
Async-fork: MitigatingQuery Latency Spikes Incurred by the
Fork-based Snapshot Mechanism from the OS Level

Pu Pang
Shanghai Jiao Tong University

Alibaba Group
avengerispp@sjtu.edu.cn

Gang Deng
Alibaba Group

denggang.dg@alibaba-inc.com

Kaihao Bai
Shanghai Jiao Tong University

Alibaba Group
asbaikaihao@sjtu.edu.cn

Quan Chen
Shanghai Jiao Tong University

chen-quan@sjtu.edu.cn

Shixuan Sun
National University of Singapore

sunsx@comp.nus.edu.sg

Bo Liu
Shanghai Jiao Tong University

boliu98@sjtu.edu.cn

Yu Xu
Alibaba Group

qiyu.xy@alibaba-inc.com

Hongbo Yao
Alibaba Group

yuanzhi.yhb@alibaba-inc.com

Zhengheng Wang
Alibaba Group

zhengheng.wzh@alibaba-inc.com

Xiyu Wang
Alibaba Group

xiyu.wxy@alibaba-inc.com

Zheng Liu
Alibaba Group

wenqing.lz@alibaba-inc.com

Zhuo Song
Alibaba Group, SJTU

songzhuo.sz@alibaba-inc.com

Yong Yang
Alibaba Group

zhiche.yy@alibaba-inc.com

Tao Ma
Alibaba Group

boyu.mt@alibaba-inc.com

Minyi Guo
Shanghai Jiao Tong University

myguo@sjtu.edu.cn

ABSTRACT
In-memory key-value stores (IMKVSes) serve many online applica-
tions. They generally adopt the fork-based snapshot mechanism to
support data backup. However, this method can result in query la-
tency spikes because the engine is out-of-service for queries during
the snapshot. In contrast to existing research optimizing snapshot
algorithms, we address the problem from the operating system (OS)
level, while keeping the data persistent mechanism in IMKVSes un-
changed. Specifically, we first study the impact of the fork operation
on query latency. Based on findings in the study, we propose Async-
fork, which performs the fork operation asynchronously to reduce
the out-of-service time of the engine. Async-fork is implemented
in the Linux kernel and deployed into the online Redis database in
public clouds. Our experiment results show that Async-fork can
significantly reduce the tail latency of queries during the snapshot.

PVLDB Reference Format:
Pu Pang, Gang Deng, Kaihao Bai, Quan Chen, Shixuan Sun, Bo Liu, Yu Xu,
Hongbo Yao, Zhengheng Wang, Xiyu Wang, Zheng Liu, Zhuo Song, Yong
Yang, Tao Ma, and Minyi Guo. Async-fork: Mitigating Query Latency
Spikes Incurred by the Fork-based Snapshot Mechanism from the OS Level.
PVLDB, 16(5): 1033 - 1045, 2023.
doi:10.14778/3579075.3579079

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579079

1 INTRODUCTION
In-memory key-value stores (IMKVSes) are widely used in real-
world applications, especially online services (e.g., e-commerce
and social network), because of their ultra-fast query processing
speed. For example, Memcached [49], Redis [42], KeyDB [24] and
their variants [6, 11, 18, 23] have been deployed in production
environments of big internet companies such as Facebook, Amazon
and Twitter. As all data resides in memory, the data persistent
function is a key feature of IMKVSes for data backup.

A common data persistent approach is to take a point-in-time
snapshot of the in-memory data with the system call fork and dump
the snapshot into the file system. Figure 1(a) gives an example of the
fork-based snapshot method. In the beginning, the storage engine
(the parent process) invokes fork to create a child process. As fork
creates a new process by duplicating the parent process, the child
process will hold the same data as the parent. Thus, we can ask
the child process to write the data into a file in the background but
keep the parent process continuous processing queries. Although
the storage engine delegates the heavy IO task to the child process,
the fork-based snapshot method can incur latency spikes [31, 52].
Specifically, queries arriving during the period of taking a snapshot
(from the start of fork to the end of persisting data) can have a long
latency because the storage engine runs into the kernel mode and
is out-of-service for queries. For example, the query arrives in time
𝑇0 in Figure 1(a). For brevity, queries arriving during the period
of taking a snapshot are called snapshot queries, while the others
are called normal queries. In general, IMKVSes take a snapshot
periodically (e.g., Redis by default takes a snapshot every 60 seconds
if at least 10000 records aremodified [47, 59]). Consequently, latency
spikes for snapshot queries are not rare.

1033

https://doi.org/10.14778/3579075.3579079
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3579075.3579079

Parent

Child

Query

Parent

Child

Query

Parent

Child

Query

(a) Default Fork (b) SPT-based Fork (c) Proposed Async-fork

Copy Metadata Except for Page Table Copy Page Table Query
Response

Query
Arrive LatencyHandle Query Persist Data Kernel Mode

Invoke Fork Invoke Fork Invoke Fork

Proactively
Synchronize

T0 T1

Figure 1: The workflow of the parent and child process with (a) default fork, (b) shared page table (SPT)-based fork, (c) the
proposed Async-fork in the snapshot procedure.

To solve the problem, researchers proposed a variety of snap-
shot algorithms such as Copy-on-Update [9, 32], Zigzag [10] and
Ping-Pong [10]. These algorithms focus on lowering the cost of
taking a snapshot by optimizing the occasion of copying data and
reducing the amount of data copied. However, a recent study [31]
finds that the performance of the fork-based method is generally
competitive with these advanced methods, and even outperforms
them for write-intensive workloads. Additionally, the implementa-
tion of the fork-based method is very simple and requires a small
engineering effort. As such, industrial IMKVSes do not adopt these
snapshot algorithms from academia and keep the fork-based as the
built-in data persistent approach. As a result, IMKVSes still have
latency spikes caused by the fork operation, which can harm the
service quality of online applications.

In contrast to existing research focusing on optimizing snapshot
algorithms, we propose a straightforward approach to address the
problem. Specifically, we optimize the fork operation to reduce the
long latency incurred by the fork-based snapshot from the operating
system (OS) level, while keeping the data persistent mechanism in
IMKVSes unchanged.

We first conduct an in-depth study to reveal the impact of the
fork operation on query latency. Our profiling results on the default
fork operation show that the overhead of fork results in a long
tail latency (up to hundreds of milliseconds) for snapshot queries,
and copying the page table dominates the execution time of fork.
This motivates us to further investigate the impact of advanced
techniques [13, 14, 17, 34, 59] that can accelerate the fork operation.
We consider two optimization strategies, the huge page [13, 14] and
the shared page table [17, 34, 59]. As the huge page can degrade
the performance of IMKVSes [27, 44], our profiling only involves
the shared page table-based fork (SPT-based fork) [59], which is the
latest method. The SPT-based fork proposed to share the page table
between the parent process and the child process in a copy-on-write
(CoW) manner to reduce the cost of the fork operation. However,
the CoW can frequently interrupt the parent process as shown in
Figure 1(b). Our profiling results show that frequent interruption
can incur non-negligible overhead for snapshot queries although
the SPT-based fork significantly reduces the tail latency compared
with the default fork operation. Moreover, our analysis finds that
the shared page table introduces the data leakage vulnerability,
which potentially leads to an inconsistent snapshot. Thus, both the
huge table and shared page table techniques cannot be applied in
this scenario.

Motivated by these findings, we propose Async-fork to mitigate
the latency spikes for snapshot queries by optimizing the fork
operation. Figure 1(c) demonstrates the general idea. As copying
the page table dominates the cost of the fork operation, Async-
fork offloads this workload from the parent process to the child
process to reduce the duration that the parent process runs into the
kernel mode. This design also ensures that both the parent and child
processes have an exclusive page table to avoid the data leakage
vulnerability caused by the shared page table.

However, it is far from trivial to achieve in design since the
asynchronization operations of the two processes on the page table
can result in an inconsistent snapshot, i.e., the parent process may
modify the page table, while the copy operation of the child process
is in process. To address the problem, we design the proactive syn-
chronization technique. This technique enables the parent process
to detect all modifications (including that triggered by either users
or OS) to the page table. If the parent process detects that some
page table entries will be modified and these entries are not copied,
then it will proactively copy them to the child process. Otherwise,
these entries must have been copied to the child process and the
parent process will directly modify them. In this way, the proactive
synchronization technique keeps the snapshot consistent and re-
duces the number of interruptions to the parent process compared
with SPT-based fork. Additionally, we parallelize the copy operation
of the child process to further accelerate Async-fork.

We implement Async-fork in the Linux kernel (both x86 and
ARM64). Async-fork is integrated into the OS and transparent
to IMKVSes. The technique is also deployed in the online Redis
databases in public Clouds1. Despite that, we conduct experiments
on our local machine for the purpose of test flexibility. In the ex-
periments, we select two popular IMKVSes, Redis and KeyDB, and
use the Redis benchmark [41] and Memtier benchmark [46]. The
database instance size is varied from 1GB, 2GB, and 4GB . . . to 64GB.
Although the SPT-based fork [59] may lead to data leakage, our
experiment involves this method for comparison purposes because
of its efficiency. For Redis, our experiment results show that 1) com-
pared with the default fork, Async-fork reduces the 99%-ile latency
of snapshot queries by 17.57% (from 0.074ms to 0.061ms) on 1GB
instance, 81.76% (from 0.435ms to 0.079ms) on 8GB instance and
99.84% (from 991.9ms to 1.5ms) on 64GB instance; and 2) compared

1https://www.alibabacloud.com/product/apsaradb-for-redis. Last accessed on
2022/11/13.

1034

https://www.alibabacloud.com/product/apsaradb-for-redis

PMD1 PTE1

0xffffffc900000000

0xfffffff600000000

PGD
Level

PUD
Level

PMD0

PMD
Level

PTE0

PTE
Level

PTE2

PTE3

VMA1VMA0 VMA2

Page

Virtual Memory Space Physical
Memory

Space

...

...

...

...

Page Table
Correspond to VMA0

A PUD table
contains 512
PUD entries

Multi-level Radix Tree

Figure 2: The organization of the page table.

with the latest SPT-based fork, Async-fork reduces the 99%-ile la-
tency of snapshot queries by 2.87% on 1GB instance, 39.73% on 8GB
instance and 61.97% on 64GB instance. We obtain similar results
on KeyDB. These results demonstrate the efficacy of the technique
proposed in this paper, especially for the large instances that can
lead to long latency.

In summary, we make the following contributions in this paper.
• We conduct an in-depth study of the impact of the fork

operations on the latency of snapshot queries in IMKVSes.
• We propose Async-fork that can mitigate the long latency

of snapshot queries from the OS level, which is orthogonal
to existing research on the problem.

• The technique is implemented in the Linux kernel (both
x86 and ARM64) and deployed in the online Redis database
in public clouds.

• We conduct extensive experiments with Redis and KeyDB
to evaluate the efficacy of the proposed techniques.

2 BACKGROUND
In this section, we first introduce the preliminaries and then discuss
the related work.

2.1 Preliminary
We first briefly review two operating system concepts, virtual mem-
ory and fork that are closely related to this work. As our technique
is implemented and deployed in Linux, we introduce these concepts
in the context of Linux. Then, we discuss the use cases of fork in
databases.

Virtual Memory. As an effective approach to managing hard-
ware memory resources, virtual memory is widely used in modern
operating systems. A process has its own virtual memory space,
which is organized into a set of virtual memory areas (VMA). Each
VMA describes a continuous area in the virtual memory space. The
page table is the data structure used to map the virtual memory
space to the physical memory. It consists of a collection of page
table entries (PTE), each of which maintains the virtual-to-physical
address translation information and access permissions. A VMA
corresponds to multiple PTEs.

Figure 2 shows an example of the page table. To reduce the
memory cost, the page table is stored as a multi-level radix tree
in which PTEs locate in leaf nodes (i.e., PTE Level in Figure 2).

The part in the area marked with the dashed line corresponds to
VMA0. The tree at most has five levels. From top to bottom, they
are the page global directory (PGD) level, the P4D level, the page
upper directory (PUD) level, the page middle directory (PMD) level
and the PTE level. As P4D is generally disabled, we focus on the
other four levels in this paper. Except for the PTE level, an entry
stores the physical address of a page while this page is used as the
next-level node (table). With the page size setting to 4KB, a table in
each level contains 512 entries. Given a VMA, “VMA’s PTEs” refers
to the PTEs corresponding to the VMA and “VMA’s PMDs” is the
set of PMD entries that are parents of these PTEs in the tree. For
example, PMD0 and PMD1 belong to VMA0’s PMDs in Figure 2.

Fork Operation. Fork is a system call that creates a new process
by duplicating the calling process [1]. Both processes have sepa-
rate memory spaces. The new (resp. calling) process is called the
child (resp. parent) process. To accelerate the operation, Linux im-
plements fork with the copy-on-write (CoW) strategy. Specifically,
while invoking fork, the parent process runs in the kernel mode
and copies the metadata (e.g, VMAs, the page table, file descriptors,
and signals) to the child process. The PTEs of both parent and child
are set to write-protected. After that, the process that first modifies
a write-protected page triggers a page fault, which leads to the
copy of the page. In a word, benefiting from CoW, fork copies the
metadata only.

Use Cases of fork in Database. Fork has a number of database
use cases because it can easily and efficiently create a snapshot of
in-memory data, the consistency of which is guaranteed by the OS.
In general, these cases can be categorized into two classes based on
the usage of the snapshot. First, use fork to delegate dedicated tasks,
which have expensive IO or computation costs, to a child process
without blocking the service of the parent process. MDC [40] uses
fork to record checkpoints for in-memory databases. Redis uses
fork to conduct log rewriting [45] that optimizes the Append Only
File (AOF). FlurryDB [35] proposes to create replica based on fork
in distributed environments. Second, use fork to create snapshots
to support concurrent transaction processing because fork provides
the snapshot isolation between processes. HyPer [29] proposes to
evaluate hybrid OLTP andOLAP queries based on snapshots created
by fork. AnKer [50] designs a fine-grained snapshot mechanism
to support MVCC. In particular, AnKer takes a partial snapshot
of in-memory data by co-designing the database engine and the
system call fork. Different from our research on accelerating the
fork operation from the OS level, AnKer focuses on optimizing
which in-memory data should be captured by the snapshot.

All these use cases can potentially benefit from Async-fork be-
cause 1) they can encounter the query latency spike problem in-
curred by the fork operation; and 2) Async-fork can accelerate the
snapshot creation. This paper focuses on the scenario that uses
fork to take a point-in-time snapshot of in-memory data to persist
the data [26, 45]. In particular, the storage engine calls fork to cre-
ate a child process that holds the same data as it. Then, the child
process writes the data to the hard drive, while the storage engine
can continue to serve users’ queries. Although the storage engine
delegates the data dump task to the child process, it will be out-of-
service for queries during the invocation of fork because it runs
into the kernel mode. We are particularly interested in this scenario
because the IMKVS is one of the most important services in public

1035

cloud and popular IMKVSes (e.g., Redis and KeyDB) [51] use this
mechanism to persist data. Consequently, these stores encounter
serious a query latency spike problem (see Section 3), while they
are generally used in mission-critical applications that have a rigid
latency constraint. We also evaluate the effectiveness of Async-fork
on log rewriting in Redis [45]. The experiment results are presented
in the technical report [37].

Remarks. Instead of developing a general-purpose solution to
replace the default fork in the OS, the goal of Async-fork is to
provide an efficient fork operation for the scenarios (especially for
IMKVSes) where 1) the applications are memory-intensive, and 2)
the parent process is latency-sensitive. Our design allows Async-
fork and the default fork to run in parallel in the OS. Users can
easily choose the fork method used in applications (see Section 5.2).

2.2 Related Work
Consistent snapshot is essential for in-memory databases to sup-
port backup and disaster recovery [4, 16, 31, 56]. Some consistent
snapshot mechanisms have been proposed to trade off throughput,
latency, and memory footprint [8–10, 31, 32]. Naive snapshot [8]
blocked the storage engine until a deep copy of all the in-memory
data is created, which is not suitable for IMKVSes in which the
latency is critical. There are also some non-blocking snapshot mech-
anisms. Copy-on-Update [9, 32] proposed to create a shadow copy
of the in-memory data; the storage engine is free to access any data
but create a deep copy when updates it for the first time. Note that,
the fork-based snapshot is a Copy-on-Update variant that leverages
the operating system. Some other mechanisms used multi-version
concurrency control (MVCC) [7] to keep multiple versions of in-
memory data. Zigzag [10] maintained another untouched copy of
the in-memory data and introduced metadata bits to indicate which
copy the store engine should read from or write to. Based on Zigzag,
Ping-Pong [10] maintained three versions of the data to lower the
cost of managing metadata bits. Hourglass and Piggyback [31] were
developed by combining Zigzag and Ping-Pong.

Although fork-based snapshot results in long latency during
snapshot process, popular industrial IMKVSes (Redis and KeyDB)
still adopts fork-based snapshot for two reasons: 1) fork provides a
simple engineering implementation for consistent snapshot, while
it requires great efforts to integrate the above approaches into the
IMKVS. 2) None of the above approaches completely outperform the
fork-based snapshot in write-intensive workloads [31]. For example,
Ping-Pong and Hourglass can mitigate the latency spikes, while
Ping-Pong incurs 3x memory footprint and Hourglass results in
higher latency during normal operation. This work resolves the
latency spikes of the fork-based snapshot, while keeping its original
superiorities.

Previous work [32, 40] noted that thememory footprint increases
during snapshot process due to the CoW strategy. MDC [40] pro-
posed to release the pages that have been persisted as soon as pos-
sible. AnKer [50] introduced a fine-grained version of fork to take
partial snapshot when databases do not need to persist all the data.
CCoW [22] optimized the CoW mechanism based on the spatial
locality of memory access. It prioritizes the copy for high-locality
memory regions to improve the performance on write-intensive
workloads. Async-fork is orthogonal and complementary to them.

1 2 4 8 16 32 64
Redis Instance Size (GB)

101

102

E
xe

cu
tio

n
T

im
e

(m
s)

fork copy_page_range

96%

98%

100%

Pr
op

or
tio

n%

Figure 3: The execution time of fork and the percentage of
the time of copying the page table in fork.

There is also other approach to persist data in IMKVSes. Redis
and KeyDB use Append Only File (AOF) [26, 45] to log every write
operation received by the storage engine, that will be played again
after the database reboots to reconstruct the original dataset. The
snapshot and AOF are complementary, and it is recommended to
enable both of them simultaneously in IMKVSes.

3 MOTIVATION
In this section, we present our profiling results to demonstrate
the impact of the fork operation on the query latency. We first
evaluate the performance of fork for taking the snapshot to pinpoint
the key performance factors. We then reveal the impact of the
fork operation on query latency. In addition to the default fork in
Linux, our profiling involves the state-of-the-art approach [59] of
optimizing the fork operation. Lastly, we summarize our findings
according to the profiling results.

Profiling Setting. We use Redis benchmark [41] to study the
performance in the experiments. The detailed configuration of the
test machine is introduced in Section 6.1. The experiment reports
the latency of a query, that is the elapsed time between the time
point that the client issues the query and that the client receives
the response. In the experiment, we enhance the benchmark by
generating queries in the open-loop mode [48, 58]. This enhance-
ment sends commands to the server without waiting for replies to
previous queries to simulate real-world environments. The database
instance size is varied from 1GB to 64GB. By default, Redis takes
one snapshot per 60 seconds if at least 10000 keys changed. In order
to measure the impact of the fork operation accurately, we execute
the BGSAVE command to trigger the operation of taking a snapshot.
We classify queries into two groups, normal and snapshot, based
on their arrival time. The snapshot queries are the queries arriving
during the period of taking the snapshot (i.e., from the invocation
of fork until the end of persisting the in-memory data), while the
others are normal queries. Wemeasure the 99%-ile (p99) latency and
the maximum latency of normal and snapshot queries, respectively.
The two latencies greatly impact user experiences and are often
used to measure the performance of user-facing databases [28, 31].
We repeat each experiment five times and report the average value.

3.1 Performance of fork for Taking a Snapshot
Figure 3 presents the execution time of fork and the time of copying
the page table in the fork operation. We can see that the execution
time grows roughly linearly with the instance size increasing from
1GB to 64GB. The 1GB instance takes less than 10 ms, while the

1036

64GB instance takes more than 600 ms.We can also see that the time
of the page table copy dominates the execution time. Particularly,
the copy operation takes over 97% percentage of the execution time
on all test cases and up to 99.93% percentage on the 64 GB instance.
Without loss of generality, we measure the detailed metrics of
copying the page table on the 8 GB instance to further study the
copy operation.

In the experiment, the page table of the 8GB instance has one
PGD entry, eight PUDs, 212 PMDs and 221 PTEs. Overall, fork copies
the table level-by-level from top to bottom along the radix tree. The
copy of one PGD/PUD/PMD entry requires to apply for a page to
store its children and initialize the page. The operation takes around
500 ns. Thus, the copy of the 212 PMDs takes around 2 ms, while
the overhead of copying PGDs and PUDs is trivial because there are
only a few entries. The rest time (around 70 ms) is spent on copying
PTEs. Based on the results, we have the following observation.

Observation 1. For the fork operation, the execution time dramat-
ically grows with the instance size increasing, and the page table copy
dominates the cost. For the page table copy, the overhead of copying
PGDs and PUDs is trivial, while that of copying PMDs and PTEs is
non-negligible.

3.2 Impact of Fork Operations on Latency
We reveal the impact of the fork operation on the query latency
in this subsection. Before presenting the results, we first introduce
existing optimization approaches to the fork operation.

Huge Page [13, 14]. In the operating system (OS), we can increase
the page size to reduce the number of pages used by a process,
for example, setting the page size to 2MB instead of 4KB. The
large page size can reduce the number of PTEs and accelerate
the fork operation. However, previous study found that the page
fault latency can increase from 3.6𝜇𝑠 to 378𝜇𝑠 after enabling huge
page because compacting and zeroing memory in the page fault
incurs higher overhead on huge page than that on regular page [30].
Moreover, Redis consumesmuchmore memory space after enabling
the huge page because applications do not always fully utilize the
big page (e.g., in the experiment of [30], the memory consumption
of Redis increased from 12.2GB to 20.7GB). Additionally, allocating
huge page can lead to many fragments in the physical memory
because it requires consecutive physical memory areas to build
a huge page. Consequently, the kernel needs to perform a heavy
defragment operation which leads to high CPU utilization [39]. The
experiment of [39] shows that the benchmark milc in SPEC CPU
2006 spends 343 seconds (37% of its overall execution time) in kernel
mode to perform the defragment operation when the memory is
highly fragmented.

Consequently, huge page is recommended to be disabled in many
databases (e.g., Couchbase, MongoDB, KeyDB and Redis [15, 27, 36,
44]). In particular, twoNo-SQL databases, Couchbase andMongoDB,
recommend users to disable the technique because huge page per-
forms poorly with random memory accesses in workloads [15, 36].
KeyDB and Redis, which are two IMKVSes, recommend users to
disable huge page because the technique can incur a big latency
penalty and big memory usage [27, 44]. Specifically, if we enable
the huge page, the parent and child processes share huge pages
after calling fork to persist on disk. In a busy instance, a few event

Table 1: Migrating a page from “X” to “Y” when the parent
and child process share the page table.

Step Operation Parent(P) Child(C)

1 Initial state TLB: V→ X
PTE: V→ X

TLB: V → X
PTE: V → X

2 P: Set PTE →
None present

TLB: V→ X
PTE: V→ N

TLB: V → X
PTE: V → N

3 P: Flush TLB TLB: N/A
PTE: V→ N

TLB: V → X
PTE: V → N

4 C: Skipped
because N!=X

TLB: N/A
PTE: V→ N

TLB: V → X
PTE: V → N

5 P: Update PTE TLB: N/A
PTE: V→ Y

TLB: V → X
PTE: V → Y

6 P&C: Access V TLB: V→ Y
PTE: V→ Y

TLB: V → X
PTE: V → Y

loops in either of the two processes will cause to target thousands
of pages and trigger the copy operation of a large amount of process
memory because of the copy-on-write mechanism in OS. Conse-
quently, this leads to a big latency and a big memory usage. As
such, our profiling does not involve this technique.

Shared Page Table [17, 34, 59]. This technique proposed to share
the page table between parent and child in a copy-on-write (CoW)
manner. Specifically, the fork operation returns immediately after
copying the metadata except for the page table. The page table will
be copied in a CoW manner. However, we find that the shared page
table design introduces the data leakage problem, the working set
size estimation problem and the NUMA problem. First, the inconsis-
tency between the shared page table and the translation lookaside
buffer (TLB) of the child process can lead to the data leakage prob-
lem. Second, we cannot accurately estimate the working set size,
which indicates the memory usage of each process and is important
for cloud resource management [57]. This is because the usage
is calculated based on the states in the page table [20], while the
table is shared by multiple processes. Third, the shared page table
and the corresponding processes can locate on different NUMA
nodes, which increases the TLB miss overhead [3, 38]. Moreover,
the NUMA balance mechanism cannot work as expected due to the
shared page table. Due to space limit, we discuss the working set
size problem and the NUMA problem in the technical report [37].
In the following, we use the example in Table 1 to demonstrate the
data leakage problem, which is the most serious one among the
three problems. We also write a test program2 to reproduce the
example in practice.

TLB is the hardware to accelerate the translation from a virtual
address to a physical address by caching recent translation results.
Initially, the virtual address “V” is mapped to the physical address
“X” in PTE and the mapping is cached in TLB. Note that PTE is
shared between parent and child, whereas the two processes have
their own TLB entries. Suppose that the memory management
mechanism (e.g., memory compaction [5, 53], swap [55] and NUMA
balance [54]) of OS mitigates the page from “X” to a new page frame
“Y” in the parent process. Then, OS sets the mapping from “V->X”
to “V->N” (None Present) to indicate that the mapping is invalid

2https://doi.org/10.5281/zenodo.7189585, Last accessed on 2022/11/13.

1037

https://doi.org/10.5281/zenodo.7189585

1 2 4 8 16 32 64
Redis Instance Size (GB)

10−1

100

101

102

103

99
%

-il
e

L
at

en
cy

 (m
s)

Normal Snapshot-ODF Snapshot-DEF

Figure 4: The 99%-ile latencies of normal queries and snap-
shot queries in Redis.

in Step 2 and flushes the parent’s TLB entry in Step 3. For other
processes, the OS loops over each of them to check whether its
PTEs contain "V->X"; if so then set the value to "V->N" and flush the
TLB; otherwise, skip the process. This works well if each process
has a private page table. However, ODF uses the shared page table
design. When the OS checks the child process, the PTE has been set
to "V->N" in the parent process because the PTE is shared between
the parent and child processes and therefore the OS cannot find
any PTE with the value "V->X" in the child process. Thus, the OS
skips the update to the child in Step 4. In Step 5, the parent updates
PTE to map “V” to “Y”. Although PTE has the correct mapping, the
child’s TLB entry is inconsistent with PTE. Consequently, the future
access to “V” in the child can lead to a data leakage problem. Despite
that, we study the performance of the shared page table-based fork
in our experiments for comparison purposes. As ODF [59] is the
latest work and the only one that is publicly available3 among the
methods [17, 34, 59] adopting the shared page table design, our
experiments focus on ODF.

Experiment Results. Figures 4 and 5 present the 99%-ile latency
and the maximum latency of normal queries and snapshot queries,
respectively. Snapshot-ODF denotes the results of using the On-
Demand-Fork [59] to take the snapshot, which is the latest shared
page table-based fork method. Snapshot-DEF denotes the results of
using the default fork in Linux. As shown in the figures, the latency
of normal queries slightly increases with the instance size varying
from 1GB to 64GB. In contrast, the value of snapshot queries grows
sharply. The shared page table technique dramatically reduces the
latency of the default fork, especially for the large instance. For
example, on the 64GB instance size, the optimization reduces the
99%-ile latency from 911.95ms to 3.96ms and the maximum latency
from 1204.78ms to 59.28ms. The latency of Snapshot-ODF is higher
than that of Normal because the CoW of the page table frequently
interrupts the engine process. For example, the engine process is
interrupted over 7000 times on the 16GB instance, which leads to
frequent out-of-service for queries. According to the analysis of
existing optimization methods and the experiment results, we have
the following observation.

Observation 2. The fork operation has a significant impact on
the latency of snapshot queries, and the tail latency of the default
function is up to hundreds of milliseconds. Although the shared page
table technique reduces the latency of the default fork operation, the

3https://github.com/rssys/on-demand-fork, Last accessed on 2022/11/13.

1 2 4 8 16 32 64
Redis Instance Size (GB)

10−1

100

101

102

103

M
ax

im
um

 L
at

en
cy

 (m
s) Normal Snapshot-ODF Snapshot-DEF

Figure 5: The maximum latencies of normal queries and
snapshot queries in Redis.

overhead incurred by frequent interruptions is non-negligible and the
shared page table introduces the potential data leakage problem.

3.3 Summary
Based on the observations, we find that copying the page table dom-
inates the execution time of the default fork in Linux, especially, for
large instances. The overhead of fork results in a long latency (up to
hundreds of milliseconds) for queries issued during the invocation
of fork. Although several optimization methods [13, 14, 17, 34, 59]
of the fork operation have been proposed, they either lead to poor
performance of IMKVSes, or have a data leakage problem, which
potentially generates an inconsistent snapshot. Thus, these opti-
mizations cannot be used in the fork-based snapshot mechanism
in IMKVSes. As IMKVSes have a rigid requirement on the latency
to serve online scenarios, a high-performance fork is required to
reduce the long latency of snapshot queries.

4 DESIGN OF ASYNC-FORK
In this section, we introduce the design of Async-fork, an operating
system-based solution that effectively reduces the long latency of
snapshot queries without incurring extra vulnerabilities.

4.1 General Idea
Figure 1(c) shows the general idea ofAsync-fork. While the parent
process is responsible to copy page tables during snapshot in the
default fork, as shown in the figure, Async-fork offloads the work
of copying page table to the idle child process while keeping other
steps in the fork unchanged. In this way, the parent process is
able to handle queries while the child process copies the page table
from the parent process simultaneously. However, it is non-trivial to
achieve the design of Async-fork, as a snapshot may be inconsistent
due to the asynchronous operations on the page table.

The inconsistency happens when the parent process modifies a
PTE before the child process has copied it. Take Figure 6 as an ex-
ample. The IMKVS takes a snapshot at time T0, and the in-memory
data is {(𝑘0, 𝑣0), (𝑘1, 𝑣1)}. Suppose a user query that sets a new KV
pair (𝑘2, 𝑣2) arrives at time T2 (① in Figure 6), and the child process
is copying PTEs from time T1 to T3. The parent process handles
this query, and PTE2 is modified to point to a new page (Page2) that
contains (𝑘2, 𝑣2). If the child process has not copied the original
PTE2 before the modification, it would copy the modified PTE2, and
owns the new pair (𝑘2, 𝑣2) in its memory space. In this way, the

1038

https://github.com/rssys/on-demand-fork

Parent

Child
Persist dataCopy PTEs

T0 T1

Page Table & Pages
PTE0
PTE1
PTE2
PTE3

(k0, v0) Page0

Null

PTE0
PTE1
PTE2
PTE3

Null

User Sets
(k2, v2)(k1, v1) Page1

 Null
Null

PTE0
PTE1
PTE2
PTE3

(k0, v0) Page0

Null

PTE0
PTE1
PTE2
PTE3

(k0, v0) Page0

(k1, v1) Page1

(k2, v2) Page2

PTE0
PTE1
PTE2
PTE3

(k0, v0) Page0

(k1, v1) Page1

(k2, v2) Page2

PTE0
PTE1
PTE2
PTE3

(k0, v0) Page0

(k1, v1) Page1

(k2, v2) Page2

PTE0
PTE1
PTE2
PTE3

(k0, v0) Page0

(k1, v1) Page1

(k2, v2) Page2

Handle queryT3

Copying ...

OS NUMA
Balance

T2

Out of
memory

3

12

Figure 6: The challenges in Async-fork.

data (𝑘2, 𝑣2) is persisted, and inconsistency happens (the key-value
pair (𝑘2, 𝑣2) does not exist when the snapshot is taken at time 𝑇0).

Async-fork resolves the above inconsistency problem by using
the parent process to proactively synchronize the modified PTEs to
the child process. We explain the detailed steps in Section 4.2. Two
main challenges have to be resolved in this solution.

Firstly, it is necessary to detect all the PTE modifications. How-
ever, besides of the user operations, many inherent memory man-
agement operations in the operating system also cause PTE modi-
fications. For instance, the OS periodically migrates pages among
NUMA nodes [54], causing the involved PTEs to be modified as
inaccessible (② in Figure 6). We describe the method to detect the
PTE modifications in Section 4.3.

Secondly, errors may occur during Async-fork. For instance, the
child process may fail to copy an entry due to out of memory (③
in Figure 6). In this case, error handling is necessary, as we should
restore the process to the state before it calls Async-fork.We present
how errors are handled in Section 4.4.

By resolving the above challenges, the time of the parent process
used on fork is greatly reduced, and the latency of the snapshot
queries can be reduced in consequence. Moreover, after the child
process finishes copying the page table, the two processes have
their complete private page table. Therefore, the Async-fork does
not introduce the data leakage vulnerability.

In the following sections, we use the terminology in x86 Linux to
explain our design. We also implement Async-fork on Arm Linux
using similar ideas, while similar results are achieved compared
with x86. Algorithm 1 describes how the parent process (Line 1 to
14) and the child process (Line 15 to 24) work in Async-fork.

4.2 Proactive Synchronization
Before introducing the proactive synchronization in detail, we first
introduce how we offload the work of copying page table to the
child process in Async-fork.

Copying Page Table Asynchronously. In the default fork, the
parent process traverses all its VMAs and copies the corresponding
parts of the page table to the child process. The page table is copied
from top to bottom. In Async-fork, the parent process roughly

Algorithm 1: The framework of Async-fork
// The parent process

1 for each VMA𝑖 in (VMA0 , VMA1 , VMA2 ...) do
2 Copy VMA𝑖 to child process;
3 Copy VMA𝑖 ’s PGDs/PUDs to child process;
4 Set all VMA𝑖 ’s PMDs to be write-protected;
5 end
6 Put the child process on a CPU to run it;
7 while true do
8 if PTE modification is detected and this PTE’s PMD is write-protected then
9 Copy PMD to child process;

10 Copy 512 PTEs of this PMD to child process;
11 Set the PMD to be writeable;
12 Set the 512 PTEs to be write-protected;
13 end
14 end

// The child process

15 for each VMA𝑖 in (VMA0 , VMA1 , VMA2 ...) do
16 for each PMD𝑗 of VMA𝑖 do
17 if PMD𝑗 is write-protected then
18 Copy PMD𝑗 from parent process;
19 Copy 512 PTEs of PMD𝑗 from parent process;
20 Set the PMD to be writeable;
21 Set the 512 PTEs to be write-protected;
22 end
23 end
24 end

follows the above process, but only copies PGD, P4D (if exists) and
PUD entries to the child process (Lines 1 to 3 in Algorithm 1). After
that, the child process starts to run, and the parent process returns
to the user mode to handle queries (Lines 7 to 14). The child process
then traverses the VMAs, and copies PMD entries and PTEs from
the parent process. Figure 7 shows an example of the asynchronous
page table copy. In the figure, the PGD/PUD entries have been
copied by the parent process, but PMD entries and PTEs have not
yet (some PMD entries point to “null”). The child process copies
PMDs/PTEs from the parent process (e.g., PMD0 and its PTEs).

We offload the work of copying PMD entries and PTEs to the
child process because the overhead of copying them is non-negligible,
as analyzed in Section 3.1. Meanwhile, we keep that the parent pro-
cess copies PGD/PUD entries. This is because the overhead of copy-
ing PGD/PUD entries is trivial, and it is more robust to minimize
the change to the Linux kernel.

Synchronizing Modified PTEs Proactively. When the child
process is responsible for copying PMD entries and PTEs, it is
possible that the PTEs are modified by the parent process before
they are actually copied. Note that only the parent process is aware
of the modifications (the way to detect the PTE modification will
be introduced in Section 4.3).

In general, there are two ways to copy the to-be-modified PTEs
for the consistency. 1) the parent process proactively copies the
PTEs to the child process; 2) the parent process notifies the child
process to copy the PTEs and waits until the copying is finished.
As both ways result in the same interruption in the parent process,
we choose the former way (Lines 8 to 12 in Algorithm 1).

More specifically, when a PTE is modified during snapshot, the
parent process copies not only this PTE but also all the other PTEs
of a same PTE table (512 PTEs in total), as well as the parent PMD
entry to the child process proactively. For instance, when PTE1 in

1039

PMD1 | RW=0 RW=0

PGD
Level

PUD
Level

PMD0 | RW=1

PMD3 | RW=0

PMD
Level

RW=0

PTE
Level

RW=1

RW=1

PMD0 RW=0

RW=0

Null

PTE0
RW=0
PTE1

RW=0

Parent
Copies to

Child

Child
Copies from

Parent

Parent
Modifies a PTE

PMD2 | RW=1

PMD2 PTE0
RW=0
PTE1

RW=0

Null

Parent Proactively Synchronizes

Parent

Child

P-VMA1P-VMA0 P-VMA2

C-VMA1C-VMA0 C-VMA2

T
w

o-
w

ay
 P

oi
nt

er

 Operation of Parent

 Operation of Child

Figure 7: An example of copying page table in Async-fork.
“RW=1” represents writable and “RW=0” represents write-
protected.

Figure 7 is modified, the parent process proactively copies PMD2,
PTE0 and PTE1 to the child process. We choose to copy the entire
PTE table because we can quickly detect a range of PTEs that will
be modified, but accurately identifying which one will be modified
is expensive in practice.

Eliminating Unnecessary Synchronizations. Always letting
the parent process copy the modified PTEs is unnecessary, as it is
possible that the to-be-modified PTEs have already been copied by
the child process. We identify if the PMD entries and PTEs have
been copied by the child process, to avoid unnecessary synchro-
nizations. A flag is required to track this status. We reuse the R/W
flag of the PMD entry to record the status. Since the R/W flag is
only used when the PMD entry points to a huge page in the x86
Linux kernel, the flag tracks the status correctly. We reuse the R/W
flag because 1) this design can avoid adding new fields to the kernel
data structures; and 2) the popular databases (e.g., Redis, KeyDB,
MongoDB, and Couchbase) recommend disabling the huge page to
improve the performance [15, 27, 36, 44]. Additionally, it is unnec-
essary to use Async-fork if applications use the huge page because
the applications with huge page do not require PTEs but a small
number of PGD/PUD/PMD entries (i.e., the page table is small).

An alternative approach is to use an unused bit in the struct
page as the flag. Specifically, each PMD entry points to a PTE table,
while OS maintains a data structure (struct page) for each PTE table.
The struct page has bits that are not used by the current Linux
kernel. Previous research uses these bits as flags, for example, ODF
uses some bits in struct page as a reference counter. However, this
approach requires further modification to the kernel to initialize
the bit. Therefore, we do not adopt the design using the struct page.

If a PMD entry and its 512 PTEs have not been copied to the
child process, the PMD entry will be set as write-protected (e.g.,

PMD1 in Figure 7). Note that, it does not break the CoW strategy
of fork since it still triggers the page fault when the corresponding
page is written on x86 [21]. Once the PMD/PTEs have been copied
to the child process (e.g., PMD0), the PMD entry is changed to be
writable (the PTEs are changed to be write-protected to maintain
the CoW strategy). Since both parent and child processes lock the
page of the PTE table with trylock_page() when they are copying
PMD entries and PTEs, they will not copy PTEs pointed by the
same PMD entry at the same time.

4.3 Detecting Modified PTEs
The operations that modify PTEs in the OS can be divided into
two categories: 1) VMA-wide modification. Some operations act on
specific VMAs, including creating, merging, deleting VMAs and so
on. The modification of a VMA may also cause the VMA’s PTEs be
modified. For example, the user sends queries to delete lots of KV
pairs. The IMKVS (parent process) then reclaims the corresponding
virtual memory space by munmap. Some VMAs are hence split or
deleted while the VMAs’ PTEs are deleted as well. A VMA is usually
large because the operating system always tends to merge adjacent
VMAs. It means that the VMA-wide modification usually causes
extensive PTE modifications, while many VMA’s PMD entries are
involved. 2) PMD-wide modification. Other operations modify the
PTE directly. For example, the page of parent process can be re-
claimed by the out of memory (OOM) killer. In this case, one PMD
entry is involved. Note that swapping or migrating a 4KB page
will change the PTE but the data will not be changed, so we will
not handle it. Due to limited space, we summarize the locations
where operations in the OS modify VMAs/PTEs as checkpoints in
the technical report [37].

We implement the detection by hooking the checkpoints. Once
a checkpoint is reached, the parent process checks whether the
involved PMD entries and PTEs have been copied (by checking the
R/W flag of the PMD entry). For a VMA-wide modification, all the
PMD entries of this VMA are checked, while only one PMD entry is
checked for a PMD-wide modification. The uncopied PMD entries
and PTEs will be copied to the child process before modifying them.

If a VMA is large, the parent process may take a relatively long
time to check all PMD/PTE entries by looping over each of them.
We therefore introduce a two-way pointer, which helps the parent
process quickly determine whether all entries of a VMA have been
copied to the child, to reduce the cost. Each VMA has a two-way
pointer, which is initialized by the parent process during the invo-
cation of the Async-fork function. The pointer in the VMA of the
parent process (resp. the child process) points to the corresponding
VMA of the child process (resp. the parent process). In this way,
the two-way pointer maintains a connection between the VMAs
of the parent and the child. The connection will be closed after all
PMDs/PTEs of the VMA are copied to the child. Specifically, if no
VMA-wide modification happens during the copy of PMDs/PTEs
of the VMA, then the child closes the connection by setting the
pointers in the VMAs of both the parent and child to null after
the copy operation. Otherwise, the parent will synchronize the
modification (i.e., copying the uncopied PMDs/PTEs to the child),
and close the connection by setting the pointers to null after the
copy operation. As both parent and child processes can access the

1040

two-way pointers, the pointers are protected by locks to keep the
state consistent. When a VMA-wide modification occurs, the par-
ent process can quickly determine whether all PMDs/PTEs of a
VMA have been copied to the child by checking the pointer’s value,
instead of looping over all these PMDs. Besides, the pointer is also
used in handling errors (see Section 4.4).

4.4 Handling Errors
Since copying the page table involves memory allocation, some
errors may occur during both the default fork and Async-fork. For
instance, a process may fail to initialize a new PTE table due to out
of memory. Such error may only happen in the parent process in the
default fork and has a standard way to handle the error. However,
the copying of page table is offloaded to the child process in Async-
fork, such error may happen in the child process, and a method is
required to handle such errors. Specifically, we should restore the
parent process to the state before it calls Async-fork, to ensure that
the parent process will not crash in the future.

As Async-fork may modify the R/W flags of the PMD entries
of the parent process, we roll back these entries to be writable
when errors occur in Async-fork. Errors may occur 1) when the
parent process copies PGD/PUD entries, 2) when the child process
copies PMD/PTEs, and 3) during a proactive synchronization. In
the first case, the parent process rolls back all the write-protected
PMD entries. In the second case, the child process rolls back all
the remaining uncopied PMD entries. After that, we send a signal
(SIGKILL) to the child process. The child process will be killed when
it returns to the user mode and receive the signal. In the third case,
the parent process only rolls back the PMD entries of the VMA
containing the PMD entry that is being copied. The purpose is to
avoid contending for the PMD entry lock with the child process.
An error code is then stored into the two-way pointer of the VMA.
Before (and after) copying PMDs/PTEs of a VMA, the child process
will check the pointer to see whether there are errors. If so, then
it stops copying PMD/PTE entries immediately and performs the
rollback operations that are already described in the second case.

5 OPTIMIZATION AND IMPLEMENTATION
In this section, we present the optimization that further improves
the performance of Async-fork, and the way to implement Async-
fork in Linux.

5.1 Accelerating Page Table Copy
The parent process is still interrupted when a proactive PTE syn-
chronization is triggered. A straightforward way to reduce the cost
of the proactive PTE synchronization is to let the child process to
first copy the PTEs potentially modified before other PTEs. How-
ever, this method is not practical because the data accessed by
user queries are relatively random and the child process cannot
determine which PTEs will be modified when the parent invokes
Async-fork. We therefore propose to minimize the number of proac-
tive PTE synchronizations by reducing the duration of copying the
page table.

As VMAs are independent, the kernel threads can totally per-
form the copy in parallel and obtain near-linear speedup. There-
fore, the child process may launch multiple kernel threads to copy

fork(2)

Parent

Child

wake_up_new_task()

FAST

ret_ from_ fork

(1) Copy PGD & PUD
entries
(2) Set PMD entries to
be write-protected

Kernel Mode User Mode

if (fork()==0)
{ // child
 ….

}

if (fork()!=0)
{ // parent
 mmap(2);
 ...
}

vma_merge()

(1) Copy PMD&PTEs
(2) Set PMD entries to
be writable

SLOW

schedule_tail()schedule_tail()

(3) Set PTEs to be
write-protected

copy_page_range()

hook(FAST)
hook(SLOW)

hook(SLOW)

F == 0

Async-fork
Module

F == 0F > 0

hook()

Figure 8: The implementation of Async-fork.

PMD/PTEs in multiple VMAs in parallel, so that the copy completes
faster. It can effectively reduce the number of proactive PTE syn-
chronization because the synchronization only happens during the
period that the child process is copying PMD/PTEs. The probability
of triggering a proactive PTE synchronization gets lower when the
period becomes shorter. The experiment in Section 6.3 shows the
efficiency of this optimization.

Multiple kernel threads consume CPU cycles. These threads
periodically check whether they should be preempted and give up
CPU resources by calling cond_resched(), in order to reduce the
interference on other normal processes.

5.2 Implementation of Async-fork
Figure 8 shows the implementation of Async-fork with a modu-
lar design. We encapsulate the code ingested to the kernel into a
hook function, which is instantiated in a kernel module. We can in-
sert/remove the module in/from the kernel as necessary. The hook
function is inserted to the call path of default fork and memory
subsystem in the Linux kernel (version 4.19). Users can determine
the usage of the default fork and Async-fork with the parameter 𝐹 .

The hook function is enhanced from copy_page_range(), which
accepts a flag (Fast or Slow) to control the copying of the page table.
With “Fast” flag, the function copies PGD/PUD entries and sets
PMD entries to be write-protected. With “Slow” flag, the function
copies thewrite-protected PMD entries and PTEs; when the copying
finishes, it sets the PMD entries to be writable and sets the PTEs to
be write-protected. When Async-fork is called, the parent process
copies the page table to the child process using the function with
“Fast” flag. At the end of Async-fork’s invocation, the parent process
puts the child process into the runqueue of a CPU and returns to
the user mode. Before the child process returns to the user mode,
it copies the page table using the function with “Slow” flag. The
parent process proactively copies the uncopied PMD/PTEs (using
the function with “Fast” flag) to the child process before modifying
them.

Flexibility. For the IMKVS workload that has small memory
footprint, the page table copy is already short. In this case, Async-
fork brings small benefit. For these workloads, we provide an inter-
face in memory cgroup to control whether Async-fork is enabled

1041

(as well as the number of kernel threads used to speed up copying
PMD/PTEs in the child process). Specifically, when users add a pro-
cess to amemory cgroup, they can pass a parameter to enable/disable
Async-fork at run time (i.e., the parameter F in Figure 8). As shown
in the figure, if the parameter value is 0, then the process will use
the default fork. Otherwise, Async-fork is enabled. As such, users
can determine which fork operation the process uses as necessary
and use Async-fork without any modification in the source code of
applications. The process will use the default fork if no parameter
is passed in.

Memory overhead. The only memory overhead of Async-fork
comes from the added pointer (8B) in each VMA of a process. In
the case, the memory overhead in a process is the number of VMAs
times 8𝐵. Considering a machine with 512GB main memory while
400 processes run simultaneously, there are roughly 760,000 VMAs
according to our statistics. In this case, the memory overhead will
be 760000×8B ≈ 6MB. This overhead is generally negligible.

Support for ARM64. The design of Async-fork can also be
implemented on ARM64. Specifically, we use the APTable[1:0] [33]
in the table descriptor of the PMD entry as the R/W flag. Async-
fork can also be implemented on other architectures that support
hierarchical attributes in the page table.

Consecutive Snapshots. It is possible that the parent process
starts the next snapshot using Async-fork before the previous child
process finishes copying PMD/PTEs, as the parent process returns
to the user mode before the child process. In the current implemen-
tation, we will not block the next Async-fork call but keep a VMA’s
page table be copied by only one child process at any time. When
the parent process copies a VMA to the child process it checks the
two-way pointer to identify whether there exists a previous child
process copying the page table of this VMA. If exists, it proactively
copies the whole page table of this VMA to the previous child pro-
cess. Async-fork adopts this design because supporting concurrent
fork operations need to track all child processes that are copying
page tables. This is hard because the kernel does not provide the
information and we need to inject new data structures into the
kernel to record the states and synchronize these child processes.

As Async-fork cannot support concurrent fork operations in a
process (the same as the default fork in the OS), Async-fork cannot
support the cases where the parent process needs to conduct the
fork operation in an ultra-high frequency (e.g., in milliseconds).
In spite of the limitation, Async-fork works well for database use
cases because a storage engine does not create many child processes
from the parent process simultaneously in practice. Specifically,
conducting the fork operation frequently leads the parent to fre-
quently turn into the kernel mode, which hurts the service quality.
Moreover, many processes executing in parallel will degrade the
performance due to the resource contention (e.g., IO bandwidth
and CPU resources). Therefore, IMKVSes (e.g., Redis and KeyDB)
do not recommend ultra-frequent data snapshots (generally 60 sec-
onds [47]) and have no cases requiring the parent process to invoke
Async-fork in milliseconds to our knowledge. For HyPer, which
uses the fork operation to support concurrent transaction process-
ing, Async-fork can work well. This is because the parent process
handles OLTP (a single updater) that has a rigid requirement on the
latency, whereas the child process executes OLAP which generally
has a long execution time and is more tolerant of the latency than

OLTP. Moreover, HyPer notices the cost of the fork operation and
designs a novel mechanism, which makes multiple OLAP queries
to share a snapshot, to improve the performance.

6 EVALUATION
In this section, we evaluate the effectiveness of Async-fork. We
conduct experiments on our local machine for the purpose of test
flexibility.

6.1 Experimental Setup
We evaluate Async-fork on a machine with two Intel Xeon Platinum
8163 processors, each of them has 24 physical cores (48 logical cores).
The machine has 384GB memory, and 1TB NVMe hard drive. In
terms of software setup, the experimental platform runs CentOS
7.9 with Linux 4.19.

Benchmarks. We use Redis (version 5.0.10) [42] and KeyDB
(version 6.2.0) [24] compiled with gcc 6.5.1 as the representative
IMKVS servers, and use Redis benchmark [41] as well as Memtier
benchmark [46] to be the workload generators. The benchmarks
reveal the scenario where multiple clients send requests to the
IMKVS server simultaneously. Similar to prior work [12], we en-
hance Redis benchmark to generate queries in an open-loop mode
for measuring the latency accurately [48, 58].

By default, the experiments are conducted with the following
settings: 1) 50 clients (default settings) are used in Redis benchmark,
while 50 clients are used in Memtier benchmark for consistency. 2)
The key range is set to 2×108, the key size of 8B and the value size of
1024B. 3) Each experiment is repeated by five times and the average
results are reported. 4) In Async-fork, the child process launches
7 additional kernel threads (together with the child process itself,
there are 8 threads in total) to help it copy PMDs/PTEs faster. Our
experiment in Figure 14 shows that Async-fork still outperforms the
state-of-the-art solution with a single child process. 5) The KeyDB
server is configured with 4 threads.

Metrics.We launch a large number of queries (5 × 106) to the
IMKVS and record the latency of the queries that arrive in the
snapshot process (start from the parent process calls fork until the
child process persists all in-memory data). Specifically, we measure
the 99%-ile latency because latency-sensitive services generally
provide an SLA on some percentile. Moreover, we report the maxi-
mum latency because IMKVS is often used for demanding use cases
that have a rigid requirement for the worst-case latency [43]. For
example, the increase of the maximum latency of Redis can lead
to read error on connections [52]. Therefore, in the production
environment [19], the maximum latency is an important indicator
of system stability. Due to limited space, we report the experiment
results of query processing throughput and total out-of-service
time of the parent process in the technical report [37]. In the report,
we also discuss the method of tuning IMKVSes to further improve
the performance.

Baselines. We compare Async-fork with On-Demand-Fork (de-
noted by ODF in short) [59], the state-of-the-art shared page table-
based fork. In ODF, each time a shared PTE is modified by a process,
not only one PTE but 512 PTEs located on the same PTE table will
be copied at the same time. We do not report the results of the
default fork in this section since it results in 10X higher latency

1042

1 2 4 8 16 32 64
Redis Instance Size (GB)

10−1

100

99
%

-il
e

L
at

en
cy

 (m
s) Async-fork

ODF

1 2 4 8 16 32 64
KeyDB Instance Size (GB)

100

99
%

-il
e

L
at

en
cy

 (m
s) Async-fork

ODF

Figure 9: The 99%-ile latency of snapshot queries.

1 2 4 8 16 32 64
Redis Instance Size (GB)

101

M
ax

im
um

 L
at

en
cy

 (m
s)

Async-fork
ODF

1 2 4 8 16 32 64
KeyDB Instance Size (GB)

101

M
ax

im
um

 L
at

en
cy

 (m
s)

Async-fork
ODF

Figure 10: The maximum latency of snapshot queries.

compared with both Async-fork and ODF in most cases (already
presented in Section 3.2). To accurately measure the performance of
the IMKVSes in the experiments, we trigger the snapshot operation
manually using the BGSAVE command.

6.2 Overall Evaluation
We first evaluate Async-fork using write-intensive workloads that
require frequent snapshots for data persistence.

Latency Results. In this experiment, we use the Redis bench-
mark [41] to generate the write-intensive workload by issuing SET
queries to the IMKVSes, and configure the clients to send 50,000
such queries in a second. Since the IMKVS is often used in the con-
text of demanding use cases, there are usually strict requirements
on both the 99%-ile latency and the worst case latency [25, 43].

Figure 9 shows the 99%-ile latencies of snapshot queries in Redis
and KeyDB, with ODF and Async-fork. As observed, Async-fork
outperformsODF in all the cases, and the performance gap increases
when the instance size gets larger. For instance, operating on a
64GB IMKVS instance, the 99%-ile latency of the snapshot queries
is 3.96ms (Redis) and 3.24ms (KeyDB) with ODF, while the 99%-
ile latency reduces to 1.5ms (Redis, 61.9% reduction) and 1.03ms
(KeyDB, 68.3% reduction) with Async-fork.

Figure 10 shows the maximum latency of the snapshot queries.
As observed, Async-fork greatly reduces the maximum latency
of the benchmarks compared with ODF, even if the instance size
is small. For a 1GB IMKVS instance, the maximum latencies of
the snapshot queries are 13.93ms (Redis) and 10.24ms (KeyDB)
respectively with ODF, while the maximum latencies are decreased
to 5.43ms (Redis, 60.97% reduction) and 5.64ms (KeyDB, 44.95%
reduction) with Async-fork.

Deep Diving. The interruption of Async-fork is caused by the
proactive synchronization, whereas the interruption of ODF is
caused by the CoW of the page table. We measure the interrup-
tions of the parent process during the snapshot to understand the
reason that Async-fork outperforms ODF. Specifically, the parent
process turns into kernel mode and is out of service for queries
when executing the copy_pmd_range() function. The overhead of
copy_pmd_range() dominates the cost of executing in the kernel
mode. In order to examine the number of interruptions and the

1 2 4 8 16 32 64
Redis Instance Size (GB)

(a) Interruption within [16us, 31us]

100

101

102

103

104

Fr
eq

ue
nc

y

Async-fork ODF

1 2 4 8 16 32 64
Redis Instance Size (GB)

(b) Interruption within [32us, 63us]

100

101

102

103

104

Fr
eq

ue
nc

y

Figure 11: The frequency of interruptions in the parent pro-
cess during the snapshot process.

1:1(Uni.) 1:10(Uni.) 1:1(Gau.) 1:10(Gau.)
Set:Get(Access Pattern)

0

3

6

9

99
%

-il
e

L
at

en
cy

 (m
s)

Redis

Async-fork ODF

1:1(Uni.) 1:10(Uni.) 1:1(Gau.) 1:10(Gau.)
Set:Get(Access Pattern)

0

3

6

9

99
%

-il
e

L
at

en
cy

 (m
s)

KeyDB

1:1(Uni.) 1:10(Uni.) 1:1(Gau.) 1:10(Gau.)
Set:Get(Access Pattern)

0

5

10

15

M
ax

im
um

 L
at

en
cy

 (m
s)

Redis

1:1(Uni.) 1:10(Uni.) 1:1(Gau.) 1:10(Gau.)
Set:Get(Access Pattern)

0

5

10

15

M
ax

im
um

 L
at

en
cy

 (m
s)

KeyDB

Figure 12: The 99%-ile latency and maximum latency of snap-
shot queries under different workloads in an 8GB IMKVS.

out-of-service time, we use the bcc tool [2] to count the number
of copy_pmd_rage() invocations and measure the execution time
of each invocation. The result of bcc is a histogram in which the
bucket is the time duration and the frequency is the number of
invocations whose execution time falls into the bucket. The cate-
gories [16𝑢𝑠 , 31𝑢𝑠] and [32𝑢𝑠 , 63𝑢𝑠] are two default buckets of bcc.
In our experiments, all invocations fall into the two buckets.

Figure 11 shows the frequency of the interruptions within [16us,
31us] and [32us, 63us]. We can see that Async-fork significantly
reduces the frequency of interruptions. For example, Async-fork
reduces the frequency of interruptions from 7348 to 446 on the 16GB
instance. Async-fork greatly reduces the interruptions because
the interruptions happen only when the child process is copying
PMD/PTEs (the required time is within 600ms as in Figure 15).
However, the interruption can happen until all data is persisted
by the child process in ODF, while the data persistence operation
requires tens of seconds (e.g., persisting 8GB in-memory data takes
about 40s). Under the same workload, the parent process is more
vulnerable to interruption when using ODF.

6.3 Detailed Evaluation
Sensitivities to the Read/Write Patterns. Figure 12 shows the
results using four workloads with different read-write patterns
generated with Memtier [46]. In the figure, “1:1 (Uni.)” represents
the workload with 1:1 Set:Get Ratio and the uniform random access
pattern, while “1:10 (Gau.)” is the workload with 1:10 Set:Get ratio
and the Gaussian distribution access pattern.

Observed from Figure 12, Async-fork still outperforms ODF. The
benefit is smaller for the workload with more GET queries. This

1043

10 50 100 500
Number of Clients

10−2

10−1

100

101

99
%

-il
e

L
at

en
cy

 (m
s)

Redis

Async-fork ODF

10 50 100 500
Number of Clients

10−2

10−1

100

101

99
%

-il
e

L
at

en
cy

 (m
s)

KeyDB

10 50 100 500
Number of Clients

10−1

100

101

102

M
ax

im
um

 L
at

en
cy

 (m
s)

Redis

10 50 100 500
Number of Clients

10−1

100

101

102

M
ax

im
um

 L
at

en
cy

 (m
s)

KeyDB

Figure 13: The 99%-ile latency and the maximum latency of
snapshot queries under different numbers of clients in an
8GB IMKVS.

1 2 4 8 16 32 64
Redis Instance Size (GB)

10−1

100

101

99
%

-il
e

L
at

en
cy

 (m
s)

Async-fork#8 Async-fork#1 ODF

1 2 4 8 16 32 64
Redis Instance Size (GB)

100

101

102

M
ax

im
um

 L
at

en
cy

 (m
s)

Figure 14: The 99%-ile and maximum latency of snapshot
queries when Async-fork uses 1 or 8 threads.

is because the serving (parent) process only copy a small number
of PTEs for the GET-intensive workloads. Moreover, the modified
memory is smaller in the experiment with the Gaussian distribution
compared with the uniform random access pattern. With random
pattern, the key-value pairs in the IMKVS have the same probability
of being accessed, and parts of key-value pairs may be accessed
repeatedly with the Gaussian Distribution access pattern. Since
shared PTEs are copied only when they are modified for the first
time in ODF, the parent process is interrupted fewer times with the
Gaussian distribution access pattern.

In general, Async-fork works better for write-intensive work-
loads. The larger the modified memory is, the better Async-fork
performs. Integrating Async-fork with CCoW [22] to improve the
performance on write-intensive workloads is an interesting re-
search direction because Async-fork can utilize CCoW to copy
the PTEs of high-locality memory pages in advance to reduce the
number of proactive synchronizations.

The Impact of the Number of Clients. In this experiment, we
change the number of clients in Redis-benchmark while keeping
sending 50, 000 SET queries every second to an 8GB IMKVS server.
Figure 13 shows the results of 99%-ile and maximum latency with
10, 50, 100 and 500 clients. As observed, Async-fork outperforms
ODF, while the performance gap increases as the number of clients
increases. This is because more requests arrive at the IMKVS at the
same time when the number of clients increases. As a result, more
PTEs may be modified at the same time, and the duration of one
interruption to the parent process may become longer.

1 2 4 8 16 32 64
Redis Instance Size (GB)

(a)

100

101

102

103

T
im

e
of

 C
op

yi
ng

 P
M

D
/P

T
E

s (
m

s) Async-fork-#1 Async-fork-#2 Async-fork-#4 Async-fork-#8

P99 Max
8GB Redis Instance

(b)

0.00

0.02

0.04

0.06

0.08

99
%

-il
e

L
at

en
cy

 (m
s)

0

5

10

15

20

M
ax

im
um

 L
at

en
cy

 (m
s)

Figure 15: (a) The time that the child process takes to copy
PMDs/PTEs in Async-fork. (b) The 99%-ile and maximum
latency in an 8GB Redis instance.

The Impact of the Number of Threads In the Child Pro-
cess. In Async-fork, multiple kernel threads may be used to copy
PMD/PTEs in parallel in the child process. Figure 14 shows the
99%-ile and maximum latency of snapshot queries under different
Redis instance sizes. Async-fork#𝑖 represents the results of using 𝑖
threads in total to copy the PMDs/PTEs.

Observed from Figure 14, Async-fork#1 (the child process itself)
still brings shorter latency than ODF. The maximum latency of the
snapshot queries is decreased by 34.3% on average, compared with
ODF. We can also find that using more threads (Async-fork#8) can
further decrease the maximum latency. This is because the sooner
the child process finishes copying PMDs/PTEs, the lower probability
the parent process is interrupted to proactively synchronize PTEs.

In more detail, Figure 15(a) shows the time that the child process
takes to copy PMDs/PTEs with different numbers of kernel threads,
while Figure 15(b) shows the corresponding 99%-ile latency and
maximum latency in an 8GB Redis instance. As we can see, launch-
ing more kernel threads effectively reduces the time of copying
PMDs/PTEs in the child process. The shorter the time is, the lower
the latency becomes.

7 CONCLUSION
In this paper, we study the latency spikes incurred by the fork-based
snapshot mechanism in IMKVSes and address the problem from the
operating system level. In particular, we conduct an in-depth study
to reveal the impact of the fork operation on the latency spikes.
According to the study, we propose Async-fork. It optimizes the
fork operation by offloading the workload of copying the page table
from the parent process to the child process. To guarantee data
consistency between the parent and the child, we design the proac-
tive synchronization strategy. Async-fork is implemented in the
Linux kernel and deployed in production environments. Extensive
experiment results show that Async-fork can significantly reduce
the tail latency of queries arriving during the snapshot period.

ACKNOWLEDGMENTS
This work was partially sponsored by the National Natural Science
Foundation of China (62232011, 62022057), and Shanghai interna-
tional science and technology collaboration project (21510713600).
This work was also supported by Alibaba Group through Alibaba
Innovative Research Program. Pu Pang and Gang Deng contributed
equally to this work. Quan Chen and Minyi Guo are the correspond-
ing authors.

1044

REFERENCES
[1] [n.d.]. fork(2). https://linux.die.net/man/2/fork.
[2] 2022. BPF Compiler Collection (BCC). https://github.com/iovisor/bcc.
[3] Reto Achermann, Ashish Panwar, Abhishek Bhattacharjee, Timothy Roscoe,

and Jayneel Gandhi. 2020. Mitosis: Transparently self-replicating page-tables
for large-memory machines. In Proceedings of the 25th International Conference
on Architectural Support for Programming Languages and Operating Systems.
283–300.

[4] Antirez. [n.d.]. Redis persistence demystified. http://antirez.com/post/redis-
persistence-demystified.html.

[5] Vlastimil Babka. 2016. mm, compaction: introduce kcompactd.
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=
698b1b30642f1ff0ea10ef1de9745ab633031377.

[6] Katelin A Bailey, Peter Hornyack, Luis Ceze, Steven D Gribble, and Henry M
Levy. 2013. Exploring storage class memory with key value stores. In Proceedings
of the 1st Workshop on Interactions of NVM/FLASH with Operating Systems and
Workloads. 1–8.

[7] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Vol. 370. Addison-wesley Reading.

[8] Greg Bronevetsky, Rohit Fernandes, Daniel Marques, Keshav Pingali, and Paul
Stodghill. 2006. Recent advances in checkpoint/recovery systems. In Proceedings
20th IEEE International Parallel & Distributed Processing Symposium. IEEE, 8–pp.

[9] Tuan Cao. 2013. Fault tolerance for main-memory applications in the cloud. Cornell
University.

[10] Tuan Cao, Marcos Vaz Salles, Benjamin Sowell, Yao Yue, Alan Demers, Johannes
Gehrke, and Walker White. 2011. Fast checkpoint recovery algorithms for
frequently consistent applications. In Proceedings of the 2011 ACM International
Conference on Management of Data. 265–276.

[11] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,
James Hunter, and Mike Barnett. 2018. Faster: A concurrent key-value store
with in-place updates. In Proceedings of the 2018 ACM International Conference
on Management of Data. 275–290.

[12] Shuang Chen, Christina Delimitrou, and José F Martínez. 2019. Parties: Qos-
aware resource partitioning for multiple interactive services. In Proceedings
of the 24th International Conference on Architectural Support for Programming
Languages and Operating Systems. 107–120.

[13] The Kernel Development Community. 2021. HugeTLB Pages. https://www.
kernel.org/doc/html/latest/admin-guide/mm/hugetlbpage.html.

[14] The Kernel Development Community. 2021. Transparent Hugepage Support.
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html.

[15] Couchbase. 2021. Disabling Transparent Huge Pages (THP). https://docs.
couchbase.com/server/current/install/thp-disable.html.

[16] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL server’s
memory-optimized OLTP engine. In Proceedings of the 2013 ACM International
Conference on Management of Data. 1243–1254.

[17] Xiaowan Dong, Sandhya Dwarkadas, and Alan L Cox. 2016. Shared address
translation revisited. In Proceedings of the 11th European Conference on Computer
Systems. 1–15.

[18] Bin Fan, David G Andersen, and Michael Kaminsky. 2013. Memc3: Compact
and concurrent memcache with dumber caching and smarter hashing. In 10th
USENIX Symposium on Networked Systems Design and Implementation. 371–384.

[19] Caixin Gong, Chengjin Tian, Zhengheng Wang, Sheng Wang, Xiyu Wang, Qiulei
Fu, Wu Qin, Long Qian, Rui Chen, Jiang Qi, Ruo Wang, Guoyun Zhu, Chenghu
Yang, Wei Zhang, and Feifei Li. 2022. Tair-PMem: a fully durable non-volatile
memory database. Proceedings of the VLDB Endowment 15, 12 (2022), 3346–3358.

[20] Brendan Gregg. 2018. Working Set Size Estimation. https://www.brendangregg.
com/wss.html.

[21] Part Guide. 2011. Intel® 64 and ia-32 architectures software developer’s manual.
Volume 3B: System programming Guide, Part 2, 11 (2011).

[22] Minjong Ha and Sang-Hoon Kim. 2022. CCoW: Optimizing Copy-on-Write
Considering the Spatial Locality in Workloads. Electronics 11, 3 (2022).

[23] Alan Harris. 2010. Distributed caching via memcached. In Pro ASP. NET 4 CMS.
Springer, 165–196.

[24] Snap Inc. 2022. KeyDB. https://keydb.dev/.
[25] Snap Inc. 2022. Latency Monitoring Tool. https://docs.keydb.dev/docs/latency-

monitor/.
[26] Snap Inc. 2022. Persistence. https://docs.keydb.dev/docs/persistence.
[27] Snap Inc. 2022. Troubleshooting Latency Issues. https://docs.keydb.dev/docs/

latency/.
[28] Harshad Kasture and Daniel Sanchez. 2016. Tailbench: a benchmark suite and

evaluation methodology for latency-critical applications. In 2016 IEEE Interna-
tional Symposium on Workload Characterization. 1–10.

[29] Alfons Kemper and Thomas Neumann. 2011. HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory snapshots. In 2011 IEEE
27th International Conference on Data Engineering. IEEE, 195–206.

[30] Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J Rossbach, and Emmett
Witchel. 2016. Coordinated and efficient huge page management with ingens.
In 12th USENIX Symposium on Operating Systems Design and Implementation.
705–721.

[31] Liang Li, Guoren Wang, Gang Wu, and Ye Yuan. 2018. Consistent snapshot
algorithms for in-memory database systems: Experiments and analysis. In 2018
IEEE 34th International Conference on Data Engineering. IEEE, 1284–1287.

[32] A-P Liedes and Antoni Wolski. 2006. Siren: A memory-conserving, snapshot-
consistent checkpoint algorithm for in-memory databases. In 2006 IEEE 22nd
International Conference on Data Engineering. IEEE, 99–99.

[33] Arm Limited. [n.d.]. Arm Architecture Reference Manual Armv8, for A-profile
architecture. https://developer.arm.com/documentation/ddi0487/gb/.

[34] Dave McCracken. 2003. Sharing page tables in the linux kernel. In Linux Sympo-
sium. 315.

[35] Michael J Mior and Eyal de Lara. 2011. Flurrydb: a dynamically scalable rela-
tional database with virtual machine cloning. In Proceedings of the 4th Annual
International Conference on Systems and Storage. 1–9.

[36] Mongodb. 2021. Disable Transparent Huge Pages (THP) — MongoDB Manual.
https://docs.mongodb.com/manual/tutorial/transparent-huge-pages.

[37] Pu Pang, Gang Deng, Kaihao Bai, Quan Chen, Shixuan Sun, Bo Liu, Yu Xu,
Hongbo Yao, Zhengheng Wang, Xiyu Wang, Zheng Liu, Zhuo Song, Yong
Yang, Tao Ma, and Minyi Guo. 2023. Async-fork: Mitigating Query Latency
Spikes Incurred by the Fork-based Snapshot Mechanism from the OS Level.
arXiv:2301.05861 [cs.DB]

[38] Ashish Panwar, Reto Achermann, Arkaprava Basu, Abhishek Bhattacharjee, K
Gopinath, and Jayneel Gandhi. 2021. Fast local page-tables for virtualized NUMA
servers with vMitosis. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems.
194–210.

[39] Ashish Panwar, Aravinda Prasad, and K Gopinath. 2018. Making huge pages
actually useful. In Proceedings of the 23th International Conference on Architectural
Support for Programming Languages and Operating Systems. 679–692.

[40] Jiwoong Park, Yunjae Lee, Heon Young Yeom, and Yongseok Son. 2020. Memory
efficient fork-based checkpointing mechanism for in-memory database systems.
In Proceedings of the 35th Annual ACM Symposium on Applied Computing. 420–
427.

[41] RedisLab. 2021. How fast is Redis? https://redis.io/topics/benchmarks.
[42] RedisLab. 2021. Redis. https://redis.io/.
[43] RedisLab. 2021. Redis latency monitoring framework. https://redis.io/topics/

latency-monitor.
[44] RedisLab. 2021. Redis Latency Problems Troubleshooting. https://redis.io/topics/

latency.
[45] RedisLab. 2021. Redis Persistence. https://redis.io/topics/persistence.
[46] RedisLab. 2022. memtier. https://github.com/RedisLabs/memtier_benchmark.
[47] RedisLab. 2022. redis.conf. https://github.com/redis/redis/blob/7.0/redis.conf.
[48] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. 2006. Open versus

closed: A cautionary tale. In 3rd USENIX Symposium on Networked Systems Design
and Implementation. USENIX.

[49] Matthew Shafer. 2012. Memcached. https://github.com/memcached/memcached.
[50] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. 2018. Accelerating

Analytical Processing in MVCC Using Fine-Granular High-Frequency Virtual
Snapshotting. In Proceedings of the 2018 ACM International Conference on Man-
agement of Data. 245–258.

[51] solid IT. 2022. DB-Engines Ranking of Key-value Stores. https://db-engines.com/
en/ranking/key-value+store.

[52] Trivago Technology. 2017. Learn Redis the hard way (in production). https:
//tech.trivago.com/2017/01/25/learn-redis-the-hard-way-in-production/.

[53] Linus Torvalds. 2018. linux/mm/compaction.c. https://github.com/torvalds/
linux/blob/v4.19/mm/compaction.c.

[54] Linus Torvalds. 2018. linux/mm/memory.c. https://github.com/torvalds/linux/
blob/v4.19/mm/memory.c.

[55] Linus Torvalds. 2018. linux/mm/vmscan.c. https://github.com/torvalds/linux/
blob/v4.19/mm/vmscan.c.

[56] Hao Zhang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Meihui Zhang. 2015.
In-memory big data management and processing: A survey. IEEE Transactions
on Knowledge and Data Engineering 27, 7 (2015), 1920–1948.

[57] Wei Zhang, Ningxin Zheng, Quan Chen, Yong Yang, Zhuo Song, Tao Ma, Jingwen
Leng, andMinyi Guo. 2020. URSA: Precise Capacity Planning and Fair Scheduling
Based on Low-Level Statistics for Public Clouds. In 49th International Conference
on Parallel Processing. 1–11.

[58] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. 2016. Treadmill:
Attributing the source of tail latency through precise load testing and statistical
inference. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture. IEEE, 456–468.

[59] Kaiyang Zhao, Sishuai Gong, and Pedro Fonseca. 2021. On-demand-fork: a
microsecond fork for memory-intensive and latency-sensitive applications. In
Proceedings of the 16th European Conference on Computer Systems. 540–555.

1045

https://linux.die.net/man/2/fork
https://github.com/iovisor/bcc
http://antirez.com/post/redis-persistence-demystified.html
http://antirez.com/post/redis-persistence-demystified.html
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=698b1b30642f1ff0ea10ef1de9745ab633031377
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=698b1b30642f1ff0ea10ef1de9745ab633031377
https://www.kernel.org/doc/html/latest/admin-guide/mm/hugetlbpage.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/hugetlbpage.html
https://www.kernel.org/doc/html/latest/admin-guide/mm/transhuge.html
https://docs.couchbase.com/server/current/install/thp-disable. html
https://docs.couchbase.com/server/current/install/thp-disable. html
https://www.brendangregg.com/wss.html
https://www.brendangregg.com/wss.html
https://keydb.dev/
https://docs.keydb.dev/docs/latency-monitor/
https://docs.keydb.dev/docs/latency-monitor/
https://docs.keydb.dev/docs/persistence
https://docs.keydb.dev/docs/latency/
https://docs.keydb.dev/docs/latency/
https://developer.arm.com/documentation/ddi0487/gb/
https://docs.mongodb.com/manual/tutorial/transparent-huge- pages
https://arxiv.org/abs/2301.05861
https://redis.io/topics/benchmarks
https://redis.io/
https://redis.io/topics/latency-monitor
https://redis.io/topics/latency-monitor
https://redis.io/topics/latency
https://redis.io/topics/latency
https://redis.io/topics/persistence
https://github.com/RedisLabs/memtier_benchmark
https://github.com/redis/redis/blob/7.0/redis.conf
https://github.com/memcached/memcached
https://db-engines.com/en/ranking/key-value+store
https://db-engines.com/en/ranking/key-value+store
https://tech.trivago.com/2017/01/25/learn-redis-the-hard-way-in-production/
https://tech.trivago.com/2017/01/25/learn-redis-the-hard-way-in-production/
https://github.com/torvalds/linux/blob/v4.19/mm/compaction.c
https://github.com/torvalds/linux/blob/v4.19/mm/compaction.c
https://github.com/torvalds/linux/blob/v4.19/mm/memory.c
https://github.com/torvalds/linux/blob/v4.19/mm/memory.c
https://github.com/torvalds/linux/blob/v4.19/mm/vmscan.c
https://github.com/torvalds/linux/blob/v4.19/mm/vmscan.c

	Abstract
	1 Introduction
	2 Background
	2.1 Preliminary
	2.2 Related Work

	3 Motivation
	3.1 Performance of fork for Taking a Snapshot
	3.2 Impact of Fork Operations on Latency
	3.3 Summary

	4 Design of Async-Fork
	4.1 General Idea
	4.2 Proactive Synchronization
	4.3 Detecting Modified PTEs
	4.4 Handling Errors

	5 Optimization and Implementation
	5.1 Accelerating Page Table Copy
	5.2 Implementation of Async-fork

	6 Evaluation
	6.1 Experimental Setup
	6.2 Overall Evaluation
	6.3 Detailed Evaluation

	7 Conclusion
	Acknowledgments
	References

