
Auto-Tuning with Reinforcement Learning for Permissioned
Blockchain Systems

Mingxuan Li1,2,3
People’s Public Security
University of China

limingxuan2@iie.ac.cn

Yazhe Wang
Zhongguancun Laboratory
wangyz@zgclab.edu.cn

Shuai Ma
SKLSDE Lab, Beihang

University
mashuai@buaa.edu.cn

Chao Liu2,3
Chinese Academy of

Sciences
liuchao1@iie.ac.cn

Dongdong Huo2,3
Chinese Academy of

Sciences
huodongdong@iie.ac.cn

Yu Wang2,3
Chinese Academy of

Sciences
wangyu@iie.ac.cn

Zhen Xu2,3
Chinese Academy of

Sciences
xuzhen@iie.ac.cn

ABSTRACT
In a permissioned blockchain, performance dictates its develop-
ment, which is substantially influenced by its parameters. However,
research on auto-tuning for better performance has somewhat stag-
nated because of the difficulty posed by distributed parameters;
thus, it is possible only with difficulty to propose an effective auto-
tuning optimization scheme. To alleviate this issue, we lay a solid
basis for our research by first exploring the relationship between
parameters and performance in Hyperledger Fabric, a permissioned
blockchain, and we propose Athena, a Fabric-based auto-tuning
system that can automatically provide parameter configurations for
optimal performance. The key of Athena is designing a new Permis-
sioned Blockchain Multi-Agent Deep Deterministic Policy Gradient
(PB-MADDPG) to realize heterogeneous parameter-tuning opti-
mization of different types of nodes in Fabric. Moreover, we select
parameters with the most significant impact on accelerating rec-
ommendation. In its application to Fabric, a typical permissioned
blockchain system, with 12 peers and 7 orderers, Athena achieves
a throughput improvement of 470.45% and a latency reduction of
75.66% over the default configuration. Compared with the most
advanced tuning schemes (CDBTune, Qtune, and ResTune), our
method is competitive in terms of throughput and latency.

PVLDB Reference Format:
Mingxuan Li, Yazhe Wang, Shuai Ma, Chao Liu, Dongdong Huo, Yu Wang,
and Zhen Xu. Auto-Tuning with Reinforcement Learning for Permissioned
Blockchain Systems. PVLDB, 16(5): 1000-1012, 2023.
doi:10.14778/3579075.3579076

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Matthewbalala/Athena.

Yazhe Wang is the corresponding author.
1School of Criminal Investigation, People’s Public Security University of China
2Institute of Information Engineering, Chinese Academy of Sciences
3School of Cyber Security, University of Chinese Academy of Sciences
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 16, No. 5 ISSN 2150-8097.
doi:10.14778/3579075.3579076

1 INTRODUCTION
Thanks to Turing-complete smart contracts, permissioned blockchains
have evolved into distributed transactional management systems
that can handle almost all transactions the database can execute
[1, 2]. Due to the security and transparency of blockchains, permis-
sioned blockchains are increasingly being used by companies and
government departments to replace or supplement their database
services [3]. Nevertheless, transactions [4–6] include a significant
number of encrypted signature calculations, network communica-
tion, and trust verification, which curtails the performance and fur-
ther development [7–9] of the permissioned blockchain. A typical
example is Hyperledger Fabric (hereinafter "Fabric"), the first open-
source permissioned blockchain platform for enterprise application
scenarios [6]. Transactions in Fabric are completely replicated in
the entire network and replay on all nodes involved with the same
tasks. Existing research [13] shows that the performance of Fab-
ric cannot be effectively improved by simply stacking hardware,
as is done in traditional distributed databases. Consequently, an
innovative optimization method is necessary.

Recent research [1] has shown that blockchains are comparable
to distributed databases due to their similarity to distributed trans-
actional management systems. Currently, there is a trend in the
adoption of database features in blockchains (e.g., FastFabric[29],
Fabric++[16]) or vice versa [19, 20]. For instance, Sharma et al. [16]
tuned only one parameter (i.e., MaxMessageCount) from 16 to 32,
and the throughput of Fabric increased by nearly 70%. However,
Fabric has hundreds of configurable parameters. Thus, the perfor-
mance boost observed by tuning Fabric parameters is merely the
tip of the iceberg. Nonetheless, the large number of parameters
makes manual tuning according to the rules neither efficient nor
effective. This complexity of configuration issues is overwhelming
even for experts. Recognized as a feasible solution in distributed
databases, auto-tuning has emerged as a powerful optimization
method. Existing auto-tuning schemes of distributed databases are
divided into three classes: search-based methods (e.g., Bestconfig
[31]), traditional machine-learning-based methods (e.g., OtterTune
[26], ResTune [15]), and deep reinforcement learning (DRL) meth-
ods (e.g., CDBTune [30], Qtune [28]). Nevertheless, directly borrow-
ing the auto-tuning method of the distributed database to optimize
Fabric is complicated for three reasons.

1000

https://doi.org/10.14778/3579075.3579076
https://github.com/Matthewbalala/Athena
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3579075.3579076
https://www.acm.org/publications/policies/artifact-review-and-badging-current

First, Fabric’s throughput calculation method differs from that of
a distributed database. In a distributed database system, a transac-
tion is executed only once for the individual state in the system [1],
and existing auto-tuning schemes only need to record one response
from any node to calculate throughput. In contrast, Fabric enables
trust by simulating a single transaction on multiple nodes in paral-
lel, and the execution process involves each participant node in the
cluster. Thus, Fabric schemes require collecting mixed responses
from all nodes that execute transactions [6]. Consequently, using a
database benchmark suite to measure Fabric is difficult for users.

Second, state-of-the-art research methods termed dynamic con-
figuration tuners in the database field adjust parameters according
to workload changes [21–24]. This research highlights the impor-
tance of workload changes in database tuning. Accordingly, most of
these tuners first collect the workload information in real-time and
then predict the optimal configuration. Finally, they allocate some
nodes in the cluster to reconfigure the optimal parameters to en-
sure the availability of the system in the parameter-reconfiguration
process. However, such dynamic configuration tuners cannot fulfill
Fabric-tuning needs because they utilize the workload to which the
performance of Fabric is less sensitive. For example, although the
performance of two workload applications (i.e., YCSB and Small-
bank) in a distributed database (i.e., H-STORE) differs by nearly
6.6 times, their evaluations in Fabric only fluctuate within 10% [2].
This disparity is occasioned by Fabric’s distinct working organ-
isms. Specifically, unlike the execution mode, where a distributed
database directly replicates the workload to its storage layer, Fabric
requires additional consensus and a validation process to ensure the
reliability of transactions, eventually involving these two processes
in performance tuning. Moreover, the consensus and validation
phases are far more time-consuming compared with the execution
phase. The literature [1] states that the time spent on the consensus
and validation phases is several times more than the time spent on
execution in the case of unsaturated workload and even consider-
ably more in the case of saturated workload. This feature of Fabric
weakens the impact of workload changes on the system so that
they are gradually ignored. Therefore, the tuning of Fabric should
focus not only on the endorser peer nodes that execute transactions
but also on all nodes (i.e., peers, orderers) that participate in the
consensus and validation phases. Meanwhile, the parameters in the
nodes control the execution process of consensus and validation,
which has a nontrivial impact on the performance of Fabric.

Third, the auto-tuning method for a distributed database requires
an expensive learning cycle, which in turn requires significant
time to find the best pairing of parameters and performance in the
search space for performance optimization. Due to the continuity
of parameters and their dependence, the size of the parameter
space grows exponentially following the increase of parameters. An
optimal scheme of distributed databases can overcome this problem
by selecting important parameters [23, 26, 27], as substantiated by
the experimental results. To improve the performance of Fabric, all
parameters of the peer, orderer and other types of components need
to be considered as much as possible. However, since there is no
previous knowledge to guide the selection of important parameters
in tuning Fabric, a method for selecting important parameters of
Fabric is urgently required to reduce the training time of tuning.

In this paper, we propose a novel scheme to auto-tune param-
eters for Fabric, namely Athena (a framework that automatically
tunes the Hyperledger network of Fabric). The scheme uses central-
ized training with decentralized execution to build a DRL model to
predict the best configurations. It can recommend a set of configura-
tions that dramatically improve the performance of Fabric to attain
higher throughput and lower latency. The performance maintains
a competitive advantage even when there is a change in the smart
contract (chaincode), workload, or network structure. Specifically,
Athena observes the status information and performance indica-
tors of all nodes, ensuring the effectiveness of the measurement
of the performance of Fabric, which solves the problem that the
existing database methods cannot accurately measure Fabric’s real
performance. At the same time, Athena performs heterogeneous
configurations for different types of nodes in Fabric, making the
best of each node for the performance of Fabric and solving the col-
laborative optimization problem in the distributed Fabric network.
Moreover, we quantify the importance of the parameters to reduce
the number of parameters that the auto-tuner must tune, alleviating
the burden of an enormous search space during model training and
improving system efficiency. Finally, we apply Athena to the most
popular permissioned blockchain system, i.e., Fabric. Our results
show that with the configuration set recommended by Athena,
Fabric achieves a 470.45% higher throughput and a 75.66% lower
latency over the default settings under 12 peers and 7 orderers. Our
main contributions are as follows:
• To the best of our knowledge, this is the first time that an auto-

tuning system has been proposed for the optimal performance
of Fabric.

• We propose a centralized training with a decentralized execution
method to realize heterogeneous tuning of Fabric.

• We design an efficient reward function, which significantly short-
ens training time.

• We analyze the collected data to filter out the most important
configuration parameters, which significantly accelerates the
auto-tuning efficiency.

• Finally, using two official workloads (Smallbank and Simple),
we conducted an extensive experimental study. (a) The tuning
results of Athena are consistently better than those of other com-
petitors. (b) The important parameters related to performance
are identified, and when the top 20 parameters are tuned, the
performance is equivalent to that of tuning all parameters under
C1 (i.e., three orderers, and four peers), and the training time is
reduced by 48.79%.
The remainder of this paper as follows. Section 2 describes the

related work, Section 3 shows the system architecture, Section
4 deals with auto-tuning as a DRL problem, Section 5 identifies
important parameters, Section 6 describes the experiments, Section
7 describes the discussion. Finally, Section 8 provides the conclusion.

2 RELATEDWORK
2.1 Hyperledger Fabric
Hyperledger Fabric is an enterprise-grade permissioned blockchain
framework established under the Linux Foundation [6]. In Fabric,
the transaction flow follows three phases, namely, execution, or-
dering, and validation. We briefly introduce these phases using the

1001

Client Peer 1 Peer 2

1. transaction proposal

3. proposal response

2.simulation
phase

Peer 3

Ordering
Service 6. deliver block

6. deliver block

7.validation & commit phase

Peer 4

1. transaction proposal

3. proposal response

OrgA OrgB

4. broadcast proposal response

Chaincode2Chaincode1 Chaincode1 Chaincode2
Channel

CA

6.deliver block
6. deliver block

2. Execution Phase

5. Ordering Phase

7. Validation Phase

0. Enroll/login

8. notification 8. notification
8. notification

8. notification

Figure 1: Fabric high-level transaction flow

example in Figure 1. Before executing the transaction, the client
first registers in the certificate authority (CA) to obtain the legal
identity to join the Fabric network. Execution Phase: The client
sends to all the endorser peers according to the endorsement policy
after the transaction is replicated. The peers simulate the execution
of the transaction by invoking a chaincode (smart contract) and
generating a read/write set. The endorsers then send a response
(read/write set with all signatures) back to the client. The client
collects the responses and sends them to the ordering service. Or-
dering Phase: The leader node of the ordering service orders the
received transactions and creates a block using a consensus proto-
col (e.g., Raft). The leader node of the ordering service then delivers
these blocks to peers. Validation Phase: The peers perform two
validations (endorsement policy and serializability) on the transac-
tions in the received blocks, commit the transactions to the ledger,
and finally, send a notification to the client.

Thus, Fabric involves the client, peers, chaincodes, and orderers
to complete a transaction. The time taken to execute a transaction
is determined by the performance of various nodes and the commu-
nication between them. The types of multiple nodes cooperatively
executing transactions render this process more difficult. In re-
sponse to these challenges, this study focuses on Fabric’s automatic
tuning parameter to improve its performance.

2.2 Fabric Optimization
Little attention has been paid to the optimization of the parameters.
In this regard, one important study is that by Thakkar et al. [7], who
discuss the impact of five configurations on performance through
experimental analysis and provide some guidelines. Further, they
conducted nearly 1,000 experiments. However, the inefficiency of
manual tuning eliminates its advantages. Some studies [16, 29]
mainly use the block size as an experimental comparison item, but
fail to analyze the parameters’ influence on performance compre-
hensively. Zhu et al. [43] proposed to characterize the parameters
of Fabric at the micro-architecture level, which is in a different layer
from that of the impact on parameters about which we are con-
cerned. Chacko et al. [17] proposed a new tool, i.e., HyperLedgerLab,
to analyze the impact of different parameters of Fabric on transac-
tion failure rates. This method focuses on small-scale parameters
(e.g., block size) to reduce transaction failures. It cannot tap the
tremendous potential of permissioned blockchain parameters to
improve performance. Other optimization methods for Fabric in-
clude that of Gorenflo et al. [29], who proposed FastFabric, which
implements parallel and encrypted information caching methods
in the validation phase. However, this scheme is confined to labora-
tories and cannot be applied in industrial production. For example,
the hash table is stored in the memory; data loss easily occurs once

there is downtime or a node is offline. [16, 18, 33] refer to numerous
principles andmethods of the database in the performance optimiza-
tion and functional transformation of the blockchain. However, all
these optimization methods require the modification of the compo-
nents of Fabric, and there are many hidden uncertainties regarding
the security of Fabric. Our approach does not change the source
code of Fabric, and is therefore orthogonal to the aforementioned
optimizations (e.g., FastFabric).

2.3 Database Tuning
Existing methods for database tuning can be divided into four main
categories [28]. (1) Rule-basedmethods. These provide users with
expert method experience to tune parameters, which is suitable
for quick guidance and is a typical solution as in [32]. However,
this kind of scheme requires a deep understanding of the internal
mechanism of the system and is time-consuming. Therefore, this
scheme is not investigated in the present study. (2) Search-based
methods. Tuning is performed by searching and adjusting the pa-
rameter space. Bestconfig [31] is a typical solution that divides the
high-dimensional parameter space into subspaces. Furthermore, it
uses search-based methods to retrieve the optimal parameters con-
tinuously, and in reality, it is likely to overlook the optimal configu-
ration. Therefore, this method is also not considered in the present
study. (3) Traditional machine-learning-based methods. These
use traditional machine-learning technology [10, 11, 14, 15, 26] to
tune the database by learning the experience from historical data.
They mainly use a learning-based algorithm (e.g., Bayesian opti-
mization) for parameter tuning. However, this algorithm requires a
large amount of high-quality historical data, which are difficult to
obtain. Therefore, this approach is not selected. ResTune [15] is the
most popular method in this field, and is mainly resource-oriented
for optimizing various objectives (e.g., CPU utilization). This is
different from our approach, which focuses on throughput and
latency. OtterTune [26] is the other typical solution. Notably, pa-
rameters that are unrelated to performance are eliminated, thereby
improving the tuning efficiency. Therefore, this approach is fol-
lowed when ranking the importance of the Fabric parameters. (4)
DRL-based methods. DRL-based solutions are currently the most
popular for database tuning. CDBTune [30] and Qtune [28] are typi-
cal solutions that can effectively adapt to changes in workloads and
hardware environments. However, existing methods are based on a
single agent, which loses some information about the relationship
between parameters and performance.

Although achievements have been made in solving the complex
database auto-tuning problem, it is still not possible to handle the
new architecture of the permissioned blockchain. Because the per-
missioned blockchain needs to replicate the entire transaction to
different nodes for repeated execution, performance is jointly af-
fected by multiple nodes. Therefore, the auto-tuning of Fabric has
become a new problem for multi-node cooperation, which has not
yet been considered by the existing methods [26, 30, 31].

3 SYSTEM ARCHITECTURE
Figure 2 shows the overview workflow of Athena. Athena handles
a tuning request as follows: The user provides a request for the con-
troller, and the controller automatically deploys the environment

1002

C.Information Collection B.Model Training

A.Client Panel

D. Important Parameter Identification

Controller Permissioned BlockchainUser

Benchmark Suite

Action Reward State

Training Database

Data PreprocessLassoImportance Rank

Environment

Multi-Agent

A
ut
o-
Tu
ni
ng

Op
tim
iza
tio
n

Performance Metrics

{st, rt, at, st+1}

Parameters

Pa
ra

m
et

er
s

{Normalization, Performance}

Multi-Agent DRL Workload

Internal Metrics,Resource Usage

Observations

Pe
rfo

rm
an

ce
 M

et
ric

s

Ob
se

rv
at

ion
s

Recommendation

Deploy

 Request

{Parameters, Performance}

Recommendation

Recommendation

Option

Figure 2: Athena architecture

based on the default configuration and initializes the multi-agent.
The controller then activates the benchmark suite, collecting re-
source usage and internal metrics and calculating performance
metrics (throughput and latency). The collected data and parame-
ters are then stored in the training database. Resource usage and
internal metrics, collectively called observations, are processed and
provided for the multi-agent to reconfigure the environment. This
process is continuously repeated with the environment configured
each time using the processed data from the previous process until
the set threshold is reached. By sampling the data stored in the train-
ing database, Athena trains a multi-agent DRL model and adjusts
the output configuration parameter strategy. The two-step pro-
cess of information collection and model training is repeated until
the performance metrics conform and stabilize. Consequently, the
best parameters are generated and recommended to the controller.
Afterwards, the user decides whether to use the recommended con-
figurations in real scenarios. Additionally, as an option, Athena uses
the least absolute shrinkage and selection operator (LASSO) [37] to
weight parameters and establish the important subset of parame-
ters, which can reduce the overall training time while maintaining
promisingly high performance for the next tuning.
Client Panel: Client panel is enabled by the controller, which can
receive tuning requests from the user and then coordinate and con-
trol the operation of the entire Athena system. The panel includes
(1) network architecture, such as Fabric architecture configuration
that users are tuning to target (e.g., four peers and five orderers); (2)
the chaincode, similar to smart contracts in concept, which defines
the types of data and calculation logic that need to be recorded in
the blockchain; (3) the workload, i.e., the data sent to the blockchain
when Caliper (a blockchain performance benchmark framework)
[36] performs testing since the chaincode and workload always
appear in pairs (we will use the chaincode name to refer to both
e.g., Smallbank stands for chaincode Smallbank and its workload);
(4) the selected parameters, i.e., the configuration parameters on
each node that the user chooses to tune; and (5) the reward coeffi-
cient, which is required by the reward function we designed. After
receiving the recommended configuration parameters returned by
the training model, the user can send them to the controller for
deployment in an instance of Fabric network.
Information Collection: Information collection is executed along
with the training model, and the collected data are provided for
training the DRL model and identifying important parameters.

Caliper and Prometheus (a status monitoring system) [38] are used
as the benchmark suites to collect information. Caliper evaluates
the performance, producing a set of performance metrics such as
throughput, latency, and resource usage (i.e., traffic, average CPU,
and memory utilization of the node) of Fabric. Prometheus pulls
the internal metrics of each node after Caliper completes its op-
eration. For training the DRL model, an index includes the agent
type, number of executions, parameters, throughput, latency, and
all the nodes’ internal metrics and resource usage. To identify im-
portant parameters, we store the recommended parameter values,
and performance metrics (throughput and latency) obtained each
time after a benchmark suite test and form a data pair.
Model Training: The auto-tuning of Fabric aims to determine the
best pairing of parameters and performance in continuous space,
which is an NP-hard problem. Reinforcement learning has a strong
decision-making ability and can learn from limited samples [30] in
the initial stage. It is a key technology for solving the problem of
tuning in continuous space. Due to the different types of nodes that
participate in transactions, the contribution of each type of node
to performance is differentiated. Accordingly, we designed a new
multi-agent DRL algorithm that can achieve heterogeneous tuning
of parameters for different types of nodes. Section 4.2 introduces
the definition of the components of DRL. Section 4.4 explains the
proposed algorithm in detail.
Important Parameter Identification: Figure 2 (D) demonstrates
how to apply LASSO [37] to find important parameters that affect
performance. We first acquire the parameter-performance pair from
the training database. Before applying the LASSOmodel, we need to
normalize the sample data. As far as we know, LASSO can provide
high-quality results when the features are continuous and of ap-
proximately the same order of magnitude. After data normalization,
the processed parameter-performance pairing is sent to the LASSO
model. We then use incremental methods to rank the parameters
that affect the performance, thereby reducing the dimensionality
of the performance features of Fabric as well as the training time.
Section 5 describes the exact optimization method.

4 AUTO-TUNING AS A DRL PROBLEM
This section first defines the relationship between parameters and
performance in Fabric and formulates auto-tuning as a DRL model.
Moreover, this section describes the shortcomings of traditional
reinforcement-learning solutions for solving multi-agent collabora-
tion problems. Finally, this section presents our multi-agent DRL
model for auto-tuning Fabric.

4.1 Parameter and Performance
It is challenging to delineate the impact of parameters on the per-
formance of Fabric. The first and critical step is to define the model
of the relationship between the parameters and the performance
of Fabric. We use latency and throughput as the performance met-
rics in this study. In [39], the transaction latency is defined as
"the transaction confirmation time minus the transaction submis-
sion time", which is essentially the sum of endorsement latency,
broadcast latency, ordering latency, and commit latency [7]. Math-
ematically, the transaction latency can be presented as follows:
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑇𝑐 − 𝑇𝑠 , where 𝑇𝑐 is the confirmation time and 𝑇𝑠 is the

1003

Table 1: List of parameters, their names, descriptions, range, and types.

Parameter Name Description Range Type
AbsoluteMaxBytes The absolute maximum number of bytes allowed for the serialized messages in a batch. 512 kb-10240 kb orderer
CORE_PEER_KEEPALIVE_MININTERVAL The minimum permitted time between client pings. 3-60 s peer
CORE_PEER_GOSSIP_MEMBERSHIPTRACKERINTERVAL Interval for membershipTracker polling. 0.25-5 s network
...

Forty-eight parameters are omitted due to space limitations. The completed parameter list is at https://github.com/Matthewbalala/Athena.

submission time. A transaction latency can also be presented as:
𝐿𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑇𝑒𝑙 +𝑇𝑏𝑙 +𝑇𝑜𝑙 +𝑇𝑐𝑙 , where𝑇𝑒𝑙 is the endorsement latency time,
𝑇𝑏𝑙 is the broadcast latency time, 𝑇𝑜𝑙 is the ordering latency time,
and 𝑇𝑐𝑙 is the commit latency time. However, the EOV architecture
of Fabric is greatly inspired by the traditional database system’s
optimistic concurrency control mechanisms. Therefore, under the
multi-version concurrency control mechanism of Fabric, which
can execute multiple transactions concurrently, we use the aver-
age of latency as the our performance metric, which is defined
as: 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑎𝑣𝑒𝑟 = 1

𝑘

∑︁𝑘
𝑖=0 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖 , where 𝑘 denotes the total number of

totals successful transactions, and 𝐿𝑎𝑡𝑒𝑛𝑐𝑦𝑖 is the latency of the 𝑖th
transaction. The other performance metric is throughput, which
is calculated as: 𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 = 𝑘

𝑇𝑙𝑐 −𝑇𝑓 𝑠
, where 𝑘 represents total suc-

cessful transactions, 𝑇𝑙𝑐 is the last committing time in global time,
and 𝑇𝑓 𝑠 is the first submitting time. Through the defined latency
and throughput, we found that the critical factor affecting the per-
formance of Fabric is the time spent by transactions in different
stages. Among them, endorsement latency and commit latency are
consumed by peers, ordering latency is consumed by orderers, and
broadcast latency is consumed by communication with peers and
orderers. Specifically, the performance of these nodes and networks
is controlled by parameters on their nodes as previously mentioned.
Due to the uncertain progressive relationship between performance
metrics, various components, and component parameters, we de-
fine 𝑝𝑖 as the 𝑖th parameter of a node of a component type. Each
parameter has its limit value. Therefore, we define the limit of each
parameter as follows:⎡⎢⎢⎢⎢⎢⎣

𝑙1
𝑙2
· · ·
𝑙𝑛

⎤⎥⎥⎥⎥⎥⎦ ≤
⎡⎢⎢⎢⎢⎢⎣

𝑝1
𝑝2
· · ·
𝑝𝑛

⎤⎥⎥⎥⎥⎥⎦ ≤
⎡⎢⎢⎢⎢⎢⎣

𝑢1
𝑢2
· · ·
𝑢𝑛

⎤⎥⎥⎥⎥⎥⎦ (1)

where 𝑙𝑖 is the lower-limit value of the parameter and 𝑢𝑖 is the
upper-limit value of the parameter. Table 1 presents the specific
values. We then define the mapping relationship between param-
eters and performance metrics (i.e., throughput and latency) as 𝑓 ,
and the performance metrics can be represented as 𝑃𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =

𝑓 (𝑝𝑃1 , · · · , 𝑝
𝑃
𝑛 ;𝑝𝑂1 , · · · , 𝑝𝑂𝑛 ;𝑝𝑁1 , · · · , 𝑝𝑁𝑛), where 𝑝𝑃𝑖 is the 𝑖th parameter of

peer node, 𝑝𝑂
𝑖
is the 𝑖th parameter of orderer node, and 𝑝𝑁

𝑖
is the

𝑖th parameter of network communication. Finally, the purpose of
the performance optimization problem is under (1) to compute
𝑓 (𝑝𝑃1 , · · · , 𝑝

𝑃
𝑛 ;𝑝𝑂1 , · · · , 𝑝𝑂𝑛 ;𝑝𝑁1 , · · · , 𝑝𝑁𝑛). The types of nodes, the parame-

ter types, and the impact of nodes on throughput and latency are
all different. Accordingly, we transform the auto-tuning parameter
problem of Fabric into a multi-agent cooperation problem.

4.2 Transformation of the Problem
Reinforcement learning (RL) is a learning framework that maxi-
mizes rewards by guiding an agent on how to take actions in the
environment. Unlike supervised learning, RL does not require a
large amount of labeled data in the initial stage of modeling [25, 30].

Through trial-and-error, the agent can repeatedly optimize the be-
havior selection strategy. At the same time, through an exploration
and exploitation mechanism, it can balance the unexplored space
and existing knowledge to avoid falling into the local optimum. In
recent years, excellent results have been achieved with auto-tuning
[28, 30]. Therefore, we attempted to use the DRL method to solve
the tuning problem of Fabric.

4.2.1 Environment. The environment is our target for tuning (an
instance of Fabric). As shown in Figure 1, five types of nodes in-
cluding peer, orderer, CA, client, and chaincode together with the
network (communications protocol, i.e., Gossip and gRPC) con-
stitute the Fabric network architecture. The actual combination
and number of nodes depend on the specific business requirement
(e.g., four peers, five orderers, two chaincodes, and two CAs). Note
that 𝐶𝑙𝑖𝑒𝑛𝑡 in Figure 1 denotes the benchmark suite, which sends
transaction tests, after which Fabric executes the transaction.

4.2.2 Agent. An agent is an algorithm used to adjust the output
strategy according to the state and reward, which is our DRL model.
The peer and orderer occupy most of the time for executing trans-
actions, and all parameters on Fabric are configured on the peer
and orderer, so we design agents for them. As for the network,
although its parameters are configured in peers and orderers, cross
communications must be carried out between nodes of the same or
different types in Fabric, resulting in a highly complex relationship
between communication and performance. To capture and analyze
this relationship, we separate the network-related parameters from
the peer and orderer and design a separate agent specifically for
the network. Accordingly, we design three agents in total.

4.2.3 State. The state space of Fabric is composed of all observa-
tions (internal metrics and resource usage) of participating nodes in
the transaction observed by different types of agents. We adopted
the official documents of Fabric [34] and Caliper [36] to define
the state of Fabric. Two folds define the state space of the peer
and orderer, internal metrics for maintenance index data (e.g.,
𝑑𝑒𝑙𝑖𝑣𝑒𝑟_𝑏𝑙𝑜𝑐𝑘𝑠_𝑠𝑒𝑛𝑡 , indicating the number of blocks sent by the
delivery service), and the physical resource occupied (e.g., aver-
age CPU utilization). There are 30 internal metrics and 2 physical-
resource metrics (average CPU and memory utilization of the node)
in the peer state. The orderer has 30 internal metrics and 2 physical-
resource status information (average CPU and memory utilization
of the node) in the state. We selected 37 internal metrics (Gossip
and gRPC, i.e., 10 from the orderer and 27 from the peer) and 4
physical-resource status information elements (i.e., resource con-
sumption state of the network: traffic in, and traffic out) from the
peer and orderer as the state of the network.

4.2.4 Actions. We take the parameters of each node in the Fabric
network as an action, as set out before. We aimed to cover as many

1004

parameters as necessary to conduct a thorough and systematic
analysis of the relationship between parameters and performance,
undoubtedly excluding some parameters that are not obviously
related to performance, such as listenAddress, the address at local
network interfaces on which this peer will listen. Finally, as pre-
sented in Table 1, we selected 51 parameters as our action: 12 for
the peer, 10 for the orderer, and 29 for the network.

4.2.5 Rewards. Defining the reward function is essential in RL
and determines the actual effect of the RL model. Quantification
and high sparsity are the two main problems encountered when
designing rewards in most practical scenarios. Intuitively, it is ef-
fective to use optimization goals as a reward directly; however, we
cannot analyze the measured performance results quantitatively.
Accordingly, we considered the performance change of the previous
time and the performance change of the initial time. Based on the
above, we use 𝑟 , 𝑇 , and 𝐿 to represent reward, throughput, and
latency, respectively. We define 𝑇0 and 𝐿0 as the throughput and
latency before tuning, respectively.𝑇𝑡 and 𝐿𝑡 ,𝑇𝑡−1 and 𝐿𝑡−1 are the
performance metrics at time 𝑡 and 𝑡 − 1, respectively. We use Eqs.
(2) and (3) to calculate Δ𝑇 and Δ𝐿, respectively. The growth rates
of 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 and 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 are represented by Δ𝑇 and Δ𝐿, not only
considering changes between initial and current values but also
between the current measurement and the immediately previous
measurement. Since latency and throughput are two opposite indi-
cators, the direction of these two optimization indicators should be
consistent. Therefore, when we calculate the Δ𝐿 of latency, we add a
negative sign in front of its equation, which is in the same format as
that of Δ𝑇 . Thus, when our RL model calculates reward, increasing
throughput or decreasing latency will give positive feedback.

Δ𝑇 =

{︃
Δ𝑇𝑡→0 =

𝑇𝑡 −𝑇0
𝑇0

Δ𝑇𝑡→𝑡−1 =
𝑇𝑡 −𝑇𝑡−1
𝑇𝑡−1

(2)

Δ𝐿 =

{︃
Δ𝐿𝑡→0 =

−𝐿𝑡 +𝐿0
𝐿0

Δ𝐿𝑡→𝑡−1 =
−𝐿𝑡 +𝐿𝑡−1

𝐿𝑡−1
(3)

Due to the similarity between the permissioned blockchain and the
distributed database, we attempted to use the scheme in [30] and
achieved robust results in the database field to form our reward
function; however, the scheme is not suitable. The main reason for
this is that its reward function is linear. Hence, notwithstanding
every tuning parameter improves performance, the reward obtained
in the multi-agent field is insignificant. Empirically, we find that
the model is difficult to converge. Therefore, we use an exponential
reward function to pay more attention to changes in performance.
Once the performance change is significantly improved, the reward
is satisfactory, and the model converges quickly. We use Eqs. (4)
and (5) to calculate the reward via throughput and latency. An
exponential reward function may not only capture performance
changes better but is also more sensitive to such changes. Moreover,
as in all systems, the performance varies for multiple runs of the
same task for various direct and indirect reasons. Thus, we use 𝜂 as
an impact factor for scaling performance change. When users use
our scheme, the improvement of performance metrics is minimal
when the value of reward changes significantly, and 𝜂, therefore,
needs to be reduced. When the values of reward and performance-
metrics change are minimal, 𝜂 needs to be increased.

𝑟𝑇 =

{︂
𝑒𝜂Δ𝑇𝑡→0∗Δ𝑇𝑡→𝑡−1 ,Δ𝑇𝑡→𝑡−1 > 0

−𝑒−𝜂Δ𝑇𝑡→0∗Δ𝑇𝑡→𝑡−1 ,Δ𝑇𝑡→𝑡−1 ⩽ 0 (4)

𝑟𝐿 =

{︂
−𝑒𝜂Δ𝐿𝑡→0∗Δ𝐿𝑡→𝑡−1 ,Δ𝐿𝑡→𝑡−1 > 0
𝑒−𝜂Δ𝐿𝑡→0∗Δ𝐿𝑡→𝑡−1 ,Δ𝐿𝑡→𝑡−1 ⩽ 0 (5)

𝑟 = 𝐶𝑇 ∗ 𝑟𝑇 +𝐶𝐿 ∗ 𝑟𝐿 (6)
As shown in Eq. (6), we consider both throughput and latency
when calculating the final reward. Therefore, we multiply them
by a coefficient and summate them to calculate the reward of each
agent. The coefficients of 𝐶𝑇 and 𝐶𝐿 require user adjustment, and
the sum will be 1.

4.3 RL for Auto-Tuning
Traditional single-agent RL can be divided into two categories,
namely, value-based and policy-based RL. Q-learning and deep Q-
network (DQN) are the most classic algorithms in value-based RL.
If these are applied to a multi-agent system, each agent must treat
other agents as the environment, making the model difficult to con-
verge [41]. In a multi-agent system, if other agents are regarded as
the environment, the implication is that the environment becomes
dynamic and constantly changes owing to the continuous opti-
mization of the other agents. Therefore, this is a dynamic Markov
decision process, contrary to the static invariance of the Markov
decision process (where the probability and reward are unchanged).
The other approach involves policy-gradient algorithms. If the algo-
rithm is directly applied to a multi-agent system, the value function
depends on the policies of other agents. An increase in the number
of agents results in a large discrepancy between the directions of
the calculated policy gradient and the actual gradient, making it
difficult for the model to converge even with reverse optimization
[41]. The deep deterministic policy gradient (DDPG) has achieved
good performance in auto-tuning database problems [28, 30]. It uses
a replay buffer to remove correlations in the input experiences and
exploits target network approaches to stabilize the training process.
Nonetheless, it is still limited by the aforementioned problems faced
by a single agent. In other words, single-agent RL methods cannot
directly contribute to the parameter tuning and optimization of
multi-agent cooperative systems. Therefore, in the next paragraphs,
we describe the use of multi-agent DRL to optimize Fabric.

4.4 PB-MADDPG for Auto-Tuning
Multi-agent deep deterministic policy gradient (MADDPG) [41] is
a DRL method for multi-agents that combines the DDPG algorithm
with a cooperative multi-agent learning architecture. Figure 3 (A)
illustrates the MADDPG framework. Each agent has two networks:
an actor network 𝜇 and a critic network Q. The actor network cal-
culates the action to be executed based on the state acquired by the
agent, whereas the critic network evaluates the action calculated by
the actor network to improve the performance of the actor network.
In the training phase, the actor network only obtains observation in-
formation from itself, while the critic network acquires information
such as the actions and observations of other agents. In the execu-
tion phase, the critic network is not involved, and each agent only
requires an actor network. MADDPG uses the collective-behavior
value function to train the agent to consider the impact of the pa-
rameters of all nodes that participated in the transaction on the
performance of Fabric, which can alleviate the turbulence caused by

1005

Training
Execution

Qp

μp

 Scheduler

Ap ap

μo μn

ap ao an ap ao an

Qo Qn

Actor

Critic Critic Critic

Actor Actor

Training
Execution
μ1

Q1 QN

Actor

Critic Critic

Actor

(A) (B)

μN

1 N Ao ao An anO A O A

ap ao an

Figure 3: MADDPG and PB-MADDPG

the unstable environment of the multi-agent system. At the same
time, each agent only needs to make independent decisions based
on local observation, which can tune the different parameters of
different types of nodes in Fabric and realize distributed control of
the multi-agent. In addition, MADDPG has all the advantages of
DDPG, and it can directly output the specific action to deal with
the high-dimensional and continuity problems of the parameters.

However, the MADDPG algorithm requires setting an agent for
each node. Each agent corresponds to an actor and a critic. With
many agents in the process, there are many models that are not
friendly to training. Notably, the MADDPG algorithm requires all
the agents’ state and action information as input when training the
critic. Since Fabric is scalable, the input dimensions will rapidly and
significantly increase with an increase in users, which is disastrous
for model training. Therefore, we further extended MADDPG and
implemented an algorithm, i.e., permissioned blockchain MADDPG
(PB-MADDPG), which fits the actual scenario of Fabric. Figure 3
(B) presents the framework of PB-MADDPG. We design a two-part
optimization. First, as nodes of the same type play similar roles in
Fabric, we set one agent for each type. We divide the participat-
ing nodes into three groups: peers, orderers, and networks. The
same type of node has the same configuration, thereby reducing the
number of trained models and accelerating overall training. Second,
motivated by [40], we add a scheduler to the original MADDPG
architecture to further abstract the observations of all agents and
calculate the average value of the observed node states separately
according to their type. For example, when we calculate the ab-
straction, there are four peers and three orderers. We therefore the
collect states of four peers and calculate the average value to build
an array with 32 dimensions. Moreover, we simultaneously collect
the states of three orderers and calculate the average value to con-
struct an array with 32 dimensions. After collecting the network
states of all peers and orderers to compute the average, we build an
array with 41 dimensions. We then combine the three arrays into
a new array as an abstraction. Therefore, the array length of each
abstraction is constant (105 dimensions).

Formally, we define the state of the 𝑖th node in terms of internal
metrics as 𝑠𝑚

𝑖
, and the state of the 𝑖th node in terms of the physical

resource occupied is denoted 𝑠𝑝
𝑖
. The observation of the 𝑖th node

is 𝑜𝑖 = (𝑠𝑚1 , 𝑠
𝑝

1). We assume that there are 𝛼 peers and 𝛽 orderers
in the Fabric network. Further, we define the state space of peers
as 𝑜𝑝 =

{︂(︂
𝑠𝑚1 , 𝑠

𝑝

1

)︂
, . . . ,

(︂
𝑠𝑚𝛼 , 𝑠

𝑝
𝛼

)︂}︂
, and the state space of orderers as 𝑜𝑜 ={︂(︂

𝑠𝑚1 , 𝑠
𝑝

1

)︂
, . . . ,

(︂
𝑠𝑚
𝛽
, 𝑠
𝑝

𝛽

)︂}︂
. Note that the state of the network is obtained

from peers and orderers. Thus, the state space of the network is 𝑜𝑛 ={︂(︂
𝑠𝑚1 , 𝑠

𝑝

1

)︂
, . . . ,

(︂
𝑠𝑚
𝛼+𝛽 , 𝑠

𝑝

𝛼+𝛽

)︂}︂
. We then define the state space of Fabric as

𝑠 =
{︁
𝑜𝑝 , 𝑜𝑜 , 𝑜𝑛

}︁. Next, we define the abstract of the nodes observed by

Algorithm 1: PB-MADDPG for Auto-Tuning
1 for episode = 1 to M do
2 Initialize a random processN for exploration of action 𝑎
3 Collect initial state 𝑠 and calculate abstraction A
4 for t= 1 to max-episode-length do
5 Each Node agent i, select their parameter as action

𝑎𝑖 = 𝝁𝜃𝑛 (𝐴𝑖) + N𝑡 from the action space, w.r.t the
current policy and exploration

6 Execute actions 𝑎 =
(︁
𝑎𝑝 , 𝑎𝑜 , 𝑎𝑛

)︁
, collect state 𝑠′,

calculate abstraction A′ and rewards 𝑟 .
7 Store (A, 𝑎, 𝑟,A′) in replay buffer 𝐷
8 A ← A′
9 for agent i= 1 to 3 do
10 Sample a random minibatch of S samples(︁

A 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 ,A 𝑗′)︁ from 𝐷

11 Set 𝑦 𝑗 = 𝑟
𝑗
𝑖
+ 𝛾𝑄𝜇′

𝑖

(︂
A′𝑗 , 𝑎′1, . . . , 𝑎

′
𝑁

)︂|︁|︁|︁
𝑎′
𝑘
=𝝁′

𝑘

(︂
𝐴

𝑗

𝑘

)︂
12 Update critic by minimizing the loss

13 L (𝜃𝑖) = 1
𝑆

∑︁
𝑗

(︂
𝑦 𝑗 −𝑄𝜇

𝑖

(︂
A 𝑗 , 𝑎

𝑗

1, . . . , 𝑎
𝑗

𝑁

)︂)︂2
14 Update actor using the sampled policy gradient:

15

∇𝜃𝑖J ≈
1
𝑆

∑︂
𝑖

∇𝜃𝑖 𝜇𝑖
(︂
𝐴
𝑗
𝑖

)︂
∇𝑎𝑖

𝑄
𝜇

𝑖

(︂
A 𝑗 , 𝑎

𝑗

1, . . . , 𝑎𝑖 , . . . , 𝑎
𝑗

𝑁

)︂|︁|︁|︁
𝑎𝑖=𝜇𝑖

(︂
𝐴

𝑗

𝑖

)︂
16 end
17 Update target network parameters for each agent i:
18 𝜃 ′

𝑖
← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃 ′𝑖

19 end
20 end

the peer agent as 𝐴𝑝 =

∑︁𝛼
𝑖=1 𝑜

𝑖
𝑝

𝛼
, where 𝑜𝑖𝑝 represents the observation

sets of the 𝑖th peer node. We then define the abstract of the nodes

observed by the orderer and network agent as 𝐴𝑜 =

∑︁𝛽
𝑖=1 𝑜

𝑖
𝑜

𝛽
and 𝐴𝑛 =∑︁𝛾

𝑖=1 𝑜
𝑖
𝑛

𝛾
. Finally, we define the abstract of all the agents’ observations

as A =
{︁
𝐴𝑝 , 𝐴𝑜 , 𝐴𝑛

}︁.
As shown in Figure 3 (B), we use decentralized execution and

centralized training methods under actor and critic architectures.
In the execute phase, each actor can take appropriate actions 𝑎
according to the state (𝐴𝑝 , 𝐴𝑜 , or 𝐴𝑛) itself. As a result, the state
or action of other agents will not be required. When each critic
calculates the Q value in the training stage, the scheduler will send
all agents’ actions and the abstraction. The critic trains according to
the estimated Q value and the actual Q value, and the actor updates
the strategy according to the estimated Q value feedback from the
critic. The input of each critic ensures that the particular dimension
will stay uninfluenced despite the increase in agents, avoiding the
explosion of state spaces and improving the convergence efficiency.

Next, we present our PB-MADDPG algorithm, which solves Fab-
ric’s parameter tuning problem. Algorithm 1 presents the pseudo-
code of the PB-MADDPG algorithm, and its detailed description is
as follows. (1) First, we initialize the online and target network of
actors and critics for the agent of each node type. We then initiate

1006

a random process N for exploration action, deploy the Fabric net-
work, receive the collected initial state 𝑠 of Fabric and calculate the
abstractionA (lines 1-3). (2) Next, we execute𝑚𝑎𝑥−𝑒𝑝𝑖𝑠𝑜𝑑𝑒−𝑙𝑒𝑛𝑔𝑡ℎ
iteration, and each agent selects actions (𝑎𝑖 , parameters) according
to its policy (𝝁𝜃𝑛 (𝐴𝑖), where 𝝁𝜃𝑛 is the actor policy and 𝐴𝑖 is the
abstract of the agents’ observations) and exploration noiseN𝑡 . The
entire Fabric network will be redeployed after each node assigns
new actions(lines 4-5). We then use the benchmark suite (Caliper) to
test the performance of Fabric with regard to the reward 𝑟 , which is
calculated using Eqs. (2-6). Note that our goal is the highest overall
performance; so, the reward of each agent is the same. At the same
time, the benchmark suite is deployed to collect the state 𝑠′ and
calculate the abstraction A′ of each node in Fabric. The current
statesA, the performed action 𝑎, the rewards 𝑟 , and the new states
A′, are then stored as a tuple (A, 𝑎, 𝑟,A′) in the experience replay
buffer 𝐷 . Therefore, in the execution phase, the agent can output
the recommended configuration 𝑎 according to the current state
A′. All nodes are reconfigured with output configurations, and the
benchmark suite performs testing, collecting the state, and calcu-
lating A′ of all nodes. Afterwards, we update the state A′ to A
and use it as the stateA at the beginning of the next iteration(lines
6-8). (3) After executing an entire episode, each agent will perform
the following steps to update its actor and critic network. First, the
agent of each node randomly selects a small batch of 𝑆 samples
from experience replay buffer 𝐷 . We then set the target value of
𝑄-function into 𝑦 𝑗 , where 𝑟 𝑗

𝑖
is the reward received by the 𝑖th agent

from the 𝑗th sample, and 𝛾 is a discount factor. 𝑄𝜇′
𝑖

(︁
A′𝑗 , 𝑎′1, . . . , 𝑎′𝑁

)︁
is a centralized action-value function, which takes the actions of
all agents, 𝑎′1, . . . , 𝑎

′
𝑁
, in addition to abstraction A′𝑗 as inputs, and

the Q-value for agent i as outputs. 𝑎′
𝑘
is obtained by feeding the

agent abstraction 𝐴𝑘 to the policy 𝜇′(lines 9-11).
The 𝜃 of the critic network is updated by minimizing the differ-

ence between 𝑦 𝑗 and 𝑄
𝜇

𝑖

(︂
A 𝑗 , 𝑎

𝑗

1 , . . . , 𝑎
𝑗

𝑁

)︂
in the sample (lines 12-13).

Similarly, we update the 𝜃 of the actor network based on the gradi-
ent ascent (lines 14-16). (4) Finally, we update the online network
of actors and critics, after which their target network parameters
are updated under a soft update (lines 17-18).

5 IMPORTANT PARAMETER
IDENTIFICATION

In our architecture, we use LASSO as a filter to rank the importance
of parameters with performance. It has been widely applied to the
selection of feature importance and has achieved outstanding re-
sults [26, 37]. LASSO obtains amore refinedmodel by combining the
least-squares method and an L1 regularized function constructed
on its basis, compressing some coefficients and setting some to
zero. According to the coefficient, the variables are screened while
fitting the generalized linear model [26]. The training data are the
recommended parameter values and throughput obtained each time
the MADDPG is trained. Research [26, 42] has shown that LASSO
can provide high-quality results when the features are continuous,
in an approximate order of magnitude and with similar variances.
Therefore, we first normalize the data (value minus mean divided
by the standard deviation) to feature them with the same order
of magnitude before we use LASSO to rank the importance of the
parameters. We then use LASSO regression to rank the importance

of the parameters. Mathematically, Athena solves the following
optimization problem: argmin

𝜃

1
𝑛
∥𝑌 − 𝑋𝜃 ∥22 + 𝜆∥𝜃 ∥1 , where 𝑛 is the

number of training samples, 𝑌 is the throughput of Fabric, 𝑋 is
the vector of Fabric parameters, 𝜃 represents the coefficients of
each feature, and 𝜆 is a hyperparameter used to adjust the sparse
strength of the coefficients of each parameter. We start by giving
LASSO a very high penalty item and then decrease the penalty and
record each new parameter. The order of parameter appearance
implies their impact on performance.

6 EXPERIMENTS
This section evaluates Athena’s performance. We chose a variety of
themost representative static configuration tuners and performance-
optimization methods for Fabric as the baselines:

Default: The default configurations are provided by Fabric.
Manual: Manual tuning by a blockchain expert engaged in tun-

ing and optimizing Fabric for four years.
FastFabric: FastFabric [29] is a performance-optimization ap-

proach that implements techniques such as parallel and encrypted
message caching based on v1.4. We ported the primary optimiza-
tion method, cached unmarshaled blocks, parallelized validation,
and hashed table to Fabric v2.4.3; we replicated it in our hardware
environment for comparison with the tuning methods.

Bestconfig: Bestconfig [31] is a tuner method based on search.
We stripped out the divide-and-diverge Sampling (DDS) and re-
cursive bound and search (RBS) algorithms from Bestconfig and
applied them to Fabric tuning parameters.

OtterTune: OtterTune [26] is a tuner method based on Bayesian
optimization. We used the parameters and performance metrics
collected from several other tuning schemes as training data to form
the Gaussian process (GP) model of OtterTune. We then randomly
selected the configuration to find the local optimumusing stochastic
gradient descent in the GP model.

CDBTune: CDBTune [30] is a tuner method based on single-
agent DRL. We used an agent to adjust the parameters of all nodes.

Qtune: Qtune [28] is a query-aware database tuning systemwith
a DRL model. We adopted its workload-level query optimization
method. It differs from CDBTune in that it utilizes a pre-trained
model to predict internal metrics.

ResTune: ResTune [15] is a tuner method based on Bayesian
optimization. The main difference with OtterTune is the extension
of a single GP to a Gaussian regression process with multiple re-
source types (e.g., CPU) and the addition of service-level-agreement
(SLA). In our implementation, we optimize the two indicators, i.e.,
throughput and latency.

Athena: Athena is our approach that uses a multi-agent DRL to
tune Fabric.

Athena-FastFabric: Athena-FastFabric uses Athena to tune
parameters on FastFabric.

6.1 Setup
In all our experiments, we used Fabric v2.4.3 with Raft. The endorse-
ment policy was set to "OR." All components ran inside Docker con-
tainers. Moreover, the experiments were run on cloud servers. Every
two nodes were deployed on an instance using an Intel Xeon(Ice
Lake) Platinum 8369B (8 vCPU) with 32 GB memory. The machines

1007

were connected via 10 Gigabit Ethernet. Ubuntu 18.04 was the op-
erating system. We used Python 3 and TensorFlow to implement
all of Athena’s algorithms and components, and we used Python 3
to implement all the other algorithms.

We used Simple and Smallbank from Caliper benchmarks, which
have been used as representative workloads in previous studies
[16, 29]. Simple and Smallbank perform the benchmark run using 16
worker processes, and submit 200000 TXs at a fixed 800 txn/sec send
rate in each round. We considered advanced evaluation schemes
such as [31], [26], and [30] in our experiment. The metrics to which
we need to pay attention include training time, throughput, and
latency. Note that we set three main Fabric network configurations
for evaluation: C1, three orderers and four peers; C2, five order-
ers and eight peers; C3, seven orderers and twelve peers. The
experiments were performed three times, and the average values
were reported.

6.2 Execution Time Breakdown
This section divides one training-tuning step into five stages:

1. Benchmark suite test (BST): the benchmark suite sends the
workload to the Fabric network.

2. Metrics collection (MC): collecting observations in the Fab-
ric cluster, throughput, and latency calculated by Caliper, and stor-
ing them in the training database.

3. Model update (MU): updating the model parameters with
collected training data.

4. Recommendation (R): inputting observations to output rec-
ommended parameters.

5. Deployment (D): deploying the Fabric network according to
the recommended parameters.

As presented in Table 2, we used three network configurations
(C1, C2, and C3) based on Simple and Smallbank in the evaluations:
First, Athena reduces the deployment time to under 1.5 min by au-
tomatically restarting Fabric. However, on average, the deployment
time still accounts for 68% of the entire scheme. It is unavoidable
in any optimization scheme being the premise for most parameters
of Fabric to take effect. Second, MU and MC only consume a small
amount of time (overhead, the percentage of MU and MC in the
total time for a tuning step is 1.8% - 2.1% in our model), which is
almost negligible compared with the duration for the deployment
of the Fabric network and BST (execute transactions).

6.3 Tuning Effectiveness and Efficiency
Comparison

This section evaluates the effectiveness and efficiency of Athena by
comparing with Default, Manual tuning, FastFabric, Bestconfig, Ot-
terTune, CDBTune, Qtune, ResTune, and Athena-FastFabric under
different workloads (Smallbank and Simple) and different Fabric
network architectures. Note that when the output throughput fluc-
tuates by less than 3 txn/sec five consecutive times, we assume that
the tuning process has reached convergence. To test the scalability
of our approach, four, eight, and twelve peers correspond to C1, C2,
and C3, respectively. We fix the number of orderers to seven while
scaling the number of peers from 16 to 32, as shown in Figure 4.
Our findings were as follows.

Table 2: Execution time distribution of Athena

Workload Network BST (s) MC (s) MU (ms) R (ms) D (s) Overhead (%)
Simple C1 24.7 1.4 0.26 0.42 51.3 1.84
Simple C2 25.6 1.6 0.31 0.45 56.4 1.96
Simple C3 26.5 1.9 0.35 0.47 68.2 1.97

Smallbank C1 25.0 1.4 0.27 0.43 52.5 1.84
Smallbank C2 26.4 1.6 0.32 0.44 56.5 1.98
Smallbank C3 27.3 2.0 0.34 0.46 70.2 2.02

1) Athena’s tuning solution scales well with the number of nodes.
Figure 4 shows the results with varying peer numbers from 4 to
32 by step 4. Athena achieves approximately (379.66%, 422.73%,
470.45%, 478.51%, 536.63%, 490.32%, 511.63%, and 541.89%), and
(365.24%, 401.24%, 434.75%, 541.28%, 632.95%, 569.51%, 619.18%, and
703.39%) better throughput, and (71.66%, 75.23%, 75.66%, 77.24%,
77.39%, 73.98%, 73.96%, and 78.15%) and (74.31%, 75.74%, 78.06%,
78.25%, 79.63%, 75.62%, 76.25%, and 78.81%) better latency compared
with Default based on Smallbank and Simple, respectively.

2) Athena is orthogonal to FastFabric. When varying peers from
4 to 32 by step 4 with Smallbank, Athena can improve FastFabric
throughput and latency by (58.42%, 65.94%, 68.80%, 71.33%, 74.23%,
76.40%, 89.38%, and 97.59%) and (54.14%, 62.00%, 64.41%, 57.68%,
52.98%, 53.14%, and 54.91%), respectively. Compared with FastFab-
ric, Athena achieves approximately (26.32%, 37.05%, 41.14%, 44.75%,
48.90%, 52.00%, 70.54%, 82.27%) better throughput and (22.93%,
33.00%, 41.53%, 45.69%, 42.81%, 38.29%, 44.63%, 43.60%) better la-
tency based on Smallbank.

3) As experts only selected four parameters that they thought
were important for tuning, the best result of manual tuningwas only
134.85% higher than the default settings with C3. Moreover, unlike
database experts, the optimization of a blockchain cannot grasp
the whole picture of the relationships among all parameters. When
we take manual tuning as the baseline, the average throughput
and latency of (Athena, Bestconfig, OtterTune, CDBTune, Qtune,
and ResTune) exceed (100.32%, 26.13%, 31.36%, 68.06%, 75.16%, and
83.23%) and (59.65%, 21.93%, 35.38%, 42.34%, 44.09%, and 42.63%)
on Smallbank with C3, as well as (89.78%, 24.77%, 42.11%, 65.63%,
72.76%, and 78.28%) and (67.09%, 26.79%, 32.14%, 39.49%, 44.85%, and
47.40%) on Simple with C3, respectively. Athena achieved the best
results. Even compared with the most advanced schemes (CDBTune,
Qtune, and ResTune), our method has (31.62%, 32.63%, and 32.26%;
28.77%, 26.95%, and 25.16%; 29.91%, 29.94%, and 27.10%) and (18.97%,
13.99%, and 18.64%; 17.06%, 14.23%, and 15.21%; 17.31%, 15.56%, and
17.02%) the advantage in throughput and latency with C1, C2, and
C3, respectively, based on Smallbank. From the effect of different
workloads, all the tuning results of Simple are slightly better than
those of Smallbank, but the gap is slight, as Fabric is not quite
sensitive to workloads with similar bytes.

4) After scaling multiple nodes, we found that the time for tuning
increased with the number of nodes, mainly because of the increase
in startup time caused by the increase in nodes. As for efficiency,
Bestconfig was the best (230 min, 343 min, and 398 min) under (C1,
C2, and C3). However, as a search solution, it is easy for Bestconfig
to fall into the local optimum, which on the other hand, means
it has a short period. The performance improvement of Athena
is (4.59, 4.73, and 4.84; 4.59, 4.64, and 4.72) times higher than that
of Bestconfig on Smallbank and Simple under (C1, C2, and C3),
respectively, taking manual tuning as the baseline. Therefore, even

1008

Figure 4: Comparison with Default settings, Manual tuning,
FastFabric, Bestconfig, OtterTune, CDBTune, Qtune, ResTune,
and Athena-FastFabric on Smallbank and Simple on Fabric

if the training time of Bestconfig is the shortest, its tuning effect is
not as satisfactory. Compared with CDBTune and Qtune, though
both use RL, the efficiency of Athena is (65.59%, 52.15%, and 54.93%;
41.61%, 49.82%, and 49.95%) better owing to simpler model selection.

In addition, the exponential reward function of Athena is more
effective than the linear one and dramatically increases attention to
throughput and latency changes. Furthermore, it could also shorten
training time. To enable a fair comparison, we add the time for
collecting data when computing the training time of OtterTune and
ResTune, which take (30.32%, 28.96%, and 23.44%; 36.81%, 23.07%,
and 23.84%) more training time than Athena under (C1, C2, and C3)
with Smallbank. The efficiency of Athena is always better than that
of the other algorithms. Experts can only conduct manual tuning,
thus the time spent can not be precisely recorded and calculated as
with other schemes, which will not be shown in the figure.

Athena can produce a good optimization effect. On the one hand,
themulti-agent DRL can better capture the relationship between the
performance and parameters of different types of nodes. Further,
the proposed exponential reward function is more sensitive to
performance changes and accelerates the training speed of the
model. The results of these two aspects make Athena more effective
and efficient than the baselines.

6.4 Impact of the Number of Parameters
To better demonstrate the impact of a limited number of parameters
on performance in subsequent experiments, we first used LASSO
[37] to rank the importance of the parameters by utilizing data
collected during tuning instance C1 with Smallbank. For clarity,
we only show the ten most influential parameters of these results.
Figure 5 shows the weight vectors of various parameters in the
regression model. At the same time, the first three are all network-
related, and the fourth is related to the orderer. Three of the top
ten parameters that impact performance are related to the network,
two to the orderer, and five to the peer.

In addition, from the ranking results of all parameters, we con-
clude that previous research on the performance tuning of Fabric
mainly focused on block size parameters; we found four parameters
related to block rules, i.e., PreferredMaxBytes, AbsoluteMaxBytes

e

Figure 5: Parameter selection by LASSO path

Figure 6: Performance by increasing the number of parame-
ters

(rank 34), BatchTimeout (rank 36), andMaxMessageCount (rank 37).
According to our experiment, these ranks are not as high as those
in previous research, and even PreferredMaxBytes is ranked fourth,
which is only mediocre. Essentially, many performance-related
parameters have not yet been identified in existing research.

To evaluate the performance tuning better, we analyzed the rea-
sons for the impact of the top five parameters on performance.
CORE_PEER_GOSSIP_STATE_BLOCBUFFERSIZE is the most crit-
ical parameter, reflecting the size of the reordering buffer. We
believe this parameter ranks high because increasing the cache
space of block data helps peers improve the efficiency of pulling
blocks, thereby assisting them in verifying quickly, which leads
to higher throughput. The second is PUBLISHCERTPERIOD; the
time startup certificates are included in live messages. This en-
sures the availability of certificates in peers and dramatically influ-
ences the continuous transmission of block information between
peers. Next is CORE_PEER_GOSSIP_PROPAGATEITERATIONS,
which represents the number of times a message is pushed to re-
mote peers. A message is pushed to more peers in parallel, which
can better leverage the advantages of Fabric’s parallel execution
and improve throughput. The fourth is PreferredMaxBytes, the
preferred maximum number of bytes allowed for serialized mes-
sages in a batch. This parameter is the first rule to be triggered in
Fabric slicing. Increasing the bytes of the block can include more
transactions in the block, reducing the frequency of peers pulling
blocks from the orderers, and thereby improving the performance.
CORE_PEER_KEEPALIVE_MININTERVAL is the fifth important
parameter and is the minimum permitted time between client pings.
This parameter controls the ping frequency between the client and
the peer. If this time is too short, the client frequently sends pings,
which causes the peer and client to disconnect, resulting in the peer
losing contact.

According to the sorting result of LASSO, we used ten more
parameters each time for tuning. Figure 6 shows the tuning results
of Athena, Bestconfig, OtterTune, CDBTune, Qtune, and ResTune
based on C1 under the workload of Smallbank. When we tuned 20
parameters, the throughput reached (99.64%, 83.00%, 93.00%, 95.30%,
94.00%, and 83.00%) with all parameters, respectively. The latency
increased by (1.93%, 4.30%, 5.60%, 6.10%, 5.80%, and 9.20%) compared

1009

Figure 7: Performance for different Fabric network configu-
rations

Figure 8: Comparison between RF-Athena and RF-CDBTune

to all parameters, respectively. The performance was equivalent to
that of tuning all parameters. However, the benefits are apparent.
The training time was reduced by (48.20%, 32.30%, 41.20%, 39.40%,
40.20%, and 48.79%) of that of tuning all parameters, respectively.
Thus, we argue that the training time can be significantly reduced
if important parameters are identified.

6.5 Adaptability
This section verifies the adaptability of Athena to different net-
work configurations. Since Fabric is scalable, users can join the
network according to business requirements. Therefore, this scala-
bility naturally requires good adaptability of the tuning model. We
experimented with two instances (C1 and C3, based on Smallbank
workload). First, we used recommended parameters of instance C1
to C3 (C1→C3). We then evaluated the performance of instance C1
and C3 default parameters, C1→C3, C1 tuning (Athena tuning on
C1), and C3 tuning (Athena tuning on C3). As shown in Figure 7, the
configuration recommended by Athena is adaptable. Applying the
configuration recommended by C1 to instance C3, the throughput
improves by 350.4% compared with the default C3, which is 95.6%
of the throughput after re-tuning.

6.6 Evaluation of Reward Functions
This section evaluates the reward functions of Athena. To verify
the superiority of our exponential reward function (RF-Athena),
we compared it with the linear reward function of CDBTune (RF-
CDBTune). As shown in Figure 8, we use three configurations, i.e.,
C1, C2, and C3, and the chaincode is Smallbank, while it is fixed at
𝐶𝑇 =𝐶𝐿=0.5. We found that no matter the throughput, latency, and
training time under the two configurations, RF-Athena is superior
to RF-CDBTune. The throughput, latency, and training time of
RF-Athena found by (C1, C2, C3) are (26.08%, 29.94%, and 28.84%),
(42.93%, 37.96%, and 37.17%), and (51.85%, 50.00%, and 45.93%) better
than RF-CDBTune under Smallbank, respectively. On the one hand,
the reason for such a result is that the exponential reward function
can scale up and down the reward value due to performance changes
so that the model converges better. On the other hand, when the
linear reward function is faced with a multi-agent RL model, the
obtained reward value is the smallest, dramatically increasing the
time for the model to converge. To summarize, compared with the

Figure 9: The 𝜂 to optimize performance and training time

Figure 10: 𝐶𝑇 to optimize performance

linear reward function, our proposed exponential reward function
can achieve better performance and a faster convergence speed
when adjusting the parameters of the permissioned blockchain.

𝜂 is a significant parameter in Eqs. (4) and (5). Its contribution is
to solve the difference in performance feedback due to the Fabric
network architecture or other external reasons. To evaluate the
impact of the 𝜂, we varied 𝜂 from 1 to 19 on C1, C2, and C3 (chain-
code is Smallbank), while 𝐶𝑇 = 𝐶𝐿= 0.5 is fixed. Figure 9 displays
the results. We found that the best performance value for the 𝜂 of
(C1, C2, and C3) is (10, 13, and 16), respectively. All 𝜂 values that
achieve the best performance are above 10. The 𝜂 value needs to be
larger because the parameter adjustment space primarily results
from many parameters. The 𝜂 value needs to be increased to in-
crease its sensitivity to performance changes. In this study, the 𝜂
value is used as a hyperparameter to help users better optimize the
auto-tuning effect.

We designed the throughput and latency weight parameters 𝐶𝑇
and 𝐶𝐿 to trade off the two optimization objectives in Eq. (6). To
observe the impact of both on optimization performance, we set
the performance of𝐶𝑇 =𝐶𝐿=0.5 as the benchmark based on [30]. We
experimented with instance C1; the chaincode is Smallbank. Figure
10 shows the results. We observe the rate of change of the two
optimization objectives. With the increase of 𝐶𝑇 , the throughput
change rate increases, and the corresponding latency change rate
increases. This is due to the fact that increasing 𝐶𝑇 increases the
contribution of the throughput variation to the reward. However,
it will reduce the contribution of latency.

Generally, when adjusting these three parameters, the adminis-
trator first determines 𝐶𝑇 and 𝐶𝐿 according to the requirements.
Under the requirement of high throughput, increase 𝐶𝑇 , or reduce
𝐶𝑇 for low latency. After determining𝐶𝑇 and𝐶𝐿 , the administrator
initially defines 𝜂 as ten and adjusts 𝜂 according to the reward value.
If the reward fluctuation is significant, reduce 𝜂; if the reward is
small, increase 𝜂.

6.7 Evaluation of Fault Tolerance
This section evaluates two types of crashes: (1) Orderer crash: Fab-
ric’s consensus algorithm is Raft, which is crash fault-tolerant. We
find that crashing a leading or non-leading orderer has a limited
impact on performance. This is because, in the ordering service,
the leading orderer performs the ordering process, and the other
nodes are only backup operations. After the leader node crashes,

1010

the non-leading orderers elect a new leader in a short time. (2) Peer
crash: Although other nodes can compensate for the crash of peers
within the organization, this will increase the endorsement work
on other nodes, thereby significantly affecting performance. To
evaluate Athena’s impact on clusters with peer crashes, we vary
them from 1 to 6 in step 1 and fix the other parameters to their
default values of C3 with Smallbank.

As shown in Figure 11, Athena achieves the best results, in which
the throughput and latency tuned by Athena are (355.29%, 346.35%,
473.33%, 548.81%, 601.13%, and 721.13%) and (71.63%, 73.62%, 74.08%,
78.71%, 77.17%, and 77.28%), respectively, outperforming default
crashes. The comparison demonstrates that Athena can facilitate
the continuous use and excellent performance of the Fabric network
in a crash state.

6.8 Summary
From these tests, we find the following.

(1) The overhead of our Athena is minimal, with each tuning
process only costing 1.8% - 2.1%.

(2) Athena achieved the best tuning performance. The through-
put and latency of (Athena, Bestconfig, OtterTune, CDBTune, Qtune,
and ResTune) improves by (100.32%, 26.13%, 31.36%, 68.06%, 75.16%,
and 83.23%) and (59.65%, 21.93%, 35.38%, 52.34%, 54.09%, and 52.63%),
respectively, on Smallbank under C1, and by (89.78%, 24.77%, 42.11%,
65.63%, 72.76%, and 78.28%) and (67.09%, 26.79%, 32.14%, 49.49%,
54.85%, and 57.40%), respectively, Simple under C1, compared to
manual tuning.

(3) The throughput of tuning 20 parameters equals 99.64% of the
effect of tuning all the parameters under C1. The latency can only
increase by 1.93%, which is nearly negligible, and the tuning time
reduces by 48.79%.

(4) Despite the network change (C1→C3), the configuration
recommended by Athena can realize a throughput improvement of
350.4% compared with the default configuration.

(5) The throughput, latency, and training time of Athena’s ex-
ponential reward functions determined via (C1, C2, and C3) are
(26.08%, 29.94%, and 28.84%), (42.93%, 37.96%, and 37.17%), and
(51.85%, 50.00%, and 45.93%) better than the linear reward func-
tion under Smallbank, respectively.

(6) For fault tolerance, the throughput and latency tuned by
Athena, are (355.29%, 346.35%, 473.33%, 548.81%, 601.13%, and 721.13%)
and (71.63%, 73.62%, 74.08%, 78.71%, 77.17%, and 77.28%), respec-
tively, outperforming default crashes.

7 DISCUSSION
This section discusses some details about the use of Athena in
production and aims to clarify some specific points.

Intended user: The intended user of Athena is the administrator
elected by the participating organizations in the real world, who
has the privilege to access all servers and modify the Fabric config-
uration. The reasons for electing an administrator are as follows: (1)
Ensure uniformity of parameter tuning results for each node. (2) All
organizations give permissions to administrators, which can pre-
vent data leakage between nodes. After tuning is completed, each
organization configures its node configuration according to the
recommendations of the administrator. It is recommended that the

Figure 11: Robustness of tuning algorithms in nodes crash

parameters of all nodes are set to be the same because experiments
show that some parameters in the nodes are different, rendering
the system unusable. After the configuration is complete, each or-
ganization can disable the access authority of the administrator to
ensure the security of the production environment data.

Operation procedure: In production, Athena adopts the above-
mentioned centralized tuning and distributed deployment. The
administrator tunes Fabric using a sample workload to generate
recommendations, which are used on a real workload. Moreover,
organizational users may join or quit, the hardware environment
may change, or the business scenario shift. As an option, the ad-
ministrator can use the data collected during the previous tuning
process to rank the parameters via the LASSO. The administrator
can select the important parameters of Fabric to retune all the nodes
and retain the other parameters in their default configuration.

Available platforms: In general, Athena has been adapted to all
versions of Fabric 1.4.x - 2.4.x. At present, we are actively promoting
the adaptation of Athena to other types of permissioned blockchains
(e.g., FISCO BCOS).

8 CONCLUSION
In this paper, we propose Athena, a Fabric-based auto-tuning system
that can automatically provide parameters for optimal performance
and only requires the controller to have administrative privileges
to modify the configuration and restart Fabric in the training stage.
First, we introduce the relationship between the parameters and
performance at the theoretical level and transform the problem of
tuning parameters in Fabric into a multi-agent coordination prob-
lem. Second, we propose a novel PD-MADDPG algorithm to solve
this problem efficiently. In addition, we select the parameters that
make the greatest contribution to improving the tuning efficiency.
Finally, we experimentally verify that the recommendation from
Athena is significantly more effective than that of the default con-
figuration. By comparison, our method outperforms the other three
most advanced solutions. Thus, we are among the first to study
auto-tuning for the performance optimization of blockchains.

In future studies, we will better balance the relationship between
the number of nodes and agents to solve the problem of more
complex heterogeneous hardware configurations. Meanwhile, we
plan to extend our approach to other blockchain systems.

ACKNOWLEDGMENTS
This work was supported by National Key R&D Program of China
(No.2019YFB1706002), the Informatization Plan of Chinese Acad-
emy of Sciences (Grant No. CAS-WX2021SF-0508), NSFC (61925203),
and Beijing Advanced Innovation Center for Future Blockchain and
Privacy Computing.

1011

REFERENCES
[1] P. Ruan, T. T. A. Dinh, D. Loghin, M. Zhang, G. Chen, Q. Lin, B. C. Ooi. Blockchains

vs. Distributed Databases: Dichotomy and Fusion. In Proc. of 2021 ACM Interna-
tional Conference on Management of Data, pages 1–14, 2021.

[2] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi, and
Ji Wang. Untangling blockchain: A data processing view of blockchain systems.
IEEE Trans. Knowl. Data Eng, 30(7):1366–1385, 2018.

[3] M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman. Blockchain Technology:
Beyond Bitcoin. In Appl. Innov., vol. 2, pp. 6–10, Jun. 2016.

[4] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical
report, Manubot, 2019.

[5] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr. 2014.

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. Hyperledger Fabric: a distributed operating system
for permissioned blockchains. In Proceedings of the thirteenth EuroSys conference,
pages 1–15, 2018.

[7] Parth Thakkar, Senthil Nathan, and Balaji Viswanathan. Performance benchmark-
ing and optimizing hyperledger Fabric blockchain platform. In 2018 IEEE 26th
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), pages 264–276, 2018.

[8] P. Zheng, Z. Zheng, X. Luo, X. Chen, and X. Liu. A detailed and real-time per-
formance monitoring framework for blockchain systems. In Proc. 40th Int. Conf.
Softw. Eng. Softw. Eng. Pract.-ICSE-SEIP, pages 134–143, 2018.

[9] K. Wüst and A. Gervais. Do you need a Blockchain? In Crypto Valley Conference
on Blockchain Technology, pages 45-54, 2018.

[10] K. Kanellis, C. Ding, B.Kroth, et al. LlamaTune: Sample-Efficient DBMS Configu-
ration Tuning. arXiv preprint arXiv:2203.05128, 2022.

[11] Stefano Cereda, Stefano Valladares, Paolo Cremonesi, and Stefano Doni. CGP-
Tuner: a contextual gaussian process bandit approach for the automatic tuning
of IT configurations under varying workload conditions. In Proc. VLDB Endow.,
14(8): 1401–1413, 2021.

[12] J. Wang, I. Trummer, and D. Basu. UDO: universal database optimization using
reinforcement learning. arXiv preprint arXiv:2104.01744, 2021.

[13] K. Tan, Q. Cai, B. C. Ooi, W. Wong, C. Yao, and H. Zhang. In-memory databases:
Challenges and opportunities from software and hardware perspectives. In Proc.
of 2015 ACM SIGMOD International Conference on Management of Data, pages
35-40, 2015.

[14] Dana Van Aken, Dongsheng Yang, Sebastien Brillard, Ari Fiorino, Bohan Zhang,
Christian Billian, and Andrew Pavlo. An inquiry into machine learning-based
automatic configuration tuning services on real-world database management
systems. In Proc. VLDB Endow., 14(7):1241–1253, 2021.

[15] Xinyi Zhang, Hong Wu, Zhuo Chang, Shuowei Jin, Jian Tan, Feifei Li, Tieying
Zhang, and Bin Cui. ResTune: Resource oriented tuning boosted by meta-learning
for cloud databases. In Proc. of 2021 ACM International Conference on Management
of Data, pages 2102-2114, 2021.

[16] Ankur Sharma, Felix Martin Schuhknecht, Divya Agrawal, and Jens Dittrich.
Blurring the Lines Between Blockchains and Database Systems: The Case of
Hyperledger Fabric. In Proc. of 2019 ACM International Conference on Management
of Data, pages 105-122, 2019.

[17] J. A. Chacko, R. Mayer, and H.-A. Jacobsen. Why do my blockchain transactions
fail? a study of hyperledger fabric. In Proc. of 2021 ACM International Conference
on Management of Data, pages 221-234, 2021.

[18] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi. Towards scal-
ing blockchain systems via sharding. In Proc. of 2020 ACM International Conference
on Management of Data, pages 123-140, 2020.

[19] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, P. Jayachandran. Blockchain
meets database: design and implementation of a blockchain relational database.
In Proc. VLDB Endow., 12(11):1539–1552, 2019.

[20] X. Yang, Y. Zhang, S. Wang, B. Yu, F. Li, Y. Li, W. Yan. LedgerDB: a central-
ized ledger database for universal audit and verification. In Proc. VLDB Endow.,
13(12):3138–3151, 2020.

[21] Ashraf Mahgoub, et al. OPTIMUSCLOUD: Heterogeneous Configuration Op-
timization for Distributed Databases in the Cloud. In USENIX Annual Technical
Conference (USENIX ATC), pages 189-203, 2020.

[22] Ashraf Mahgoub, et al. Rafiki: A middleware for parameter tuning of nosql
datastores for dynamic metagenomics workloads. In Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference, pages 28-40, 2017.

[23] Ashraf Mahgoub, et al. SOPHIA: Online reconfiguration of Clustered NoSQL
Databases for Time-Varying Workloads. In USENIX Annual Technical Conference
(USENIX ATC), pages 223-240, 2019.

[24] Jian Tan, Tieying Zhang, Feifei Li, Jie Chen, Qixing Zheng, Ping Zhang, Honglin
Qiao, Yue Shi, Wei Cao, and Rui Zhang. ibtune: Individualized buffer tuning for
large-scale cloud databases. In Proc. VLDB Endow., 12(10):1221-1234, 2019.

[25] V. Mnih, et al. Playing Atari with Deep Reinforcement Learning. In Computer
Science, pages 351-362, 2013.

[26] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic
database management system tuning through large-scale machine learning. In
Proc. of 2017 ACM International Conference on Management of Data, pages 1009-
1024, 2017.

[27] Konstantinos Kanellis, Ramnatthan Alagappan, and Shivaram Venkataraman.
Too many knobs to tune? towards faster database tuning by pre-selecting impor-
tant knobs. In 12th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 20), 2020.

[28] Guoliang Li, Xuanhe Zhou, Shifu Li, and Bo Gao. Qtune: A query-aware data-
base tuning system with deep reinforcement learning. In Proc. VLDB Endow.,
12(12):2118-2130, 2019.

[29] C. Gorenflo, S. Lee, L. Golab, and S. Keshav. FastFabric: Scaling hyperledger
Fabric to 20 000 transactions per second. In 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pages 455-463, 2019.

[30] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing,
Yangtao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. An end-to-
end automatic cloud database tuning system using deep reinforcement learning. In
Proc. of 2020 ACM International Conference on Management of Data, pages 415-432,
2020.

[31] Yuqing Zhu, Jianxun Liu, Mengying Guo, Yungang Bao, Wenlong Ma, Zhuoyue
Liu, Kunpeng Song, and Yingchun Yang. Bestconfig: tapping the performance
potential of systems via automatic configuration tuning. In Proceedings of the 2017
Symposium on Cloud Computing, pages 338-350, 2017.

[32] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. Do not blame users for misconfigura-
tions. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, pages 244-259, 2013.

[33] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, B. C. Ooi. A transactional per-
spective on execute-order-validate blockchains. In Proc. of 2020 ACM International
Conference on Management of Data, pages 543-557, 2020.

[34] Metrics. 2023. https://hyperledger-fabric.readthedocs.io/en/release-
2.4/metrics_reference.html. [Online; accessed 2-January-2023].

[35] paddlepaddle. 2023. https://github.com/PaddlePaddle/Paddle. [Online; accessed
2-January-2023].

[36] Hyperledger Caliper. 2023. https://hyperledger.github.io/caliper/. [Online; ac-
cessed 2-January-2023].

[37] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267-288, 1996.

[38] Prometheus. 2023. https://prometheus.io/. [Online; accessed 2-January-2023].
[39] Hyperledger Blockchain Performance Metrics White Paper. 2023.

https://www.hyperledger.org/learn/publications/blockchain-performance-
metrics. [Online; accessed 2-January-2023].

[40] Dawei Qiu, Jianhong Wang, Junkai Wang, and Goran Strbac. Multi-Agent Rein-
forcement Learning for Automated Peer-to-Peer Energy Trading in Double-Side
Auction Market. In IJCAI, pages 2913-2920, 2021.

[41] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. In Ad-
vances in neural information processing systems, pages 2681–2690, 2017.

[42] W. Lyu, Y. Lu, J. Shu, and W. Zhao. Sapphire: Automatic Configuration Rec-
ommendation for Distributed Storage Systems. arXiv preprint arXiv:2007.03220,
2020.

[43] Liang Zhu, Chao Chen, Zihao Su, Weiguang Chen, Tao Li, and Zhibin Yu. Bbs:
Micro-architecture benchmarking blockchain systems through machine learning
and fuzzy set. In 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 411-423, 2020.

1012

	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Hyperledger Fabric
	2.2 Fabric Optimization
	2.3 Database Tuning

	3 System Architecture
	4 Auto-Tuning as a DRL problem
	4.1 Parameter and Performance
	4.2 Transformation of the Problem
	4.3 RL for Auto-Tuning
	4.4 PB-MADDPG for Auto-Tuning

	5 Important Parameter Identification
	6 EXPERIMENTS
	6.1 Setup
	6.2 Execution Time Breakdown
	6.3 Tuning Effectiveness and Efficiency Comparison
	6.4 Impact of the Number of Parameters
	6.5 Adaptability
	6.6 Evaluation of Reward Functions
	6.7 Evaluation of Fault Tolerance
	6.8 Summary

	7 Discussion
	8 conclusion
	Acknowledgments
	References

