
Change Propagation Without Joins
Qichen Wang

Hong Kong Baptist University

qcwang@hkbu.edu.hk

Xiao Hu

University of Waterloo

xiaohu@uwaterloo.ca

Binyang Dai

Hong Kong University of Science and Technology

bdaiab@ust.hk

Ke Yi

Hong Kong University of Science and Technology

yike@ust.hk

ABSTRACT

We revisit the classical change propagation framework for query

evaluation under updates. The standard framework takes a query

plan and materializes the intermediate views, which incurs high

polynomial costs in both space and time, with the join operator be-

ing the culprit. In this paper, we propose a new change propagation

framework without joins, thus naturally avoiding this polynomial

blowup. Meanwhile, we show that the new framework still supports

constant-delay enumeration of both the deltas and the full query

results, the same as in the standard framework. Furthermore, we

provide a quantitative analysis of its update cost, which not only

recovers many recent theoretical results on the problem, but also

yields an effective approach to optimizing the query plan. The new

framework is also easy to be integrated into an existing stream-

ing database system. Experimental results show that our system

prototype, implemented using Flink DataStream API, significantly

outperforms other systems in terms of space, time, and latency.

PVLDB Reference Format:

Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. Change Propagation

Without Joins. PVLDB, 16(5): 1046 - 1058, 2023.

doi:10.14778/3579075.3579080

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/hkustDB/CROWN.

1 INTRODUCTION

We study the problem of query evaluation under updates, a.k.a.
incremental view maintenance. Given a query 𝑄 , a database 𝐷 and

a sequence of updates, where each update is either the insertion or

deletion of a tuple, the goal is to maintain the query results 𝑄p𝐷q

continuously. More precisely, there are two modes to return the

updated𝑄p𝐷q to the user (an end user or an upper-level application):

full enumeration and delta enumeration. The former is pull-based,

i.e., the system returns 𝑄p𝐷q passively upon request of the user;

while in the latter case, we push the delta Δ𝑄p𝐷, 𝑡q, i.e., the change
to𝑄p𝐷q caused by the insertion/deletion of 𝑡 , to the user after each

update 𝑡 . These two modes are applicable to different scenarios.

Full enumeration cannot be done too frequently if 𝑄p𝐷q is large,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.

doi:10.14778/3579075.3579080

and it may miss some ephemeral events in between two requests.

Delta enumeration offers real-time responses with low latency, but

it requires the user to have the ability to “consume” the deltas in

a timely fashion. It can be considered as a stream-in-stream-out

operator, where the input is a stream of updates to the base tables,

while the output is a stream of updates to the query result (i.e.,

a stream of deltas). If the user wishes to always have a complete

and accurate 𝑄p𝐷q, it has to maintain 𝑄p𝐷q and update it with the

deltas as they are received. If approximation is acceptable, some

more efficient streaming algorithms can be used instead.

Change propagation. Change propagation [9, 23, 30] is a widely

used framework in database systems for solving this problem. It

can be instantiated with any query plan, which is a tree where the

leaves are the base relations and each internal node is a relational

operator. At each internal node, it maintains the results of the sub-

query corresponding to the subtree at this internal node, which

is often called a materialized view. Figure 1(a) shows a particular
query plan for the query 4-Hop query from benchmark [26]

𝑄 :“ 𝜋𝑥1,𝑥2,𝑥3,𝑥4𝑅1p𝑥1, 𝑥2q ⋈ 𝑅2p𝑥2, 𝑥3q ⋈ 𝑅3p𝑥3, 𝑥4q ⋈ 𝑅4p𝑥4, 𝑥5q.

Under the standard change propagation framework, we maintain

four materialized views𝑉1,𝑉2,𝑉3,𝑉4 “ 𝑄 (if only delta enumeration

is needed, then 𝑉4 need not be maintained). When a tuple 𝑡 is

inserted or deleted in a relation, say 𝑅1, it follows the leaf-to-root

path to propagate the deltas to the root. More precisely, it first

computes Δ𝑉2 “ Δ𝑅1 ⋈ 𝑉1 “ 𝑡 ⋈ 𝑉1, then computes Δ𝑄 “ Δ𝑉4 “
Δ𝑉2 ⋈ 𝑉3. Note that with the help of the materialized views, it

avoids re-computing some of the sub-queries during updates.

However, the penalty is space: both𝑉1 and𝑉2 can have quadratic

size in the worst case [3]. To avoid space blowup, one can use a

different query plan, say, the one shown in Figure 1(b). This query

plan does not have any materialized views (except 𝑉1 “ 𝜋𝑥4𝑅4,

which has at most linear size), but it has to compute a multi-way

join, e.g., 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3 ⋈ 𝑡 upon each update in 𝑅4, which could

take quadratic time. Making things worse, this quadratic blowup

exacerbates for queries involving more relations [3].

Prior work has designed advanced techniques to address this

space or time blowup. The Dynamic Yannakakis algorithm [17–19]

has linear space and linear update time while supporting constant-

delay enumeration for free-connex queries1; the update time fur-

ther reduces to 𝑂p1q amortized
2
for q-hierarchical queries. Concur-

rently, Berkholz et al. [6] designed a different algorithm for the

q-hierarchical case with the same space/time guarantees. However,

these algorithms have not been integrated into any full-fledged

1
All technical terms in the introduction are formally defined in Section 3.

2
All update time bounds are amortized in this paper.

1046

https://doi.org/10.14778/3579075.3579080
https://github.com/hkustDB/CROWN
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3579075.3579080
https://www.acm.org/publications/policies/artifact-review-and-badging-current

𝑉4 “ 𝑉2 ⋈ 𝑉3

𝑉1 “ 𝑅2 ⋈ 𝑅3

𝑉3 “ 𝜋𝑥4𝑅4

𝑅4

𝑉2 “ 𝑅1 ⋈ 𝑉1

𝑅2 𝑅3

𝑅1

(a) Old plan

𝑉2 “ 𝑅1 ⋈ 𝑅2 ⋈ 𝑅3 ⋈ 𝑉1

𝑅1 𝑅2 𝑅3 𝑉1 “ 𝜋𝑥4𝑅4

(b) Another old plan

X : 𝑉𝑠pr𝑥3sq

𝜋 : 𝑉𝑝p𝑅2q 𝜋 : 𝑉𝑝p𝑅3q

̇ : 𝑉𝑠p𝑅2q ̇ : 𝑉𝑠p𝑅3q

𝜋 : 𝑉𝑝p𝑅1q

𝑅2 𝑅3

𝜋 : 𝑉𝑝p𝑅4q

𝑉𝑠p𝑅1q “ 𝑅1 𝑉𝑠p𝑅4q “ 𝑅4𝑅1

𝑅2 𝑅3

𝑅4

r𝑥3s

(c) Our new plan

Figure 1: For 𝑄 “ 𝜋𝑥1,𝑥2,𝑥3,𝑥4𝑅1p𝑥1, 𝑥2q ⋈ 𝑅2p𝑥2, 𝑥3q ⋈ 𝑅3p𝑥3, 𝑥4q

⋈ 𝑅4p𝑥4, 𝑥5q, 1(a) and 1(b) are two plans under the standard

change propagation framework and 1(c) is our new plan.

database or data warehouse products, possibly due to the complica-

tions of the techniques and the use of non-standard operations not

routinely found in existing database systems.

Change propagation without joins. The main contribution of

this paper is to achieve (and improve for certain classes of queries

and/or update sequences) the results above, but still under the

standard change propagation framework. Our observation is that

the only relational operator that may cause a super-linear blowup

is join. Thus, if the query plan has no joins, then both space and

update time will be at most linear. To avoid joins, our high-level

strategy is to replace each join in the query plan by a semi-join

(or an intersection) plus a projection. However, not every query

plan is amenable to this replacement strategy. The key technical

contribution of this paper, therefore, is the construction of such a

query plan for every free-connex conjunctive query. For example,

such a join-free query plan for the earlier query is shown in Figure

1(c), which will be elaborated in Section 4.

Since our query plan has no joins, linear space and linear up-

date time follow straightforwardly. Still, two technical challenges

remain: (1) how to support constant-delay enumeration, and (2)

how to achieve an update time better than linear. (1) is trivial under

a traditional query plan where the root corresponds to the query

results 𝑄p𝐷q. Since our query plan is join-free, no node in the plan

corresponds to 𝑄p𝐷q. Instead, our query plan can be considered

as a compact, linear-size representation of a polynomially sized

𝑄p𝐷q. By borrowing ideas from the static case [4], we show how to

enumerate 𝑄p𝐷q with constant delay, by appropriately traversing

this compact representation. Supporting constant-delay enumera-

tion of the delta Δ𝑄p𝐷, 𝑡q, on the other hand, is quite different from

the static case, and we need new techniques which exploit some

important properties of our query plan.

To address the issue (2), Wang and Yi [33] introduced the no-

tion of enclosureness 𝜆 of an update sequence, which captures the

hardness of the update sequence. It is linear in the worst case, but

is often a constant in many common cases, such as any first-in-

first-out (FIFO) update sequence. They also designed an algorithm

with update cost 𝑂p𝜆q for foreign-key acyclic queries. Such queries

are relatively easy to handle since their result size is at most linear,

so they are immune to the polynomial blowup problem caused by

non-key joins, such as free-connex queries. Indeed, we show (c.f.

Theorem 6.2) that there is a simple free-connex query for which it

is impossible to achieve 𝑂p|𝐷|1{2´𝜀q update time even over FIFO

update sequences, which implies that the previous definition of 𝜆

is not achievable for free-connex queries. Nevertheless, we show

that, after a simple relaxation of the definition, 𝜆 is still an appro-

priate measure of the update complexity; in particular, we show

that change propagation under our query plan achieves 𝑂p𝜆q up-

date time for every free-connex query under the new definition.

To further illustrate the usefulness of our new definition of 𝜆, we

show that for certain queries (such as q-hierarchical queries) and/or

update sequences (such as FIFO or insertion-only), 𝜆 is indeed a

small constant. For general queries, 𝜆 also provides guidance on

what would constitute a good query plan for change propagation.

Our results. Specifically, this paper achieves the following results:

(1) We show how to construct a change propagation query plan

without joins for any free-connex conjunctive query, such that

the space needed by the query plan is linear and the update time

is 𝑂p𝜆q, for an appropriately defined notion of enclosureness 𝜆

of the update sequence.

(2) We show how to support constant-delay enumeration of both

full query results and each delta in our query plan.

(3) We show that 𝜆 is a constant for certain classes of conjunctive

queries (such as q-hierarchical queries) and/or special update

sequences (such as FIFO or insertion-only). These results not

only recover the prior known result of [6, 17] on q-hierarchical

queries, but also extend it to cover many other cases commonly

encountered in practice.

(4) We show how our framework can handle various extensions

such as selections, aggregations, and non-free-connex queries.

(5) We demonstrate the practicality of our new framework by imple-

menting it on top of Flink and comparing it with state-of-the-art

view maintenance and SQL-over-stream systems.

2 RELATEDWORK

Our new change propagation framework is inspired by several lines

of research. In the static case, the classical Yannakakis algorithm

[34] has runtime 𝑂p|𝐷| ` |𝑄p𝐷q|q for every free-connex query. It

consists of two stages. The first stage uses a series of semi-joins

to remove all the dangling tuples in 𝑂p|𝐷|q time, and the second

stage performs pairwise joins to compute 𝑄p𝐷q in 𝑂p|𝑄p𝐷q|q time.

The Dynamic Yannakakis algorithm [17] extends the algorithm

to the dynamic case, but it deviates from the change propagation

framework, making it harder to integrate into existing database

systems. Our algorithm can also be viewed as a dynamic version

of the Yannakakis algorithm, but it strictly follows the standard

change propagation framework while achieving a better runtime.

The Dynamic Yannakakis algorithm has an update cost of 𝑂p|𝐷|q

for free-connex queries, while our algorithm achieves 𝑂p𝜆q up-

date time, where 𝜆 is the enclosureness of the update sequence. We

have 𝜆 ď |𝐷| for all update sequences, while the former is usually

much smaller on real-world update sequences. Furthermore, Dy-

namic Yannakakis achieves𝑂p1q update time only for q-hierarchical

queries, while our algorithm also achieves 𝑂p1q update time for

non-q-hierarchical queries if the update sequences enjoy some spe-

cial properties, such as first-in-first-out or insertion-only (formally

defined in Section 6.1). The gap between Dynamic Yannakakis and

1047

our algorithm can be as large as Θp|𝐷|q on some non-q-hierarchical

queries (see Example 6.11).

Bagan et al. [4] observe that, in the static case, the second stage

of the Yannakakis algorithm can be enhanced to support constant-

delay enumeration. We adapt their ideas to support enumeration in

the dynamic case for our query plan. However, as there is no notion

of delta in the static case, we need some new ideas to support delta

enumeration with constant delay, which non-trivially rely on some

nice features of our query plan.

Kara et al. [22] show that it is possible to increase the enumera-

tion delay in exchange for faster update time, on hierarchical (but

non-q-hierarchical) queries. We have not considered this trade-off,

as we believe the constant delay is important, and our update cost

𝜆 is low enough for most queries and update sequences already.

Furthermore, their trade-off only applies to full enumeration, not

delta enumeration. Nevertheless, for cases where 𝜆 is high, it would

be an interesting direction to explore such a trade-off.

In the standard change propagation framework, a single update

to a base relation may incur many changes in the intermediate

views. Higher-Order Incremental View Maintenance (HIVM) [2]

has been proposed to remedy this problem. It takes the changes to a

view as another query (delta query) and maintains this delta query

recursively. HIVM improves upon IVM for many complex queries

in practice, and it can also extend to accelerate several machine

learning tasks [28, 29], but there is no theoretical guarantee on its

update time. Furthermore, HIVM still uses super-linear space.

The problem is also related to stream joins. In particular, a cash-

register stream corresponds to an insertion-only update sequence,

while a turnstile stream is an update sequence with arbitrary inser-

tions and deletions. The sliding-window stream model is a special

case of a FIFO update sequence. Most stream processing systems

like Flink [7] and Trill [8] use standard change propagation for

multi-way stream joins, which we will compare against in Section

8. Some specialized systems are designed for two-way stream joins

[11, 13, 20, 25, 31], but they do not extend to multi-way joins.

3 PRELIMINARIES

3.1 Problem Definition

Conjunctive queries. We focus on conjunctive queries (CQ) of the
following form:

𝑄 :“ 𝜋y p𝑅1p𝑒1q ⋈ 𝑅2p𝑒2q ⋈ ¨ ¨ ¨ ⋈ 𝑅𝑛p𝑒𝑛qq , (1)

where each 𝑅𝑖 is a relation with a set of attributes/variables 𝑒𝑖 ,

𝑖 “ 1, . . . , 𝑛. Each tuple 𝑡 P 𝑅𝑖 assigns a value to each attribute in

𝑒𝑖 . For any 𝑥 P 𝑒𝑖 , 𝑡r𝑥s “ 𝜋𝑥 𝑡 denotes the value of 𝑡 on attribute 𝑥 .

Similarly, for a subset of attributes 𝑒 Ď 𝑒𝑖 , 𝑡r𝑒s “ 𝜋𝑒𝑡 denotes the

tuple formed by the values of 𝑡 on the attributes in 𝑒 .

Let V “ 𝑒1 Y ¨ ¨ ¨ Y 𝑒𝑛 be the set of all attributes in the query.

We call y Ď V the output attributes, while ȳ “ V ´ y are the non-
output attributes, also known as the existential variables. If y “ V ,

such a query is known as a full join query; otherwise, it is said to

be join-project query. For simplicity, we assume that each 𝑅𝑖 in 𝑄

is distinct, i.e., the query does not have self-joins. Nevertheless,

self-joins can be taken care of easily: Suppose a relation 𝑅 appears

twice in the query (with different attribute renamings). Then we

consider them as two identical copies of 𝑅, and for any update to 𝑅,

we apply the update to both copies of 𝑅.

Given a database 𝐷 , we write 𝑄p𝐷q for the query results of 𝑄

on 𝐷 . We use 𝑄p𝐷 ̇ 𝑡q to denote the query results that depend on

a given tuple 𝑡 , and call 𝑄p𝐷 ̇ 𝑡q the query results witnessed by 𝑡 .

Such a witness query will be frequently used in this paper. Given a

query 𝑄 in the form of (1) and a tuple 𝑡 P 𝑅𝑖 , it is clear that

𝑄p𝐷 ̇ 𝑡q “ 𝜋y p𝑅1 ⋈ ¨ ¨ ¨ ⋈ 𝑅𝑖´1 ⋈ t𝑡u ⋈ 𝑅𝑖`1 ⋈ ¨ ¨ ¨ ⋈ 𝑅𝑛q .

Note that for a full join CQ, we have𝑄p𝐷 ̇ 𝑡q “ 𝑄p𝐷 ` 𝑡q ̇ 𝑡 ; for

join-project queries, 𝑡 itself may not appear in 𝑄p𝐷 ̇ 𝑡q due to the

projection on y. When analyzing the costs of algorithms, we adopt

the notion of data complexity, i.e., the size of the query 𝑄 is taken

as a constant while |𝐷| is an asymptotic parameter.

Semi-joins. The semi-join 𝑅𝑖p𝑥𝑖q ̇ 𝑅 𝑗 p𝑥 𝑗 q is defined as

𝑅𝑖p𝑥𝑖q ̇ 𝑅 𝑗 p𝑥 𝑗 q “ t𝑡 |𝑡 P 𝜋𝑥𝑖𝑅𝑖 ⋈ 𝑅 𝑗u.

Updates and Deltas. An update to a database 𝐷 is either the

insertion or deletion of a tuple 𝑡 in some relation 𝑅𝑖 of 𝐷 . In this

paper, we adopt set semantics. We denote𝐷`𝑡 as the database after

inserting 𝑡 and 𝐷 ´ 𝑡 as the database after deleting 𝑡 . In particular,

this means that if 𝑅𝑖 already contains 𝑡 , then inserting 𝑡 into 𝑅𝑖 will

not change 𝑅𝑖 ; if 𝑅𝑖 does not contain 𝑡 , deleting 𝑡 from 𝑅𝑖 has no

effect, either. We ignore these non-effective updates.

The delta of an update to𝑄 is defined as Δ𝑄p𝐷, 𝑡q “ 𝑄p𝐷` 𝑡q´

𝑄p𝐷q in case of the insertion of 𝑡 and Δ𝑄p𝐷, 𝑡q “ 𝑄p𝐷q´𝑄p𝐷´𝑡q

in the case of deletion. For a full join query, Δ𝑄p𝐷, 𝑡q “ 𝑄p𝐷 ̇ 𝑡q.

For join-project queries, Δ𝑄p𝐷, 𝑡q Ď 𝑄p𝐷 ̇ 𝑡q. In particular, it is

possible to have Δ𝑄p𝐷, 𝑡q “ H even if 𝑄p𝐷 ̇ 𝑡q ‰ H.

We target constant delay [4] for both full and delta enumeration,

i.e., the time between the start of the enumeration process to the first

tuple in𝑄p𝐷q (or Δ𝑄p𝐷, 𝑡q), the time between any consecutive pair

of tuples, and the time between the last tuple and the termination

of the enumeration process should all be bounded by a constant.

3.2 Classification of CQs

Acyclic queries. The acyclicity of a CQ𝑄 is defined by the acyclic-

ity of the hypergraph pV, t𝑒1, . . . , 𝑒𝑛uq. More precisely,𝑄 is acyclic

if there exists a join tree T , whose nodes are the relations in𝑄 such

that, for each attribute 𝑥 P V , all nodes of T containing 𝑥 form a

connected component of T . For example, Figures 2(a) and 2(b) are

two possible join trees for the query 𝑄1 :“ 𝑅1p𝑥1, 𝑥2q ⋈ 𝑅2p𝑥2, 𝑥3q.

We will often not distinguish between a node in T and the relation

it represents, or its set of attributes.

In this paper, we use an equivalent definition based on generalized
relations [10, 17]. Different from previous definition of generalized
relation, it now can be a proper subset of any 𝑒𝑖 . We can show that

the following is an equivalent definition of acyclic queries
3
:

Definition 3.1 (Acyclic queries). A CQ 𝑄 is acyclic if there exists

a rooted join tree T satisfying the following properties:

(1) each input relation in𝑄 corresponds to a unique node inT , each

leaf of T corresponds to an input relation, and each internal

node in T corresponds to either an input relation in 𝑄 or one

of its generalized relations (some generalized relations may not

appear in T);

3
Proof of equivalence is given in the full version [32] of the paper.

1048

𝑅2p𝑥2, 𝑥3q

𝑅1p𝑥1, 𝑥2q

(a) T1

𝑅1p𝑥1, 𝑥2q

𝑅2p𝑥2, 𝑥3q

(b) T2

𝑅2p𝑥2, 𝑥3q 𝑅1p𝑥1, 𝑥2q

r𝑥2s

(c) T3

Figure 2: Three (generalized) join trees for 𝑄1 “ 𝑅1p𝑥1, 𝑥2q ⋈

𝑅2p𝑥2, 𝑥3q. In 2(c), node r𝑥2s is a generalized relation with one

attribute 𝑥2. The height of T1,T2 is 2 and that of T3 is 1.

(2) for each attribute 𝑥 , all nodes of T containing 𝑥 form a con-

nected component of T ;

(3) a node corresponding to a generalized relation must appear

above any node corresponding to an input relation; and

(4) if 𝑒 is the parent of 𝑒1 in T and 𝑒 is a generalized relation, 𝑒 Ď 𝑒1.

An example is given in Figure 2(c). In a generalized join tree T ,

we use 𝑟 to denote the root, and T𝑒 for the subtree rooted at node 𝑒 ,

C𝑒 for the set of children of node 𝑒 and 𝑝p𝑒q for the parent of node

𝑒 . Let keyp𝑒q “ 𝑒 X 𝑝p𝑒q be the join key between node 𝑒 and 𝑝p𝑒q.

The height of T is defined as the maximum number of relations on

any leaf-to-root path, without counting generalized relations.

Free-connex queries. A CQ 𝑄 is free-connex if the hypergraphs
pV, t𝑒1, . . . , 𝑒𝑛uq and pV, t𝑒1, . . . , 𝑒𝑛, yuq are both acyclic. By defi-

nition, any free-connex query must be acyclic, and an acyclic full

join query must be free-connex. For our development, we need the

following equivalent definition of free-connex queries:

Definition 3.2 (Free-connex queries). A CQ 𝑄 is free-connex if it

has a generalized join tree T , such that 𝑟 Ď y, and for every 𝑥1 P y
and every 𝑥2 P V ´ y, topp𝑥2q is not an ancestor of topp𝑥1q in T ,

where topp𝑥q is the highest node in T that contains 𝑥 . Such a T is

called a free-connex join tree.

For example, for the query 𝑄 1
1
:“ 𝜋𝑥2𝑅1p𝑥1, 𝑥2q ⋈ 𝑅2p𝑥2, 𝑥3q, all

three join trees in Figure 2 are valid free-connex join trees. If the

output attribute is 𝑥1, then only Figure 2(a) is a valid free-connex

join tree (so it does not have a height-1 free-connex join tree). If the

output attributes are p𝑥1, 𝑥3q, then the query is not free-connex.

Q-hierarchical queries. Amore restricted subclass of free-connex

queries is q-hierarchical query. Let E𝑥 denote the set of relations

containing attribute 𝑥 .

Definition 3.3 (Q-hierarchical queries). A CQ𝑄 is q-hierarchical if
(1) for every pair of attributes 𝑥1, 𝑥2, either E𝑥1 Ď E𝑥2 or E𝑥2 Ď E𝑥1
or E𝑥1 X E𝑥2 “ H; and (2) for every pair of attributes 𝑥1, 𝑥2, if

𝑥1 P y and E𝑥1 Ĺ E𝑥2 , then 𝑥2 P y.

These classifications capture the hardness of evaluation or enu-

meration for a CQ. Firstly, a full join query can be evaluated in

linear time in terms of input and output size if and only if it is

acyclic; for join-project CQs, this complete class extends to free-

connex query. Furthermore, free-connex and q-hierarchical CQs

have played important roles in query enumeration. [4] showed that

in static settings, constant-delay enumeration after a linear-time

preprocessing step is possible for a CQ if and only if it is free-connex.

Berkholz et al. [6] showed that in dynamic settings, constant-delay

enumeration is possible for a CQ from a data structure that can be

updated in constant time if and only if it is q-hierarchical.

Algorithm 1: PlanGenerationp𝑄,𝑇 q

Input :A generalized join tree 𝑇 for query 𝑄 ;

Output :A new query plan 𝑇 for 𝑄 ;

1 foreach node 𝑒 in a postorder traversal of 𝑇 do

2 Replace node 𝑒 with 𝑉𝑠p𝑅𝑒q in 𝑇 ;

3 if 𝑒 is not the root of 𝑇 then

4 Add 𝑉𝑝p𝑅𝑒q between 𝑉𝑠p𝑅𝑒q and the parent of 𝑒;

5 return 𝑇 ;

4 CHANGE PROPAGATIONWITHOUT JOINS

4.1 A New Query Plan

Given a free-connex query𝑄 , our new query plan is guided by a free-

connex (generalized) join tree T of𝑄 . We illustrate the construction

using the query in Figure 1 with the join tree highlighted in red

(note that the join tree is not unique). A normal query plan following

this join tree would compute a series of joins p𝑅1 ⋈ 𝑅2q ⋈ p𝑅3 ⋈

𝜋𝑥4𝑅4q. In our new query plan, we replace each join with a semi-join

followed by a projection. More precisely, we maintain two views

for each node 𝑒 P T , a semi-join view𝑉𝑠p𝑅𝑒q and a projection view

𝑉𝑝p𝑅𝑒q, defined recursively as follows.

Every non-root node 𝑒 P T has a projection view

𝑉𝑝p𝑅𝑒q :“ 𝜋keyp𝑒q𝑉𝑠p𝑅𝑒q. (2)

Noted that the root node does not have a projection view.

To define the semi-join view 𝑉𝑠p𝑅𝑒q, we distinguish three cases.

(i) If 𝑒 is a leaf, 𝑅𝑒 is an input relation, and 𝑉𝑠p𝑅𝑒q :“ 𝑅p𝑒q.

(ii) If 𝑒 is an internal node and 𝑅𝑒 is an input relation, then

𝑉𝑠p𝑅𝑒q :“ 𝑅𝑒 ̇𝑉𝑝p𝑅𝑒1q ̇ ¨ ¨ ¨ ̇𝑉𝑝p𝑅𝑒𝑘 q, (3)

where C𝑒 “ t𝑒1, . . . , 𝑒𝑘u are the children of 𝑒 .

(iii) If 𝑒 is an internal node that corresponds to a generalized virtual

relation 𝑅𝑒 , since all the 𝑉𝑝p𝑅𝑒𝑖 q’s have the same attributes

keyp𝑒𝑖q “ 𝑒𝑖 X 𝑒 “ 𝑒 for every 𝑖 (by the last property in

Definition 3.1), (3) simplifies to an intersection:

𝑉𝑠p𝑅𝑒q :“ 𝑉𝑝p𝑅𝑒1q X ¨ ¨ ¨ X𝑉𝑝p𝑅𝑒𝑘 q. (4)

Our query plan simply connects these views together using the

formulae above. Algorithm 1 takes as input a generalized join tree,

and outputs a new query plan under our framework. Figure 1(c)

shows the new query plan for the example query. Note that 𝑅2 and

𝑅4 fall into case (ii), while the root node r𝑥3s is under case (iii). As

neither projection nor semi-join (including intersection as a special

case) enlarges the input relations, the following is straightforward:

Lemma 4.1. All views in our query plan have size 𝑂p|𝐷|q.

Example 4.2. Figure 3(a) shows the initial index built for the

query in Figure 1. For𝑅1 and𝑅4, both semi-join and projection views

are defined as themselves. 𝑉𝑠p𝑅2q contains tuples in 𝑅2 that can

join with 𝑉𝑝p𝑅1q, which include p2, 2q and p2, 4q. 𝑉𝑠p𝑅3q is defined

similarly including 4 tuples from 𝑅3. For the generalized node r𝑥3s,

we define the virtual relation 𝑅pr𝑥3sq “ 𝑉𝑝p𝑅2q Y 𝑉𝑝p𝑅3q. Only

tuple p4q belongs to 𝑅pr𝑥3sq, since every other tuple in 𝑅pr𝑥3sq fails

to join with 𝑉𝑝p𝑅2q and 𝑉𝑝p𝑅3q: their counters need to be 2.

1049

Algorithm 2: S-Updatep𝑒, 𝑡q

Input :An update 𝑡 from 𝑉𝑠p𝑅𝑒q;

Output :Updated 𝑉𝑝p𝑅𝑒q;

1 𝑡 1 Ð 𝑡rkeyp𝑒qs;
2 if 𝑡 is an insertion into 𝑉𝑠p𝑅𝑒q then
3 if 𝑡 1 P 𝑉𝑝p𝑅𝑒q then countr𝑡 1s Ð countr𝑡 1s ` 1;

4 else

5 𝑉𝑝p𝑅𝑒q Ð 𝑉𝑝p𝑅𝑒q Y t𝑡 1u, countr𝑡 1s Ð 1,

P-Update(𝑝p𝑒q, 𝑡 1);

6 else

7 if countr𝑡 1s “ 1 then

8 𝑉𝑝p𝑅𝑒q Ð 𝑉𝑝p𝑅𝑒q ´ t𝑡 1u, P-Update(𝑝p𝑒q, 𝑡 1);

9 else countr𝑡 1s Ð countr𝑡 1s ´ 1;

Algorithm 3: P-Update(𝑒, 𝑡)

Input :An update 𝑡 from 𝑉𝑝p𝑅𝑒𝑖 q for some 𝑒𝑖 P C𝑒 ;
Output :Updated 𝑉𝑠p𝑅𝑒q;

1 if 𝑡 is an insertion into 𝑉𝑝p𝑅𝑒𝑖 q then
2 foreach 𝑡 1 P 𝑅𝑒 with 𝑡 1rkeyp𝑒𝑖qs “ 𝑡 do

3 countr𝑡 1s Ð countr𝑡 1s ` 1;

4 if countr𝑡 1s “ |C𝑒 | then
5 𝑉𝑠p𝑅𝑒q Ð 𝑉𝑠p𝑅𝑒q Y t𝑡 1u, S-Updatep𝑒, 𝑡 1q;

6 else

7 foreach 𝑡 1 P 𝑅𝑒 with 𝑡 1rkeyp𝑒𝑖qs “ 𝑡 do

8 countr𝑡 1s Ð countr𝑡 1s ´ 1;

9 if countr𝑡 1s “ |𝐶𝑒 | ´ 1 then

10 𝑉𝑠p𝑅𝑒q Ð 𝑉𝑠p𝑅𝑒q ´ t𝑡 1u, S-Updatep𝑒, 𝑡 1q;

4.2 Change Propagation

Change propagation using our new query plan can be done using

standard (actually, even simpler for certain operators) propagation

formulae [9]. For completeness, we briefly describe them below,

which are also needed to understand the algorithms in Section 5.

S-Update.When there is an update to 𝑉𝑠p𝑅𝑒q for some 𝑒 , we use

an S-Update to update 𝑉𝑝p𝑅𝑒q by formula (2). This can be done

in 𝑂p1q time by derivation counting [9], a standard technique to

propagate changes through a projection. Specifically, we associate a

counter countr𝑡 1s for each tuple 𝑡 1 P 𝑉𝑝p𝑅𝑒q that stores the number

of tuples 𝑡 P 𝑉𝑠p𝑅𝑒q such that 𝑡rkeyp𝑒qs “ 𝑡 1. The detailed process,

which needs to distinguish between an insertion and a deletion, is

given in Algorithm 2. Note that for the algorithm to run in 𝑂p1q

time, we need a hash index on 𝑉𝑝p𝑅𝑒q.

P-Update Let 𝑒𝑖 be a child of 𝑒 . When there is an update to some

𝑉𝑝p𝑅𝑒𝑖 q, we use a P-Update to update 𝑉𝑠p𝑅𝑒q by formula (3) in the

case where 𝑒 is an input relation or (4) in case 𝑒 is a generalized

relation. We consider the former case first; the latter case is similar.

The standard change propagation formula for a semi-join [15]

rewrites it as a join followed by a projection, e.g., 𝑅𝑒 ̇ 𝑅𝑒𝑖 :“

𝜋𝑒p𝑅𝑒 ⋈ 𝑅𝑒𝑖 q. This defeats the whole purpose of avoiding joins.

However, observe that in our query plan, 𝑅𝑒𝑖 has already been

projected onto keyp𝑒𝑖q “ 𝑒𝑖 X 𝑒 Ď 𝑒 before the semi-join, thus this

Algorithm 4: R-Update(𝑒, 𝑡)

Input :An update 𝑡 from an input relation 𝑅𝑒 ;

Output :Updated 𝑉𝑠p𝑅𝑒q;

1 if 𝑡 is an insertion into 𝑅𝑒 then
2 countr𝑡s Ð 0;

3 foreach 𝑒𝑖 P C𝑒 do
4 if 𝑡rkeyp𝑒𝑖qs P 𝑉𝑝p𝑒𝑖q then

countr𝑡s Ð countr𝑡s ` 1;

5 if countr𝑡s “ |C𝑒 | then
6 𝑉𝑠p𝑅𝑒q Ð 𝑉𝑠p𝑅𝑒q Y t𝑡u, S-Updatep𝑒, 𝑡q;

7 else

8 if countr𝑡s “ |C𝑒 | then
9 𝑉𝑠p𝑅𝑒q Ð 𝑉𝑠p𝑅𝑒q ´ t𝑡u, S-Updatep𝑒, 𝑡q;

allows a very simple and efficient way to maintain the whole multi-

way semi-join (3) as one operator, which can also be considered

as a “horizontal” version of derivation counting. More precisely,

we maintain a counter countr𝑡 1s for every tuple 𝑡 1 in 𝑅𝑒 , storing

the number of child nodes 𝑒𝑖 P C𝑒 such that 𝑡 1rkeyp𝑒𝑖qs P 𝑉𝑝p𝑅𝑒𝑖 q.
A tuple 𝑡 1 appears in 𝑉𝑠p𝑅𝑒q if and only if countr𝑡 1s “ |C𝑒 |. The
algorithm is then immediate, as shown in Algorithm 3. We also

need a hash index (that needs to support 𝑒 X 𝑒𝑖 as the key for each

𝑒𝑖 P C𝑒) on 𝑅𝑒 so that each counter change can be done in 𝑂p1q

time. However, unlike the S-Update, a P-Update may take more

than constant time since multiple tuples may change their counters.

In fact, this is the only place where the update time blows up during

change propagation in our query plan.

When 𝑒 is a generalized relation and𝑉𝑠p𝑅𝑒q is defined by (4), the

process is almost the same, except that 𝑅𝑒 is virtual. Thus, we define

𝑅𝑒 :“ 𝑉𝑝p𝑅𝑒1q Y ¨ ¨ ¨ Y𝑉𝑝p𝑅𝑒𝑘 q and Algorithm 3 applies verbatim.

R-Update. The last case is when there is an update in an input

relation 𝑅𝑒 , we also need to update 𝑉𝑠p𝑅𝑒q by formula (3). We call

this an R-Update. The detailed procedure, given in Algorithm 4,

simply maintains the counters in 𝑅𝑒 , and then 𝑉𝑠p𝑅𝑒q, in a straight-

forward manner. It is obvious that an R-Update takes 𝑂p1q time

(also using the hash index on 𝑉𝑝p𝑅𝑒𝑖 q).

Example 4.3. Figure 3(b) shows the index after inserting p1, 1q

into 𝑅1. This insertion first triggers an insertion to 𝑉𝑝p𝑅1q, which

further increments counters of three tuples in 𝑉𝑠p𝑅2q with 𝑥2 “ 1,

which are then brought into 𝑉𝑠p𝑅2q. From here, the propagation

diverges into three paths. Tuple p1, 2q P 𝑅2 increments the counter

of p1q P 𝑉𝑝p𝑅2q but this propagation stops here. Tuple p1, 1q P

𝑉𝑠p𝑅2q inserts a new tuple p1q to𝑉𝑝p𝑅2q, which further increments

the counter of p1q in the root, bringing it to𝑉𝑠pr𝑥3sq. Tuple p1, 4q P

𝑅2 increments the counter of p4q P 𝑉𝑝p𝑅2q and the propagation

stops. Figure 3(c) shows the index after deleting p1, 1q from 𝑅4.

This deletion first decrements the counter of tuple p1q P 𝑉𝑝p𝑅4q,

removing it from 𝑉𝑝p𝑅4q and further decrements the counter of

p1, 1q P 𝑉𝑠p𝑅3q, removing it from 𝑉𝑠p𝑅3q. Finally, the counter of

p1q P 𝑉𝑝p𝑅3q decreases from 2 to 1, and the propagation stops here.

Lemma 4.4. All projection and semi-join views in our query plan
can be updated in 𝑂p|𝐷|q time.

1050

r𝑥3s

𝑉𝑠pr𝑥3sq

𝑥3 𝑐r𝑡s

1 1

2 1

3 1

4 2

𝑅2

𝑉𝑝p𝑅2q

𝑥3 𝑐r𝑡s

4 1

2 1

Ô

𝑉𝑠p𝑅2q

𝑥2 𝑥3 𝑐r𝑡s

1 2 0

2 2 1

4 3 0

1 1 0

2 4 1

1 4 0

𝑅3

𝑉𝑝p𝑥3q

𝑥3 𝑐r𝑡s

1 2

3 1

4 1

Ô

𝑉𝑠p𝑅3q

𝑥3 𝑥4 𝑐r𝑡s

1 1 1

2 5 0

3 3 1

1 2 1

4 4 1

𝑅1

𝑉𝑝p𝑅1q

𝑥2 𝑐r𝑡s

2 2

3 1

Ò

𝑉𝑠p𝑅1q

𝑥1 𝑥2

1 2

2 2

3 3

𝑅4

𝑉𝑝p𝑅4q

𝑥4 𝑐r𝑡s

1 1

2 1

3 1

4 1

Ò

𝑉𝑠p𝑅4q

𝑥4 𝑥5
1 1

2 2

3 3

4 4

(a) Initialization.

r𝑥3s

𝑉𝑠pr𝑥3sq

𝑥3 𝑐r𝑡s

1* 2

2 1

3 1

4 2

𝑅2

𝑉𝑝p𝑅2q

𝑥3 𝑐r𝑡s

4 2

2 2

1 1

Ô

𝑉𝑠p𝑅2q

𝑥2 𝑥3 𝑐r𝑡s

1 2 1

2 2 1

4 3 0

1 1 1

2 4 1

1* 4* 1

𝑅3

𝑉𝑝p𝑥3q

𝑥3 𝑐r𝑡s

1 2

3 1

4 1

Ô

𝑉𝑠p𝑅3q

𝑥3 𝑥4 𝑐r𝑡s

1 1 1

2 5 0

3 3 1

1 2 1

4 4 1

𝑅1

𝑉𝑝p𝑅1q

𝑥2 𝑐r𝑡s

2 2

3 1

1 1

Ò

𝑉𝑠p𝑅1q

𝑥1 𝑥2

1 2

2 2

3 3

1 1

𝑅4

𝑉𝑝p𝑅4q

𝑥4 𝑐r𝑡s

1 1

2 1

3 1

4 1

Ò

𝑉𝑠p𝑅4q

𝑥4 𝑥5

1 1

2 2

3 3

4 4

(b) After the insertion of p1, 1q into 𝑅1 .

r𝑥3s

𝑉𝑠pr𝑥3sq

𝑥3 𝑐r𝑡s

1 2

2 1

3 1

4 2

𝑅2

𝑉𝑝p𝑅2q

𝑥3 𝑐r𝑡s

4 2

2 2

1 1

Ô

𝑉𝑠p𝑅2q

𝑥2 𝑥3 𝑐r𝑡s

1 2 1

2 2 1

4 3 0

1 1 1

2 4 1

1 4 1

𝑅3

𝑉𝑝p𝑥3q

𝑥3 𝑐r𝑡s

1 1

3 1

4 1

Ô

𝑉𝑠p𝑅3q

𝑥3 𝑥4 𝑐r𝑡s

1* 1* 0

2 5 0

3 3 1

1 2 1

4 4 1

𝑅1

𝑉𝑝p𝑅1q

𝑥2 𝑐r𝑡s

2 2

3 1

1 1

Ò

𝑉𝑠p𝑅1q

𝑥1 𝑥2

1 2

2 2

3 3

1 1

𝑅4

𝑉𝑝p𝑅4q

𝑥4 𝑐r𝑡s

✚1 ✚1
2 1

3 1

4 1

Ò

𝑉𝑠p𝑅4q

𝑥4 𝑥5

◁1 ◁1
2 2

3 3

4 4

(c) After the deletion of p1, 1q from 𝑅4 .

r𝑥3s

𝑉𝑠pr𝑥3sq

𝑥3 𝑐r𝑡s

1 2

2 1

3 1

4 2

𝑅2

𝑉𝑝p𝑅2q

𝑥3 𝑐r𝑡s

4 2

2 2

1 1

Ô

𝑉𝑠p𝑅2q

𝑥2 𝑥3 𝑐r𝑡s

1 2 1

2 2 1

4 3 0

1 1 1

2 4 1

1 4 1

𝑅3

𝑉𝑝p𝑥3q

𝑥3 𝑐r𝑡s

1 1

3 1

4 1

Ô

𝑉𝑠p𝑅3q

𝑥3 𝑥4 𝑐r𝑡s

1 1 0

2 5 0

3 3 1

1 2 1

4 4 1

𝑅1

𝑉𝑝p𝑅1q

𝑥2 𝑐r𝑡s

2 2

3 1

1 2

Ò

𝑉𝑠p𝑅1q

𝑥1 𝑥2

1 2

2 2

3 3

1 1

4* 1*

𝑅4

𝑉𝑝p𝑅4q

𝑥4 𝑐r𝑡s

2 1

3 1

4 1

Ò

𝑉𝑠p𝑅4q

𝑥4 𝑥5

2 2

3 3

4 4

(d) After the insertion of p4, 1q into 𝑅1 .

Figure 3: A running instance for query in Figure 1 using the plan in Figure 1(c). Tuples in white are in 𝑉𝑠p𝑅q, in grey are in

𝑅z𝑉𝑠p𝑅q, in cyan are in 𝑉𝑙 p𝑅q (live views for leaf nodes are not needed, but we still show them for clarity), with star symbols are

the witness tuples. Changes in each step are marked in red. c[t] is short for count[t].

5 ENUMERATION

5.1 Full Result Enumeration

We first consider how to perform constant-delay enumeration of

𝑄p𝐷q from our query plan. We need the following lemma:

Lemma 5.1. For any node 𝑒 , 𝑉𝑠p𝑅𝑒q “ 𝜋𝑒p⋈𝑒1PT𝑒 𝑅𝑒1q.

In plain language, the semi-join view of node 𝑒 is essentially the

projection of the join results of relations in the subtree rooted at 𝑒 ,

to attributes in 𝑒 . An immediate corollary is

Corollary 5.2. 𝑉𝑠p𝑅𝑟 q “ 𝜋𝑟𝑄p𝐷q.

This means that the semi-join view at the root 𝑟 (recall that 𝑟

does not have a projection view) contains precisely all the query

results projected onto 𝑟 . Using the notion of a witness query, this

leads to the following useful fact for full enumeration, where

Ţ

denotes disjoint union:

Lemma 5.3. 𝑄p𝐷q “
Ţ

𝑡P𝑉𝑠p𝑅𝑟 q
𝑄p𝐷 ̇ 𝑡q.

Lemma 5.1, Corollary 5.2, and Lemma 5.3 allow us to use essen-

tially the same algorithm from Bagan et al. [4] to achieve constant-

delay enumeration of 𝑄p𝐷q; see Algorithm 5, which takes as input

a node 𝑒 P T and a tuple 𝑡 P 𝑅𝑒 , and yields the query results over

T𝑒 that can be joined with 𝑡 . To enumerate𝑄p𝐷q, we simply invoke

FullEnumpT , 𝑟 , 𝑡q for every tuple 𝑡 P 𝑉𝑠p𝑅𝑟 q.

Lemma 5.4. Algorithm 5 enumerates 𝑄p𝐷q with 𝑂p1q delay.

5.2 Delta Enumeration

Delta enumeration is straightforward in a standard query plan, as

the root node corresponds to𝑄p𝐷q, so all changes propagated to the

root are precisely Δ𝑄p𝐷, 𝑡q. However, it becomes tricky in our new

query plan, as no node corresponds to 𝑄p𝐷q, which is necessarily

the case if a linear-size representation of 𝑄p𝐷q is desired. In our

query plan, one cannot just inspect the root, because not every

change propagates to the root, and many propagations stop mid-

way, which is actually the main reason why our query plan is

not only space-efficient but also time-efficient. Recall that the full

enumeration algorithm relies on Lemma 5.3. Then the key question

is, can we have an analogy of Lemma 5.3 for the delta Δ𝑄p𝐷, 𝑡q? In
other words, can we identify a set of witness tuples 𝑡 1 for 𝑡 such that

the delta Δ𝑄p𝐷, 𝑡q is the disjoint union of 𝑄p𝐷 ̇ 𝑡 1q? Fortunately,

the answer is yes, but the answer is not as simple as Lemma 5.3.

Let’s first consider the insertion case. When we insert 𝑡 into some

𝑅𝑒 , the propagation follows the path from 𝑒 to 𝑟 , by (possibly) ap-

plying an R-Update first, then an S-Update, P-Update, S-Update,

P-Update, Recall that both S-update and R-update only propa-

gate a single change upward (see line 8, 12 in Algorithm 2 and Algo-

rithm 4), but P-update may propagate multiple changes upward (see

line 6, 12 in Algorithm 2. Hence, there could bemultiple propagation

paths starting from 𝑡 . To be more precise, we denote the nodes lying

on the path from 𝑒 to 𝑟 as 𝑒0 “ 𝑒, 𝑒1, 𝑒2, ¨ ¨ ¨ , 𝑒𝑘 “ 𝑟 . Every propaga-

tion path inserts a tuple into each of the views on the path, and we

denote the inserted tuples on such a path as p𝑡, 𝑡𝑠
0
, 𝑡
𝑝

0
, 𝑡𝑠
1
, 𝑡
𝑝

1
, ¨ ¨ ¨ , q,

where 𝑡𝑠
𝑖
P 𝑉𝑠p𝑅𝑖q and 𝑡

𝑝

𝑖
P 𝑉𝑝p𝑅𝑖q for 𝑖 P t0, 1, 2, ¨ ¨ ¨ , 𝑘u. Now, we

distinguish three cases of a propagation path with respect to its

ending tuple: (1) 𝑡 ; (2) 𝑡
𝑝

𝑗
for some 𝑗 P t0, 1, ¨ ¨ ¨ , 𝑘u; (3) 𝑡𝑠

𝑖
for some

𝑖 P t0, 1, ¨ ¨ ¨ , 𝑘u.

Case (1) happens when the first update is an R-Update and does

not propagate any further change. This means that in Algorithm 4,

there exists some child node 𝑒1 of 𝑒 such that 𝑡rkeyp𝑒1qs R 𝑉𝑝p𝑅𝑒1q,

1051

Algorithm 5: FullEnumpT , 𝑒, 𝑡q
Input: A free-connex generalized join tree T , a node 𝑒 P T

and a tuple 𝑡 P 𝑅𝑒 ;

Output: Query results over T𝑒 that can be joined with 𝑡 ;

1 if 𝑒 ´ y ‰ H then

2 if 𝑒 X y´ 𝑝p𝑒q “ H then Yield xy;

3 else Yield 𝜋yX𝑒p𝑅𝑒 ̇ 𝑡q;

4 else

5 Let C𝑒 “ t𝑒1, 𝑒2, ¨ ¨ ¨ , 𝑒𝑘u;

6 foreach 𝑡1 P FullEnumpT , 𝑒1, 𝑡rkeyp𝑒1qsq do
7 foreach 𝑡2 P FullEnumpT , 𝑒2, 𝑡rkeyp𝑒2qs do
8 ¨ ¨ ¨

9 foreach 𝑡𝑘 P FullEnumpT , 𝑒𝑘 , 𝑡rkeyp𝑒𝑘qsq do
10 Yield 𝑡 ⋈ 𝑡1 ⋈ 𝑡2 ⋈ ¨ ¨ ¨ ⋈ 𝑡𝑘 ;

i.e., 𝑡 cannot join withT𝑒1 . In this case, 𝑡 will not produce any change
to 𝑄p𝐷q, thus can be ignored.

Case (2) happens when P-Update(𝑒 𝑗 , 𝑡
𝑝

𝑗
) does not propagate any

further change. Putting it into Algorithm 3, this means that either

there exists no tuple 𝑡 1 P 𝑅𝑝p𝑒 𝑗 q that can join with 𝑡
𝑝

𝑗
, or if such

a tuple exists, but it cannot join with any query result over T 1
𝑒

for some child node 𝑒1 of 𝑝p𝑒 𝑗 q, since its counter is smaller than

|C𝑝p𝑒 𝑗 q|. In either case, this propagation path will not cause any

change to 𝑄p𝐷q, thus can also be ignored.

Case (3) happens when S-update(𝑒𝑖 , 𝑡
𝑠
𝑖
) does not propagate any

further change. Putting it into Algorithm 2, this means that either

we have reached the root, or there exists some other tuple 𝑡 1 P

𝑉𝑝p𝑅𝑖q such that 𝑡 1 ‰ 𝑡𝑠
𝑖
and 𝑡𝑠

𝑖
rkeyp𝑒𝑖qs “ 𝑡 1rkeyp𝑒𝑖qs. This is the

only case where changes to𝑄p𝐷q can possibly happen. We will give

a more detailed characterization of this case later.

Live views. To support𝑂p1q-delay delta enumeration, wemaintain

a live view for each node 𝑒 with 𝑒 X y ‰ H: 𝑉𝑙 p𝑅𝑒q :“ 𝜋𝑒𝑄p𝐷q,

which are the “live” tuples (i.e., appearing in the query results)

projected onto 𝑒 . Note that 𝑉𝑙 p𝑅𝑒q Ď 𝜋y𝑉𝑠p𝑅𝑒q, which means for

𝑒 Ď y, it can be implemented by simply adding an extra bit in

𝑉𝑠p𝑅𝑒q, indicating if the corresponding tuple is in 𝑉𝑙 p𝑅𝑒q.

For the root 𝑟 , there is no need to maintain 𝑉𝑙 p𝑅𝑟 q separately

since𝑉𝑙 p𝑅𝑟 q “ 𝑉𝑠p𝑅𝑟 q by Corollary 5.2. For the leaf nodes, their live

views need not be maintained, either, since they will not be needed

by delta enumeration. The other live views can be maintained by

the following observation:

Lemma 5.5. For any non-root node 𝑒 such that 𝑒Xy ‰ H and any
tuple 𝑡 P 𝜋y𝑉𝑠p𝑅𝑒q, 𝑡 P 𝑉𝑙 p𝑅𝑒q if and only if 𝑡 ⋈ 𝑉𝑙 p𝑅𝑝p𝑒qq ‰ H.

Based on Lemma 5.5, the maintenance of 𝑉𝑙 p𝑅𝑒q can piggyback

on the delta enumeration: After enumerating a result 𝑡 1 P Δ𝑄p𝐷, 𝑡q,
we update the live views in a top-down fashion. For every non-root

𝑒 such that 𝑒 X y ‰ H, if the update is insertion, then we always

add 𝑡 1r𝑒s to 𝑉𝑙 p𝑅𝑒q; if the update is deletion, then we delete 𝑡 1r𝑒s

from 𝑉𝑙 p𝑅𝑒q if 𝑡
1r𝑒s cannot join with 𝑉𝑙 p𝑅𝑝p𝑒qq, which can be done

in𝑂p1q time with a hash index on𝑉𝑙 p𝑅𝑝p𝑒qq (which is physically the

same hash index on 𝑉𝑠p𝑅𝑝p𝑒qq for 𝑒 Ď y). This only adds another

constant to the delay of delta enumeration.

Algorithm 6: DeltaEnum(T , 𝑡)
Input: A free-connex generalized join tree T ; an updated

tuple 𝑡 .

Output: Delta results induced by 𝑡 .

1 Let 𝑒0, 𝑒1, ¨ ¨ ¨ , 𝑒𝑘 “ 𝑟 be the nodes on 𝑡 ’s propagation path;

2 foreach witness tuple 𝑡 1 of 𝑡 do
3 Let 𝑒𝑖 be the node such that 𝑡 1 P 𝜋yΔ𝑉𝑠p𝑅𝑒𝑖 , 𝑡q;

4 𝑆 Ð 𝑡 1 ⋈ 𝑉𝑙 p𝑅𝑒𝑖`1
q ⋈ ¨ ¨ ¨ ⋈ 𝑉𝑙 p𝑅𝑒𝑘 q;

5 foreach 𝑞 P 𝑆 do

6 𝑆𝑖 ÐFullEnumpT𝑒𝑖 , 𝑒𝑖 , 𝑞r𝑒𝑖 sq;
7 𝑆 𝑗 ÐFullEnumpT𝑒 𝑗 ´ T𝑒 𝑗´1

, 𝑒 𝑗 , 𝑞r𝑒 𝑗 sq, 𝑗 P r𝑖 ` 1, 𝑘s;

8 Yield 𝑆𝑖 ⋈ 𝑆𝑖`1 ⋈ ¨ ¨ ¨ ⋈ 𝑆𝑘 ;

Witness tuples. We now are ready to give a more precise char-

acterization of the ending tuples falling into Case (3) that actually

cause changes to 𝑄p𝐷q, called witness tuples:

Definition 5.6 (Witness tuple). Suppose 𝑡 is inserted into or

deleted from 𝐷 . A tuple 𝑡 1 is a witness of 𝑡 if

𝑡 1 P Δ𝑉𝑠p𝑅𝑟 , 𝑡q, or (5)

𝑡 1 P 𝜋yΔ𝑉𝑠p𝑅𝑒 , 𝑡q ̇𝑉𝑙 p𝑅𝑝p𝑒qq (6)

for some non-root 𝑒 such that 𝑒 X y ‰ H.

Here Δ𝑉𝑠p𝑅𝑒 , 𝑡q denotes the tuples to be inserted into (or deleted
from) 𝑉𝑠p𝑅𝑒q due to 𝑡 and 𝑉𝑙 p𝑅𝑝p𝑒qq is the live view before the

update. We give some intuition behind Definition 5.6. First, (5) is

the counterpart of Corollary 5.2 for delta enumeration and such a 𝑡 1

is guaranteed to generate changes to 𝑄p𝐷q. (6) is specific for delta

enumeration, addressing the situation mentioned earlier, where

the propagation stops mid-way yet still causes changes to 𝑄p𝐷q.

Note that in this case, the attributes of 𝑡 1 are 𝑒X y. Then (6) implies

that 𝑡 1 P 𝜋yΔ𝑉𝑠p𝑅𝑒 , 𝑡q and 𝑡
1rkeyp𝑒qs P 𝜋keyp𝑒q𝑉𝑙 p𝑅𝑝p𝑒qq. Since

𝑡 1rkeyp𝑒qs P 𝜋keyp𝑒q𝑉𝑙 p𝑅𝑝p𝑒qq, it must have 𝑡 1rkeyp𝑒qs P 𝑉𝑝p𝑅𝑒q, i.e.
𝑡 1rkeyp𝑒qs R Δ𝑉𝑝p𝑅𝑒 , 𝑡q, which means that the propagation stops at

node 𝑒 under case (3). In addition, each witness tuple 𝑡 1 should (i)

contribute to the delta over T𝑒 induced by 𝑡 , and (ii) join with tuples

from the remaining relations in T ´T𝑒 . For (i), it suffices to require

𝑡 1 P Δ
`

𝜋y𝑉𝑠p𝑅𝑒q
˘

“ 𝜋yΔ𝑉𝑠p𝑅𝑒 , 𝑡q, since Δ
`

𝜋𝑒Xyp⋈𝑒1PT𝑒 𝑅𝑒1q
˘

“

Δ
`

𝜋y𝑉𝑠p𝑅𝑒q
˘

. For (ii), it suffices to require 𝑡 1̇𝑉𝑙 p𝑅𝑝p𝑒qq ‰ H, and

this is exactly the reason we introduced 𝑉𝑙 p𝑅𝑒q in the first place.

Lemma 5.7. Δ𝑄p𝐷, 𝑡q “
Ţ

𝑡 1:a witness of 𝑡 𝑄p𝐷 ̇ 𝑡 1q.

We are now ready to state the counterpart of Lemma 5.3 for delta

enumeration, in Lemma 5.7. Unlike Lemma 5.3, the proof of Lemma

5.7 is nontrivial, and the details are given in the full version [32].

The algorithm. To perform delta enumeration using Lemma 5.7,

we still need to address two issues: (1) how to find all witness tuples

𝑡 1, and (2) how to enumerate 𝑄p𝐷 ̇ 𝑡 1q with constant delay.

To find all the witness tuples, we consider the two cases in

Definition 5.6: (5) can be computed easily after updating 𝑉𝑠p𝑅𝑟 q;

for (6), just an extra check with 𝑉𝑙 p𝑅𝑝p𝑒qq is needed, which can be

done in 𝑂p1q time using the hash index on 𝑉𝑙 p𝑅𝑝p𝑒qq. These steps

only increase the update cost by a constant factor.

It remains to describe how to enumerate 𝑄p𝐷 ̇ 𝑡 1q for each

witness 𝑡 1. As before, let 𝑒0, 𝑒1, . . . , 𝑒𝑘 “ 𝑟 be the nodes on the

1052

propagation path, and suppose we are given a witness tuple 𝑡 1 P

𝜋yΔ𝑉𝑠p𝑅𝑒𝑖 , 𝑡q for some 𝑖 . We first enumerate the query results par-

ticipated by 𝑡 1 together with relations on the path from 𝑒𝑖`1 to the

root 𝑟 , denoted as 𝑆 . This can be done by joining 𝑡 with the live

views associated with these nodes. For each such result 𝑞 P 𝑆 , we

enumerate the query results that participated by 𝑞. This enumer-

ation is done by partitioning the whole generalized join tree into

disjoint subtrees T𝑒𝑖 ,T𝑒𝑖`1
´T𝑒𝑖 , ¨ ¨ ¨ ,T𝑒𝑘 ´T𝑒𝑘´1

, and invoking Ful-

lEnum for each subtree separately. Finally, we join these subtrees

together. The detailed process is given in Algorithm 6. Note that,

as written, the algorithm does not achieve constant-delay enumer-

ation. However, this can be easily fixed. First, the join in line 4 can

be enumerated with constant delay using (a variant of) FullEnum

starting from 𝑡 1. Then we interleave the two enumeration processes:

After enumerating each 𝑞 P 𝑆 , we immediately call line 6–8. Finally,

line 6–8 can be rewritten into nested loops so as to enumerate the

join 𝑆𝑖 ⋈ ¨ ¨ ¨ ⋈ 𝑆𝑘 with constant delay. In fact, this join is more like

a cross product (common attributes must have the same value, the

same as those in 𝑞), and a total of Π𝑘
𝑗“𝑖

|𝑆 𝑗 | results will be yielded.

Example 5.8. In figure 3(a), there are two query results p1, 2, 4, 4q

and p2, 2, 4, 4q. In figure 3(b), we have the following observations

when propagation stops. p1, 2q P 𝑅2 is not a witness as it cannot join

with any tuple in𝑉𝑙 pr𝑥3sq, thus no delta is produced. p1q P r𝑥3s is a

witness, which triggers delta enumeration. For a witness in the root,

DeltaEnum simply degenerates to FullEnumpT𝑟 , 𝑟 , p1qq, which out-
puts tp1, 1, 1, 1q, p1, 1, 1, 2qu. p1, 4q P 𝑅2 is a witness, which triggers

delta enumeration. DeltaEnum finds 𝑆 “ p1, 4q ⋈ 𝑉𝑙 pr𝑥3sq “

tp1, 4qu. For p1, 4q P 𝑆 , it invokes FullEnumpT𝑟 ´ T𝑅2
, 𝑟 , p4qq with

tp4, 4qu returned and FullEnumpT𝑅2
, 𝑅2, p1, 4qq with tp1, 1, 4qu re-

turned. Joining them yields the delta tp1, 1, 4, 4qu. Finally, as each

new result is enumerated, we update the live views.

In figure 3(c), p1, 1q P Δ𝑉𝑠p𝑅3q is a witness. DeltaEnum first

finds 𝑆 “ tp1, 1qu. For p1, 1q P 𝑆 , it invokes FullEnumpT𝑟 ´

T𝑅3
, 𝑟 , p1qq with tp1, 1, 1qu returned, and FullEnumpT𝑅3

, 𝑅3, p1, 1qq

with tp1, 1, 4qu returned (delta enumeration upon a deletion is done

before the tuple deletion so as to find the delta). Joining them yields

the delta tp1, 1, 1, 1qu. Finally, we update live views with the delta.

Lemma 5.9. Algorithm 6 enumerates Δ𝑄p𝐷, 𝑡qwith constant delay.

We have now closed the loop: while enumerating Δ𝑄p𝐷, 𝑡q, we
update the live views as described earlier, which are needed for

enumerating the next delta.

6 UPDATE COST ANALYSIS

We have shown that the delay of both full and delta enumeration

is a constant, and this holds for the query plan defined by any

free-connex join tree in Section 4.1. In contrast, the update cost

differs for different query plans and can be as large as 𝑂p|𝐷|q in

the worst case. This is caused by P-Update, which may trigger an

S-Update to every tuple in its parent node. However, such a worst-

case behavior only happens on contrived update sequences, and

the update cost of most real-world update sequences can be much

better. Characterizing the update cost will be important for finding

a good free-connex join tree. As we will see, the height of the join

tree is an important parameter, and this is precisely the reason why

we make our framework applicable to any generalized join tree, as

generalized join trees can have a smaller height than standard join

trees. For example, the query in Figure 2 has a generalized join tree

of height 1 while the two standard join trees have height 2.

6.1 Enclosureness

Update sequences and lifespans. Given an update sequence 𝑆𝐷 ,

the lifespan of tuple 𝑡 is an interval 𝐼p𝑡q “ r𝑡`, 𝑡´s, where 𝑡`

denotes the timestamp when 𝑡 is inserted into 𝐷 and 𝑡´ denotes

the timestamp when 𝑡 is deleted from 𝐷 . We set 𝑡` “ ´8 to

indicate that 𝑡 exists in the initial 𝐷 and 𝑡´ “ `8 indicates that

𝑡 still exists in 𝐷 after the update sequence. Note that if a tuple is

repeatedly inserted and deleted, it will be treated as multiple tuples,

which have the same values but disjoint lifespans.

Although our algorithms will be able to handle arbitrary update

sequences, their performance can be better if the update sequences

possess some nice properties. In particular, the following two re-

strictive classes of update sequences are of practical importance:

‚ First-in-first-out (FIFO). A update sequence 𝑆𝐷 is FIFO if for

any two tuples 𝑡1, 𝑡2 P 𝑆𝐷 , 𝑡
`
1

ă 𝑡
`
2

implies 𝑡
´
1

ă 𝑡
´
2
. FIFO se-

quences are commonly used in practice, such as sliding-window

or tumbling-window models over streaming data.

‚ Insertion-only or deletion-only. A update sequence 𝑆𝐷 is

insertion-only (w.r.t. deletion-only) if for any tuple 𝑡 P 𝑆𝐷 , 𝑡
´ “

`8 (w.r.t. 𝑡` “ ´8). The two cases are symmetric, so we will

only discuss the insertion-only case in this paper.

The notion of enclosureness was first introduced in [33] to give

an instance-specific characterization of the hardness of the update

sequence, which we briefly review next.

Definition 6.1 (Enclosureness). Given an update sequence 𝑆𝐷 , the

enclosureness of a tuple 𝑡 P 𝑆𝐷 is

𝜆p𝑡q :“ max

JĎ𝑆𝐷
@𝑡1PJ,𝐼p𝑡1qĂ𝐼p𝑡q

@𝑡2,𝑡3PJ,𝐼p𝑡2qX𝐼p𝑡3q“H

|J |, (7)

i.e., the largest number of disjoint lifespans in 𝑆𝐷 contained in

𝐼p𝑡q. Then the enclosureness of the update sequence is the aver-

age enclosureness of all the tuples (but at least 1), i.e., 𝜆p𝑆𝐷q :“

max

ˆ

ř

𝑡P𝑆𝐷
𝜆p𝑡q

|𝑆𝐷 |
, 1

̇

. We often omit 𝑆𝐷 and simply write 𝜆 :“

𝜆p𝑆𝐷q for the enclosureness of an update sequence.

Then, they give an algorithm that can update any foreign-key

acyclic query in𝑂p𝜆q time for any 𝑆𝐷 while supporting𝑂p1q-delay

enumeration. This is appealing, since while 𝜆 can be as large as

𝑂p|𝑆𝐷 |q in the worst case, it is often a small constant for many com-

mon update sequences, including FIFO, FILO (first-in-last-out), and

insertion-/deletion-only sequences. The worst-case situation only

happens when there are many tuples with long lifespans joining

with many tuples with short lifespans, something that is uncommon

in practice (i.e., many big but ephemeral changes to the query).

However, their analysis crucially relies on the nice property of

foreign-key acyclic queries, that their result size is at most linear,

which is not the case for non-key joins. In fact, we show below

that the 𝑂p𝜆q update time is unachievable for free-connex queries,

which follows from the negative result that we prove below:

1053

Theorem 6.2. Consider the query 𝑄 “ 𝑅1p𝑥1q ⋈ 𝑅2p𝑥1, 𝑥2q ⋈

𝑅3p𝑥2, 𝑥3q ⋈ 𝑅4p𝑥3, 𝑥4q ⋈ 𝑅5p𝑥4q over a FIFO update sequence. If
there is an index for𝑄 with update time𝑂p|𝐷|1{2´𝜖qwhile supporting
𝑂p|𝐷|1´𝜖q-delay enumeration of full results for any constant 𝜖 ą 0,
then the OuMv conjecture4 fails.

Note that this theorem separates the difficulty of (at least one

of) free-connex queries from foreign-key acyclic queries, for which

𝑂p1q update time is possible for FIFO sequences [33].

6.2 Join-tree-specific Enclosureness

Hope is not all lost despite the negative result above. First, Theorem

6.2 only holds for a particular free-connex query; other queries may

still be updated in 𝑂p1q time. Secondly, the definition of enclosure-

ness in [33] only considers the time dimension while ignoring the

structure dimension, i.e., which relation each update is applied to.

These observations motivate a more refined definition of enclosure-

ness that also depends on the join tree (which nodes the updates

are applied to). As we will see, a hard query like the one in Theorem

6.2 can still be solved efficiently, when information from both the

structural dimension and the time dimension is taken into account.

Definition 6.3 (Effective lifespan). Given a free-connex query 𝑄 ,

a free-connex generalized join tree T of 𝑄 , a database 𝐷 , and an

update sequence 𝑆𝐷 , the two effective lifespans of a tuple 𝑡1 P 𝑅𝑒

with lifespan 𝐼p𝑡1q “ r𝑡
`
1
, 𝑡
´
1
s are

𝐼pp𝑡1q “

«

𝑡
`
1
,min

˜

𝑡
´
1
, min

𝑡2P𝑅𝑒1 :𝑒
1PT𝑒´t𝑒u,𝑡

´

2
ą𝑡

`

1

𝑡
´
2

¸ff

;

𝐼qp𝑡1q “

«

max

˜

𝑡
`
1
, max

𝑡2P𝑅𝑒1 :𝑒
1PT𝑒´t𝑒u,𝑡

`

2
ă𝑡

´

1

𝑡
`
2

¸

, 𝑡
´
1

ff

.

In plain language, 𝐼pp𝑡1q is obtained from 𝐼p𝑡1q by moving forward

its ending time to the first deletion of a tuple from any descendent

of 𝑒 , while to obtain 𝐼qp𝑡1q, we move its starting to the last insertion

from any descendent of 𝑒 . We can now define the join-tree-specific

enclosureness of a tuple:

Definition 6.4. Given a free-connex query 𝑄 , a free-connex gen-

eralized join tree T of𝑄 , a database 𝐷 , and an update sequence 𝑆𝐷 ,

for a node 𝑒 P T and a tuple 𝑡 P 𝑅𝑒 , its enclosureness is

𝜆Tp𝑡q “ max

@𝑡 1PJ,D𝑒1PT𝑒´t𝑒u,𝑡 1P𝑅𝑒1

@𝑡1PJ,𝐼9p𝑡1qĎ𝐼p𝑡q

@𝑡2,𝑡3PJ,𝐼9p𝑡2qX𝐼9p𝑡3q“H

|J |, (8)

where each 𝐼9 is either 𝐼p or 𝐼q, i.e., the largest number of disjoint

effective lifespans of tuples in the descendants of 𝑒 , which are

contained in the lifespan of 𝑡 . Then the enclosureness of the update

sequence is still the average: 𝜆Tp𝑆𝐷q :“ max

ˆ

ř

𝑡P𝑆𝐷
𝜆Tp𝑡q

|𝑆𝐷 |
, 1

̇

.

We often write 𝜆T :“ 𝜆Tp𝑆𝐷q for the enclosureness of an update

sequence with respect to T .

The main analytical result of this paper is the following theorem,

whose proof is quite technical (given in the full version [32]):

4
The OuMv conjecture [16] is that the following problem cannot be solved in𝑂p𝑛3´𝜖 q

time for any constant 𝜖 ą 0: Given an𝑛ˆ𝑛matrix𝑀 and a sequence of𝑛-dimensional

vectors𝑢1, 𝑣1,𝑢2, 𝑣2, ¨ ¨ ¨ ,𝑢𝑛, 𝑣𝑛 , compute𝑢𝑖𝑀𝑣𝑖 for each 𝑖 over the Boolean semiring.

The algorithm must return 𝑢𝑖𝑀𝑣𝑖 before 𝑢𝑖`1, 𝑣𝑖`1 are revealed.

(1, 1)
· · ·
(n, 1)
(1, 2)
· · ·

Time(n, 2)

(1, 1)
· · ·
(1, n)
(2, 1)
· · ·
(2, n)

R2

n/1/1

n/1/1

n/1/1

1/1/1

1/1/1

1/1/1

1/1/1

1/1/1

1/1/1

1/n/1

1/n/1

1/n/1

R1

Figure 4: An example of update sequence for𝑄 :“ 𝑅1p𝑥1, 𝑥2q ⋈

𝑅2p𝑥2, 𝑥3q in Figure 2 with T1,T2,T3. Each interval is the lifes-

pan of a tuple, and three numbers above each interval is its

enclosureness over T1, T2 and T3. 𝜆T1 “ 𝜆T2 “ 𝑛 and 𝜆T3 “ 1.

Theorem 6.5. For any free-connex query 𝑄 , the update cost of the
query plan in Section 4 induced by any given free-connex generalized
join tree T of 𝑄 is 𝑂p𝜆Tq under any update sequence.

This result is complemented with a matching lower bound, for

at least one particular query:𝑄 “ 𝜋𝑥1p𝑅1p𝑥1, 𝑥2q ⋈ 𝑅2p𝑥2qq, which

has one join tree as shown in Figure 2(a) (one could add a general-

ized relation r𝑥1s at the top but it does not change the enclosureness).

Thus, for this query, 𝜆T does not really depend on T .

Theorem 6.6. [33] Suppose there is an algorithm for the query
𝑄 “ 𝜋𝑥1p𝑅1p𝑥1, 𝑥2q ⋈ 𝑅2p𝑥2qq with update time 𝑂p𝜆1´𝜖q while
supporting𝑂p𝜆1´𝜖q-delay enumeration of full results for any constant
𝜖 ą 0, then the OMv conjecture5 fails.

6.3 Implications of Enclosureness

We present some implications of our join-tree-specific enclosure-

ness and Theorem 6.5, exhibiting an interesting trade-off between

the hardness of update sequences and the complexity of queries.

Arbitrary update sequences. For arbitrary update sequences,

prior work [6, 17] has shown how to achieve 𝑂p1q update time

while supporting 𝑂p1q-delay enumeration for any q-hierarchical

query. It turns out that this is an easy consequence of Theorem 6.5,

plus the following structural property of q-hierarchical queries, as

well as the simple fact that 𝜆T “ 1 if the height of T is 1:

Lemma 6.7. Every q-hierarchical query has a free-connex general-
ized join tree of height 1.

For arbitrary update sequences, q-hierarchical queries are pre-

cisely the class of queries for which 𝑂p1q update time is possible

[6]. Thus, for queries outside this class, we must restrict the update

sequence in order to achieve 𝑂p1q update time. We consider the

following two classes of update sequences.

FIFO sequences. The update time is shown to be𝑂p1q for foreign-

key acyclic joins over FIFO sequences [33], but nothing is known

for non-key joins (except for q-hierarchical queries which do not

rely on FIFO). We present the first extension in this direction:

Lemma 6.8. For any free-connex query𝑄 with a free-connex gener-
alized join tree T of height at most 2, 𝜆T “ 1 for any FIFO sequence.

5
The OMv conjecture is similar to the OuMv conjecture, except that the algorithm

needs to compute𝑀𝑣𝑖 for every 𝑣𝑖 .

1054

𝑥1

𝑥2

𝑥3 𝑥4

𝑥5

𝑥6

𝑅1

𝑅2

𝑅3

𝑅4

𝑅5

𝑅6

𝑅7

(a) Hypergraph and a GHD

̇ : 𝑉𝑠p𝑅7q

𝜋 : 𝑉𝑝p𝐵1q
𝑅7

𝜋 : 𝑉𝑝p𝐵2q

𝑉𝑠p𝐵1q : 𝑅3 ⋈ 𝑉1 𝑉𝑠p𝐵2q : 𝑅6 ⋈ 𝑉2

𝑅3 𝑉1 : 𝑅2 ⋈ 𝑅1 𝑉2 : 𝑅4 ⋈ 𝑅5 𝑅6

𝑅2 𝑅1 𝑅4 𝑅5𝐵1 𝐵2

(b) Query plan under new change propagation

𝑉6 “ 𝑉4 ⋈ 𝑉5

𝑉4 “ 𝑉2 ⋈ 𝑅7 𝑉5 “ 𝑉3 ⋈ 𝑅6

𝑉2 “ 𝑉1 ⋈ 𝑅3 𝑅7 𝑉3 “ 𝑅4 ⋈ 𝑅5 𝑅6

𝑅3 𝑉1 “ 𝑅2 ⋈ 𝑅3 𝑅5 𝑅4

𝑅1 𝑅2

(c) Query plan under standard change propagation

Figure 5: 5(a) is the hypergraph of the “dumbbell” query 𝑄 “ 𝑅1p𝑥1, 𝑥2q ⋈ 𝑅2p𝑥1, 𝑥3q ⋈ 𝑅3p𝑥2, 𝑥3q ⋈ 𝑅4p𝑥5, 𝑥6q ⋈ 𝑅5p𝑥4, 𝑥5q ⋈

𝑅6p𝑥4, 𝑥6q ⋈ 𝑅7p𝑥3, 𝑥4q, with GHD illustrated in red circle. 5(c),5(b) are query plans under the standard, new change propagation

framework respectively. In 5(c), 𝐵1, 𝐵2 are treated as two basic relations, on which projection and semi-join views are constructed.

Note that the height limit of 2 is the best one can hope for, since

the query in Theorem 6.2 has a join tree of height 3 and the theorem

shows that it cannot be updated in 𝑂p1q time over FIFO sequences.

Although the height-2 limitation restricts the class of queries, this

already includes some fairly complex queries, such as the one in

Figure 1; more examples can be found in Section 8.

Insertion-only sequences. As we restrict the update sequence

further, we can handle more queries in 𝑂p1q time. For simplicity,

the following result only considers insertion-only sequences, but

the same result holds for deletion-only or FILO sequences as well.

Lemma 6.9. For any free-connex query 𝑄 and any join tree T ,
𝜆T “ 1 for any insertion-only update sequence.

Theorem 6.10. For a free-connex query 𝑄 , there is an index that
can be updated in 𝑂p1q amortized time under any insertion-only
update sequence, while supporting 𝑂p1q-delay enumeration.

Note that Lemma 6.9 incorporates static case [4] as a special

case. Given a static database 𝐷 , we can simply insert every tuple of

𝐷 into our index. By Lemma 6.9, this index can be built in 𝑂p|𝐷|q

time while supporting 𝑂p1q-delay enumeration of 𝑄p𝐷q. Also, the

dichotomy result of [4] states that with 𝑂p|𝐷|q preprocessing time,

𝑂p1q-delay enumeration is only possible for free-connex queries,

thus Lemma 6.9 cannot be extended to beyond free-connex queries,

either, even over insertion-only sequences.

Example 6.11. Consider an insertion-only update sequence for

the query in Figure 1: (1) p𝑖, 𝑗q P r𝑛sˆr𝑛s are inserted into𝑅2,𝑅3 and

𝑅4 initially; (2) p𝑖, 𝑗q P r𝑛s ˆ r𝑛s are inserted into 𝑅1 later. Standard

change propagation or HIVM needs to materialize Δp𝑅1 ⋈ 𝑅2 ⋈

𝑅3q, incurring 𝑂p𝑛
3q cost; the Dynamic Yannakakis algorithm [17]

needs to scan all tuples p 𝑗, ˚q P 𝑅2 once p𝑖, 𝑗q is inserted into 𝑅1,

hence incurs Θp𝑛q cost; and our framework only incurs 𝑂p1q cost.

Query plan optimization. If the given query and/or the update

sequence do not fall into any of the three cases above where 𝑂p1q

update time can be guaranteed, our enclosureness analysis still

yields an effective heuristic for choosing a good T , which in turn

determines the query plan. First, it is clear that T with a smaller

height is always preferred. Furthermore, Definition 6.4 suggests

that we should put nodes with more updates higher in T , as a tuple

in a node might increase the enclosureness of tuples in its ancestors.

Thus, in our implementation, we construct all join trees and use

the one that minimizes

ř

𝑒PT 𝑑p𝑒q𝑁 p𝑒q, where 𝑑p𝑒q is the depth of

Table 1: Comparison of different query processing engines.

CROWN Flink DBToaster

DBToaster

Trill

Spark

Distributed ✓ ✓ ✓
Full

✓ ✓ ✓ ✓
enumeration

Delta

✓ ✓
enumeration

Updates Arbitrary FIFO Arbitrary Batch Arbitrary

Internal

This

Standard

HIVM HIVM

Standard

paper

change change

propagation propagation

𝑒 in T (not counting generalized relations and itself) and 𝑁 p𝑒q is

the number of updates to 𝑒 . If 𝑁 p𝑒q is unavailable, we can estimate

it by observing (and buffering) the first few updates.

7 EXTENSIONS TO GENERAL QUERIES

Acyclic but non-free-connex queries. Consider such a query

𝜋𝑥1,𝑥3𝑅1p𝑥1, 𝑥2q ⋈ 𝑅2p𝑥2, 𝑥3q. We simply add 𝑥2 as an output at-

tribute to turn it into a free-connex query, and then do a projection

over 𝑥1, 𝑥3 during enumeration. Note that enumeration may con-

tain duplicates. Thus, if a DISTINCT keyword is declared explicitly,

duplicates need to be removed, hence making the delay more than

constant, but this is inevitable due to the lower bound [4].

Cyclic queries. Cyclic queries can also be easily handled in our

framework by resorting to Generalized Hypertree Decomposition
(GHD) [14]. More specifically, by grouping several relations into a

bag, an arbitrary CQ can be converted into a free-connex one. For

example, Figure 5(a) shows a GHD for the “dumbbell” query with 3

bags. We can use standard change propagation within each bag, and

apply our framework across the bags. This results in the query plan

in Figure 5(b), which has𝑂p𝑁 2q space and𝑂p𝑁 q update time while

supporting constant-delay enumeration. On the other hand, the

standard change propagation framework would use a query plan

like the one in Figure 5(c), which has𝑂p𝑁 3q space and update time.

Of course, all these are worst-case bounds; on realistic inputs, the

costs are lower, but our new query plan is still order-of-magnitude

better than the old plan, as shown in Section 8.

If one is interested in further improving the theoretical bounds,

the algorithm for maintaining the query results inside each bag

can be replaced by a better algorithm. For example, Kara et al. [21]

present an algorithm for maintaining the triangle join. However,

not many results are known beyond the triangle join. This is still

1055

an actively researched problem; any improvement here will also

improve general CQs when plugged into our framework.

Selection, union, set difference, aggregation. In the full version

[32], we show how to support these operators in our framework.

8 EXPERIMENTS

8.1 Setup

Implementation. We have implemented our algorithms and built

a system prototype called CROWN (Change pROpagationWithout

joiNs) [32] on top of Flink DataStream API. All of our algorithms

are implemented as DataStream functions, which take as input an

update stream. Each tuple in the update stream is associated with

a flag indicating whether the update is an insertion or deletion,

as well as the name of the updated relation. After processing an

update, the DataStream function outputs the deltas triggered by

this update. Enumeration of full query results can be invoked upon

the user’s request. Implementing the prototype over Flink allows

us to inherit all the benefits of Flink, such as fault-tolerance and the

ability to work with a variety of data sources and sinks. To dispatch

tuples in a load-balanced fashion, we borrow a similar idea from

massively parallel algorithms, such as HyperCube [1, 5, 33].

We have evaluated our algorithms in both centralized and dis-

tributed settings. The centralized version runs on a single machine

with a single thread, where we disable certain Flink features such

as false tolerance, serialization, and dispatching for fair compari-

son (since DBToaster and Trill do not support these features). The

distributed version has all these features enabled. It runs over two

machines, each equipped with two Intel Xeon 2.1GHz processors

with 48 cores and 416 GB memory. The machine runs Linux, with

Scala 2.11.12, dotnet 5.0.403, Flink 1.13.5 and Spark 2.2.3. Each query

is evaluated 10 times on each engine and we report the average

runtime. We set a 4-hour time limit for each run.

Query processing engines compared. We compare CROWN

with (1) DBToaster [2], the best HIVM engine that supports multi-

way joins over arbitrary update streams in centralized settings; (2)

DBToaster Spark [27], which can support IVM with batch updates

in a distributed/parallel setting; (3) Trill [8], a continuous query

evaluation system over streaming data using the standard change

propagation framework; and (4) the native Flink SQL engine over

streaming data. Table 1 summarizes various features of these sys-

tems. Note that only CROWN supports both full enumeration and

delta enumeration. Flink can support insertion-only update streams

or window streams, but not arbitrary update streams. We run every

experiment twice: one for delta enumeration, and the other for

full enumeration. For full enumeration, we request the full query

results after processing every 10% of the update sequence. As Trill

does not support full enumeration, we ask Trill to report the entire

delta stream for full enumeration.

Queries and updates.We evaluate all systems over two classes

of queries. The first class contains graph pattern queries from the

benchmark by Nguyen et al. [26], over the SNAP dataset (Stanford

Network Analysis Project) [24]. Such a benchmark evaluates the

performance of each system for join queries over static data, and

we modify it to adapt to the dynamic scenario. We test all acyclic

queries from the benchmark, such as hop (path) queries, star queries

and comb queries. We also test the dumbbell query, which is a

variant of the lollipop query. The detailed query definition is given

in the full version and one example of the 3-Hop query is given

below, where we use a filter over to control the output size.

SELECT G1.src as A, G2.src as B, G3.src as C, G3.dst as D
FROM G G1, G G2, G G3
WHERE G1.dst = G2.src AND G2.dst = G3.src
AND FILTER OVER (G3.dst)

The second class includes more complex analytical queries over

the LDBC Social Network Benchmark (LDBC-SNB) [12], which

accesses the neighborhood of a given node in the graph with con-

tinuous updates. The following shows one example, which finds

the number of distinct messages associated with a particular tag

ID, while satisfying the filter conditions:

SELECT t_name, t_tagid, COUNT(DISTINCT m_messageid)
FROM tag, message, message_tag, knows
WHERE m_messageid = mt_messageid AND mt_tagid = t_tagid
AND m_creatorid = k_person2id AND m_c_replyof IS NULL
AND FILTER OVER (k_person1id)

GROUP BY t_name, t_tag_ids

Figure 6 shows the join hypergraphs of all queries. Except for

SNB Q3 and Q4, they have a height-2 free-connex generalized join

tree. The star query (figure 6(d)) has a height-1 free-connex gener-

alized join tree, so it is q-hierarchical. The 4-Hop query (figure 6(c))

and SNB Q4 query (figure 6(f)) have the same hypergraph structure

but different output attributes, and the 4-Hop query has a height-2

free-connex generalized join trees while SNB Q4 query does not.

We create FIFO streams with a parameter𝑤 . For graph queries,

we assign a distinct integer 𝑡𝑒 to each edge 𝑒 in the graph, where

𝑒 has its lifespan r𝑡𝑒 , 𝑡𝑒 `𝑤s. For LDBC-SNB queries, each tuple 𝑡

in the benchmark already has an insertion timestamp 𝑡`, and we

set its deletion time as𝑤 days after its insertion, i.e., 𝑡´ “ 𝑡` `𝑤 .

Note that the sliding window for graph queries is count-based, i.e.,

the window always contains the same number of tuples. On the

other hand, the window for LDBC-SNB queries is time-based, so

the number of tuples in a window fluctuates over time.

8.2 Experiment Results

Runtime. Figure 10 shows the total runtime of evaluating each

graph query over a mid-sized graph Epinions and each SNB query

in the centralized setting. The graph contains approximately 500K

edges and 76K vertices, as well as 3.7B 3-Hop paths and 378B 4-Hop

paths. On the other hand, we use the default scale factor of 1 for

all SNB queries. Under the scale factor, the total size of raw data is

1.5𝐺𝐵, and the largest relation contains 15 attributes. We set a filter

condition that only keeps 10% of the designated endpoints for all

queries. A missing bar in the figure indicates that the corresponding

system did not finish within the 4-hour limit or aborted with an

error (mostly out-of-memory errors and garbage collection timeout).

Only CROWN can finish all queries successfully. Trill only handles

a few graph queries. One possible explanation is that graph queries

tend to generate a large number of deltas. On the other hand, Flink

ran out of memory when evaluating SNB Q2, Q3, and Q4. For

those queries where the systems can finish, we see that CROWN

provides a speedup from 2x to 67x compared with Flink, 1.8x to

234x compared with DBToaster, and 2.7x to 523x compared with

1056

𝐴

𝐵 𝐶

𝐷

𝐺1

𝐺2

𝐺3

(a) 3-Hop Query

𝐴

𝐵 𝐶

𝐷

𝐺1

𝐺2

𝐺3

(b) 2-Comb Query

𝐴

𝐵 𝐶 𝐷

𝐸

𝐺1

𝐺2

𝐺4

𝐺3

(c) 4-Hop Query, SNB Q2

𝐵

𝐶

𝐴
𝐷

𝐸

𝐺1

𝐺2𝐺4

𝐺3

(d) Star Query

𝑖𝑑2

𝑖𝑑1

𝑖𝑑3

𝑀𝑖𝑑

𝑇𝑖𝑑

𝐾1

𝐾2

𝑀

𝑀𝑇

𝑇

(e) SNB Q3

𝑖𝑑2

𝑖𝑑1 𝑀𝑖𝑑 𝑇𝑖𝑑

𝑛𝑎𝑚𝑒

𝐾

𝑀

𝑇

𝑀𝑇

(f) SNB Q4

Figure 6: The relational hypergraphs of queries. The solid dots are output attributes for join-project and aggregation queries.

1e+00

1e+01

1e+02

1e+03

1e+04

1 2 4 10 20

Pr
oc
es
si
ng
	T
im
e	
(S
ec
)

λ

Epinion Google Bitcoin BerkStan

Figure 7: Runtime v.s. enclosureness 𝜆.

1e+01

1e+02

1e+03

1e+04

1 2 4 8 16 32

Pr
oc
es
si
ng
	T
im
e	
(S
ec
)

Parallelism

CROWN	4-Hop
CROWN	SNB	Q3

Flink	4-Hop
DBToaster	SNB	Q3

Figure 8: Runtime v.s. parallelism 𝑝.

1e+01

1e+02

1e+03

1e+04

25% 50% 75%

La
te
nc
y	
(m
s)

Percentage	of	stream	being	processed

CROWN Trill

Figure 9: Average latency.

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

3-Hop 4-Hop 2-Comb SNB	Q1 SNB	Q2 SNB	Q3 dumbbell 3-Hop 4-Hop dumbbell Star SNB	Q4

Pr
oc
es
si
ng
	T
im
e	
(S
ec
)

	

CROWN Flink DBToaster	CPP DBToaster	Spark CROWN	Delta Trill

Aggregate	QueriesJoin-Project	QueriesFull	Join	Queries

Figure 10: Processing times of CROWN, Flink, DBToaster, and Trill

Trill. Moreover, in handling join-project queries, CROWN requires

much less time than handling the corresponding full join queries,

while Flink requires more time. In addition, CROWN performs well

for both full and delta enumeration, and different modes of output

do not affect the overall performance of CROWN.

Enclosureness. To test the influences of enclosureness, we create

multiple update sequences with different 𝜆, over different graphs

from the SNAP dataset. We disable the output to see how the update

cost would change with different 𝜆. The experiment results are

shown in Figure 7. From the results, we can see the maintenance

cost of CROWN increases almost linear as 𝜆 increases.

Distributed processing. To compare CROWN with DBToaster

Spark and Flink in a distributed setting, we built a small cluster

with 32 task slots, and tested 4-Hop as well as SNB Q3 query, on

which DBToaster and Flink cannot finish in a centralized setting.

Figure 8 shows the results; missing data points or lines indicate the

system cannot finish within the time limit. Although we adopt the

HyperCube algorithm to dispatch all tuples, CROWNcan still obtain

linear speedup with 𝑝 ă 16, where 𝑝 is the number of workers.

When more workers are available, the margin gain becomes smaller.

This is as expected, since (1) speedup becomes sublinear with more

workers implied by HyperCube; (2) processing time is already small,

and system overhead dominates the entire runtime. For all finished

data points, CROWN can provide a speedup from 45x to 324x.

As Flink andDBToaster cannot finish all experiments with 128GB

memory, so we increase the memory usage for these two systems

to 500GB, where these two systems still only complete a tiny por-

tion of the experiments. On the other hand, CROWN can finish

all experiments with only 128GB of memory. If we further limit

the memory usage of CROWN to 16GB, i.e., 500MB per worker,

CROWN still works well without much change in its performance.

Latency. Finally, we tested the latency of delta enumeration, i.e.,

the time between an update is received and its deltas are outputted.

Figure 9 shows the result. The average latency of CROWN is less

than 90ms, while that of Trill is more than 6s. In addition, the

average latency is stable for CROWN, but it keeps growing for Trill,

making it infeasible to process streams for long periods.

Scalability. To test the scalability of different platforms, we change

the scale factor of the SNB benchmark and compare the average

update cost between different platforms. Due to the space constraint,

the results are given in [32]. The results show that the average

processing time of CROWN is stable under different data sizes. In

contrast, the data size will affect the average processing time of

other platforms, suggesting CROWN has better scalability.

Selectivity. We also adjust the filter condition to test the perfor-

mance with different output sizes. Due to the space constraint, A

detailed analysis of the results of this part is given in the full version

[32]. To summarize, the runtime of Flink and DBToaster depends on

input, output and intermediate join size. Meanwhile, the runtime

of CROWN only depends on the input and output size. It makes

CROWN highly efficient, especially when the selectivity is small.

ACKNOWLEDGMENTS

This work has been supported by HKRGC under grants 16201318,

16201819, and 16205420. Qichen Wang conducted this research

work when he studied at HKUST.

1057

REFERENCES

[1] Foto N. Afrati and Jeffrey D. Ullman. 2011. Optimizing Multiway Joins in a Map-

Reduce Environment. IEEE Transactions on Knowledge and Data Engineering 23,

9 (2011), 1282–1298.

[2] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012.

DBToaster: Higher-order delta processing for dynamic, frequently fresh views.

Proceedings of the VLDB Endowment 5, 10 (2012), 968–979.
[3] Albert Atserias, Martin Grohe, and Dániel Marx. 2013. Size bounds and query

plans for relational joins. SIAM J. Comput. 42, 4 (2013), 1737–1767.
[4] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic

Conjunctive Queries and Constant Delay Enumeration. In Computer Science
Logic. Springer Berlin Heidelberg, Berlin, Heidelberg, 208–222.

[5] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps

for Parallel Query Processing. J. ACM 64, 6, Article 40 (oct 2017), 58 pages.

https://doi.org/10.1145/3125644

[6] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering

Conjunctive Queries under Updates. In Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (Chicago, Illinois,
USA) (PODS ’17). Association for Computing Machinery, New York, NY, USA,

303–318. https://doi.org/10.1145/3034786.3034789

[7] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,

and Kostas Tzoumas. 2015. Apache Flink: Stream and Batch Processing in a

Single Engine. IEEE Data Engineering Bulletin 38, 4 (2015), 28–38.

[8] Badrish Chandramouli, Jonathan Goldstein, Mike Barnett, Robert DeLine, Danyel

Fisher, John C Platt, James F Terwilliger, and John Wernsing. 2014. Trill: A high-

performance incremental query processor for diverse analytics. Proceedings of
the VLDB Endowment 8, 4 (2014), 401–412.

[9] Rada Chirkova and Jun Yang. 2012. Materialized views. Foundations and Trends®
in Databases 4, 4 (2012), 295–405.

[10] Arnaud Durand. 2020. Fine-Grained Complexity Analysis of Queries: From

Decision to Counting and Enumeration. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (Portland, OR, USA)
(PODS’20). Association for Computing Machinery, New York, NY, USA, 331–346.

https://doi.org/10.1145/3375395.3389130

[11] Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, and Christoph

Koch. 2014. Scalable and Adaptive Online Joins. Proc. VLDB Endow. 7, 6 (feb
2014), 441–452. https://doi.org/10.14778/2732279.2732281

[12] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev,

Arnau Prat, Minh-Duc Pham, and Peter Boncz. 2015. The LDBC Social Net-

work Benchmark: Interactive Workload. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (Melbourne, Victoria, Aus-

tralia) (SIGMOD ’15). Association for Computing Machinery, New York, NY, USA,

619–630. https://doi.org/10.1145/2723372.2742786

[13] Buğra Gedik, Rajesh R Bordawekar, and Philip S Yu. 2009. CellJoin: a parallel

stream join operator for the cell processor. The VLDB journal 18, 2 (2009), 501–
519.

[14] Georg Gottlob, Nicola Leone, and Francesco Scarcello. 2002. Hypertree decom-

positions and tractable queries. J. Comput. System Sci. 64, 3 (2002), 579–627.
[15] Timothy Griffin and Bharat Kumar. 1998. Algebraic Change Propagation for

Semijoin and Outerjoin Queries. SIGMOD Rec. 27, 3 (Sept. 1998), 22–27. https:

//doi.org/10.1145/290593.290597

[16] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol

Saranurak. 2015. Unifying and StrengtheningHardness for Dynamic Problems via

the Online Matrix-Vector Multiplication Conjecture. In Proceedings of the Forty-
Seventh Annual ACM Symposium on Theory of Computing (Portland, Oregon,

USA) (STOC ’15). Association for Computing Machinery, New York, NY, USA,

21–30. https://doi.org/10.1145/2746539.2746609

[17] Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. 2017. The Dynamic

Yannakakis Algorithm: Compact and Efficient Query Processing Under Updates.

In Proceedings of the 2017 ACM International Conference on Management of Data
(Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machinery,

New York, NY, USA, 1259–1274. https://doi.org/10.1145/3035918.3064027

[18] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2019. Efficient query processing for dynamically changing datasets.

ACM SIGMOD Record 48, 1 (2019), 33–40.

[19] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolf-

gang Lehner. 2020. General dynamic Yannakakis: conjunctive queries with theta

joins under updates. The VLDB Journal 29, 2 (2020), 619–653.
[20] Jaewoo Kang, Jeffrey F Naughton, and Stratis D Viglas. 2003. Evaluating window

joins over unbounded streams. In Proceedings 19th International Conference on
Data Engineering (Cat. No. 03CH37405). IEEE, 341–352.

[21] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020.

Maintaining Triangle Queries under Updates. ACM Trans. Database Syst. 45, 3,
Article 11 (aug 2020), 46 pages. https://doi.org/10.1145/3396375

[22] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020. Trade-offs

in static and dynamic evaluation of hierarchical queries. In Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems.
375–392.

[23] Ki Yong Lee, Jin Hyun Son, and Myoung Ho Kim. 2001. Efficient Incremental

View Maintenance in Data Warehouses. In Proceedings of the Tenth International
Conference on Information and Knowledge Management (Atlanta, Georgia, USA)
(CIKM ’01). Association for Computing Machinery, New York, NY, USA, 349–356.

https://doi.org/10.1145/502585.502644

[24] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network

Dataset Collection. http://snap.stanford.edu/data.

[25] Qian Lin, Beng Chin Ooi, Zhengkui Wang, and Cui Yu. 2015. Scalable distributed

stream join processing. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 811–825.

[26] Dung Nguyen, Molham Aref, Martin Bravenboer, George Kollias, Hung Q Ngo,

Christopher Ré, and Atri Rudra. 2015. Join processing for graph patterns: An old

dog with new tricks. In Proceedings of the GRADES’15. 1–8.
[27] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2016. How to win a

hot dog eating contest: Distributed incremental view maintenance with batch

updates. In Proc. ACM SIGMOD International Conference on Management of Data.
ACM, 511–526.

[28] Milos Nikolic and Dan Olteanu. 2018. Incremental view maintenance with triple

lock factorization benefits. In Proc. ACM SIGMOD International Conference on
Management of Data. ACM, 365–380.

[29] Milos Nikolic, Haozhe Zhang, Ahmet Kara, and Dan Olteanu. 2020. F-IVM: learn-

ing over fast-evolving relational data. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2773–2776.

[30] Kenneth A. Ross, Divesh Srivastava, and S. Sudarshan. 1996. Materialized View

Maintenance and Integrity Constraint Checking: Trading Space for Time. In

Proceedings of the 1996 ACM SIGMOD International Conference on Management
of Data (Montreal, Quebec, Canada) (SIGMOD ’96). Association for Computing

Machinery, New York, NY, USA, 447–458. https://doi.org/10.1145/233269.233361

[31] Pratanu Roy, Jens Teubner, and Rainer Gemulla. 2014. Low-latency handshake

join. Proceedings of the VLDB Endowment 7, 9 (2014), 709–720.
[32] Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. 2023. Change Propagation

Without Joins. arXiv preprint arXiv:2301.04003 (2023). https://doi.org/10.48550/

arXiv.2301.04003

[33] Qichen Wang and Ke Yi. 2020. Maintaining Acyclic Foreign-Key Joins under

Updates. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. 1225–1239.

[34] Mihalis Yannakakis. 1981. Algorithms for acyclic database schemes. In Proc.
International Conference on Very Large Data Bases. 82–94.

1058

https://doi.org/10.1145/3125644
https://doi.org/10.1145/3034786.3034789
https://doi.org/10.1145/3375395.3389130
https://doi.org/10.14778/2732279.2732281
https://doi.org/10.1145/2723372.2742786
https://doi.org/10.1145/290593.290597
https://doi.org/10.1145/290593.290597
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/3035918.3064027
https://doi.org/10.1145/3396375
https://doi.org/10.1145/502585.502644
http://snap.stanford.edu/data
https://doi.org/10.1145/233269.233361
https://doi.org/10.48550/arXiv.2301.04003
https://doi.org/10.48550/arXiv.2301.04003

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Classification of CQs

	4 Change Propagation Without Joins
	4.1 A New Query Plan
	4.2 Change Propagation

	5 Enumeration
	5.1 Full Result Enumeration
	5.2 Delta Enumeration

	6 Update Cost Analysis
	6.1 Enclosureness
	6.2 Join-tree-specific Enclosureness
	6.3 Implications of Enclosureness

	7 Extensions to General Queries
	8 Experiments
	8.1 Setup
	8.2 Experiment Results

	Acknowledgments
	References

