
Replicated Layout for In-Memory Database Systems
Sivaprasad Sudhir

MIT
siva@csail.mit.edu

Michael Cafarella
MIT

michjc@csail.mit.edu

Samuel Madden
MIT

madden@csail.mit.edu

ABSTRACT
Scanning and filtering are the foundations of analytical database
systems. Modern DBMSs employ a variety of techniques to partition
and layout data to improve the performance of these operations. To
accelerate query performance, systems tune data layout to reduce
the cost of accessing and processing data. However, these layouts
optimize for the average query, and with heterogeneous data ac-
cess patterns in parts of the data, their performance degrades. To
mitigate this, we present CopyRight, a layout-aware partial repli-
cation engine that replicates parts of the data differently and lays
out each replica differently to maximize the overall query perfor-
mance. Across a range of real-world query workloads, CopyRight
is able to achieve 1.1X to 7.9X faster performance than the best
non-replicated layout with 0.25X space overhead. When compared
to full table replication with 100% overhead, CopyRight attains the
same or up to 5.2X speedup with 25% space overhead.

PVLDB Reference Format:
Sivaprasad Sudhir, Michael Cafarella, and Samuel Madden. Replicated
Layout for In-Memory Database Systems. PVLDB, 15(4): 984-997, 2022.
doi:10.14778/3503585.3503606

1 INTRODUCTION
Carefully organizing data on storage is key to achieving high query
performance inmodern analytical DBMSs.Modern datawarehouses
use a variety of techniques including horizontal and vertical parti-
tioning, clustered indexes, sort orders, etc. to accelerate scan per-
formance by reducing the cost of accessing and processing data.

Several algorithms, often based on historical properties of a
workload of queries run over the data, have recently been proposed
to tune the physical layout of tables to optimize performance of the
workload [3, 4, 11, 15, 19, 23, 46, 49]. Complex real-world workloads
contain queries with varying access patterns including queries that
access different attributes, have different selectivity characteristics,
and read different subsets of records. For example, dashboard-based
interactive data analytics platforms allow users to create query
templates with a variety of predicates by zooming in on maps,
enforcing ranges on graphs, selecting from drop-down menus etc.
Users analyzing a dataset of New York City taxi trips 1 issue queries
across a variety of dimensions to find the average fare amount of
trips between two parts of New York City where the passengers
paid by cash, and to find the number of trips in a particular month
of the year that costed more than $5, etc. Existing layout tuning

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503606

1https://www.omnisci.com/demos/taxis

algorithms optimize for the workload on average. However, a single
layout may not be optimal for queries of different types. As a result,
the benefit of these specialized data layouts decreases as queries
with different access patterns scan the same data.

To address these limitations, we built CopyRight, a novel in-
memory read-optimized partial replicated layout engine that auto-
matically optimizes the layout for a particular dataset and query
workload. CopyRight replicates different parts of the data at vary-
ing degrees and organizes each replica under different layouts to
maximize the overall query performance. Our layout engine sup-
ports sub-table replication where only a subset of columns are
materialized in each replica.

Prior work has explored several approaches for automated phys-
ical database design in both single node and distributed systems
[2, 3, 8, 9]. To the best of our knowledge, CopyRight is the first
layout-aware partial replication engine for performance in an in-
memory single node setup. Joint optimization of partitioning and
replication has primarily been studied in the context of distributed
databases [12, 20, 25, 27, 28]. The focus of these approaches is on
minimizing the number of cross-partition queries rather than the
exact layout of data in each partition.

Under storage constraints,CopyRight achieves high performance
by focusing replication efforts on parts of the data where it matters.
A table-level replication scheme may waste storage by replicating
areas that give minimal advantage such as cold parts of the data
that is rarely accessed or parts of the data where all queries have
similar data access patterns. CopyRight identifies sub-spaces of
data that yield large benefit from replication and allocates available
storage accordingly to maximize the overall gain. By materializing
only a subset of columns in each replica, CopyRight is able to better
utilize the available space and create more replicas.

Incorporating partial replication makes the layout design prob-
lem much harder as the space of layouts that need to be considered
significantly increases. A table can be horizontally partitioned in
a large number of ways (the so-called Bell number), which grows
faster than exponential in the number of tuples. With replication,
any subset of these partitionings that fits in the storage bound is a
feasible layout, causing a combinatorial explosion in the space of
physical design alternatives. With partial replication, a replica may
materialize any subset of the tuples and any subset of the columns,
further exacerbating the combinatorial nature of the problem.

CopyRight organizes data as a two-level structure: the data space
is split into regions and each region is replicated differently. Our
layout optimizer employs a number of novel techniques to intelli-
gently prune the space of layouts. Instead of directly searching in
the space of layouts, we approach replication as a workload parti-
tioning problem. We partition the workload into clusters and create
a replica that is optimal for each cluster. We present a scalable
algorithm that jointly optimizes partial replication and layout of
each replica by leveraging properties of the data and workload.

984

https://doi.org/10.14778/3503585.3503606
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503606
https://www.omnisci.com/demos/taxis

2 4 6 8 10
Number of Templates

0

20

40

60

Sc
an

 O
ve

rh
ea

d

10

40

55 55
66.2

(a) Range partition

2 4 6 8 10
Number of Templates

0

20

40

60

Sc
an

 O
ve

rh
ea

d

2.05

19.2
23.3

46.9 50.6

(b) Tsunami

Figure 1: As the number of query templates (different access
patterns) in the workload increases, the scan overhead of
non-replicated layouts increases, degrading performance.

In summary, this paper makes the following contributions
(1) We present CopyRight, a novel layout-aware partial replica-

tion engine that concentrates replication efforts on parts of
the data where it matters.

(2) We provide an efficient heuristic algorithm to determine
good partially replicated layouts and estimate the cost-space
Pareto optimal frontier for a given dataset and workload.

(3) Finally, we demonstrate that CopyRight can outperform
other layouts for a variety of real-world datasets and query
workloads. CopyRight is 1.1X to 7.9X faster than the best
non-replicated layout with 0.25X overhead. In 25% space
overhead CopyRight’s partial replicated layout is able to
achieve the same or up to 5.2X better performance than a
table-level replicated layout that incurs 100% overhead .

The paper is organized as follows: we make the case for partial
replication in §2, provide an overview of our approach in §3, present
the layout structure in §4, describe the optimization algorithm in
§5, describe the query workflow in §6, show our experimental
evaluation in §7, compare to related work in §8, and conclude in §9.

2 MOTIVATION
We begin with an overview of the impact of heterogeneous query
access patterns on the performance of database systems for analyti-
cal workloads. We then make the case for layout-aware replication
of data focusing the efforts on parts where it matters.

Background: In this work, we focus on multi-dimensional ana-
lytical workloads. A table with� numeric columns can be thought of
as a �-dimensional space and tuples as points in the �-dimensional
space. Queries are equivalent to hyper-rectangles in the space.

With queries that filter data on multiple attributes, DBMSs can
use secondary indexes to improve scan performance. However, a
secondary index scan works better than a full sequential scan only
when the the predicate on the indexed attribute has very low selec-
tivity [22, 41]. An alternative approach is to partition data, organize
partitions in some sorted order on one-dimensional storage, and
build auxiliary multi-dimensional indexes to skip partitions that
don’t match query filters. Examples include range partitioning on
single or multiple columns, Grid Files [30], k-d tree [6], R-tree [18],
Z-order [44], Flood [29], and Tsunami [15]. The partitions and sort
order are adapted to reduce the scan overhead, the ratio of number
of records scanned by the query to the number of records that
satisfy the query filter, without incurring large index lookup costs.

Tsunami [15], is a recently proposed learned multi-dimensional
layout that has been shown to outperform a variety of other tra-
ditional and learned variants. It horizontally partitions the data
into non-overlapping regions and organizes each region as a grid.
The two-level structure of Tsunami accounts for query skew (i.e,
query frequency varies in different parts of data space) by laying
out each region differently. The boundaries of the grid and regions
are learned based on the data and workload distribution.

Performance of non-replicated layouts: Non-replicated lay-
outs incur high scan overheads when queries with different access
patterns scan the same parts of the data. Fig. 1 shows the scan over-
head of the workload with increasing number of query templates in
the workload for non-replicated layouts. Data is range-partitioned
on the most frequently accessed column in Fig. 1a and organized
using Tsunami in Fig. 1b. The table has 8 dimensions with uni-
formly randomly distributed data. The workload contains equally
represented query templates that filter on two randomly selected
columns. Queries are uniformly distributed in the data space. Even
with a few templates accessing the same data, the scan overhead of
the workload is significantly high and queries waste a lot of time
scanning unnecessary data. This is a consequence of the curse of
dimensionality and affects non-replicated layouts across the board.

To illustrate where this overhead comes from in more detail, con-
sider an example of a 2-dimensional dataset and workload shown
in Fig. 2a. Here, X and Y axes represent the 2 columns in the table.
Data is uniformly randomly distributed, as shown by grey dots. The
workload contains 3 types of queries with range predicates on both
columns. Dark red queries that are highly selective along Y are
uniformly distributed throughout the entire data space, light green
queries that are very selective along X in the upper right quarter
of the data space, and blue queries with moderate selectivity along
both X and Y in the bottom right quarter.

Fig. 2b shows the data range-partitioned on columnY. The orange
lines indicate the partition boundaries. While red queries are well-
aligned with the partitioning, green ones are not and executing
them will require processing many partitions and thereby yield a
poor scan overhead. A single layout is efficient for some queries
but inefficient for others. This is also applicable to more expressive
layouts like Tsunami.

Fig. 2c shows the layout Tsunami finds for the workload. Here,
the data space is divided into 3 regions having different query
distributions. The black lines indicate the region boundaries.Within
each region, the data is further partitioned into cells by constructing
a grid. The orange dotted lines indicate the cell boundaries. Tuples
within a cell is laid out contiguously on storage. At query time,
we find all orange cells that intersect the query and scan all tuples
from each intersecting cell. Grid dimensions are partitioned based
on the “shape” of the queries, i.e, the selectivity of queries along
each dimension. As the right half of the data space has queries
with multiple access patterns, Tsunami optimizes its layout for the
average query. Data is laid out as a grid that is optimal for the
overall workload, but suboptimal for each query type individually.
This is shown in the two quadrants in the right half of Fig. 2c.

To reduce the scan overhead of both query types with a single
layout, we need to create more fine-grained cells. However, this
incurs additional cost for looking up the intersecting cells to scan.

985

0 25 50 75 100

X

0

25

50

75

100
Y

(a) Dataset and workload

0 25 50 75 100

X

0

25

50

75

100

Y
(b) Non-replicated layout(range partition)

0 25 50 75 100

X

0

25

50

75

100

Y

(c) Non-replicated layout (Tsunami)

50 75 100

0 25 50 75 100

X

0

25

50

75

100

Y

(Replica)

(d) CopyRight with 0.25X replication budget

0 25 50 75 100

X

Y

50 75 100
(Replicas)

(e) CopyRight with 0.5X replication budget

Figure 2: Fig. 2a shows a multi-dimensional dataset and workload with 2 columns X and Y. The grey dots represent tuples
and the rectangles represent queries. Fig. 2b shows the data range-partitioned on column Y. Fig. 2c shows the best layout that
Tsunami is able to obtain for the workload. Fig. 2d shows CopyRight’s layout with sufficient budget to replicate a quarter
of the table. The upper right quarter of the table is replicated. Layout of one of the replicas is optimized for the short and
wide red queries. Other one is optimized for the tall and narrow green queries. With enough budget to replicate half the table,
CopyRight also replicates the bottom right quarter with one replica optimized for red queries and other for blue queries.

So a fine-grained grid is not a scalable solution for handling hetero-
geneous access patterns. We can see from the shape of the grid cells,
that queries of both types incur a scan overhead. Such effects are
exacerbated by workloads with a large number of access patterns,
very different access patterns, queries scanning different columns,
etc as suggested by Fig. 1.

The case for a partial replicated layout: If we had additional
space, we could replicate parts of the data and layout replicas dif-
ferently to reduce the overall query latency. With sufficient space
to replicate a quarter of the data, we can create a replica for the
upper right region � ≥ 50 and � ≥ 50. One of the replicas can be
optimized for answering red queries. The other one can be opti-
mized for the green queries. This is shown in Fig. 2d. We choose to
replicate the upper right quarter over the bottom right as red and
green queries have very different access patterns. Allocating the
replication budget smartly is important as splitting red and green
queries into two replicas gives more advantage than splitting red
and blue. If we had sufficient space to replicate half the table, the
bottom right quarter can also replicated and each replica can be
optimized for its query type as shown in Fig. 2e. This is exactly
what CopyRight, our novel replicated layout engine, does.

Real-world workloads include queries with a variety of templates
and access patterns. The distribution of these access patterns varies
across the data space and so does the benefit from replication. For
four real-world datasets, our algorithms found 12 - 20 query tem-
plates and 19 - 62 sub-spaces of data with different distributions of
access patterns. We take a partial replication approach that concen-
trates replication efforts in parts of the data that provides maximum
reduction in the execution cost. As workloads show patterns in
columns being accessed together, we allow sub-table replication,
materializing only a subset of columns in a replica, to efficiently
utilize the available space by creating multiple smaller replicas.

3 OVERVIEW
As shown in Fig. 3, CopyRight consists of two components: a layout
optimizer, for determining how to layout data, and a query executor,
responsible for executing queries on this layout. We briefly describe
these components below, starting with a description of the structure
of data in CopyRight and then describing how our optimization
engine automatically selects good layouts for a given workload.

Layout: (§4) CopyRight organizes data as a hierarchy of grids.
The data space is hierarchically partitioned into non-overlapping

986

Replicated, partitioned layout

Layout
Optimizer

Query

Dataset
Sample Workload ...

Index

Query
Executor

Result

Figure 3: Overview of CopyRight architecture.

regions. In Fig. 2d the black lines indicate the region boundaries.
Each region can be replicated any number of times. Each replica is
organized as a grid-based layout on storage. A replica may contain
only a subset of columns but contains all tuples in the region. In
Fig. 2d the orange dotted lines indicate grid boundaries. For the
rest of the paper, we use ‘region’ to denote the unit of replication
and ‘grid’ to denote the layout of each replica of a region. This
two-level structure reduces the size of the search space and allows
us to efficiently navigate the search space in a top-down fashion by
restricting the granularity of replication to horizontal partitions of
the table. Throughout this paper, we use horizontal partitioning to
denote splitting data into disjoint sets of rows. We use a grid-based
layout as it is simple enough to tune efficiently. We use a space
partitioning tree to index the regions. The tree index combined with
the grid layout is expressive enough to achieve high performance
for complex workloads.

Layout Optimizer: (§5) Under storage constraints, we need to
concentrate the available replication budget in regions where it
matters to get maximum performance from partial replication. Iden-
tifying these regions and allocating the replication budget among
them is non-trivial as the benefit obtained from replication depends
on a large number of factors such as the density of queries, distribu-
tion of data, similarity of access patterns, etc. For example, in Fig. 2,
with sufficient space to replicate a quarter of the table, we chose
to replicate upper right quarter over the bottom right quarter as
red and green queries have vastly different access patterns. If the
density of blue queries was much higher than green ones, it would
have been better to replicate the bottom right quarter. Allocating
available replication budget gets harder as the distribution of access
patterns becomes more complex.

Given a dataset� , a representative workload� , and a space bud-
get for replication �, CopyRight’s layout optimizer finds the data
layout that minimizes overall query execution time. The optimizer
has to find the regions, allocate available storage for replication
amongst them, decide how many replicas to create for each region,
what columns to materialize in each replica, and how to layout
each replica. All these sub-problems are tightly coupled, making
the search process hard. We discuss our heuristic optimization
algorithm that addresses these challenges in detail in §5.

Query Executor: (§6)When a query arrives, we find the regions
that intersect the query predicates using the tree index. Within
each region, we pick the best replica, the one that minimizes the
execution time, to execute the query. Within each replica, we use
find the grid cells that intersect the query filter, scan the tuples in
the cells and emit the tuples that satisfy the filter.

Now, we describe these components of CopyRight in more detail.

4 LAYOUT
In this section we describeCopyRight’s layout structure.CopyRight
organizes data as a hierarchy of grids using a two-level structure.

Root

�0

��
(0)
0

�1

��
(0)
1 ��

(1)
1

�2

��
(0)
2 ��

(1)
2

X<50 50≤X

Y<50 50≤Y

Figure 4: An example Grid Tree.

X

Y

(a) Dimensions � and � are
partitioned independently

X

Y

(b) Dimension � is partitioned
based on dimension �

Figure 5: An example Augmented Grid layout.

The top level structure is Grid Tree, a hierarchical space partitioning
tree. Leaf nodes of the tree correspond to a region and are replicated.
Each replica is laid out using Augmented Grid. These layouts were
introduced in [15]. We extend them to support partial replication.

Grid Tree:CopyRight horizontally partitions the data space into
non-overlapping regions. We use a hierarchical space partitioning
tree, called Grid Tree to index these regions. The root node of the
Grid Tree corresponds to the entire data space. Each node splits
the data space into multiple child nodes based on a dimension.
The dimension to split and the boundary values are picked based
on the workload and dataset. Leaf nodes of the Grid Tree are the
regions that are replicated. Fig. 4 shows the Grid Tree index for the
replicated layout in Fig. 2e. The root node, the entire data space, is
split into 2 child nodes based on dimension � . The node 50 ≤ �

is further split based on dimension � . Leaf nodes are the regions
that are replicated and organized as one or more grids represented
by dashed circles. Region �0 has only a primary replica (�� (0)

0)
whereas regions �1 and �2 are replicated twice (�� (0)

�
, ��

(1)
�

).
Augmented Grid: An Augmented Grid is a generalization of a

grid that takes advantage of the correlation in data. An Augmented
Grid splits the data into �� partitions along each dimension �

of the table. It may split a dimension, say � , into equally sized
partitions using��� (�), cumulative distribution function of � , in-
dependent of other dimensions. In Fig. 5a the data is partitioned into
3 columns based on X such that each column has approximately the
same number of records. Independently, it is partitioned into 5 rows

987

along Y. Augmented Grid may also choose to partition a dimension
𝑌 dependent on another dimension 𝑋 , uniformly in 𝐶𝐷𝐹 (𝑌 |𝑋).
For example, in Fig. 5b, each partition along X is further split into
cells with equal number of tuples using 𝐶𝐷𝐹 (𝑌 |𝑋). When com-
bined, these partitions form a grid with Π𝑋 ∈𝐴𝑡𝑡𝑟𝑠𝑝𝑋 cells, which
are ordered. The tuples within each cell are stored contiguously on
storage. The number of partitions along each dimension is decided
based on the workload. Soft functional mappings between columns
are stored for rewriting query filters during execution to take full
advantage of data correlation.

5 LAYOUT OPTIMIZER
The input to our optimization algorithm is a dataset 𝐷 , a represen-
tative workload𝑊 , and a replication budget 𝐵. The output is the
set of regions and an associated Grid Tree index, how each region
(leaf node of the Grid Tree) is replicated, and the Augmented Grid
layout for each replica. We first give an overview of our heuristic
optimization algorithm and then delve into details.

We approach replicating a region as a workload partitioning
problem. Queries in the sample workload 𝑊 that intersect the
region are partitioned into clusters. A replica is created for each
cluster and is organized optimally for queries in the cluster. To scale
this problem, we first group queries with similar access patterns into
types, each of which becomes a potential target for an optimized
replica, and then solve replication as a partitioning of the set of all
query types in the workload (§5.1).

Associated with each leaf node of the Grid Tree (region) is a
replication configuration which describes how the data is replicated.
As we explore the space of layouts in a top-down fashion, a block
(horizontal partition) may be replicated according to a replication
configuration or may further be divided into smaller blocks that
are replicated under different replication configurations (§5.2).

Ideally, we want to partition the data space into as few regions as
possible such that further dividing these regions into smaller blocks
and replicating them under different configurations does not yield
any additional benefit. Then, distribute the space budget among
these regions and find the best replication configuration for each
such region to maximize the overall performance. Finally, create
replicas as specified by the configuration and optimize each replica’s
layout. The tightly coupled nature of the sub-problems along with
huge search space make the optimization problem challenging. As
shown in Fig. 6, the layout optimization algorithmworks in 3 stages.

(1) First, we horizontally partition the data into candidate re-
gions such that they are good candidates for replicating
differently and the cost of executing the workload under
CopyRight layout can be efficiently estimated for any space
budget. Note that a candidate regionmay be split into regions
that are replicated under different replication configurations
in the final layout. (§5.3)

(2) For each candidate region, we then estimate the cost-space
Pareto optimal frontier. A point (𝑠, 𝑐) on this curve corre-
sponds to the CopyRight layout of the candidate region that
fits in the space budget 𝑠 , where 𝑐 is the cost of executing
the workload on that layout. (§5.4)

(3) We use each candidate region’s frontier to distribute the
replication budget and obtain the layout of each candidate

region . The layout of each candidate region combined with
the Grid Tree that indexes the candidate regions forms the
final CopyRight layout. (§5.5)

5.1 Clustering Queries
We approach replication of a region as a workload partitioning prob-
lem. Specifically, each replica is associated with a disjoint subset
of the representative workload𝑊 that intersects the region. Each
replica’s layout is optimized for its share of the workload and is
used for executing queries that are similar to the ones in its subset.
Enumerating all possible subsets of the workload is not scalable.
To address this, as a pre-processing step, we cluster the queries
into types and assign all queries of a type to the same replica. To
have minimal impact on the quality of the final layout, queries with
access patterns that are likely to benefit from the same optimal
layout should be placed in the same cluster.

Augmented Grid partitions the data space into cells having equal
number of points along each dimension. So queries having similar
selectivity along each dimension are likely to benefit from similar
layouts. For example, in Fig. 2, all red queries are likely to bene-
fit from similar Augmented Grid layouts whereas red and green
queries have different access patterns and are likely to benefit from
different layouts.

Queries with different templates are placed into different clusters.
Queries from the same template with different selectivity charac-
teristics should be placed in different clusters. For a 𝑑-dimensional
table, we featurize a query as 𝑑 dimensional vector where 𝑖𝑡ℎ en-
try in the embedding is its selectivity along dimension 𝑖 . For each
template, we group the queries into types by running a clustering
algorithm on this query embedding. We use DBSCAN to cluster the
queries into types. The epsilon parameter of DBSCAN can be tuned
(0.2 worked well for our experiments). The overall performance was
not sensitive to small changes in epsilon. The choice of clustering
algorithm is orthogonal to our work. This algorithm is also used
in [15] for computing workload skew. For the workload in Fig. 2,
if 𝑋 is dimension 0, and 𝑌 is dimension 1, the red queries have
embeddings close to [1/4, 1/16], the green queries have embeddings
close to [1/12, 1/2], and the blue queries have embeddings close to
[1/8, 1/8]. As a result, the clustering algorithm will group all queries
of the same color into one type.

5.2 Replication Configuration
A replication configuration describes how any block (horizontal par-
tition) of data is replicated. If a block is organized under a replication
configuration, this means that the block is not further horizontally
partitioned into smaller partitions that are replicated differently.
The final goal of CopyRight’s layout optimizer is to find the optimal
replication configuration for each region. In the search process, it
will explore organizing a variety of blocks of data under a variety
of replication configurations.

Formally, a replication configuration is a partitioning of query
types. 𝑅𝐶 = {{𝑡1, 𝑡2}, {𝑡3}, {𝑡4}} is an example replication config-
uration for a workload𝑊 with 4 types, 𝑡1, 𝑡2, 𝑡3, and 𝑡4. Given a
block of data, the replication configuration fully describes how the
block is replicated. If the replication configuration has 𝑘 clusters of
query types, then the block has 𝑘 replicas, one for each cluster. Each
replica’s layout is optimized for queries of types in this cluster that

988

CR0

Divide the data space into
candidate regions and construct
the Grid Tree index

Estimate the Pareto optimal frontier
between execution cost and space
for each candidate region

Distribute the replication budget among the candidate regions, split
the candidate regions into regions if needed, replicate regions, and
organize each replica using Augmented Grid

CR0 CR2

CR1

CR2

CR1

CR0

CR2

CR1

R0 R2 R3

R1

R3

1 2 3

R3 R

Re
pl

ica
 0

RR3

Re
pl

ica
 1

Figure 6: Overview of the layout optimizer with 0.125X replication budget.
intersect the block. For example, under �� , the block is replicated
thrice (including the primary replica). The first replica optimizes
its layout for queries of type �1 and �2 in� that intersect the block.
The second and third replicas optimize their layout for queries of
types �3 and �4 respectively. Each replica contains all tuples in the
block. Each replica only materializes the columns that are required
for answering the queries in its cluster. One primary replica always
exists and materializes all columns.

The size of a block under a replication configuration is the total
size required for materializing all replicas of the block specified in
the configuration. The cost of executing queries over a block with a
replication configuration is the cost of executing each query� with
type �� that intersects the block using the replica the configuration
specifies for �� .

5.3 Candidate Regions
In this section, we describe howwe partition the data space into can-
didate regions that are good candidates for replicating differently.
We want candidate regions such that the cost-space Pareto optimal
frontier of organizing the candidate region using CopyRight can
be efficiently estimated.

The intuition that drives our approach is that two blocks of data
are good candidates for replicating differently if they have different
distributions of access patterns. Consider three different sub-spaces
of data from the example in Fig. 2. The left half � < 50 (block 0)
has only one type of query. The bottom right quarter 50 ≤ � and
� < 50 (block 1) has two types of queries: red and blue. The upper
right quarter 50 ≤ � and 50 ≤ � (block 2) has two types of queries:
red and green. As these blocks have different distributions of access
patterns, the benefit that can be obtained from replicating vary
across these blocks. It makes them good candidates for replicating
differently under different storage constraints.

The data space can be split into two blocks with different distri-
butions of access patterns if a query type has different distributions
in the two blocks, i.e., if the distribution of a query type is skewed.
Our goal is to partition the data space into candidate regions to
minimize the overall query skew, i.e, to horizontally split the data
space such that the distribution of queries is as close as possible to
uniform distribution for each type. We take a top-down approach
hierarchically partitioning the data space so as to construct a tree in-
dex to efficiently index the candidate regions. We use the skew-tree
algorithm from [15] to divide the space into “uniform” candidate
regions and construct an associated Grid Tree. At a high level, the
algorithm recursively divides a Grid Tree node into child nodes by
picking a dimension and values to split the node that minimizes
the total query skew. For the workload in Fig. 2, the algorithm will

split the data space into 3 candidate regions indicated by the black
partitions in Fig. 2c.

It is possible that two such candidate regions are replicated
identically under same storage budget. It’s also possible that a
candidate region needs to be further split in the final layout. For
example, in Fig. 2, if the storage budget for replication was an eighth
of the size of the table, then the upper right quarter region could be
further split into two so that one of the children could be replicated
twice. How to split such a candidate region depends on the space
available for replicating that candidate region in the final layout.
This cannot be solved independently for each candidate region.

The benefit of uniform regions: To estimate the cost-space
Pareto frontier, we need to consider splitting a candidate region in
all possible ways and replicating them under different replication
configurations. We make an observation about uniform candidate
regions and leverage that to efficiently estimate the cost of dividing
the candidate region further and replicating them differently.

Consider splitting a uniform candidate region into two blocks
along some dimension, one containing a fraction � of the data
and the other containing the remaining 1 − � . Let the block with
fraction � of the data be replicated under configuration ��1. Let
�1 be the cost and �1 be the space requirement for replicating the
entire candidate region under ��1. Let the block with fraction 1− �

of the data be replicated under configuration ��2 that has cost �2
and space requirement �2 for the entire candidate region. If the
distribution of each query type in the candidate region was truly
uniform, by the symmetry of the uniform distribution, the cost of
the block with fraction � under��1 is � ∗�1. Similarly, the cost of the
block with fraction 1− � under ��2 is (1− �) ∗�1. Due to uniformity,
the cost of the split configuration is: � ∗ �1 + (1− �) ∗ �2. Similarly,
the space requirement for the setup is: � ∗ �1 + (1 − �) ∗ �2. This
can be extended to any number of splits, with the cost of further
dividing a uniform candidate region into any number of blocks and
replicating them under different configurations approximated by an
affine combination of the cost of the corresponding configurations
for the entire candidate region. We now describe how this can be
used to efficiently estimate the cost-space Pareto optimal frontier.

5.4 Finding the Pareto Optimal Frontier
Now we describe how we estimate the cost-space Pareto optimal
curve of laying out a candidate region under CopyRight. This is
done independently for each candidate region. We use this curve
to find the benefit from allocating a certain amount of space to
replicating a candidate region while distributing the available space
among candidate regions (§5.5). For the rest of the paper, we assume
that the space available for replication is on the X axis and the cost
of execution is on the Y axis. If (�, �) is a point on this curve, � is the

989

Space

Co
st

(a) Feasible space

Space
Co

st

RCi

RCj
RCk1 − f

f

(b) Pareto optimal curve

Figure 7: Each dot in Fig. 7a represents replicating a candi-
date region under a replication configuration. Shaded region
represents partially replicated layouts. Blue lines form the
Pareto frontier. In Fig. 7b, the point × on the frontier corre-
sponds to replication configuration ��� . The point � on an
edge corresponds to splitting the candidate region and repli-
cating fraction � under �� � and 1 − � under ��� .

Space

Co
st

(a) Non-dominated sorting

Space

Co
st

i-1

i
i+1

(b) Crowding distance

Figure 8: Pareto Frontier estimation.

cost of executing the workload on the candidate region organized
using the optimal CopyRight layout that fits in the space budget � .

A candidate region may be replicated under a replication con-
figuration. The dots in Fig. 7a represent the cost-space pair for all
possible replication configurations. A candidate region may also be
split into smaller blocks that are replicated under different config-
urations. As discussed earlier, its cost/space can be approximated
by an affine combination of the cost/space of replicating the entire
candidate region under the replication configurations. The feasible
space of all possible cost-space tuples is a convex polygonal hull
as shown by the shaded region in Fig. 7a. The blue edges of the
polygon form the convex piece-wise linear Pareto optimal frontier.

Each vertex on the frontier corresponds to replicating the entire
candidate region under a replication configuration. A point on an
edge of the curve corresponds to dividing the candidate region
into two blocks and replicating them under configurations of the
endpoints of the edge. For example, in Fig. 7b the orange cross
corresponds to replicating the candidate region under ��� and the
green triangle corresponds to splitting the space and replicating
fraction � under �� � and 1 − � under ��� . This reduces the com-
plexity of our algorithm as we can search in the space of replication
configurations to find ones on the Pareto optimal front instead of
searching in the space of all possible partial replicated layouts.

Algorithm: We propose a greedy multi-objective optimization
algorithm to find the configurations on the Pareto optimal fron-
tier. We start at the rightmost point on the Pareto curve, the fully
replicated configuration, i.e., the configuration with a separate
replica for each query type. For a workload� with 3 types, this
corresponds to �� = {{�1}, {�2}, {�3}}. We iteratively generate and
explore other replication configurations. While exploring the space,
we maintain the Pareto optimal frontier of all configurations seen
so far. This can be found by the finding configurations that are not
dominated by any other partial replicated layout. Note that dom-
inance is different from traditional multi-objective optimization
problems in our setup. As any point on the line segment connecting
2 configurations is a feasible layout, they need to be considered
while checking dominance. A point is non-dominated if there is no
line segment connecting two configurations that dominates it. The
iterative algorithm works as follows.

(1) Generate offspring configurations from the current genera-
tion of configurations.

(2) Evaluate the cost and space of all offspring configurations.
(3) Select configurations from the offspring as parents for the

next generation.
(4) Update the Pareto optimal frontier.
(5) Repeat steps 1-4 until the termination condition is met.
In step 1, we generate an offspring configuration by merging 2

replicas in a parent configuration. A parent �� = {{�1}, {�2}, {�3}}
will generate {{�1, �2}, {�3}}, {{�1}, {�2, �3}}, and {{�1, �3}, {�2}} as
offspring. All offspring configurations have one less replica than
the parent configuration.

The offspring can have varying sizes and costs which is computed
in step 2. The space requirement of a merged configuration can be
easily computed as the space required to materialize the relevant
columns. Computing the cost of a merged replication configuration
is time-intensive as it involves optimizing the layout of each replica
in the configuration. We use an approximation as described later.

In step 3, we select configurations from the offspring as parents
for the next iteration. is a tunable parameter. Picking configu-
rations with the lowest cost or space can be suboptimal. In this
multi-objective setting, we pick ones that push the Pareto frontier
forward while maintaining diversity on the frontier by sorting them
based on non-domination rank and crowding distance, as in [14].

We first compute the non-domination rank of all offspring con-
figurations by organizing them into a series of non-intersecting
non-dominated frontiers. For example, in Fig. 8a the configurations
are organized into three frontiers. The non-dominated blue frontier
is assigned rank 0. The orange frontier is dominated by the one
other frontier (blue), so it gets rank 1. Green is assigned rank 2.
Smaller ranks correspond to better configurations.

To have a more uniformly spread-out Pareto frontier, we prefer
configurations from less crowded parts. We calculate the crowding
distance of a point as the average distance of two points on either
side of this point along each of the objectives on its non-domination
frontier as shown in Fig. 8b. This can be thought of as an estimate
of the density of configurations surrounding a particular point.

We first sort the configurations in the increasing order of the non-
domination rank. Within the same non-domination rank, we sort
the configurations in the decreasing order of crowding distance. We
then pick the top- configurations as parents for the next iteration.

990

We continue iterating until the only remaining configuration has a
single replica that is responsible for queries of all types.

We do not discard all dominated configurations as they can
eventually lead to better solutions. Consider the following configu-
rations for a workload with four types. 𝑅𝐶1 = {{𝑡1, 𝑡2}, {𝑡3}, {𝑡4}},
𝑅𝐶2 = {{𝑡1}, {𝑡2, 𝑡3}, {𝑡4}}, and 𝑅𝐶3 = {{𝑡2, 𝑡3}, {𝑡1, 𝑡4}}. Types 𝑡3
and 𝑡4 are more popular in the workload. 𝑅𝐶1 will likely have lower
cost than 𝑅𝐶2 as the popular query types get their own replicas. So
𝑅𝐶1 can dominate 𝑅𝐶2. 𝑅𝐶3 can be the optimal configuration under
some storage budget but will not be considered if we discard 𝑅𝐶2.

Cost Evaluation: Each replica is optimized for a disjoint subset
of the workload. The cost of a replica is the cost of executing these
queries on the grid layout optimized for them. The cost of a config-
uration is the sum of costs of each replica. Computing this involves
optimizing the layout of each replica. We use a gradient descent
style iterative algorithm from [15] to optimize the Augmented Grid
layout parameters. Only the relevant columns of data and its share
of the workload are used for optimizing the layout of a replica. The
cost of executing a query is estimated using a cost model

𝑐𝑜𝑠𝑡 = 𝑤0 (#𝑐𝑒𝑙𝑙 𝑟𝑎𝑛𝑔𝑒𝑠) +𝑤1 (#𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑝𝑡𝑠) (#𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑑𝑖𝑚𝑠)

A cell range is a set of adjacent cells in physical storage. #𝑐𝑒𝑙𝑙 𝑟𝑎𝑛𝑔𝑒𝑠
is the number of such ranges that are scanned. #𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑝𝑡𝑠 is the
number of tuples that are scanned and #𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑑𝑖𝑚𝑠 is the number
of columns that are accessed by the query.𝑤0 and𝑤1 are weights
that are learned. The first term in the cost model accounts for
random accesses and the second term for sequential accesses. The
features of this cost model can be efficiently estimated from the
grid parameters and the number of tuples per grid cell. The latter
is estimated from a sample of the data.

To avoid too many re-optimizations of the grid layout while
merging replicas, we use a heuristic to approximate the cost of
the merged replica. Let 𝑐𝑖, 𝑗 be the cost of executing the queries
of replica 𝑖 on the layout of replica 𝑗 . The cost of the replication
configuration is Σ𝑖∈𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑐𝑖,𝑖 . The cost of merging replicas in 𝑅

into a new replica,𝑚, is approximated as

𝑐𝑖,𝑚 =
Σ 𝑗 ∈𝑅𝑐 𝑗, 𝑗 ∗ 𝑐𝑖, 𝑗

Σ 𝑗 ∈𝑅𝑐 𝑗, 𝑗
∀𝑖 ≠𝑚 ∧ 𝑖 ∉ 𝑅 (1)

𝑐𝑚,𝑖 = Σ 𝑗 ∈𝑅𝑐 𝑗,𝑖 ∀𝑖 ≠𝑚 ∧ 𝑖 ∉ 𝑅 (2)

𝑐𝑚,𝑚 =
Σ𝑖, 𝑗 ∈𝑅𝑐 𝑗, 𝑗 ∗ 𝑐𝑖, 𝑗

Σ 𝑗 ∈𝑅𝑐 𝑗, 𝑗
(3)

Eq. 1 estimates the cost of evaluating the workload of replica 𝑖 on
the merged replica𝑚 as a weighted average of the cost of executing
queries of 𝑖 on the layout of each replica in 𝑅. The intuition is
that when we merge two workloads containing queries of different
types the layout is optimized to be good on average. The layout
will be biased in favor of the expensive set of queries. We use 𝑐 𝑗, 𝑗
as the weight to mimic that. Eq. 2 is the cost of evaluating the
workload of𝑚 on the layout of 𝑖 . As the workload of𝑚 is the union
of the workloads of all replicas in R, the cost is the sum of cost of
individual workloads. Eq. 3 is a combination of Eq. 1 and Eq. 2.

We found that the above approximation worked well in our ex-
periments. We tried other heuristics such as estimating the merged
layout (instead of the cost) by taking a weighted average of the
layout parameters (number of partitions along each dimension),

merging the queries with the most similar access patterns, etc., but
found they did not work as well for the datasets that we tested.

For the starting configuration with a replica for each query type,
we train Augmented Grid for each replica and compute 𝑐𝑖, 𝑗 for all
𝑖 , 𝑗 . For other configurations explored, we approximate the cost
as described above. The cost estimate gets stale as more nodes are
merged into the same replica. The costs are recomputed by opti-
mizing the layout when the number of merges exceeds a threshold.

5.5 Space Allocation
We now discuss how to allocate the space budget available for
replication among the candidate regions and determine the final
layout. Our objective is to find the operating point on each candidate
region’s cost-space Pareto frontier that minimizes the total cost of
execution with the total size under the available budget.

The total cost of execution is the sum of costs and the total size
of the layout is the sum of sizes of each candidate region. Each
Pareto frontier is piece-wise linear and convex. So we can start at
the left-most point on the Pareto curve in each candidate region and
descend down the steepest edge of the curve until the replication
budget is exhausted to find the optimal space allocation.

We index the points on the Pareto optimal frontier from left to
right for all candidate regions. (𝑠0, 𝑐0) is the leftmost point corre-
sponding to the replication configuration with one replica for all
query types. On each candidate region’s Pareto frontier, we may
move along the curve by taking a full step from (𝑠𝑖 , 𝑐𝑖) to (𝑠𝑖+1, 𝑐𝑖+1).
This consumes (𝑠𝑖+1 − 𝑠𝑖) space from the available budget. The ben-
efit per unit of space this step is (𝑐𝑖 − 𝑐𝑖+1)/(𝑠𝑖+1 − 𝑠𝑖). If there is
not enough space to take a full step, then we may take a partial step
from (𝑠𝑖 , 𝑐𝑖) to (𝑓 ∗ 𝑠𝑖 + (1 − 𝑓) ∗ 𝑠𝑖+1, 𝑓 ∗ 𝑐𝑖 + (1 − 𝑓) ∗ 𝑐𝑖+1) where
0 < 𝑓 < 1, exhausting the budget. The benefit per unit of space is
the same as a full step.

Our iterative algorithm works as follows: We initialize the oper-
ating point to (𝑠0, 𝑐0) for each candidate region.

(1) Pick the candidate region with the highest benefit per unit
of space for the next step.

(2) Take a full step on the candidate region’s Pareto curve if there
is sufficient remaining budget. Otherwise, take a partial step.

(3) Iterate until space is exhausted or every candidate region is
fully replicated.

After finding the optimal space allocation, if the operating point
on the Pareto curve is on a vertex, then the candidate region is
replicated using the configuration of that vertex. It’s possible that
the operating point is on an edge, in which case the candidate
region is split into two and replicated under the configurations of
the end points of the edge. A fraction of the data is replicated using
the configuration of one end point and remaining fraction using
the configuration of the other end point to fully utilize the available
space budget. The Grid Tree node corresponding to the candidate
region is split into two. As the candidates regions are nearly uniform
as defined in section §5.3, we can choose an arbitrary dimension
to split the node. For example, with enough storage budget to
replicate an eighth of the table, we will split the Grid Tree node
corresponding to the upper right quarter into two and replicate one
of the child nodes as in Fig. 6.

At this point, we have the final Grid Tree and the replication
configuration for each leaf node. If the layout for any replica in the

991

final configuration was not already computed during the Pareto
frontier estimation (because we approximated its cost or split the
Grid Tree node after space allocation), we train the layout for each
replica independently using its subset of the workload.

6 QUERY EXECUTION
When a query arrives, we first identify the type of the query. We
featurize the query into the same embedding used at training time
for clustering queries. We classify the query by finding its nearest
neighbor among the embeddings of the centroid of the clusters. We
find the regions that intersect the query predicates using the Grid
Tree index. At each leaf node we pick the best replica for executing
the query. If the replica corresponding to the query type has all
columns required to answer the query, we pick that. It’s possible
that the replica does not have all columns required for executing
the query because of misclassification of query type or if the query
template was unseen during training. In that case, the query is
answered from the primary replica. For each replica, we find all
cells in the Augmented Grid that intersect the query filter. For each
intersecting cell, we identify the corresponding range in physical
storage using a lookup table. Finally, we scan all records within the
range and emit the tuples that satisfy all query filters. The overhead
of picking the replica to execute the query is minimal and does not
offset the benefit from replication.

7 EVALUATION
In this section, we present an experimental evaluation of CopyRight.
Our experiments show that

(1) Layout-aware replication improves query performance.
(2) Partial and sub-table replication gives significant speedup

over full table replication.
(3) CopyRight is consistently superior to simpler alternatives.
(4) The performance advantage of CopyRight scaleswith dataset

and workload complexity.

7.1 Experimental Setup
We implemented CopyRight as a custom in-memory column store
in C++. All attributes are stored as 64-bit integers. Any string and
categorical values are dictionary encoded. We limit floating point
values to a fixed number of decimal points and scale them by the
smallest power of 10 that converts them to integers, as in [29]. Our
implementation has a scan-time optimization: if the range of data
being scanned is exact, i.e, all elements in the range satisfy the
query filter, we skip applying predicates and scan only the columns
that are required by downstream aggregation operators.

We performed all experiments on an Ubuntu Linux machine
with Intel(R) Xeon(R) Platinum 8275CL 3.00GHz CPU with 192 GB
RAM. All experiments are single-threaded. We compare CopyRight
to the following baselines implemented on the same column store.

No Replication (No Rep): We use Tsunami [15] as a layout-
aware baseline that does not replicate any data.

Full TableReplication (FTR):We implemented a simple layout-
aware replication scheme that replicates data at the granularity of
tables. For a 𝑑-dimensional table, we embed the queries as a 2𝑑-
dimensional feature vector. The first 𝑑 entries encode the selectivity
of the query along each dimension. The remaining 𝑑 entries are

binary variables corresponding to the columns in the table to en-
code the query template. Variables corresponding to the columns
accessed in a query are set to 1. If there is sufficient budget to repli-
cate the entire table 𝑘 times, we split the workload into 𝑘 clusters
using k-means clustering of the query embeddings. Each replica is
responsible for queries in one of these clusters and is laid out using
Tsunami, trained independently for each replica using data in the
entire table and queries in its cluster. At execution time, we find
the replica to run the query on by identifying the cluster with the
most similar embedding.

Replicated k-d Tree (RKT): We split the space using a k-d
tree [6] for identifying candidate regions for replication instead
of constructing a Grid Tree using the algorithm in §5.3. The k-
d tree recursively partitions space using the median value along
each dimension, until the number of tuples in each leaf falls below
a threshold. A threshold of 1% of the number tuples in the table
worked well for the four real-world datasets that we tested on.
The dimensions are selected in a round robin fashion, in the order
of selectivity. Each leaf node of the k-d tree is replicated as in
CopyRight. We use the same algorithm to solve for the replication
configuration and corresponding layouts.

Horizontal Only (HO): We implemented a fine-grained repli-
cated layout without sub-table replication. HO is same asCopyRight
except that all columns in the table are materialized in every replica.

Query Based (QB): This baseline implements layout-aware par-
tial replication including sub-table replication similar to CopyRight.
But, it uses similarity between query templates as a proxy cost
function for merging replicas in the algorithm described in §5.4. We
use the cosine similarity between 2𝑑-dimensional query embedding
discussed above. Prior works on layout design have used distance
between the binary encoding of query templates (the last 𝑑 entries
of our embedding) for clustering queries [4, 40].

We note that the latter three baselines are variants of Copy-
Right and use various aspects of the system. We discuss them in
detail in the ablation study in §7.3. We do not compare against
other non-learned layouts as Tsunami was shown to be superior
over them [15]. We also don’t compare against other learned multi-
dimensional layouts as they do not adapt based on query distribu-
tion [13, 36, 48] or are optimized for disk [26, 49].

7.2 Datasets and Workloads
We evaluate the layout schemes using four real-world datasets and
query workload traces from a dashboard-based interactive data
analytics platform at OmniSci [32]. The dashboard has a variety
of interactive knobs to change the templates and parameters of
a query. This includes zooming in on maps, enforcing ranges on
graphs, selecting from drop-down menus etc. These knobs vary
across the datasets. The workload contains scan-oriented queries
with multidimensional range and equality predicates. We dropped
columns that are not used in any queries from all datasets.

For each dataset D, we use 2 versions of the workload, D-F and
D-M, in our experiments. D-F contains the full workload. D-M is a
modified workload where we dropped queries with selectivity over
10%. When queries scan a large fraction of the data, non-replicated
layouts can achieve low scan overheads without incurring high
look-up costs. High selectivity can thus delay the curse of dimen-
sionality and the benefit from replication is sometimes lower. The

992

No Replication (No Rep) Full Table Replication (FTR) Replicated k-d Tree (RKT) Horizontal Only (HO) Query Based (QB) CopyRight

0.0 0.5 1.0 1.5 2.0
Replication Budget

0

25

50

75

100

125

Av
g

Qu
er

y
Ti

m
e

(m
s)

Contributions-F

0.0 0.5 1.0 1.5 2.0
Replication Budget

0

1

2

3

4

5

Av
g

Qu
er

y
Ti

m
e

(m
s)

Tweets-F

0.0 0.5 1.0 1.5 2.0
Replication Budget

0

25

50

75

100

125

Av
g

Qu
er

y
Ti

m
e

(m
s)

Taxi-F

0.0 0.5 1.0 1.5 2.0
Replication Budget

0

5

10

15

Av
g

Qu
er

y
Ti

m
e

(m
s)

Flights-F

0.0 0.5 1.0 1.5 2.0
Replication Budget

0.0

2.5

5.0

7.5

10.0

Av
g

Qu
er

y
Ti

m
e

(m
s)

Contributions-M

0.0 0.5 1.0 1.5 2.0
Replication Budget

0.00

0.05

0.10

0.15

0.20

0.25
Av

g
Qu

er
y

Ti
m

e
(m

s)
Tweets-M

0.0 0.5 1.0 1.5 2.0
Replication Budget

0

2

4

6

8

10

Av
g

Qu
er

y
Ti

m
e

(m
s)

Taxi-M

0.0 0.5 1.0 1.5 2.0
Replication Budget

0

2

4

6

8

Av
g

Qu
er

y
Ti

m
e

(m
s)

Flights-M

Figure 9: Performance of layouts at various replication budgets.

No Replication (No Rep) Full Table Replication (FTR) Replicated k-d Tree (RKT) Horizontal Only (HO) Query Based (QB) CopyRight

0.0

2.5

5.0

7.5

10.0

12.5

Av
g

Qu
er

y
Ti

m
e

(m
s)

11.4

8.75

5.59 5.1
6.46

3.13

Contributions-M

0.00

0.05

0.10

0.15

0.20

0.25

Av
g

Qu
er

y
Ti

m
e

(m
s)

0.24

0.16
0.20

0.14 0.13
0.09

Tweets-M

0

2

4

6

8

10

Av
g

Qu
er

y
Ti

m
e

(m
s)

8.61 8.3
7.55

6.23
4.73 4.69

Taxi-M

0

2

4

6

Av
g

Qu
er

y
Ti

m
e

(m
s)

5.99

2 1.9
2.55 2.2

1.25

Flights-M

Figure 10: Performance of layouts at replication budget 1X.

Contributions-F Tweets-F Taxi-F Flights-F
0.0

2.5

5.0

7.5

10.0

12.5

In
de

x
Cr

ea
tio

n
Ti

m
e

(m
in

s) Optimization time
Sorting time

(a) Replication Budget: 0.25X

Contributions-F Tweets-F Taxi-F Flights-F
0.0

2.5

5.0

7.5

10.0

12.5

In
de

x
Cr

ea
tio

n
Ti

m
e

(m
in

s) Optimization time
Sorting time

(b) Replication Budget: 1X

Figure 11: Index creation time across workloads.

workload traces we used are fromOmniSci, a GPU based DBMS that
is heavily optimized for scans, and many of their workloads include
a number of large scans that we believe are not particularly repre-
sentative of other analytics workloads. Prior work on analytics and
partitioning from researchers with access to corporate workloads
confirm that many real-world workload traces have low overall
scan selectivity, e.g., 0.0005% and 0.0697% from Microsoft [49] and
0.3% from Conviva [47]. We use the modified workload to demon-
strate the results on workloads with moderate to low selectivity.
The characteristics of the datasets and workloads is summarized in
Table 1. We now describe them in detail.

The Contributions dataset contains data about 25 years of po-
litical donations in the US. Columns include contribution amount,
coordinates of contributor’s address, recipient details, etc.

Table 1: Characteristics of the datasets and workloads. Prop-
erties of the modified workload in parenthesis.

Dataset Contrib. Tweets Taxi Flights

#tuples 86M 15M 175M 120M
#dimensions 9 16 13 21
#templates 13(13) 14(6) 20(15) 12(9)
#types 34(27) 16(8) 31(25) 18(13)
#regions 19(31) 46(28) 62(65) 46(57)
selectivity(%) 25.89(1.45) 14.36(0.08) 26.05(0.23) 15.97(0.38)

The Tweets dataset contains details about tweets from Novem-
ber 2014. Columns in the table include date and time of tweets,
latitide and longitude of the location, language, country, etc. We
use one month’s worth of data from November 2014.

The Taxi dataset has records of yellow taxi trips in New York
City in 2014. Columns in the table include pickup and drop-off
times, pickup and drop-off coordinates, trip amount, tip, etc.

The Flights dataset has historic flight data in the US for 3
decades. Columns include date of the trip, day of the month, day of
the week, source and destination coordinates, etc. The full Flights
workload has a large fraction of COUNT(*) queries that benefit
significantly from partitions that are subsumed by the query filters.

To study the behavior of algorithms by varying dataset parame-
ters, we use synthetic datasets that are discussed in §7.4.

993

7.3 Overall Results
Fig. 9 shows the performance of various layouts at different repli-
cation budgets. The replication budget is expressed as a fraction of
the table size. A replication budget of 0 means there is no space for
replicating any tuple. A replication budget of 2 means that there
is sufficient space to create two additional full replicas of the table.
Fig. 10 highlights the performance at space budget = 1X.

CopyRight is consistently better than all baselines at all bud-
get points across datasets and workloads. At 0.25X space over-
head, CopyRight attains 1.1X to 7.9X faster performance than non-
replicated layout and the same or up to 5.2X faster performance
than full table replication on the raw workloads. On low selectivity
workloads, with 0.25X replication budget, CopyRight is 1.4X to 2.4X
faster than No Rep. Compared to FTR with 100% overhead, Copy-
Right achieves 80% of the performance to 1.4X faster performance
with just 25% space overhead. With 1X overhead, our replication
engine attains 1.8X to 4.8X speedup over No Rep and 1.6X to 2.8X
speedup over FTR for low selectivity workloads. At very high or
very low replication budgets, the relative advantage of CopyRight
over other baselines is low. At high budgets, with sufficient space
to create a separate replica for frequent or expensive query types,
finding a good layout is easy and at low budgets, there is limited
opportunity to improve. While CopyRight achieves the same or up
to 2X faster performance than the next nearest baseline, no single
baseline dominates others across all datasets. FTR, HO, RKT, QB
are at least 7.1X, 7.8X, 2.1X, and 2.1X slower than CopyRight at
some replication budget in at least one of the eight workloads.

Ablation Study: Layout-aware replication boosts query perfor-
mance compared to non-replicated layouts as all replicated layouts
achieve significant speedup over No Rep. FTR is up to 3X faster
than No Rep with 1X additional space requirements. CopyRight’s
performance advantage comes from focusing replication efforts in
parts of the data that gives maximum benefit. By focusing repli-
cation efforts in sub-spaces of the data, HO, CopyRight without
sub-table replication, attains up to 1.7X better performance than
FTR at 1X replication budget. With sub-table replication,CopyRight
is able to better utilize the replication budget by materializing a
subset of columns in each replica, achieving up to 7.7X faster per-
formance than HO. By being layout-aware while grouping query
types to replicas, our engine achieves up to 2.1X better speedup than
QB which groups queries based on similarity of query templates.
CopyRight performs up to 2.6X better than RKT, by identifying the
correct granularity of replication and focusing efforts there.

Optimization Costs: CopyRight’s layout optimizer took under
3minutes to find the layout for all four datasets. Data reorganization
completed in less than 7.5 minutes with 1X overhead. Fig. 11 shows
the layout optimization and data reorganization costs. The layout
optimizer has a peak memory usage of 225.08MB for Contributions,
76.86MB for Tweets, 436.45MB for Taxi, and 332.78MB for Flights.
This includes the 1% sample of the data that the optimizer uses.

7.4 Scalability
To demonstrate the scalability of our approach we compare Copy-
Right against all baselines by varying different parameters of the
workload. We use a synthetic dataset with 8 columns. Each column
is independently uniformly distributed. All queries use 2 columns
for predicates and perform a COUNT aggregation. The filter columns

in each template are randomly generated. Unless specified other-
wise, we use a dataset with 100M tuples and a workload with 8
equally represented query templates uniformly distributed in the
data space. In each experiment, we re-optimize CopyRight and
baselines for each dataset/workload configuration.

Selectivity: We vary the selectivity of the workload from 0.001%
to 10%. Fig. 12a shows that performance of CopyRight scales with
selectivity. The relative advantage of CopyRight over other lay-
outs decreases at higher selectivities as all layouts incur low scan
overhead with large query rectangles.

Number of templates: We vary the number of templates from
2 to 20. The average selectivity of the workload is 0.1%. The ben-
efit from replication initially increases, as we can create replicas
optimized for each template. Further increase in the number of tem-
plates eventually decreases the relative benefit, as more templates
get assigned to each replica. Fig. 12b shows that CopyRight is able
to delay the curse of dimensionality by replicating data.

Dataset size: We vary the number of tuples in the table from 1M
to 100M. The average selectivity of the workload is 0.01%. Fig. 12c
shows that CopyRight maintains its performance benefit across
datasets with different sizes.

Query skew: We vary the distribution of templates in the work-
load. The number of queries of each type is sampled from a normal
distribution with mean 200. We vary the standard deviation from
0 to 100. The average selectivity of the workload is 0.01%. Each
point on the x-axis in Fig. 12d corresponds to a workload with a
skewed distribution of queries. The performance gain depends on
the similarity of query templates and their relative distributions.
CopyRight maintains its performance advantage across workloads
with varying query skew.

Optimization Time: We study the impact of varying data and
workload complexity on the index creation time. We vary the num-
ber of templates in the workload from 2 - 10 and use datasets with
1M to 100M tuples. The average selectivity of the workload is 0.1%.
Fig. 13 shows that the index creation time increases slowly with
number of query templates and fast with dataset size as the data
sorting time dominates layout optimization time.

8 RELATEDWORK
Layouts: DBMSs often use horizontal, vertical and hybrid partition-
ing to reduce the amount of data accessed during query processing
[3–5, 10, 16, 19, 38, 46]. To accelerate the performance of multi-
dimensional queries, data is often laid out as multi-dimensional
clustered indexes [6, 18, 30, 44] or using specialized sort order
[31, 44]. See [33, 42] for a survey. Kraska et al. introduced the
idea of learned indexes [24] and recent work has extended it to
multi-dimensional layouts. The most relevant to our work is Flood
[29] and Tsunami [15], layouts optimized for in-memory databases.
Tsunami, described in this paper, builds on top of Flood. [17, 26, 49]
learn layouts for disk-based systems. [13, 36, 48] adapt layout based
on data distribution but not query distribution. Array DBMSs or-
ganize large arrays by partitioning them into sub-arrays called
chunks or tiles. Prior work has studied various strategies for chunk-
ing [34, 39, 45, 50]. Chunking is also studied in multi-dimensional
databases for computing data cubes for accelerating aggregation
queries [21, 51]. CopyRight and these works share the idea of op-
timizing layouts by learning from data and query distributions.

994

No Replication (No Rep) Full Table Replication (FTR) Replicated k-d Tree (RKT) Horizontal Only (HO) Query Based (QB) CopyRight

10−3 10−2 10−1 100 101

Selectivity (%)

101

102

Av
g

Qu
er

y
Ti

m
e

(m
s)

Replication Budget: 0.25X

10−3 10−2 10−1 100 101

Selectivity (%)

100

101

102

Av
g

Qu
er

y
Ti

m
e

(m
s)

Replication Budget: 1X

(a) Selectivity

5 10 15 20
Number of Templates

0

5

10

15

20

25

Av
g

Qu
er

y
Ti

m
e

(m
s)

Replication Budget: 0.25X

5 10 15 20
Number of Templates

0

5

10

15

20

Av
g

Qu
er

y
Ti

m
e

(m
s)

Replication Budget: 1X

(b) Number of templates

106 107 108

Data Size (#tuples)

0

5

10

15

Av
g

Qu
er

y
Ti

m
e

(m
s)

Replication Budget: 0.25X

106 107 108

Data Size (#tuples)

0

5

10

15

Av
g

Qu
er

y
Ti

m
e

(m
s)

Replication Budget: 1X

(c) Dataset size

0 20 40 60 80 100
Standard Deviation

0

2

4

6

8

10

Av
g

Qu
er

y
Ti

m
e

(m
s)

Replication Budget: 0.25X

0 20 40 60 80 100
Standard Deviation

0

2

4

6

8

10

Av
g

Qu
er

y
Ti

m
e

(m
s)

Replication Budget: 1X

(d) Query Skew

Figure 12: CopyRight’s performance across workloads with varying dataset and workload parameters.

1M 5M 10M 50M 100M

2 4 6 8 10
Number of Templates

0

25

50

75

100

125

In
de

x
Cr

ea
tio

n
Ti

m
e

(s
)

(a) Replication Budget: 0.25X

2 4 6 8 10
Number of Templates

0

50

100

150

200

In
de

x
Cr

ea
tio

n
Ti

m
e

(s
)

(b) Replication Budget: 1X

Figure 13: Index creation time with workload complexity.

None of these works consider partial or full replication of data
while optimizing their layouts. [40] proposes maintaining copies of
multi-dimensional arrays, each chunked differently, but does not
consider partial replication. Qd-tree [49] constructs a decision tree
to partition data to reduce disk-based block accesses. They briefly
discuss the possibility of incorporating table-level replication by
simultaneously learning 2 trees, but does not give any details.

Replication: Joint optimization of partitioning and replication
has primarily been studied in the context of distributed databases.
These approaches focus onminimizing the number of cross-partition
queries and are agnostic of the exact layout of data in each partition.
[20, 27] only supports horizontally splitting a table into a fixed num-
ber of shards (number of nodes in the cluster) based on one attribute
and fully replicating a table at nodes. Schism [12] takes a graph
partitioning approach and NashDB[28] uses an economic model
based approach to handle fine-grained replication, but their meth-
ods are tightly coupled to the cost model (number of cross-partition
queries) and cannot be easily extended to a layout-dependent cost
model. These systems assume that all replicas are equally good
for answering a query. [25] supports partitioning each replica by a
different key but only at table level. The complexity of layouts and

performance that can be gained is limited by the fault tolerance and
recovery requirements in distributed databases [43]. Our work is
for in-memory single node setup and focuses only on performance.
Ramamurthy et al. makes the case for employing different storage
models (column-store/row-store) in different full replicas of the
table [37]. Our work goes much beyond this in replicating parts of
the data and considering more complex layouts for each replica.

Automated Physical Database Design: There is a rich corpus
of work on automatically tuning a database and its physical design
that focuses on selecting structures like indexes and materialized
views for optimizing query performance [1, 2, 8, 9, 35]. Arguably,
each partial replica of a table can be expressed as amaterialized view.
However, materialized view selection algorithms explore the space
of syntactically relevant views, focusing on creating logical views
that cover queries, whereas we focus on replicating tuples them-
selves and on optimizing the physical layout of replicated regions
[2, 7, 52]. CopyRight can be used to partially replicate materialized
views. The most relevant to our work is integrating horizontal and
vertical partitioning with index and materialized view selection
[3] which explores a large space of layouts like CopyRight. They
consider only single-column range and hash partitioning.

9 CONCLUSION
We designed and implemented CopyRight, a layout-aware partial
replication engine that replicates parts of the data that matters to
maximize overall query performance. CopyRight achieves 1.1X to
7.9X speedup over the best non-replicated layout with 0.25X over-
head across a range of real-world workloads. At 25% space overhead
CopyRight attains the same or up to 5.2X better performance than
full replication of the table that has 100% space overhead.

ACKNOWLEDGMENTS
This work was supported by the MIT Data Systems and AI Lab
(DSAIL) and NSF Convergence Accelerator Award 2132318.

995

REFERENCES
[1] Sanjay Agrawal, Nicolas Bruno, Surajit Chaudhuri, and Vivek Narasayya. 2006.

AutoAdmin: Self-Tuning Database Systems Technology. IEEE Data Engineering
Bulletin (2006), 7–15.

[2] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated
Selection of Materialized Views and Indexes in SQL Databases. In Proceedings of
the 26th International Conference on Very Large Data Bases (VLDB ’00). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 496–505.

[3] Sanjay Agrawal, Vivek Narasayya, and Beverly Yang. 2004. Integrating Vertical
and Horizontal Partitioning into Automated Physical Database Design. In Pro-
ceedings of the 2004 ACM SIGMOD International Conference on Management of
Data (Paris, France) (SIGMOD ’04). Association for Computing Machinery, New
York, NY, USA, 359–370. https://doi.org/10.1145/1007568.1007609

[4] Joy Arulraj, Andrew Pavlo, and Prashanth Menon. 2016. Bridging the archipelago
between row-stores and column-stores for hybrid workloads. In Proceedings of
the 2016 International Conference on Management of Data. 583–598.

[5] Manos Athanassoulis, Kenneth S. Bøgh, and Stratos Idreos. 2019. Optimal Column
Layout for Hybrid Workloads. Proc. VLDB Endow. 12, 13 (Sept. 2019), 2393–2407.
https://doi.org/10.14778/3358701.3358707

[6] Jon Louis Bentley. 1975. Multidimensional Binary Search Trees Used for
Associative Searching. Commun. ACM 18, 9 (Sept. 1975), 509–517. https:
//doi.org/10.1145/361002.361007

[7] Nicolas Bruno and Surajit Chaudhuri. 2007. Physical Design Refinement: The
‘Merge-Reduce’ Approach. ACM Trans. Database Syst. 32, 4 (Nov. 2007), 28–es.
https://doi.org/10.1145/1292609.1292618

[8] Surajit Chaudhuri and Vivek Narasayya. 2007. Self-Tuning Database Systems: A
Decade of Progress. In Proceedings of the 33rd International Conference on Very
Large Data Bases (Vienna, Austria) (VLDB ’07). VLDB Endowment, 3–14.

[9] Surajit Chaudhuri and Vivek R. Narasayya. 1997. An Efficient Cost-Driven Index
Selection Tool for Microsoft SQL Server. In Proceedings of the 23rd International
Conference on Very Large Data Bases (VLDB ’97). Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 146–155.

[10] Douglas W. Cornell and Philip S. Yu. 1990. An Effective Approach to Vertical
Partitioning for Physical Design of Relational Databases. IEEE Trans. Softw. Eng.
16, 2 (Feb. 1990), 248–258. https://doi.org/10.1109/32.44388

[11] Philippe Cudré-Mauroux, Eugene Wu, and Samuel Madden. 2009. The Case
for RodentStore, an Adaptive, Declarative Storage System. CoRR abs/0909.1779
(2009). arXiv:0909.1779 http://arxiv.org/abs/0909.1779

[12] Carlo Curino, Evan Philip Charles Jones, Yang Zhang, and Samuel RMadden. 2010.
Schism: a workload-driven approach to database replication and partitioning.
(2010).

[13] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. [n.d.]. The ML-Index:
A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor
Queries.

[14] K. Deb, A. Pratap, S. Agarwal, and T.Meyarivan. 2002. A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation
6, 2 (2002), 182–197. https://doi.org/10.1109/4235.996017

[15] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: A Learned Multi-Dimensional Index for Correlated Data and Skewed
Workloads. Proc. VLDB Endow. 14, 2 (Oct. 2020), 74–86. https://doi.org/10.14778/
3425879.3425880

[16] Markus Dreseler, Jan Kossmann,Martin Boissier, Stefan Klauck,Matthias Uflacker,
and Hasso Plattner. [n.d.]. Hyrise Re-engineered: An Extensible Database System
for Research in Relational In-Memory Data Management.

[17] Tu Gu, Kaiyu Feng, Gao Cong, Cheng Long, Zheng Wang, and Sheng Wang.
2021. The RLR-Tree: A Reinforcement Learning Based R-Tree for Spatial Data.
arXiv:2103.04541 [cs.DB]

[18] Antonin Guttman. 1984. R-Trees: A Dynamic Index Structure for Spatial Search-
ing. In Proceedings of the 1984 ACM SIGMOD International Conference on Manage-
ment of Data (Boston, Massachusetts) (SIGMOD ’84). Association for Computing
Machinery, New York, NY, USA, 47–57. https://doi.org/10.1145/602259.602266

[19] Richard A. Hankins and Jignesh M. Patel. 2003. Data Morphing: An Adaptive,
Cache-Conscious Storage Technique. In Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29 (Berlin, Germany) (VLDB ’03).
VLDB Endowment, 417–428.

[20] Benjamin Hilprecht, Carsten Binnig, and Uwe Röhm. 2020. Learning a parti-
tioning advisor for cloud databases. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 143–157.

[21] Nikos Karayannidis and Timos Sellis. 2003. SISYPHUS: The implementation
of a chunk-based storage manager for OLAP data cubes. Data & Knowledge
Engineering 45 (05 2003), 155–180. https://doi.org/10.1016/S0169-023X(02)00178-
7

[22] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. 2017. Access Path
Selection in Main-Memory Optimized Data Systems: Should I Scan or Should I
Probe?. In Proceedings of the 2017 ACM International Conference on Management
of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Ma-
chinery, New York, NY, USA, 715–730. https://doi.org/10.1145/3035918.3064049

[23] Tim Kraska, M. Alizadeh, Alex Beutel, Ed H. Chi, Ani Kristo, Guillaume Leclerc, S.
Madden, Hongzi Mao, and V. Nathan. 2019. SageDB: A Learned Database System.
In CIDR.

[24] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The Case for Learned Index Structures. In Proceedings of the 2018 International
Conference onManagement of Data (Houston, TX, USA) (SIGMOD ’18). Association
for Computing Machinery, New York, NY, USA, 489–504. https://doi.org/10.
1145/3183713.3196909

[25] Juchang Lee, Kyu Hwan Kim, Hyejeong Lee, Mihnea Andrei, Seongyun Ko,
Friedrich Keller, and Wook-Shin Han. 2020. Asymmetric-Partition Replication
for Highly Scalable Distributed Transaction Processing in Practice. Proc. VLDB
Endow. 13, 12 (Aug. 2020), 3112–3124. https://doi.org/10.14778/3415478.3415538

[26] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A
Learned Index Structure for Spatial Data. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data (Portland, OR, USA) (SIGMOD
’20). Association for Computing Machinery, New York, NY, USA, 2119–2133.
https://doi.org/10.1145/3318464.3389703

[27] Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Transactions
through Asymmetric Replication. Proc. VLDB Endow. 12, 11 (July 2019), 1316–1329.
https://doi.org/10.14778/3342263.3342270

[28] Ryan Marcus, Olga Papaemmanouil, Sofiya Semenova, and Solomon Garber. 2018.
NashDB: an end-to-end economic method for elastic database fragmentation,
replication, and provisioning. In Proceedings of the 2018 International Conference
on Management of Data. 1253–1267.

[29] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-
ing multi-dimensional indexes. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data. 985–1000.

[30] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. 1984. The Grid File: An
Adaptable, Symmetric Multikey File Structure. ACM Trans. Database Syst. 9, 1
(March 1984), 38–71. https://doi.org/10.1145/348.318586

[31] Shoji Nishimura and Haruo Yokota. 2017. QUILTS: Multidimensional Data Par-
titioning Framework Based on Query-Aware and Skew-Tolerant Space-Filling
Curves. In Proceedings of the 2017 ACM International Conference onManagement of
Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for Computing Machin-
ery, New York, NY, USA, 1525–1537. https://doi.org/10.1145/3035918.3035934

[32] OmniSci [n.d.]. OmniSci. https://www.omnisci.com/. Accessed: 2021-03-24.
[33] Beng Chin Ooi, Ron Sacks-davis, and Jiawei Han. [n.d.]. Indexing in Spatial

Databases.
[34] E. J. Otoo, Doron Rotem, and Sridhar Seshadri. 2007. Optimal Chunking of

Large Multidimensional Arrays for Data Warehousing. In Proceedings of the ACM
Tenth International Workshop on Data Warehousing and OLAP (Lisbon, Portugal)
(DOLAP ’07). Association for Computing Machinery, New York, NY, USA, 25–32.
https://doi.org/10.1145/1317331.1317337

[35] Stefano Paraboschi, Giuseppe Sindoni, Elena Baralis, and Ernest Teniente. 2003.
Materialized Views in Multidimensional Databases. IGI Global, USA, 222–251.

[36] Jianzhong Qi, Guanli Liu, Christian S. Jensen, and Lars Kulik. 2020. Effectively
Learning Spatial Indices. Proc. VLDB Endow. 13, 12 (July 2020), 2341–2354. https:
//doi.org/10.14778/3407790.3407829

[37] Ravishankar Ramamurthy, David J. DeWitt, and Qi Su. 2002. A Case for Fractured
Mirrors. In Proceedings of the 28th International Conference on Very Large Data
Bases (Hong Kong, China) (VLDB ’02). VLDB Endowment, 430–441.

[38] Jun Rao, Chun Zhang, Nimrod Megiddo, and Guy Lohman. 2002. Automating
Physical Database Design in a Parallel Database. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data (Madison, Wiscon-
sin) (SIGMOD ’02). Association for Computing Machinery, New York, NY, USA,
558–569. https://doi.org/10.1145/564691.564757

[39] Florin Rusu and Yu Cheng. 2013. A Survey on Array Storage, Query Languages,
and Systems. arXiv:1302.0103 [cs.DB]

[40] S. Sarawagi and M. Stonebraker. 1994. Efficient organization of large multidi-
mensional arrays. In Proceedings of 1994 IEEE 10th International Conference on
Data Engineering. 328–336. https://doi.org/10.1109/ICDE.1994.283048

[41] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. 1979. Access Path Selection in a Relational Database Management System.
In Proceedings of the 1979 ACM SIGMOD International Conference on Manage-
ment of Data (Boston, Massachusetts) (SIGMOD ’79). Association for Computing
Machinery, New York, NY, USA, 23–34. https://doi.org/10.1145/582095.582099

[42] Hari Singh and Seema Bawa. 2017. A Survey of Traditional and MapReduceBased
Spatial Query Processing Approaches. SIGMOD Rec. 46, 2 (Sept. 2017), 18–29.
https://doi.org/10.1145/3137586.3137590

[43] Muthian Sivathanu, Midhul Vuppalapati, Bhargav S. Gulavani, Kaushik Rajan,
Jyoti Leeka, Jayashree Mohan, and Piyus Kedia. 2020. INSTalytics: Cluster Filesys-
tem Co-Design for Big-Data Analytics. ACM Trans. Storage 15, 4, Article 23 (Jan.
2020), 30 pages. https://doi.org/10.1145/3369738

[44] Zack Slayton. 2017. Z-Order Indexing for Multifaceted Queries in Ama-
zon DynamoDB. https://aws.amazon.com/blogs/database/z-order-indexing-for-
multifaceted-queries-in-amazon-dynamodb-part-1/. Accessed: 2021-05-31.

[45] Emad Soroush, Magdalena Balazinska, and Daniel Wang. 2011. ArrayStore: A
Storage Manager for Complex Parallel Array Processing. In Proceedings of the

996

https://doi.org/10.1145/1007568.1007609
https://doi.org/10.14778/3358701.3358707
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/1292609.1292618
https://doi.org/10.1109/32.44388
https://arxiv.org/abs/0909.1779
http://arxiv.org/abs/0909.1779
https://doi.org/10.1109/4235.996017
https://doi.org/10.14778/3425879.3425880
https://doi.org/10.14778/3425879.3425880
https://arxiv.org/abs/2103.04541
https://doi.org/10.1145/602259.602266
https://doi.org/10.1016/S0169-023X(02)00178-7
https://doi.org/10.1016/S0169-023X(02)00178-7
https://doi.org/10.1145/3035918.3064049
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.1145/3183713.3196909
https://doi.org/10.14778/3415478.3415538
https://doi.org/10.1145/3318464.3389703
https://doi.org/10.14778/3342263.3342270
https://doi.org/10.1145/348.318586
https://doi.org/10.1145/3035918.3035934
https://www.omnisci.com/
https://doi.org/10.1145/1317331.1317337
https://doi.org/10.14778/3407790.3407829
https://doi.org/10.14778/3407790.3407829
https://doi.org/10.1145/564691.564757
https://arxiv.org/abs/1302.0103
https://doi.org/10.1109/ICDE.1994.283048
https://doi.org/10.1145/582095.582099
https://doi.org/10.1145/3137586.3137590
https://doi.org/10.1145/3369738
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/
https://aws.amazon.com/blogs/database/z-order-indexing-for-multifaceted-queries-in-amazon-dynamodb-part-1/

2011 ACM SIGMOD International Conference on Management of Data (Athens,
Greece) (SIGMOD ’11). Association for Computing Machinery, New York, NY,
USA, 253–264. https://doi.org/10.1145/1989323.1989351

[46] Mike Stonebraker, Daniel J. Abadi, AdamBatkin, XuedongChen,Mitch Cherniack,
Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth O’Neil, Pat
O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. 2005. C-Store: A Column-Oriented
DBMS. In Proceedings of the 31st International Conference on Very Large Data
Bases (Trondheim, Norway) (VLDB ’05). VLDB Endowment, 553–564.

[47] Liwen Sun, Michael J. Franklin, Sanjay Krishnan, and Reynold S. Xin. 2014. Fine-
Grained Partitioning for Aggressive Data Skipping. In Proceedings of the 2014
ACM SIGMOD International Conference on Management of Data (Snowbird, Utah,
USA) (SIGMOD ’14). Association for Computing Machinery, New York, NY, USA,
1115–1126. https://doi.org/10.1145/2588555.2610515

[48] HaixinWang, Xiaoyi Fu, Jianliang Xu, and Hua Lu. 2019. Learned Index for Spatial
Queries. In 20th IEEE International Conference onMobile DataManagement (MDM).
IEEE, United States, 569–574. https://doi.org/10.1109/MDM.2019.00121 20th
IEEE International Conference on Mobile Data Management (MDM), MDM 2019
; Conference date: 10-06-2019 Through 13-06-2019.

[49] Zongheng Yang, Badrish Chandramouli, Chi Wang, Johannes Gehrke, Yinan Li,
Umar Farooq Minhas, Per-Åke Larson, Donald Kossmann, and Rajeev Acharya.
2020. Qd-Tree: Learning Data Layouts for Big Data Analytics. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data (Portland,
OR, USA) (SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 193–208. https://doi.org/10.1145/3318464.3389770

[50] Ramon Antonio Rodriges Zalipynis. 2018. ChronosDB: Distributed, File Based,
Geospatial Array DBMS. Proc. VLDB Endow. 11, 10 (June 2018), 1247–1261.
https://doi.org/10.14778/3231751.3231754

[51] Yihong Zhao, Prasad M. Deshpande, and Jeffrey F. Naughton. 1997. An Array-
Based Algorithm for Simultaneous Multidimensional Aggregates. SIGMOD Rec.
26, 2 (June 1997), 159–170. https://doi.org/10.1145/253262.253288

[52] D. Zilio, C. Zuzarte, S. Lightstone, Wenbin Ma, G. Lohman, R. Cochrane, H.
Pirahesh, L. Colby, Jarek Gryz, E. Alton, Dongming Liang, and G. Valentin. 2004.
Recommending materialized views and indexes with the IBM DB2 design advisor.
International Conference on Autonomic Computing, 2004. Proceedings. (2004), 180–
187.

997

https://doi.org/10.1145/1989323.1989351
https://doi.org/10.1145/2588555.2610515
https://doi.org/10.1109/MDM.2019.00121
https://doi.org/10.1145/3318464.3389770
https://doi.org/10.14778/3231751.3231754
https://doi.org/10.1145/253262.253288

