'le | Dy | is the total number of training instances. Without
sharing Dy, directly with each other and the server, the M clients
together aim to train a model hy : X — Y parameterized by 0,
with the loss F : Y x Y — R* U {0}. The FL loss function is:

15y

"= ™y ™) €D

FlhoG™ny™).

Extensions. For the simplicity of presentation, we focus on a
vanilla FL to minimize the loss function in Equation (1) in most
parts of this paper. Our FederatedScope easily supports different
federated settings in real-world FL applications, with more com-
plicated loss functions, in order to handle the heterogeneity as dis-
cussed in Section 1. For example, for the purpose of personaliza-
tion, the input feature spaces, the label spaces, and the underlying
learning goals can be different for different clients. In Federated-
Scope, clients can adopt different models and loss functions in lo-
cal training, and only federally train the shared parts of the models.
We will discuss more details in Section 3.4.

2.2 Related Works

Comparisons with existing FL platforms. In the recent years,
growing along with the development of federated learning, feder-
ated learning platforms, including TFF [10], FATE [89], LEAF [12],
PySyft [96], FedML [34], FedScale [44], etc., are proposed to sup-
port various kinds of applications. These federated learning plat-
forms provide data, models and algorithms, which saves users’ ef-
fort on implementing from scratch and makes it easy for develop-
ers. Most of these existing platforms adopt a procedural program-
ming paradigm, which requires users to explicitly declare a sequen-
tial training process and computational graph from the global per-
spective. However, such a design makes the existing FL platforms
kind of rigid and thus might be unable to provide the required flex-
ibility and extendability for the burgeoning demands from FL re-
search and deployment. Meanwhile, users also expect FL platforms
to become more convenient to handle the aforementioned hetero-
geneity in real-world FL applications.

To tackle these challenges, we propose FederatedScope to pro-
vide great flexibility and extendability for users to handle the het-
erogeneity in FL. FederatedScope provides rich implementations
of FL algorithms for convenient usage, and provides different lev-
els of programming interfaces for users to develop new algorithms.

Comparisons with distributed machine learning. In dis-
tributed machine learning, the server has the rights to control the
behaviors of clients; While in federated learning, all the partici-
pants could have their own behaviors following the achieved con-
sensus to collaboratively train the model. For example, given the
consensus that participants only need to share parts of the model
parameters, clients can apply client-wise training configurations
(e.g., training steps, learning rate, regularizer, optimizer, and so on)

1061

{ Aggregator
4.F edel'zlfed Aggregation Algorithm
Save updates, Aggregation

check aggregation
condition

—

" Trainer #M

Optimizer

\\‘rece1v1ng7/._ - _"'

3, model /

]
i
i
i
I
I

2. Local

||i||

N ——

Figure 2: An FL round implemented with FederatedScope.

to locally train the model, and keep the non-shared model param-
eters and the learning goals (might be different among clients) pri-
vate. To satisfy such requirements, FederatedScope give the rights
to the participants to describe behaviors from their own respective
perspectives. Besides, in federated learning, the quality, quantity,
and distributions of clients’ local data can be very diverse. Such
heterogeneity in data makes it challenging to collaboratively learn,
which motivates FederatedScope to provide novel functionalities,
such as asynchronous training strategies (in Section 3.3) and per-
sonalized federated learning algorithms (in Section 3.4), to make
better use of their isolated data. Furthermore, there exist more pri-
vacy/security protection requirements in federated learning com-
pared to distributed machine learning. To tackle this, Federated-
Scope provides some Byzantine fault tolerance algorithms to de-
fend the malicious participants (in Section 3.6), and privacy pro-
tection component (in Section 4.1) and attack simulation compo-
nent (in Section 4.2) to enhance and verify the privacy protection
strength of FL applications.

3 DESIGN OF FEDERATEDSCOPE

In this section, we introduce the design of FederatedScope, show-
ing how an FL training course can be framed and implemented us-
ing an event-driven architecture and why FederatedScope makes
it easy to handle heterogeneity in federated learning.

3.1 Overview

An FL course consists of multiple rounds of training, and a typical
round implemented with FederatedScope is illustrated in Figure 2,
which includes four major steps: (1) Broadcast Models: the server
broadcasts the up-to-date global model to the involved clients; (2)
Local Training: once received the global model, clients perform
local training using their trainer based on their private data; (3)
Return Updates: after local training, clients return the model up-
dates to the server; (4) Federated Aggregation: with the help of
an aggregator, the server performs federated aggregation on the re-
ceived model updates, and optimizes the global model. To facilitate
efficient development and deployment of such an FL course with
multiple computation/communication rounds and different roles,
there are two important design principles of FederatedScope.

e Minimal dependency between different roles. In FederatedScope,
each client or the server takes care of only the minimal por-
tion of job it needs to collaboratively accomplish, including the
model to be collaboratively learned and the exchanged messages.
While allowing both synchronous and asynchronous training,
we want to avoid introducing too much duty of coordinating
and scheduling to the server. This is important especially when
we consider the heterogeneity of resources and learning goals
for the clients.

Flexible and expressive programming interfaces for algorithm de-
velopment and plug-in. FederatedScope aims to enable efficient
development of FL algorithms via proper abstraction of FL
courses and providing a necessary set of interfaces that devel-
opers need to implement. Moreover, for the purpose of privacy
protection and other functionalities, operators (e.g., for noise in-
jection and encryption) and components (e.g., for auto-tuning)
need to be plugged into the FL course in a flexible way.

Based on these principles, we first give an overview of our design.

Basic infrastructure. FederatedScope employs an event-driven
architecture within which the behaviors of different clients and
the server in an FL course can be programmed (relatively) inde-
pendently. The information exchange among participants and con-
ditions to be checked by participants during the FL course are de-
scribed as events (trapezoids within pink areas in Figure 2); when
an event occurs, the corresponding handlers (hexagons within pink
areas) that describes the behavior of a participant is triggered. For
example, when “receiving_models” occurs, “local training” in a
client is triggered; when “goal_achieved” occurs, “federated ag-
gregation” in the server is triggered. It turns out that the pairs of
events and handlers are sufficiently expressive to describe all the
existing (both synchronous and asynchronous) FL algorithms, as
well as new ones we implement in FederatedScope.

With such an infrastructure, FederatedScope can easily support
different machine learning backends (e.g., PyTorch and Tensor-
Flow). All users need to do is to transform exchanged informa-
tion (called messages), which might be related to participants’ lo-
cal backends, into backend-independent ones before sharing, and
parse the received messages according to the receiver’s backend
for further usage. We call this procedure message translation.

Programming interfaces. Within the above infrastructure Fed-
eratedScope provides, for each client or server, we only need to im-
plement a Trainer (green dashed rectangles in Figure 2) or Aggrega-
tor (blue dashed rectangles), respectively, which encapsulates the
details of local training or federated aggregation with well-defined
interfaces, e.g., the loss function, optimizer, training step, aggre-
gation algorithms, etc. A Trainer can be implemented as if a ma-
chine learning model is trained on the local data owned by a client.
Besides Trainer and Aggregator, the design of FederatedScope al-
lows flexible plug-in operators and components. For example, in
order to ensure differential privacy, noise injection operators can
be plugged to perturb the messages to be sent, where the amount
of noise can be customized for different training tasks. More details
of the programming interfaces can be found in Section 3.6.

In this way, the server performs federated aggregation under
flexibly triggered conditions, which can prevent the training pro-
cess from being blocked by unreliable or slow clients (more details

1062

in Section 3.3). Different clients may customize their training con-
figurations according to their own data distributions, tasks, and
resources, such as training with different trainers for personaliza-
tion (Section 3.4.1), learning toward different goals (Section 3.4.2),
and running on different backends (Section 3.5). FederatedScope
also provides some native plug-in modules (Section 4) for various
important functionalities, including privacy protection, attack sim-
ulation, and auto-tuning. Before diving into these parts, we first
provide more details about the event-driven design of Federated-
Scope in Section 3.2.

3.2 Event-driven Architecture

Event-driven architectures are widely adopted in distributed sys-
tems [42, 61]. With such an architecture, an FL training course in
FederatedScope can be framed into <event, handler> pairs: the
participants wait for certain events (e.g., receiving model parame-
ters broadcast from the server) to trigger corresponding handlers
(e.g., training models based on the local data). Hence, developers
can express the behaviors of a participant (a server or a client) inde-
pendently from its own perspective, rather than sequentially from
a global perspective (considering all the participants together), and
the implementations can be better modularized.

The events in FederatedScope are categorized into two classes.
One is related to message passing, which is also considered in
previous FL platforms, e.g., receiving user-defined messages in
FedML [34] and invoking requests in FedKeeper [13]. The other
class of events checks the satisfaction of customizable conditions
(e.g., whether a pre-defined percentage of feedback from clients
has been received). Some examples of events provided in Federat-
edScope are presented in the full version [1].

o Events Related to Message Passing. The exchanged information
among participants are abstracted as messages, and an FL train-
ing course consists of several rounds of message passing. Multi-
ple types of messages are involved in an FL course, including but
not limited to building up (e.g., join_in and id_assignment), train-
ing (e.g., model_param and gradients), and evaluating (e.g., metrics).
For the participants, receiving a message can be regarded as an
event, and their follow-up behaviors can be described in handling
functions (i.e., the handlers) to handle the received messages. A
handling function can be invoked by the event of receiving one or
more types of messages, while receiving a certain type of message
should only trigger one handling function directly.

Take FedAvg as an example, the clients’ handling function for
the event “receiving_models” can be “locally train the global model
and return the model updates”, and the servers’ handling function
for the event “receiving_updates” can be described as “save the
model updates and check whether all the feedback has been received”.

Generally, by defining the events related to message passing,
FederatedScope provides users with expressiveness to flexibly
describe heterogeneous message exchange, such as exchanging
model parameters, gradients, public keys, embeddings, generators,
and so on. Meanwhile, through customizing the operations in the
corresponding handlers, users can conveniently describe rich be-
haviors of participants, including training models based on the
local data with personalized configurations, performing federated
aggregation, predicting, clustering, generating, etc.

o Events Related to Condition Checking. Apart from the events re-
lated to message passing, the events related to condition checking
are also indispensable for FL implementations. These events and
the corresponding handlers describe the participants’ behaviors
when certain conditions are satisfied. For example, in an FL course,
for the purpose of synchronization in training, the server checks
whether the updated gradients or model parameters have been re-
ceived from all the clients; if yes, it invokes an event “all_received”,
and this event triggers the federated aggregation and pushes for-
ward the training process.

One important usage of the events related to condition check-
ing is to express the customizable conditions for triggering the
federated aggregation. Besides “all_received”, in order to sup-
port asynchronous training, FederatedScope also provides events
“goal_achieved” and “time_up” for such purpose. Specifically,
“goal_achieved” indicates that a certain percentage of feedback (so-
called aggregation goal) has been received, and “time_up” denotes
that the user-allocated time budget for each training round has run
out. Different from the event “all_received” that forces the server
to wait for feedback from all the clients, “goal_achieved” allows
the training process to move forward once the server has received
enough feedback, while “time_up” encourages the server to col-
lect as much feedback as possible within the time budget, both of
which enable different asynchronous training strategies in FL.

Furthermore, the events related to condition checking also can
be used to describe the behaviors of participants. For example,
the server can be equipped with the events “all_joined_in” and
“early_stop” to describe when to start and when to terminate the
training process, respectively.

FederatedScope provides warnings if there exist conflicts, and
adopts a default resolution following the “overwriting” principle.
Specifically, in an FL course implemented with FederatedScope,
each event is only permitted to be linked with one handler directly
during the execution process. If an event is linked with more than
one handler, which might cause conflicts in an FL course, a warn-
ing would be raised for users by FederatedScope, and the latest
linked handler would overwrite the older ones (e.g., the default
handler is overwritten by the user-customized handlers). Finally,
the handlers that take effect in an FL course would be printed out
and recorded in the experimental logs. Users can remove some han-
dlers or adjust the linked orders to make sure the intended handlers
would take effect in the constructed FL courses.

FederatedScope provides lots of predefined <event, handler>
pairs, which cover the rich implementation of existing FL algo-
rithms, such as FedAvg [57], personalization [48, 51, 70], federated
graph learning approaches [79], and so on. Users can implement
their own algorithms based on these provided <event, handler>
pairs. However, it is out of our scope here to exhaustively list all the
possible events related to message passing and condition checking.
The most important advantage is that the event-driven design of
FederatedScope provides users with expressiveness and flexibility
to implement and customize diverse FL algorithms. Next, with Fed-
eratedScope, we will demonstrate how to execute asynchronous
federated training (Section 3.3), how to describe rich behaviors of
the participants (Section 3.4) and how to conduct cross-backend FL
(Section 3.5) in order to handle the heterogeneity of FL.

1063

3.3 Supporting Asynchronous Training

The asynchronous training strategies have been successfully ap-
plied in distributed machine learning to improve training effi-
ciency [17, 53, 92]. Considering the aforementioned heterogeneity
of FL in Section 1, the asynchronous training strategy is impor-
tant to balance the model performance and training efficiency, es-
pecially in cross-device scenarios that involve a large number of
unreliable and diverse clients. With the provided events and han-
dlers, which specify what actions to take (i.e., handlers) when cer-
tain customizable conditions are satisfied (i.e., events), Federated-
Scope supports users to conveniently design and implement suit-
able asynchronous training strategies for their FL applications.

Compared with the synchronous training, several unique behav-
iors of participants might happen in asynchronous FL, which are
modularized and provided in FederatedScope as follows:

(i) Tolerating staleness in federated aggregation. The term “stale-
ness” denotes the version difference between the up-to-date global
model maintained at the server and the model that a client starts
from for local training, which should be tolerable to some extent
in asynchronous FL. Specifically, in the federated aggregation, the
staled updates from slow clients might be discounted in the aggre-
gator but they still contribute to the aggregation. Of course, when
the staleness is larger than a pre-defined threshold, the updates
become outdated and thus can be directly dropped out.

(if) Sampling clients with responsiveness-related strategies. The
uniform strategy for sampling clients [57] might bring model bias
in asynchronous FL, since the clients with low response speeds
would contribute staled updates with higher probabilities com-
pared with those who respond fast, which implies that the contri-
butions of slow clients would be discounted or even dropped out
in federated aggregation. Similar phenomena are happened in syn-
chronous FL using over-selection mechanism [10], as pointed out
by previous studies [38, 49, 63]. To tackle such an issue, with the
prior knowledge of response speeds (it can be estimated from de-
vice information or historical responses), FederatedScope provides
a responsiveness-related sampling strategy (i.e., the sampled prob-
abilities are related to the response speeds) and a group sampling
strategy (i.e., clients with similar response speeds are grouped).

(iii) Broadcasting models after receiving update. With the syn-
chronous training strategy, the server broadcasts the up-to-date
model to the sampled clients after performing federated aggrega-
tion. Such a broadcasting manner, denoted as after aggregating
here, can also be adopted in asynchronous FL [82]. We also pro-
vide another broadcasting manner to achieve asynchronous FL,
named after receiving [63], in which the server sends out the cur-
rent (up-to-date) model to a sampled idle client once the feedback
is received. Compared with after aggregating, the after receiving
manner can keep the consistent concurrency and promotes an ef-
ficient FL systems [38].

An example of asynchronous FL with FederatedScope and a
theoretical analysis of convergence when applying the asynchro-
nous training strategies can be found in the full version [1]. To
the best of our knowledge, with the provided events and the corre-
sponding handlers that describe the above behaviors, most of the
existing studies on asynchronous FL can be conveniently imple-
mented with FederatedScope. For example, FedBuff [63] proposes

to register the event “goal_achieved” and apply the after receiv-
ing broadcasting manner, while SAFA [82] suggests to equip after
aggregating broadcasting manner with event “goal_achieved” and
manages clients based on their stalenesses. Particularly, a synchro-
nous FL course with the over-selection mechanism can be easily
implemented in FederatedScope by using event “goal_achieved”
and setting the toleration to 0 (i.e., dropout all staled update).

In a nutshell, FederatedScope is well-modularized toward flex-
ibility and extensibility for handling the heterogeneity of FL via
applying asynchronous training strategies.

3.4 Supporting Personalization & Multi-Goal

In many real-world applications, handling the heterogeneity of FL
brings the requirements of the flexibility of participants’ training
behaviors. That is, clients need client-specific training processes
and/or different formats of loss functions to meet their resource
limitations, data properties and learning goals, all of which can be
diverse as discussed in Section 1. Formally speaking, for the m-th
client, the local training dataset Dy, might correspond to client-
specific feature space X, and label space Y, which can lead to
sub-optimal performance of the global model hg or even makes
it unusable. To tackle this, the client could (1) maintain a local
model hy, with personalized parameters 8y, (i.e., personalization)
and/or (2) minimize the local loss function Fy, (i.e., multiple learn-
ing goals), while only sharing parts of the models with others for
federal training. Therefore, the loss function in Equation (1) can be
extended as:

@)

2

m=1 (x;m),yl{m))EDm

Fm (hgm (x™), yf’”)) .

Note that there exists some shared parameters among clients, i.e.,

ﬁ Om # 0, and all the clients collaboratively learn 01, 0o, . .., 1
m=1
to jointly minimize £’.

Benefited from the event-driven architecture, FederatedScope
provides users with flexible expressiveness to describe the behav-
ior of an individual participant from its own perspective, which is
crucial for handling the heterogeneity of FL via allowing the differ-
ences among participants. In this section, we present how Feder-
atedScope supports such differences among participants for han-
dling the heterogeneity of FL through the following two ways.

3.4.1 Personalized training behaviors. As discussed by previous
work [15, 71], the heterogeneity of FL might hurt the model perfor-
mance for some clients and lead to the sub-optimal performance
when sharing the same global model among all participants, such
as vanilla FedAvg [57], which motivates the study of personal-
ized federated algorithms [48, 51, 56, 70]. Specifically, personalized
federated algorithms are proposed to apply client-specific local
training courses based on their private data, including client-wise
training configuration, sub-modules, global-local fusing weights,
etc. Therefore, users are expected to describe diverse behaviors of
clients to develop personalized federated algorithms, which might
be rather complicated and inconvenient when using a procedural
programming paradigm since lots of effort is put into sequentially
coordinating and describing the participants.

1064

With the event-driven architecture, FederatedScope allows
users to describe the behaviors of participants independently,
which provides great flexibility to develop new personalization al-
gorithms. Users are able but not limited to (1) specify the training
configurations, such as local training steps and learning rate, for an
individual client; (2) define new events related to new types of ex-
changed messages and/or events related to customized conditions
to apply personalization algorithms (e.g., performance_drop); (3)
add personalized behaviors into handlers that are triggered for lo-
cal training, such as fusing the received global model with local
models before performing local training. In most cases, such cus-
tomization can be inherited from the general training behaviors
and only need to focus on the differences. Considering that clients
might have different privacy protection requirements, some pri-
vacy protection techniques can be adopted. For example, clients
might choose to inject noise into the model parameters before shar-
ing them. More details of the privacy protection of messages can
be found in Section 4.1.

We provide several representative personalized federated algo-
rithms [15] in FederatedScope for handling the heterogeneity in
FL, including pFedMe [70], FedBN [51], FedEM [56], and Ditto [48].
These built-in algorithms serve as examples for showing how to
easily and flexibly develop new personalized federated algorithms,
and can also be conveniently adopted via configuring by users in
real-world applications.

3.4.2 Multiple Learning Goals. Note that the scope of FL also cov-
ers the scenarios where participants learn common knowledge
while optimizing different learning goals [56, 69, 85, 90]. The par-
ticipants of an FL course reach a consensus on what needs to be
shared while keeping other learning parts private, especially in
cross-silo scenarios. For example, several medical research insti-
tutes would like to collaboratively learn a graph neural network
for capturing the common structure knowledge of molecules, but
they will not disclose what is the usage of the learned structure
knowledge. They might exchange the update of the graph convo-
lution layers while maintaining the encode layers, readout layers,
and headers (such as classifier) private. In this and more similar
scenarios from model pre-training, it can be difficult or even in-
tractable for users to develop with a procedural programming par-
adigm via defining the static computation graph of the FL course.

Fortunately, the event-driven design of FederatedScope makes
it easy to express and implement the FL courses with multiple
learning goals. Each participant owns its local model and private
data, defines its computation graph, locally trains with private
learning objective, and only exchanges messages of the shared lay-
ers with others through FL.

Currently, FederatedScope provides three representative sce-
narios of FL with multiple learning goals, including graph classifi-
cation, molecular property inference, and natural language under-
standing (NLU). In the graph classification scenario, clients own
different graph classification tasks and aim to collaboratively im-
prove their own performance due to the limitation of available
training data. In the molecular property inference scenario, differ-
ent clients have different property inference goals, such as the sol-
ubility (regression task), the enzyme type (classification task), and
the penetration (classification task), which leads to heterogeneity

in terms of task type. In the NLU scenario, clients are also hetero-
geneous in terms of task type, and they own different NLU tasks,
including sentiment classification, reading compression, and sen-
tence pair similarity prediction. Since the development of FL with
multiple learning goals is still in the early stage, FederatedScope
provides these scenarios to broaden the scope of FL applications
and promote the development of innovative methods. More details
of these scenarios of FL with multiple learning goals can be found
in our open source repository [3].

In summary, FederatedScope allows users to describe partici-
pants’ behaviors from their respective perspectives and thus pro-
vides flexibility in applying different training processes and learn-
ing goals to the participants to handle the heterogeneity of FL.

3.5 Supporting Cross-backend FL

Motivated by the strong need from real-world applications, Fed-
eratedScope supports constructing cross-backend FL courses. For
example, in an FL task, some of the involved clients are equipped
with TensorFlow while others might run with PyTorch. Thanks
to the event-driven architecture, FederatedScope can conveniently
provide such functionality via a mechanism called message transla-
tion. Note that such support of cross-backend FL is different from
those provided by the universal languages such as ONNX [7] and
the existing FL platforms such as TFF [10].

Conceptually, ONNX and TFF adopt a global perspective of con-
structing an FL course, which implies that the complete computa-
tion graph is globally defined and shared among all participants.
In order to make it compatible with different (versions of) ma-
chine learning backends on different clients, the global computa-
tion graph is serialized into platform-independent and language-
independent representations, sent to the clients, and interpreted
or compiled accordingly for different backends.

Message translation. FederatedScope, in contrast, gives each par-
ticipant the right of describing the computation graph on its own
(for the portion it takes charge of). Hence, participants can define
the computation graph based on their running backends. Follow-
ing a pre-defined consensus on the format of messages, the par-
ticipants transform the messages, e.g., gradients and model pa-
rameters, generated from the local backends into the pre-defined
backend-independent format, e.g., an array of pairs of parameters
and values, before sharing them with others. This procedure is
called encoding. For the other direction, once an encoded message
is received, the participant parses the message, e.g., the above ar-
ray, into backend-dependent tensors in its own computation graph
and backend, which is called the decoding procedure.

The encoding and decoding procedures are abstracted as two
special programming interfaces in FederatedScope with default
implementations; they can also be customized for each participant
based on its backend and the FL algorithm to be deployed. Federat-
edScope provides several examples of constructing cross-backend
federated learning [2].

In supporting cross-backend FL, the advantage of Federated-
Scope is two-fold: (1) FederatedScope provides more flexibility to
handle the heterogeneity of FL than other platforms that adopt a
global perspective since each participant has the right to declare
its computation graph independently. Specifically, the developer

1065

class CustomizedServer (Server):
def customized_handler(args):
Do sth. # Describe the operations for handling the event
Register the customized handlers for customized events
registered_handlers dict() # Expected type {event: handler}
register(customized_event, customized_handler)

if customized_event == True:
Call the corresponding customized_handler
registered_handlers[customized_event] (args)

Figure 3: Behaviors description with events and handlers.

of each participant can focus on expressing its own computation
graph, such as client-specific embedding layers and output layers,
adapting to its input instance and task. There is no need to declare
a super graph (i.e., the global perspective) and care about how to
distribute it, reducing the implementation difficulty. (2) Federat-
edScope follows the principle of information minimization, where
participants only need to achieve a consensus on the format of mes-
sages and exchange necessary information. Thus, the exchanged
model parameters will not leak the whole model architecture, the
local training algorithm, or the personalization-related operators
to other participants, which would otherwise be inferable from
the global computation graph of ONNX and TFF. When such in-
formation leakage happens, malicious participants benefit from it
because they can conduct a white-box attack rather than the more
challenging black-box one in FederatedScope. We will talk more
about privacy attacks in Section 4.1.

3.6 Usage of FederatedScope

In this section, we give a full example of how to set up an FL course,
so that users can gain a clear and vivid understanding of Federat-
edScope. At a high level, users should define a series of events and
their corresponding handlers, which characterize the behaviors of
participants. As shown in Figure 3, the handlers are expressed as
callable functions and bound to the corresponding events with a
register mechanism. When an event happens, the corresponding
handler will be called to handle it. The example is as follows:

Example 3.1. Consider that a server and several clients would
like to construct an FL course and they agree to exchange certain
model parameters during the training process.

For clients, the event related to message passing is “receiv-
ing_models”, and the corresponding handler can be “train the re-
ceived global models based on local data, and then return the model
updates”. The local training process is executed by a Trainer ob-
ject held by the client. As illustrated in Figure 4, the trainer encap-
sulates the training details, entirely decoupled from the client’s
behaviors. Hence, the training process can be described as those
of the centralized learning case, and the trainer can be flexibly
extended with fancy optimizers, regularizers, personalized algo-
rithms, etc. Such a design makes it easy for user customizations.

For the server, the event related to message passing is
ceiving_updates” and the corresponding handler can be “save the

«
re-

class Client(object):
trainer = CustomizedTrainer (args)
def handler_for_receiving_models(args):
Perform local training when receiving the global models
model_update trainer.train(args.model, args.data)
send (message=model_update, receiver=server)

class CustomizedTrainer (Trainer):

Describe training behaviors (same as centralized training)

def train(received_models, data):
Personalized algorithms might be applied here
local_model = update_from_global_models(received_models)
preds = local_model.forward(data.x)
args = [optimizer, loss_function, regularizer, ...]
model_updates local_model.backward(data.y, preds, args)
return model_updates

Figure 4: The training behaviors and clients are decoupled
for supporting flexible customization.

model updates, and check the aggregation condition”, which re-
quires another event related to condition checking. For the syn-
chronous training strategy, such event can be “all_received” and
the corresponding handler will be “perform federated aggregation,
and broadcast the updated global models”. For the asynchronous
training strategies, the event “all_received” can be replaced with
“goal_achieved” or “time_up”, which adds flexible behaviors dur-
ing sampling clients or performing aggregation (More details can
be found in Section 3.3). The federated aggregation is executed by
an aggregator, which is also decoupled with the server for flexi-
bly supporting various state-of-the-art (SOTA) aggregation algo-
rithms, such as FedOpt [5], FedNova [77], FedProx [50], etc.

Note that when events such as “all_received” or “goal_achieved”
happens, the clients would receive the up-to-date global models
after the server performs federated aggregation, which naturally
causes the following event “receiving_models” and triggers the
handlers for performing a new round of local training. In this way,
although we have not explicitly declared a sequential training pro-
cess, the events happen in the intended logical order to trigger the
corresponding handlers, which can precisely express the FL proce-
dure and promote modularization. Further, events such as “max-
imum_iterations_reached” or “early_stopped” can be adopted to
specify when the FL courses should be terminated. A

With such event-driven architecture, FederatedScope allows
users to use existing or add new <event, handler> pairs for flex-
ible customization, rather than inserting the new behaviors into
the sequential FL course carefully as those in the procedural pro-
gramming paradigm. For example, by simply changing the event
“all_received” to other events related to condition checking such as
“goal_achieved”, users can conveniently apply asynchronous train-
ing strategies. Users also can add some new events related to mes-
sage passing to enable the heterogeneous information exchange,
such as node embeddings in graph federated learning [85] and en-
crypted results in cross-silo federated learning [32].

The details of the adopted algorithms in trainer and aggregator
are decoupled with the behaviors of participants. Therefore, when

1066

users develop their own trainer/aggregator with FederatedScope,
they only need to care about the details of training/aggregating al-
gorithms. For example, users are expected to implement several ba-
sic interfaces of trainers, including train, evaluation, update model,
etc., which is the same as those in centralized training and serves
as “must-do” items. For the aggregator, which takes the received
messages as inputs and returns the aggregated results, users only
need to implement how to aggregate.

Programming Interfaces and Completeness Checking. Fed-
eratedScope provides base classes to aware users of the necessary
interfaces for an FL course, such as BaseTrainer and in BaseWorker.
These base classes can be used to check the completeness of the
defined FL courses, since an “Not Implementation Error” would be
raised to abort the execution if users fail to implement the nec-
essary interfaces. With the base classes, FederatedScope provides
rich implementation of existing FL algorithms. Therefore users can
inherit the provided implementation and focus on the development
of new functions and algorithms, which also ensures the complete-
ness of FL courses. Besides, FederatedScope provides a complete-
ness checking mechanism to generate a directed graph to verify
the flow of message transmission in the constructed FL course.

Robustness Against Malicious Participants. To defend mali-
cious participants and make the system more robust, some Byzan-
tine fault tolerance algorithms are provided in FederatedScope. For
example, we can apply the Krum [9] aggregation rule in federated
aggregation. Note that these Byzantine fault tolerance algorithms
can be regarded as the aggregation behaviors of server and imple-
mented in the aggregator, which is decoupled with other behaviors
to make it flexible and extendable for users to develop their own
fault tolerance algorithms.

4 IMPORTANT PLUG-IN COMPONENTS

In this section, we present several important plug-in components
in FederatedScope for convenient usage. These components pro-
vide functionalities including privacy protection, attack simula-
tion, and auto-tuning, all of which are tightly coupled with the
design of FederatedScope and serve as plug-ins.

4.1 Behavior Plug-In: Privacy Protection

Real-world FL applications might prefer different privacy protec-
tion algorithms due to their diversity in types of private infor-
mation, protection strengths, computation and communication re-
sources, etc., which motivates us to provide various privacy pro-
tection algorithms in FederatedScope.

With the design of FederatedScope, privacy protection algo-
rithms can be implemented as behavior plug-ins, which indicates
that the privacy protection algorithms bring new behaviors of par-
ticipants. For example, before the participants share messages, the
encryption algorithms might be applied on the messages, or the
messages would be partitioned into several frames, or certain noise
can be injected into the messages. These behaviors have been pre-
defined in FederatedScope (so-called the behavior plug-in), and
can be easily called to protect privacy via simple configuration.

Specifically, we implement a widely-used homomorphic encryp-
tion algorithm Paillier [65] and apply it in a cross-silo FL task [32];

class Client(object):
def handler_for_receiving_models(args):

if config.inject_noise_before_sharing == True:
Inject certain noise before sharing the message
args = [noise_distribution, budget, ...]

protected_messages = add_noise(messages, args)

send (message=protected_messages, receiver=server)
else:

send (message=messages, receiver=server)

class Fed_Runner(object):
def setup_client(config):
if config.is_malicious == True:
Instantiate a malicious client with attack behavior

client = MaliciousClient(attack_algorithms, args)
else:

Instantiate a normal client

client = Client(args)

client.join_in_FL_course()

Figure 5: Behavior plug-in: injecting noise.

and we develop a secret sharing mechanism for FedAvg. These pro-
vided examples demonstrate how to apply privacy protection al-
gorithms with FederatedScope. Furthermore, to satisfy the hetero-
geneity in privacy protection strengths, we provide tunable mod-
ules for applying Differential Privacy (DP) in FL, which has been
a popular technique for privacy protection and has achieved great
success in database and FL applications [22, 23, 74, 81]. An example
is illustrated in Figure 5, from which we can see that users can uti-
lize the configuration to modify the client’s behavior: injecting cer-
tain noise into the messages before sharing. Users can combine dif-
ferent behaviors together to implement fancy DP algorithms such
as NDAFL [81]. Note that to achieve a theoretical guarantee of pri-
vacy protection, users still need to specify some necessary settings
according to their own data and tasks, including the noise distribu-
tion [24, 66] and privacy budget allocation [52, 55, 78].

4.2 Participant Plug-In: Attack Simulation

Attacks, growing along with the development of FL, are impor-
tant for users to verify the availability and the privacy protection
strength of their FL systems and algorithms. Typical attacks in-
clude privacy attack and performance attack: the former aims to
steal the information related to clients’ private data, while the lat-
ter aims to intentionally guide the learned model to misclassify a
specific subset of data for malicious purposes such as back-door.
However, most of the existing FL platforms ignore such an impor-
tant functional component.

Note that it is non-trivial to provide attack simulation in an
FL platform, since the diversity of privacy and performance at-
tacks brings challenges to the platform’s flexibility and extensibil-
ity. Benefited from the design of FederatedScope, the behaviors of
malicious participants can be expressed independently, thus the at-
tack simulation can be implemented as the participant plug-in in
FederatedScope. To be more specific, as shown in Figure 6, users
can conveniently choose some of the participants to become mali-
cious clients via configuring, and attack algorithms can be added
to their own trainers. These malicious clients are able to collect or
inject certain messages among victims, and further recover or infer
the target information accordingly. The simulated attacks provided
in FederatedScope can be used to verify the privacy protection
strength of their FL systems and algorithms. For example, when
users develop a new FL algorithm, they want to know the pro-
tection level of the proposed algorithm from some perspectives,
such as whether the dataset properties or private training samples
would be inferred by attacks. They can use several state-of-the-art

1067

Figure 6: Participant plug-in: malicious client.

attack algorithms, which have been provided in FederatedScope
for convenient usage, to check the privacy protection strength of
their FL algorithms, and enhance the privacy protection strength
if necessary according to the results of simulated attacks.

FederatedScope provides rich types of attack. For privacy at-
tack, FederatedScope provides the implementation of the follow-
ing algorithms: (i) Gradient inversion attack [62] for membership
inference; (ii) PIA [60] for property inference attack; (iii) DMU-
GAN [35] for class representative attack; (iv) DLG [95], iDLG [94],
GRADINYV [27] for training data/label inference attack. In terms of
performance attack, FederatedScope currently focuses on the back-
door attack, a representative type of performance attack, whose
objective is to mislead the model to classify some selected sam-
ples to the attacker-specified class. The implementations of SOTA
backdoor attacks include: (i) Edge-case backdoor attacks [76], Bad-
Nets [29], Blended [16], WaNet [64], NARCISSUS [91], which
perform back-door attack by poisoning the dataset; (ii) Neuro-
toxin [93] and DBA [83], which perform back-door attack by poi-
soning the model.

4.3

FL algorithms generally expose hyperparameters that can signifi-
cantly affect their performance. Without suitable configurations,
users cannot manage their FL applications well. Hyperparame-
ter optimization (HPO) methods, both traditional methods (e.g.,
Bayesian optimization [67] and multi-fidelity methods [4, 6, 25, 47])
and Federated-HPO methods [20, 39] (denoting very recent ones
that deliberately take the FL setting into account) can help users
manage FL applications by automatically seeking suitable hyper-
parameter configurations.

Therefore, in FederatedScope, we provide an auto-tuning
plug-in, which incorporates various HPO methods. Conceptually,
Bayesian optimization, multi-fidelity, and Federated-HPO methods
treat a complete FL course, a few FL rounds, and client-wise local
update procedures as black-box functions to be evaluated, respec-
tively. FederatedScope provides a unified interface to manage the
underlying FL procedure in various granularities so that different
HPO methods can interplay with their corresponding black-box
functions. This unification is nontrivial for the last case, where we
leverage our event-driven architecture to achieve the client-wise
exploration of Federated-HPO methods. When they are plugged
in, the exchanged messages are extended with HPO-related sam-
ples/models/feedback, and the participants would handle them
with extended behaviors accordingly.

Manager Plug-In: Auto-tuning

class Server(object):
def handler_for_receiving_updates(args):
if config.apply_fedex == True:
Choose hyperparameters for the client
cfg = sample_cfg(cfg_candidates, args.hpo_feedback)
Continue to handling the message accordingly

class Client(object):
def handler_for_receiving_models(args):
if config.apply_fedex == True:
Apply the received hyperparameters
trainer.apply_cfg(args.received_config)
Continue to handling the message accordingly

Figure 7: Manager plug-in: re-specify configuration.

For Bayesian optimization methods, we showcase applying var-
ious open-sourced HPO packages to interact with FederatedScope.
Each time they propose a specific configuration, FederatedScope
executes an FL course accordingly and returns a specified metric
(e.g., validation loss) as the function’s output. As for multi-fidelity
methods, we have implemented Hyperband [47] and PBT [46].
Specifically, FederatedScope can export the snapshot of a training
course to a corresponding checkpoint, from which another train-
ing course can restore. With such a checkpoint mechanism, these
multi-fidelity methods can evaluate the configurations that have
survived previous low-fidelity comparisons by restoring from the
last checkpoints rather than learning from scratch.

Furthermore, FederatedScope provides FedEx [39] as an ex-
emplary implementation of Federated-HPO methods. Specifically,
once FedEx is plugged in, we sample configurations for each client
independently in each FL round. Then each client re-specifies its
native configuration and conducts local updates accordingly, as
shown in Figure 7. Finally, the feedback is aggregated to update the
policies responsible for determining the optimal configuration(s).

In summary, the auto-tuning plug-in can manage FL applica-
tions in various granularities. Traditional HPO methods interplay
with FederatedScope by configuring and running one or more com-
plete FL rounds, while Federated-HPO methods explore client-wise
configurations concurrently in a single FL round. With flexibility
provided by the event-driven architecture, we have implemented
these HPO methods in a unified way [80], and novel HPO methods
can be easily developed and contributed to FederatedScope.

5 EXPERIMENTS
5.1 DataZoo and ModelZoo

For convenient usage, we collect and preprocess ten widely-used
datasets from various FL application scenarios, including com-
puter vision datasets (FEMNIST [19], CelebA [54] and CIFAR-
10 [43]), natural language processing datasets (Shakespeare [57],
Twitter [28] and Reddit [58]) from LEAF [12], and graph learn-
ing datasets (DBLP [73], Ciao [72] and MultiTask [85]) from
FederatedScope-GNN (FS-G) [79]. The statistics of these datasets

1068

can be found in the full version [1]. Meanwhile, we provide off-the-
shelf neural network models via our ModelZoo, which includes
widely-adopted model architectures, such as ConvNet [45] and
VGG [68] for computer vision tasks, BERT [21] and LSTM [36] for
natural language processing tasks, and various GNNs [18, 30, 40,
75, 87] for graph learning. Such ModelZoo allows users to conve-
niently develop various trainers for clients.

5.2 Experiment Settings

Here we conduct a series of experiments with FederatedScope on
three representative datasets as follows:
FEMNIST. FEMNIST consists of 805,263 handwritten digits in 62
classes, which are partitioned into 3,597 clients according to the
writers. With FL, a CNN with two convolutional layers is trained
for image classification task on this dataset.
CIFAR-10. As suggested by previous studies [37], we partition the
dataset into 1,000 clients with a Dirichlet distribution, and federally
train a CNN with two convolutional layers for image classification.
Twitter. We sample a subset from Twitter, which consists of 6,602
twitter users’ 16,077 texts. Each twitter user can be regarded as a
client for constructing an FL course. Following previous study [12],
we embed the texts with a bag-of-words model [33] and collabora-
tively train a logistic regression model for sentiment analysis.
More implementation details can be found in the full version [1].

5.3 Results and Analysis

5.3.1 Asynchronous Federated Learning. We first conduct experi-
ments to compare the performance of applying synchronous and
asynchronous training strategies in FL.

Virtual Timestamp. Following the best practice in prior FL
works [44], we conduct the experiments by simulation while track-
ing the execution time with virtual timestamps. Specifically, the
server begins to broadcast messages containing initial model pa-
rameters at timestamp 0. Then each client sends updates back with
a timestamp as the received one plus the execution time of local
computation and communication estimated by FedScale [44]. The
server handles the received messages in the order of their times-
tamps and lets the next broadcast inherit the timestamp from the
message that triggers it, assuming the time cost of the server is
negligible. Along with an FL course, we record the performance of
the global model with respect to such virtual timestamps.

Baselines. We implement FedAvg with two synchronous train-
ing strategies including Sync-vanilla (i.e., the vanilla synchronous
strategy) and Sync-OS (i.e., the synchronous strategy with over-
selection mechanism [10]). As Sync-OS is originally proposed and
implemented in FedScale [44], we also adapt it for our experiments
and report its performance (denoted as Sync-OS (FedScale)) for cor-
rectness verification.

For asynchronous FL, we instantiate different asynchronous
behaviors discussed in Section 3.3, and different strategies are
named in the format of Async-AdoptedEvent-BroadcastManner-
SampleStrategy. For example, Async-Goal-Rece-Unif denotes that
this strategy adopts the event “goal_achieved”, the after receiving
broadcasting manner and the uniform sampling strategies for asyn-
chronous FL, which can be regarded as the implementation of Fed-
Buff [63]; and Async-Time-Aggr-Group denotes we adopt the event

Table 1: The comparison between applying synchronous and asynchronous training strategies in federated learning, in terms
of the virtual time cost (hours) to achieve the targeted test accuracy.

Sync. A .
Dataset (Target Acc.) yne syne
Vanilla Os OS (FedScale) Goal-Aggr-Unif Goal-Rece-Unif Time-Aggr-Unif Goal-Aggr-Group
FEMNIST (85%) 61.46 27.34 2.95% 28.78 9.14x 11.29 5 44% 11.36 5.41x 11.70 5.25% 10.42 5.90x%
CIFAR-10 (70%) 66.99 26.42954x 28.98 9.31x 7.73 8.67x 7.98 8.39x 8.87 7.55% 7.54 8.88%
Twitter (69%) 9.41 3.84 2 45% 4.14 9.97x 0.78 12.06x 0.64 14.70x 0.50 18.82x 0.65 14.48x
0.20
07 Sync-Vanilla I B Async-Goal-Aggr-Unif
: 2004 1 Sync-0S 2 Async-Goal-Rece-Unif
? g [Async-Goal-Aggr-Unif g 0.15
s R0.03) 1 Asyne-Goal-Rece-Unif | /o] I I
<8 ’ Sync-Vanilla 2 /\\ 2010 I I = -
i s "y Rl | | .
£03 B Sync-0S (FedScale) 2 / E
o @~ Async-Goal-Aggr-Unif £o01 A 2005 B
— Async-Goal-Rece-Unif // o /
0.1p 5 10 15 20 0.00 30 0 9% 120 150 00067 "3 35 4 5 6 7 & 9 =10
Virtual Run Time (hour) Effective Aggregation Count Staleness

Figure 8: The comparison between syn- Figure 9: The distributions of the aggre- Figure 10: The distributions of the stale-

chronous and asynchronous strategies.

“time_up”, the after aggregating broadcasting manner and a group
sampling strategy (the client would be grouply sampled according
to their responsiveness [14]).

Analysis. We adopt the virtual time cost (hours) to achieve
the targeted test accuracy as the performance metric for compar-
ing synchronous and asynchronous FL. The experimental results
are shown in Table 1, from which we can observe that asynchro-
nous training strategies achieve significant efficiency improve-
ments (5.25%~18.82X) compared to the vanilla synchronous train-
ing strategy on all the benchmark datasets. Meanwhile, we plot the
learning curves in Figure 8. Due to the space limitation, we only
show some asynchronous training strategies on CIFAR-10 dataset
and omit other similar results. From Figure 8, we can observe the
existence of noticeable gaps between synchronous and asynchro-
nous training strategies for a long time during the training pro-
cess. These experimental results are consistent with previous stud-
ies [38, 84] and confirm that the asynchronous training strategies
provided in FederatedScope can significantly improve the training
efficiency while achieving competitive model performance.

Both our implementation Sync-OS and the original implementa-
tion in FedScale show that applying over-selection mechanism in
synchronous FL can improve the efficiency to some degree. How-
ever, it might cause unfairness among participants and then lead
to model bias, as demonstrated in Figure 9. From the figure we
can observe that when applying over-selection mechanism Sync-
OS, some clients never contribute to the federated aggregation,
i.e., Pr[effective_aggregation_count = 0] > 0. The reason is that
these clients need more computation or communication time, and
thus their feedback would always be dropped since the server
has finished the federated aggregation with the feedback from
those clients having faster response speeds. In other words, these
clients always become the victims among the over-selected clients,
which results in unfairness among participants, and then causes

gated count of the clients.

1069

ness in asynchronous strategies.

the learned models to bias towards those clients with fast response
speeds. In contrast, the asynchronous learning strategies provided
in FederatedScope can improve the efficiency without introducing
such unfairness and model bias, due to the fact that staled feed-
back would be tolerated in the federated aggregation. Hence the
distribution of effective aggregation count of asynchronous learn-
ing strategies plotted in Figure 9 is more concentrated and similar
to that of the vanilla synchronous training strategy.

Further, in Figure 10, we illustrate the characteristics of differ-
ent asynchronous training strategies in terms of staleness (i.e., the
version difference between the up-to-date global model and the
model used for local training) of the updates when performing
federated aggregation. By comparing Async-Goal-Aggr-Unif and
Async-Goal-Rece-Unif, we can see that after aggregating broadcast-
ing manner causes less staleness than after receiving. It implies that
after aggregating is more suitable for those FL tasks with a low
staleness toleration threshold, but such a broadcasting manner re-
quires more available bandwidths at the server since multiple mes-
sages are sent out at the same time.

5.3.2 Personalization. To demonstrate how personalization can
handle the heterogeneity among participants, we compare Fe-
dAvg [57] with several built-in SOTA personalized FL algorithms,
including FedBN [51], FedEM [56], pFedMe [70] and Ditto [48].
The experimental results are illustrated in Figure 11, which
shows the client-wise test accuracies on FEMNIST dataset. We can
observe that the average accuracy (denoted as the red dots) and
the 90% quantile accuracy (denoted as the red horizontal lines) of
vanilla FedAvg are both significantly lower than those of person-
alized FL algorithms. This indicates that applying personalized FL
algorithms can improve the client-wise performance, also covering
the bottom clients, and then lead to a better overall performance.
Besides, in terms of the standard deviation among the client-wise
accuracy (shown as o at the top of the figure), personalized FL

<

0=0088 0=0.082 0=0.087 0=0.068 0=0.071 40 RS (68.8724.46)
“~ e, —+— RS+FedEx (72.355.79)
0.9 35 NP —e- SHA(75.25::3.47)
09 ° ° 2 2 —<-+ SHA+FedEx (77.642.87)
) ° ° [] g o .—.\.\N“‘\ =30 YA A
= Q =}
Sos - L g \.\’\ \ 2 \\
3 —o— 25
< Yy Vv v 707 e = 20N
707 = - =~ a0)
= 0.6 [32 3 et
0.6 15 ::“couq\ -
05 0555 20% 40% 60% 80% 100% 0.0 02 04 0.6 08 1.0
*® FedAvg FedBN FedEM pFedMe Ditto Precentage of Clients Fraction of Budget

Figure 11: Client-wise test accuracy on Figure 12: Accuracy w.r.t. varying pro- Figure 13: Best-seen validation loss over

FEMNIST dataset.

algorithms can reduce the performance differences to some de-
gree, which confirms the advantages of enabling personalization
behaviors for handling the heterogeneity among participants in
real-world FL applications.

Personalized federated learning algorithms might need differ-
ent computation and computation resources compared to vanilla
FedAvg [57]. The computation and communication costs in each
training round are determined by the adopted algorithms. Take the
comparisons between vanilla FedAvg and two representative Per-
sonalized federated learning algorithms FedBN [51] and Ditto [48]
as examples, in each training round [15], (i) FedBN needs the same
computation but fewer communication costs, since it proposes to
not share the parameters of BacthNorm layer; and (ii) Ditto needs
the same communication but more local computation costs, since
it suggests to train the local models additionally. Further, from the
perspective of an FL course, i.e., iteratively performing the FL train-
ing rounds until termination, the communication and computation
costs depend on the convergence of learned models.

5.3.3 Privacy Protection and Attack. We conduct an experiment
to show the effect of applying privacy protection algorithms pro-
vided in FederatedScope. We take DP as an example, and study its
effect on the utility of learned model and the effectiveness in de-
fending against privacy attack. Specifically, we train a ConvNet2
model on FEMNIST, and randomly choose some of the clients to in-
ject Gaussian noise into the returned model updates to strengthen
their privacy. We construct multiple FL courses with respect to
varying the percentage of clients that injects noise, changing from
0% to 100%, and plot the performance of the learned models in Fig-
ure 12. From this figure we can observe that as more and more
clients choose to inject the noise into the returned model updates,
the test accuracy achieved by the learned global model decreases
gradually, from 84% to 65%, which shows the trade-off between the
privacy protection strength and model utility.

Moreover, we apply the DLG algorithm [95] implemented in
FederatedScope to conduct privacy attack, aiming to reconstruct
private training data of other users. As shown on the left-hand side
of Figure 12, the reconstructed images from the clients who have
not injected noises are clear and the privacy attacker successfully
recovers clients’ training data to the extent that the groundtruth
digits are exposed. On the right-hand side of the figure, we plot the
reconstructed images from those clients injecting noises, which
confirms the effectiveness of the privacy protection provided by
DP since the attacker fails to recover meaningful information.

tection strength and recovered images.

1070

time on FEMNIST dataset.

5.3.4 Auto-Tuning. As mentioned in Section 4.3, we have imple-
mented several HPO methods in FederatedScope, which enables
users to auto-tune hyperparameters of FL courses. Here we exper-
imentally compare some representative HPO methods, including
random search (RS) [8], successive halving algorithm (SHA) [47]
and recently proposed Federated-HPO method FedEx [39], by ap-
plying them to optimize hyperparameters of FedAvg on FEMNIST
dataset. We follow the protocol used in FedHPO-B [80], where RS
and SHA try configurations one by one, and FedEx wrapped by
RS/SHA manages the search procedure in a fine-grained granular-
ity to explore hyperparameter space concurrently.

We present the results in Figure 13, where the best-seen valida-
tion loss is depicted, and the test accuracy of the searched optimal
configuration is reported in the legend. The best-seen validation
losses of wrapped FedEx decrease slower than their correspond-
ing wrappers, where such a poorer regret seems to indicate poorer
searched hyperparameter configurations. However, their searched
configurations’ test accuracies are remarkably better than their
wrappers, implying the superiority of managing the search pro-
cedure in a fine-grained granularity.

6 CONCLUSIONS

In this paper, we introduce FederatedScope, a novel federated
learning platform, to provide users with great supports for vari-
ous FL development and deployment. Towards both convenient us-
age and flexible customization, FederatedScope exploits an event-
driven architecture to frame an FL course into <events, handlers>
pairs so that users can describe participants’ behaviors from their
respective perspectives. Such an event-driven design makes Feder-
atedScope suitable for handling various types of heterogeneity in
FL, due to the advantages that (i) FederatedScope enables partici-
pants to exchange rich types of messages, express diverse training
behaviors, and optimize different learning goals, and (ii) Federat-
edScope offers rich condition checking events to support various
coordinations and corporations among participants, such as differ-
ent asynchronous training strategies. Further, the design of Feder-
atedScope allows us to conveniently implement and provide sev-
eral important plug-in components, such as privacy protection, at-
tack simulation, and auto-tuning, which are indispensable for prac-
tical usage. We have released FederatedScope to help researchers
and developers quickly get started, develop new FL algorithms, and
build new FL applications, with the goal of promoting and acceler-
ating the progress of FL.

REFERENCES

(1]
(2]

[12]

[13]

[14]

(15]

[16]

[17]

[20]

[21]

[22]

[23]

[24]

Full version of paper FederatedScope: A Flexible Federated Learning Platform for
Heterogeneity. https://arxiv.org/abs/2204.05011

The examples of cross-backend FL in FederatedScope. https://github.com/
alibaba/FederatedScope/tree/master/federatedscope/cross_backends

The examples of multiple learning goals FL in FederatedScope. https://github.
com/alibaba/FederatedScope/tree/master/benchmark/B-FHTL

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. 2019. Optuna: A next-generation hyperparameter optimization frame-
work. In Proc. of the ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining (KDD’19). 2623-2631.

Muhammad Asad, Ahmed Moustafa, and Takayuki Ito. 2020. FedOpt: Towards
Communication Efficiency and Privacy Preservation in Federated Learning. Ap-
plied Sciences 10, 8 (2020).

Noor Awad, Neeratyoy Mallik, and Frank Hutter. 2021. DEHB: Evolutionary
Hyberband for Scalable, Robust and Efficient Hyperparameter Optimization. In
Proc. of the International Jont Conference on Artifical Intelligence (IJCAI'21). 2147—
2153.

Junjie Bai, Fang Lu, Ke Zhang, et al. 2019. ONNX: Open Neural Network Ex-
change. https://github.com/onnx/onnx.

James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, 2 (2012), 281-305.

Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer. 2017.
Machine learning with adversaries: Byzantine tolerant gradient descent. In Proc.
of the Advances in Neural Information Processing Systems (NeurIPS’17).

Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex In-
german, Vladimir Ivanov, Chloe Kiddon, Jakub Kone¢ny, Stefano Mazzocchi,
Brendan McMahan, et al. 2019. Towards federated learning at scale: System
design. Proceedings of Machine Learning and Systems 1, 0 (2019), 374-388.
Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan
McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-
tical secure aggregation for privacy-preserving machine learning. In Proc. of the
ACM SIGSAC Conference on Computer and Communications Security (CCS’17).
1175-1191.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Koneény,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).
Mohak Chadha, Anshul Jindal, and Michael Gerndt. 2020. Towards federated
learning using faas fabric. In Proc. of the the 2020 Sixth International Workshop
on Serverless Computing. 49-54.

Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng, and Huzefa Rang-
wala. 2021. FedAT: a high-performance and communication-efficient federated
learning system with asynchronous tiers. In Proc. of the International Confer-
ence for High Performance Computing, Networking, Storage and Analysis (Re-
silientFL’21). 1-16.

Daoyuan Chen, Dawei Gao, Weirui Kuang, Yaliang Li, and Bolin Ding. 2022.
pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning.
In Thirty-sixth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. 2017. Targeted
Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv
preprint arXiv:1712.05526 (2017).

Yujing Chen, Yue Ning, Martin Slawski, and Huzefa Rangwala. 2020. Asynchro-
nous online federated learning for edge devices with non-iid data. In Proc. of the
IEEE International Conference on Big Data (BigData’20). 15-24.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. 2021. Adaptive Univer-
sal Generalized PageRank Graph Neural Network. In Proc. of the International
Conference on Learning Representations (ICLR’21).

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. 2017.
EMNIST: Extending MNIST to handwritten letters. In Proc. of the International
Joint Conference on Neural Networks (IJCNN’17). 2921-2926.

Zhongxiang Dai, Bryan Kian Hsiang Low, and Patrick Jaillet. 2020. Federated
Bayesian Optimization via Thompson Sampling. In Proc. of the Advances in Neu-
ral Information Processing Systems (NeurIPS’20).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proc. of the North American Chapter of the Association for Computa-
tional Linguistics (NAACL-HLT’19). 4171-4186.

Bolin Ding, Marianne Winslett, Jiawei Han, and Zhenhui Li. 2011. Differentially
private data cubes: optimizing noise sources and consistency. In Proc. of the ACM
SIGMOD International Conference on Management of Data (SIGMOD’11). 217-
228.

Cynthia Dwork. 2008. Differential privacy: A survey of results. In Proc. of the
International Conference on Theory and Applications of Models of Computation
(TAMC’08). 1-19.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorithmic foundations of differ-
ential privacy. Foundations and Trends in Theoretical Computer Science 9, 3—4

1071

[25

[26

[27]

™
&

[29]

[30

(31]

[35

(36]

[38

[39

[42

[43]

[44]

(47

(48

(2014), 211-407

Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and efficient
hyperparameter optimization at scale. In Proc. of the International Conference on
Machine Learning (ICML’18). 1437-1446.

Wenjing Fang, Derun Zhao, Jin Tan, Chaochao Chen, Chaofan Yu, Li Wang, Lei
Wang, Jun Zhou, and Benyu Zhang. 2021. Large-scale Secure XGB for Vertical
Federated Learning. In Proc. of the ACM Conference on Information and Knowl-
edge Management (CIKM’21). 443-452.

Jonas Geiping, Hartmut Bauermeister, Hannah Drége, and Michael Moeller.
2020. Inverting gradients-how easy is it to break privacy in federated learning?.
In Proc. of the Advances in Neural Information Processing Systems (NeurIPS’20).
16937-16947.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twitter sentiment classification
using distant supervision. CS224N project report, Stanford 1, 12 (2009), 2009.
Tianyu Gu, Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. 2019. BadNets:
Evaluating Backdooring Attacks on Deep Neural Networks. IEEE Access 7 (2019),
47230-47244.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proc. of the Advances in Neural Information Pro-
cessing Systems (NeurIPS’17). 1024-1034.

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy, Francoise
Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and Daniel Ram-
age. 2018. Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604 (2018).

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Pa-
trini, Guillaume Smith, and Brian Thorne. 2017. Private federated learning on
vertically partitioned data via entity resolution and additively homomorphic en-
cryption. arXiv preprint arXiv:1711.10677 (2017).

Zellig S. Harris. 1954. Distributional Structure. WORD 10, 2-3 (1954), 146-162.
Chaoyang He, Songze Li, Jinhyun So, Mi Zhang, Hongyi Wang, Xiaoyang Wang,
Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Li Shen, Peilin Zhao, Yan
Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram, and Salman
Avestimehr. 2020. FedML: A Research Library and Benchmark for Federated
Machine Learning. arXiv preprint arXiv:2007.13518 (2020).

Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. 2017. Deep models
under the GAN: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 ACM SIGSAC conference on computer and communications
security. 603-618.

Sepp Hochreiter and Jirgen Schmidhuber. 1997. Long short-term memory. Neu-
ral computation 9, 8 (1997), 1735-1780.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. 2019. Measuring the ef-
fects of non-identical data distribution for federated visual classification. arXiv
preprint arXiv:1909.06335 (2019).

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu, Mike Rabbat, Ashkan
Yousefpour, Carole-Jean Wu, Hongyuan Zhan, Pavel Ustinov, Harish Srinivas,
et al. 2022. Papaya: Practical, private, and scalable federated learning. Proceed-
ings of Machine Learning and Systems 4, 0 (2022).

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia
Smith, and Ameet Talwalkar. 2021. Federated hyperparameter tuning: Chal-
lenges, baselines, and connections to weight-sharing. In Proc. of the Advances in
Neural Information Processing Systems (NeurIPS’21). 19184-19197.

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with
graph convolutional networks. In Proc. of the International Conference on Learn-
ing Representations (ICLR’17).

Jakub Koneény, H. Brendan McMahan, Daniel Ramage, and Peter Richtarik.
2016. Federated optimization: Distributed machine learning for on-device in-
telligence. arXiv preprint arXiv:1610.02527 (2016).

Jay Kreps, Neha Narkhede, Jun Rao, et al. 2011. Kafka: A distributed messaging
system for log processing. In Proc. of the NetDB workshop. 1-7.

Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.
Technical report, University of Toronto (2009).

Fan Lai, Yinwei Dai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf
Chowdhury. 2021. FedScale: Benchmarking model and system performance of
federated learning. In Proceedings of the First Workshop on Systems Challenges in
Reliable and Secure Federated Learning. 1-3.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436-444.

Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu,
David Budden, Tim Harley, and Pramod Gupta. 2019. A generalized framework
for population based training. In Proc. of the ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD’19). 1791-1799.

Lisha Li, Kevin G Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2017. Hyperband: Bandit-Based Configuration Evaluation for Hy-
perparameter Optimization. In Proc. of the International Conference on Learning
Representations (ICLR’17).

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair
and robust federated learning through personalization. In Proc. of the Interna-
tional Conference on Machine Learning (ICML’21). 6357-6368.

https://arxiv.org/abs/2204.05011
https://github.com/alibaba/FederatedScope/tree/master/federatedscope/cross_backends
https://github.com/alibaba/FederatedScope/tree/master/federatedscope/cross_backends
https://github.com/alibaba/FederatedScope/tree/master/benchmark/B-FHTL
https://github.com/alibaba/FederatedScope/tree/master/benchmark/B-FHTL
https://github.com/onnx/onnx

[49

[50]

[51]

[52

[53]

[54

[55]

[56]

[57]

[58]

[59]

[60]

(61

[62]

[63

[64

[65]

[66]

[67

[68]

(69

[70]

[71]

[72

[73

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE Signal Processing
Magazine 37, 3 (2020), 50-60.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine Learning and Systems 2 (2020), 429-450.

Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. 2021.
Fedbn: Federated learning on non-iid features via local batch normalization. In
Proc. of the International Conference on Learning Representations (ICLR’21).
Zitao Li, Bolin Ding, Ce Zhang, Ninghui Li, and Jingren Zhou. 2021. Federated
matrix factorization with privacy guarantee. PVLDB 15, 4 (2021), 900-913.
Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. 2015. Asynchronous par-
allel stochastic gradient for nonconvex optimization. In Proc. of the Advances in
Neural Information Processing Systems (NeurIPS’15). 2737-2745.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning face
attributes in the wild. In Proc. of the IEEE international conference on computer
vision (ICCV’15). 3730-3738.

Tao Luo, Mingen Pan, Pierre Tholoniat, Asaf Cidon, Roxana Geambasu, and
Mathias Lécuyer. 2021. Privacy budget scheduling. In Proc. of the USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI'21). 55-74.
Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and
Richard Vidal. 2021. Federated Multi-Task Learning under a Mixture of Dis-
tributions. In Proc. of the Advances in Neural Information Processing Systems
(NeurIPS’21). 15434-15447.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Agiiera y Arcas. 2017. Communication-efficient learning of deep networks from
decentralized data. In Proc. of the Artificial intelligence and statistics (AISTATS’17).
1273-1282.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learn-
ing Differentially Private Recurrent Language Models. In Proc. of the Interna-
tional Conference on Learning Representations (ICLR’18).

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting unintended feature leakage in collaborative learning. In Proc.
of the IEEE Symposium on Security and Privacy (SP’19). 691-706.

Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
2019. Exploiting unintended feature leakage in collaborative learning. In Proc.
of the IEEE Symposium on Security and Privacy (SP’19). 691-706.

Brenda M Michelson. 2006. Event-driven architecture overview. Patricia Seybold
Group 2, 12 (2006), 10-1571.

Milad Nasr, Reza Shokri, and Amir Houmansadr. 2019. Comprehensive privacy
analysis of deep learning: Passive and active white-box inference attacks against
centralized and federated learning. In Proc. of the IEEE Symposium on Security
and Privacy (SP’19). 739-753.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rab-
bat, Mani Malek, and Dzmitry Huba. 2022. Federated learning with buffered
asynchronous aggregation. In Proc. of the Artificial intelligence and statistics (AIS-
TATS’22). 3581-3607.

Tuan Anh Nguyen and Anh Tuan Tran. 2021. WaNet - Imperceptible Warping-
based Backdoor Attack. In Proc. of the International Conference on Learning Rep-
resentations (ICLR’21).

Pascal Paillier. 1999. Public-key cryptosystems based on composite degree resid-
uosity classes. In Proc. of the international conference on the theory and applica-
tions of cryptographic techniques (EUROCRYPT’19). 223-238.

NhatHai Phan, Xintao Wu, Han Hu, and Dejing Dou. 2017. Adaptive laplace
mechanism: Differential privacy preservation in deep learning. In Proc. of the
IEEE international conference on data mining (ICDM’17). 385-394.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Fre-
itas. 2015. Taking the human out of the loop: A review of Bayesian optimization.
Proc. IEEE 104, 1 (2015), 148-175.

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-
works for Large-Scale Image Recognition. In Proc. of the International Conference
on Learning Representations (ICLR’15).

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar. 2017.
Federated multi-task learning. In Proc. of the Advances in Neural Information
Processing Systems (NeurIPS’17). 4424-4434.

Canh T Dinh, Nguyen Tran, and Josh Nguyen. 2020. Personalized federated
learning with moreau envelopes. In Proc. of the Advances in Neural Information
Processing Systems (NeurIPS’20). 21394-21405.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2021. Towards person-
alized federated learning. IEEE Transactions on Neural Networks and Learning
Systems PP (2021).

Jiliang Tang, Huiji Gao, and Huan Liu. 2012. mTrust: Discerning multi-faceted
trust in a connected world. In Proc. of the ACM International Conference on Web
Search and Data Mining (WSDM’12). 93-102.

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netminer: extraction and mining of academic social networks. In Proc. of the
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD’08). 990-998.

1072

(74

[75

[76]

=
st

[78

[79]

(82]

(83

[84]

(85]

(87]

(88

(89]

[91

[92]

(93]

[94]

[95

[96

Aleksei Triastcyn and Boi Faltings. 2019. Federated learning with bayesian dif-
ferential privacy. In Proc. of the IEEE International Conference on Big Data (Big-
Data’19). 2587-2596.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In Proc. of the Inter-
national Conference on Learning Representations (ICLR’18).

Hongyi Wang, Kartik Sreenivasan, Shashank Rajput, Harit Vishwakarma,
Saurabh Agarwal, Jy-yong Sohn, Kangwook Lee, and Dimitris S. Papailiopou-
los. 2020. Attack of the Tails: Yes, You Really Can Backdoor Federated Learning.
In Proc. of the Advances in Neural Information Processing Systems (NeurIPS’20),
Vol. 33. 16070-16084.

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent Poor. 2020.
Tackling the Objective Inconsistency Problem in Heterogeneous Federated Op-
timization. In Proc. of the Advances in Neural Information Processing Systems
(NeurIPS’20). 7611-7623.

Tianhao Wang, Bolin Ding, Jingren Zhou, Cheng Hong, Zhicong Huang,
Ninghui Li, and Somesh Jha. 2019. Answering multi-dimensional analytical
queries under local differential privacy. In Proc. of the ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD’19). 159-176.

Zhen Wang, Weirui Kuang, Yuexiang Xie, Liuyi Yao, Yaliang Li, Bolin Ding, and
Jingren Zhou. 2022. FederatedScope-GNN: Towards a Unified, Comprehensive
and Efficient Package for Federated Graph Learning. In Proc. of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD’22).
Zhen Wang, Weirui Kuang, Ce Zhang, Bolin Ding, and Yaliang Li. 2022. FedHPO-
B: A Benchmark Suite for Federated Hyperparameter Optimization. arXiv
preprint arXiv:2206.03966 (2022).

Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H. Yang, Farhad Farokhi, Shi
Jin, Tony Q. S. Quek, and H. Vincent Poor. 2020. Federated Learning With Dif-
ferential Privacy: Algorithms and Performance Analysis. IEEE Transactions on
Information Forensics and Security 15 (2020), 3454-3469.

Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple, and Stephen Jarvis.
2020. SAFA: A Semi-Asynchronous Protocol for Fast Federated Learning With
Low Overhead. IEEE Trans. Comput. 70, 5 (2020), 655-668.

Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. DBA: Distributed Back-
door Attacks against Federated Learning. In Proc. of the International Conference
on Learning Representations (ICLR’20).

Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous federated
optimization. arXiv preprint arXiv:1903.03934 (2019).

Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification
over non-iid graphs. In Proc. of the Advances in Neural Information Processing
Systems (NeurIPS’21). 18839-18852.

Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei
Wang. 2021. Federated learning for healthcare informatics. Journal of Healthcare
Informatics Research 5, 1 (2021), 1-19.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Pow-
erful are Graph Neural Networks?. In Proc. of the International Conference on
Learning Representations (ICLR’19).

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federated ma-
chine learning: Concept and applications. ACM Transactions on Intelligent Sys-
tems and Technology 10, 2 (2019), 12:1-12:19.

Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu. 2019.
Federated learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 13, 3 (2019), 1-207.

Liuyi Yao, Dawei Gao, Zhen Wang, Yuexiang Xie, Weirui Kuang, Daoyuan Chen,
Haohui Wang, Chenhe Dong, Bolin Ding, and Yaliang Li. 2022. A Benchmark
for Federated Hetero-Task Learning. arXiv preprint arXiv:2206.03436 (2022).

Yi Zeng, Minzhou Pan, Hoang Anh Just, Lingjuan Lyu, Meikang Qiu, and Ruoxi
Jia. 2022. Narcissus: A Practical Clean-Label Backdoor Attack with Limited In-
formation. arXiv preprint arXiv:2204.05255 (2022).

Wei Zhang, Suyog Gupta, Xiangru Lian, and Ji Liu. 2016. Staleness-Aware
Async-SGD for Distributed Deep Learning. In Proc. of the International Jont Con-
ference on Artifical Intelligence (IJCAI'16). 2350—-2356.

Zhengming Zhang, Ashwinee Panda, Linyue Song, Yaoqing Yang, Michael W.
Mahoney, Joseph E. Gonzalez, Kannan Ramchandran, and Prateek Mittal.
2022. Neurotoxin: Durable Backdoors in Federated Learning. arXiv preprint
arXiv:2206.10341 (2022).

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. iDLG: Improved Deep
Leakage from Gradients. arXiv preprint arXiv:2001.02610 (2020).

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from gradients.
In Proc. of the Advances in Neural Information Processing Systems (NeurIPS’19).
14747-14756.

Alexander Ziller, Andrew Trask, Antonio Lopardo, Benjamin Szymkow, Bobby
Wagner, Emma Bluemke, Jean-Mickael Nounahon, Jonathan Passerat-Palmbach,
Kritika Prakash, Nick Rose, et al. 2021. Pysyft: A library for easy federated
learning. In Federated Learning Systems: Towards Next-Generation AL 111-139.

	Abstract
	1 Introduction
	2 Preliminary
	2.1 Problem Definition
	2.2 Related Works

	3 Design of FederatedScope
	3.1 Overview
	3.2 Event-driven Architecture
	3.3 Supporting Asynchronous Training
	3.4 Supporting Personalization & Multi-Goal
	3.5 Supporting Cross-backend FL
	3.6 Usage of FederatedScope

	4 Important Plug-In Components
	4.1 Behavior Plug-In: Privacy Protection
	4.2 Participant Plug-In: Attack Simulation
	4.3 Manager Plug-In: Auto-tuning

	5 Experiments
	5.1 DataZoo and ModelZoo
	5.2 Experiment Settings
	5.3 Results and Analysis

	6 Conclusions
	References

