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ABSTRACT
New privacy laws like the European Union’s General Data Protec-
tion Regulation (GDPR) require database administrators (DBAs)
to identify all information related to an individual on request, e.g.,
to return or delete it. This requires time-consuming manual labor
today, particularly for legacy schemas and applications.

In this paper, we investigate what it takes to provide mostly-
automated tools that assist DBAs in GDPR-compliant data extrac-
tion for legacy databases. We find that a combination of techniques
is needed to realize a tool that works for the databases of real-world
applications, such as web applications, which may violate strict nor-
mal forms or encode data relationships in bespoke ways. Our tool,
GDPRizer, relies on foreign keys, query logs that identify implied
relationships, data-driven methods, and coarse-grained annotations
provided by the DBA to extract an individual’s data.

In a case study with three popular web applications, GDPRizer
achieves 100% precision and 96–100% recall. GDPRizer saves work
compared to hand-written queries, and while manual verification
of its outputs is required, GDPRizer simplifies privacy compliance.
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1 INTRODUCTION
Many new privacy laws contain provisions that allow individu-
als whose data is stored and processed to request a copy of their
data. For example, the European Union’s General Data Protection
Regulation (GDPR) [19] includes rights of access, erasure, and data
portability, all of which require accurate identification of all data
related to an individual “data subject” (a natural person). Other
laws contain similar provisions, such as the “Right to Know” in
the California Consumer Privacy Act (CCPA) [14] or in Virginia’s

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503603

∗Both authors contributed equally.
†Part of the work completed while at Brown University.

Consumer Data Protection Act (VCDPA) [44, §59.1-573]. To com-
ply with these data access requests, a database administrator (DBA)
must be able to identify all data related to a particular individual.

Identifying all data related to an individual in an existing legacy
database can be daunting. Legacy databases have schemas designed
without future data access requests in mind, and consequently lack
the necessary secondary indexes or metadata to look up data by the
associated individual [41]. Moreover, what data should actually be
returned often involves application-specific policy choices. As a re-
sult, DBAs and developers must manually design and write queries
that identify and extract the relevant data. In practice, this may
require several iterations to follow indirect dependencies across
tables, extract further related data identified by a foreign key, and
post-process it appropriately. Consider the classic TPC-H bench-
mark: its supplier and customer tables identify individuals, who
are linked to orders, parts, and addresses stored in other tables.
To satisfy a data access request on behalf of a customer, the DBA
must (at least) query the tables connected to customer via either
direct foreign keys, such as orders, or via indirect ones, such as
lineitem. These queries require more than a simple transitive
closure over foreign keys. Querying all tables connected via for-
eign keys might return more data than required (e.g., revealing the
personal details of a supplier to a customer); data might need post-
processing to remove internal or private details; or data might be
missing, as many applications have imperfect foreign key specifica-
tions in their schema. These challenges show up in the databases of
real-world web applications, such as Lobsters [26] and HotCRP [24].

In this work, we investigate whether an RDBMS or external
tool can help DBAs and developers retrofit data access request
compliance onto legacy databases. The goal of our tool, GDPRizer,
is to generate a set of queries that extract or delete an individual’s
information in accordance with data access requests. To achieve
this, we had to establish what inputs GDPRizer requires to generate
queries that extract complete and accurate information. GDPRizer
must be practical for real applications’ databases, whose schemas
have evolved over time and are often messy.

Our work shows that high accuracy and complete data extraction
hinges upon solving two challenges. First, GDPRizer must identify
how data is related across tables, and ensure that a data access
request returns rows from all relevant tables. Missing a relationship
between tables results in missing rows in the output, which can
make the data access request fall short of legal compliance. Yet,
the dependencies can be non-obvious, as an application might e.g.,
encode a relationship using particular attribute values. For example,
HotCRP indicates co-authorship on a paper via an entry in the
PaperConflict table, with the conflictType column set to a
special numeric constant indicating a “co-authorship” conflict type.
GDPRizer should—with suitable inputs—understand this sort of de-
pendency. Second, GDPRizer must avoid extracting too much data.
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Even though a table may store or reference data associated with an
individual, returning that data might overreach. For example, an
author’s data access request in HotCRP should return reviews for
their papers, but the Review table’s rows also contain the identity
of the reviewer. To preserve reviewer anonymity, the rows returned
to an author must have the reviewer ID erased.

GDPRizer relies on two key ideas to solve these challenges: a rela-
tionship graph analysis helps identify implicit dependencies across
tables, and schema-oriented customizations limit the data extracted
based on coarse-grained schema annotations provided by the DBA.
Depending on the application, GDPRizer uses up to five types of in-
put: (i) explicit foreign keys, if present; (ii) a log of runtime queries
the application executes, which helps infer relationships between
the columns; (iii) foreign keys detected through data-driven meth-
ods; (iv) schema annotations that specify connections between
tables that are connected by implicit data or those whose column
relationships cannot be inferred from queries or foreign keys; and
(v) schema annotations that specify what connections across tables
to prune, and how to filter the extracted data. GDPRizer uses these
inputs to traverse the database, extracting the information required
to satisfy a data access request. It also provides warnings to the
DBA if the extracted data might be incomplete.

We implemented a prototype of GDPRizer and evaluated it
with a synthetic schema (TPC-H) as well as three real applica-
tions: Lobsters [26], a Reddit-style news aggregator application
that declares some foreign keys in its schema; HotCRP [24], a
conference paper review application without any explicit foreign
keys; and WordPress [8], a popular blogging platform with a non-
traditional, performance-optimized schema. Our experiments show
that GDPRizer achieves 62–100% precision (fraction of extracted
records that are correct) and 66–100% recall (fraction of records
extracted) without manual input for these applications. Manual
customizations increase this to 100% precision and 96–100% recall.

In summary, we make the following key contributions:
(1) We investigate what satisfying data access requests over

legacy schemas entails, and what information beyond exist-
ing RDBMS abstractions (such as foreign keys) is needed.

(2) We describe an algorithm to traverse a database and extract
the information needed to satisfy a data access request.

(3) We present GDPRizer, a tool that implements this algorithm
and interactively guides a developer or DBA in generating
the queries for data access requests.

(4) We evaluate a GDPRizer prototype, demonstrating high ac-
curacy on three real web applications’ databases, and com-
pare GDPRizer to bespoke GDPR compliance plugins for the
WordPress blogging platform.

GDPRizer’s automation is fundamentally limited by the fact that
legacy databases’ schemas may fail to reflect key application se-
mantics, and that data-driven methods for foreign key discovery
produce imperfect recall and require manual verification. However,
our work shows that it is possible to much reduce the manual labor
required to satisfy data access requests.

2 BACKGROUND AND RELATED WORK
High-profile data breaches and an increasing interest in consumer
privacy regulation have led to a glut of new privacy laws in recent

years. The European Union’s GDPR and California’s CCPA are
particularly well known due to their comprehensiveness and reach—
both laws effectively apply globally since it is difficult to establish if
a user is in the E.U. or in California—but many similar regulations
now exist. China [43], India [22], Brazil [31], Thailand [20], and
various U.S. states [44] have passed privacy laws that give new
rights to consumers to receive information about and control how
their data is processed. Failure to comply with these laws can lead
to reputational damage, revenue loss, and substantial fines [9].

Data Access Requests.Most of these privacy laws grant indi-
viduals the right to request a copy of their data from those who store
or process it, and to ask for its removal. In the GDPR, for example,
these rights of a “data subject” (a natural person) are codified in
Articles 15 (“Right to Access”) and 17 (“Right to Erasure”). Other
laws contain similar provisions, such as the CCPA’s and VCDPA’s
“Right to Know”. We refer to the power granted by these provisions
as a data access request. A data access request requires the party
controlling the data (a “data controller” in GDPR lingo) to identify
all information they hold about the requester. Satisfying the request
requires care, as the data returned must not violate the privacy of
other individuals [19, Art. 15, §4], so post-processing of the data
identified is typically required.

Web Applications. Privacy laws have a broader scope than
just web applications, but their impact is particularly serious for
organizations that operate web services. Web applications often
use a database backend coupled with stateless frontend logic. Pop-
ular frameworks like Ruby on Rails [5] and Django [1] use a rela-
tional database for storage by default. Yet, legacy web applications’
schemas were developed without attention to data access requests,
and the relational storage paradigm’s strength—organizing records
by type in tables—fundamentally mixes different individuals’ data.
This makes the task of identifying the data associated with an in-
dividual complicated and application-specific. Working out what
information a data access request needs to return requires applica-
tion developers or DBAs to navigate application-specific table and
column names, as well as underspecified or implicit relationships
that indicate records’ association with individual users. This re-
quires substantial manual, error-prone labor for many applications.

One might be tempted to believe that abstractions for relat-
ing entities across tables (such as foreign keys) could help. While
this is true in theory—a data access request is, essentially, a re-
cursive traversal of related entities from a starting entity in a
table—real-world application schemas frequently fail to conform
to third normal form (3NF) or lack the required keys. For example,
we studied nine open-source web applications, ranging from chat
plugins to social networks, blogging and conference review plat-
forms [11, 15, 24, 26, 30, 33, 35, 37, 40] and found that only two of
them specify foreign keys in their schema.

Data-driven functional dependency (FD) detection. To ad-
dress the problem of missing foreign keys, database researchers
developed techniques to detect the presence of such functional
dependencies from the actual data. Generally, these techniques first
identify an inclusion dependency between two columns: i.e., all val-
ues in one column (the candidate source) are contained in the set of
values in the other column (the candidate destination) [13, 29, 34].
A set of heuristics based on typical properties of foreign keys—e.g.,
a broad range of covered values, evenly distributed values, and
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Figure 1: GDPRizer overview: given a data request,
GDPRizer queries the database and post-processes the
retrieved data according to the configuration.

similar column names—help filter the inclusion dependencies down
to candidate foreign keys [16, 36, 45]. Systems for data cleaning and
exploration have successfully applied these ideas [10, 18]. Similarly,
these techniques could help detect the data required to satisfy data
access requests, subject to a manual check and possible redaction of
private information. Lopes et al. showed that join queries can help
refine inclusion dependencies [27]; we investigate this and other
approaches to combining queries and database contents.

Compliance plugins. For some popular frameworks, application-
specific, third-party privacy compliance plugins are available. For
example, the WordPress blogging platform’s plugin registry lists
dozens of GDPR plugins related to cookie consent [42] or GDPR
compliance [17, 32]. However, such plugins can have serious de-
ficiencies (as we will show in §7.5), but the DBA must blindly
trust their correctness. For custom web applications or less popular
frameworks, no such plugins are available.

Other approaches to compliance. Some researchers have pro-
posed entirely new database systems [25, 38] or storage hard-
ware [23] to achieve privacy compliance. While helpful for future
deployments, these systems do not help legacy databases comply
with data access requests. Other research has studied the perfor-
mance costs of adding metadata structures (e.g., secondary indexes)
to existing databases to help satisfy data access [39, 41]. These
techniques come with high overhead and without any automation.
Odlaw [28] helps retrofit data access requests to legacy databases by
building a graph of foreign key dependencies across tables and pro-
viding a graphical interface for DBAs to identify relevant data for a
data subject. However, Odlaw assumes that the database schema
contains explicit foreign keys, which many real applications lack.

3 GDPRIZER OVERVIEW
We present GDPRizer, a tool that retrofits compliance with data
access requests onto legacy databases. GDPRizer explores a trade-
off between fully manual, application-specific scripts that must be
written with great care and human effort, and automated—but likely
imperfect—general-purpose solutions. Our goal is to investigate
the degree of automation that a tool can provide for data access
requests over legacy databases, while minimizing any manual in-
puts. At a very high level, GDPRizer uses the database schema,
database contents, and a query log from the application to extract

semantic relationships between columns in the database. It then
uses these relationships and manual customizations to generate a
configuration that helps the tool satisfy data access requests for an
individual by querying the database (Figure 1).

3.1 Automated Relationship Detection
A well-formed database schema in 3NF will indicate semantic rela-
tionships between tables via foreign keys: a foreign key indicates
that the source table references objects in the destination table. This
information is crucial to serve a data access request. Such a request
starts with a data subject ID (DS ID), which typically corresponds to
a row in some table—e.g., customer or supplier in TPC-H, since
both customers and suppliers are data subjects under laws like
the GDPR. A foreign key into the table that contains data subjects
indicates that records in another table are associated with the data
subjects. A transitive foreign key (often) indicates the same about
an object that is two or more steps away from a data subject table.
When present, GDPRizer therefore uses foreign keys to detect data
related to a data subject. However, practical application database
schemas often lack FKs. Any real-world compliance solution there-
fore has to tackle challenges such as lack of referential integrity
and implicit or conditional relationships between columns.

If the database schema lacks sufficient information about foreign
keys, GDPRizer uses alternate sources of information to identify
relationships between tables. Two key sources are the application
queries and the relationships encoded in the database contents.

The idea behind using application queries is that a runtime join
between two tables often implies a foreign key relationship between
these tables, particularly if the destination column is a table’s pri-
mary key column. For example, TPC-H joins customer.c_custkey
with orders.o_custkey for a query that summarizes a customer’s
order information, matching the foreign key constraint between
the two columns. While joins on non-foreign key columns are pos-
sible, they are fairly rare in practical web applications. Keeping this
in mind, GDPRizer uses application query logs to supplement the
relationship information provided by explicit foreign keys in the
schema. Query logs are easy for DBAs to obtain (e.g., by sampling
some fraction of runtime queries, or by enabling query logging).

Database contents themselves can also empirically indicate the
presence of FKs. If the database contents are available, GDPRizer
runs techniques from the literature on functional dependency de-
tection to first identify inclusion dependencies and then filter them
down to likely foreign key dependencies via standard heuristics [36].

RelationshipGraph.GDPRizer uses the foreign keys (if present),
the joins in the query log, and the candidate foreign keys identified
using database contents to generate a relationship graph. The re-
lationship graph is a raw, unprocessed set of known relationships
between columns across tables. Each column in the database is
represented by a vertex in this graph. The relationship between
a pair of columns—actual or candidate foreign key constraints, or
joins—is represented by an edge between the columns. A table is
represented by multiple, grouped vertices in the relationship graph.
Figure 2 shows GDPRizer’s relationship graph for HotCRP, and
highlights which edges occur as joins, which are candidate foreign
keys identified via data-driven methods, and which are both.
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Figure 2: Relationship graph of HotCRP [24]. Each box represents one table and its corresponding columns. HotCRP’s schema
lacks explicit foreign keys, so edges show candidate foreign keys inferred from the data (orange), from joins (green), or from
both (blue).

Data Extraction. When GDPRizer receives a data access re-
quest, it traverses the relationship graph to extract data relevant
to the data subject. The traversal begins at the key column that
contains the data subject’s primary identifier. GDPRizer then pro-
ceeds to extract records directly or indirectly connected to this key
column. In other words, GDPRizer explores the transitive closure
of all the connected tables in the graph to extract the relevant data.

3.2 Manual Customizations
However, GDPRizer (and likely any general-purpose tool) needs
additional input to identify application-specific semantic structure
in the database. When the relationship graph fails to express some
aspects of the application semantics, GDPRizer allows for a domain
expert, such as the application developer or DBA, to intervene and
customize either the relationship graph itself, or the data output
after traversal. We aim to minimize this intervention in GDPRizer,
but our case studies show that a modicum of manual input is often
required. GDPRizer’s customizations fall into four categories:

(1) Edge pruning. The relationship graph for an application
sometimes contains relationships that are irrelevant to a data access
request. This can happen because a foreign key connects internal
application data rather than user data, or because the application
joins columns that are semantically unrelated, or because simi-
lar data in two columns suggest a foreign key where none exists.
For GDPRizer to ignore these irrelevant relationships, the relation-
ship graph needs customizing. GDPRizer supports edge pruning
annotations, which allow the DBA to indicate that all edges (i.e.,
relationships) incident on a particular column should be ignored.

(2) Adding missing edges. Even after using information from
the schema, runtime queries, and database contents, the relation-
ship graph may still be missing relationships. For example, the
relationship graph for WordPress has no edge between the table
with user information and the table that holds comments, even
though it is clear from the application semantics that they contain
related columns. When tables are disconnected in the relationship
graph, GDPRizer prompts the DBA to manually “connect” the dis-
joint components. GDPRizer uses heuristics based on data types
and column content to suggest edges that might have semantic
significance. The DBA considers the list of suggestions and adds
the missing relationships.

(3) Data-dependent and conditional relationships. A more
involved customization is necessary if the application has implicit

or conditional relationships that cannot be expressed in terms of
existing columns. This happens e.g., if a second column indicates
the semantic meaning of a foreign key. For example, paper conflict
types in HotCRP represent both co-authorship and conflicts of
interest, which have different semantics for data access requests.
The DBA can provide an input that transforms the data such that the
relationship is direct and explicit. In particular, GDPRizer supports
creating views that contain rows from a source table only if a
predicate over the rows holds true. These views become part of the
graph, replacing other tables and edges in data extraction.

(4) Output filtering. Once GDPRizer has completed the rela-
tionship graph traversal and queried the database, it may be neces-
sary to filter the resulting records to remove personal information
of other individuals (e.g., reviewer details in HotCRP) or unrelated
data (e.g., internal supplier information in TPC-H). The DBA spec-
ifies columns to filter from the output by annotating the schema,
and GDPRizer removes or rewrites these columns.

GDPRizer only needs to be configured once and the manual cus-
tomizations are one-off for a given database. Once a relationship
graph exists, GDPRizer saves the customizations as a configuration
for all future data access requests on the same schema, essentially
creating an application-specific GDPR compliance tool with less ef-
fort than would have been necessary to write the queries manually.

4 RELATIONSHIP GRAPH
When GDPRizer receives a data access request, it identifies all data
relevant to the individual making the request (the “data subject”).
GDPRizer assumes that the data subject is uniquely described by a
row in a primary table. This is common: many applications have a
users table with their users’ details, or represent individuals as rows
in tables associated with their role (e.g., TPC-H’s customer and
supplier, or Lobsters’s invited users in invitations and regis-
tered users in users). Other entities in the database refer to these
primary table rows, establishing a relationship. For example, TPC-H
has rows in the order table refer to customers by their unique
key in the customer table (a foreign key constraint). These related
rows might also be relevant to the customer, so GDPRizer must
identify and use the relationship between customer.c_custkey
and order.o_custkey to eventually extract the data. GDPRizer
represents these relationships as edges in the relationship graph.
The relationship graph combines relationships specified explicitly
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in the database schema with inferred relationships determined from
application queries or values in the database.

Foreign keys. Themost reliable source of relationships in a data-
base is the database schema. If the schema is well-formed and in 3NF,
it contains all the foreign key constraints, i.e., all by-key relation-
ships between columns across tables. In TPC-H, for example, there
exists a foreign-key constraint between customer.c_custkey and
order.o_custkey. These constraints can be conceptualized as a
graph whose vertices are columns, and whose edges are foreign-key
constraints. We refer to this graph as the schema-based relationship
graph, RS. However, many real-world database schemas fail to con-
form to strict 3NF, so RS alone is insufficient. GDPRizer must infer
relationship information that the database schema lacks.

Queries. Another approach is to use the application seman-
tics expressed in runtime queries to infer relationships within the
database. For example, if the application joins two columns in the
database at runtime, GDPRizer can infer that the columns are likely
related, as the application assumes that they share data values.
GDPRizer therefore processes a query log of the application, pro-
vided by the developer or DBA, to identify columns that queries
join at runtime. Such a log is easy to obtain, e.g., by enabling query
logging in the database, or by instrumenting the application’s DB
access code. (Note that the log need not be complete—a sample is of-
ten sufficient.) These inferred relationships can also be represented
as a graph. This is the query-based relationship graph, RQ.

Patterns in the data. Data-driven methods can also help infer
relationships between columns. Specifically, GDPRizer leverages
techniques for foreign key discovery from a database’s inclusion
dependencies. Columns𝐴 and 𝐵 form an inclusion dependency if all
values in 𝐴 are contained in 𝐵, i.e., Vals(𝐴) ⊆ Vals(𝐵). Intuitively,
this will be the case for a well-formed foreign key relationship
𝐴 → 𝐵. GDPRizer creates the data-driven relationship graph, RD, by
first determining all candidate dependencies (all pairs of columns
with the same datatype in the schema), and then filtering them
down to inclusion dependencies by comparing the column values.
For the remaining pairs, GDPRizer applies four heuristics to reduce
the inclusion-dependent columns to likely foreign key columns:

(1) the Out of Range heuristic [36], which requires calculating
the ratio of values in 𝐵 that are outside of [min(𝐴),max(𝐴)],
keeping the pairs whose ratio is below a threshold;

(2) the Coverage heuristic [36], which calculates the ratio of
values in 𝐵 that are contained in𝐴 to the total unique values
in 𝐵, keeping pairs that exceed a threshold;

(3) aWilcoxon test to determine if the distribution of values in𝐴
is approximately a random sample of values in 𝐵 , retaining
columns for which the test passes; and

(4) a variation of the Jaro-Winkler similarity test to determine
the similarity in the column names of 𝐴 and 𝐵 [16, 36], keep-
ing columns with sufficient similarity.

We chose these heuristics because they were the most effective
out of ten heuristics Rostin et al. studied [36]. Each candidate that
passes is then added as an edge in RD.

Combining the graphs. GDPRizer can combine the different
relationship graphs to improve the accuracy of its data extraction.
It always makes sense to use RS, as it contains the most reliable
information. We denote a union of RS with another graph, such

as RQ, as RS,Q. When a query log is available, GDPRizer may use
RQ; and when the database contents are available and the database
size feasibly allows analysis, GDPRizer may use RD. Some of the
edges in these graphs are distinct and some overlap (Figure 2).
While merging the graphs is feasible (RQ ∪ RD), such a union in
practice usually results in a large relationship graph of poor quality.
Instead, considering only edges that show up in queries and whose
data suggests a foreign key may be an effective strategy to remove
redundant edges. We refer to this combined graph of edges that
pass both heuristics as RQ∩RD. In the rest of this paper, we consider
RQ, RD, and RQ ∩ RD; when explicit foreign keys are available, we
augment these with RS.

5 GRAPH TRAVERSAL
Given a relationship graph, GDPRizer uses it to retrieve a data
subject’s records from the database. This requires GDPRizer to
traverse the relationship graph, starting with a row in the primary
table, and to generate meaningful queries as the traversal proceeeds.

A naïve graph traversal, which traverses all the edges, might
extract too much or too little data:

(1) if several paths from the primary table to another table exist,
each of them could lead to a different set of extracted rows,
which might be too much data; and

(2) since there are (usually) no edges between the columns of
the same table, the graph consists of many disconnected
components, as shown by the colors in Figure 3. Any edge-
based traversal that begins in one component will fail to
extract data from the unreachable components.

GDPRizer addresses these challenges with heuristics based on prox-
imity and implied relationships, as explained in the following.

To avoid overextraction and duplicate data, GDPRizer only visits
each column once. When multiple paths to a column are available,
GDPRizer picks the shortest one. Prioritizing in this way makes
sense because, intuitively, columns that are “closer” to the starting
column, i.e., the primary key of the primary table, are more relevant
to the data subject. Therefore, GDPRizer traverses the graph in
a breadth-first manner rather than depth-first from the starting
column. To address the second challenge, GDPRizer traverses the
graph via two types of relationships (Figure 3):

• relationship edges, based on foreign keys, application joins,
or database contents, such as the edge between columns 𝐴
and 𝐵; and

• implied relationships between the columns of the same table,
e.g., columns 𝐵 and 𝐶 .

GDPRizer uses the relationship edges for data extraction, and the
implied relationships to connect the components of the graph. Fig-
ure 3 shows a high-level overview of the graph traversal.

Relationship edges.Whenever possible, GDPRizer follows the
graph’s relationship edges. For example, in Figure 3, column𝐴 is the
primary key column of the primary table and therefore the graph
traversal’s starting column. It follows that the columns accessible by
a relationship edge from 𝐴, like 𝐵 and 𝐸, are directly related to the
data subject since they were either joined in the query set, or have
a foreign key defined on them, or their data suggested a foreign key.
For columns not directly linked to the primary key of the primary
table, GDPRizer uses their distance from the starting column to
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decide which paths to explore. We call a column’s distance from
the starting column its proximity. Computing the proximity helps
GDPRizer traverse columns nearer the starting column before ones
that are further away, and ensures that it prefers shorter paths over
longer ones. The proximity also naturally imposes a direction on
the traversal of the edge between any two columns—the traversal
proceeds from the column closer to the starting column to the
column that is further away. GDPRizer uses a standard breadth-first
traversal (BFT) from the starting column to compute the proximity
of columns in that component of the graph. Starting the BFT from
𝐴, the proximity of columns 𝐵 and 𝐸 is 1, the proximity of 𝐹 is 2
and that of𝐺 is 3. After exploring these columns, there are no more
relationship edges to traverse, and the BFT stops.

Implied relationships and inferred proximity.At this point,
GDPRizer has visited only one component of the graph. To continue
the traversal through the remaining disconnected components,
GDPRizer chooses a secondary starting column for each component,
and computes the distance from this secondary starting column.
GDPRizer chooses the secondary starting column using another
proximity-based heuristic. Having already computed proximities
for the component that contains the starting column, GDPRizer
now considers the untraversed siblings of the traversed columns.
(Two columns are siblings if they belong to the same table.) This set
of untraversed siblings must be part of disconnected components,
as they would have been traversed already if they were part of the
starting column component. GDPRizer uses implied relationships
between siblings to infer the proximity of an untraversed sibling
column: the proximity of an untraversed column is the minimum
proximity over its siblings + 1. In Figure 3, columns 𝐶, 𝐷, 𝐽 are
siblings of 𝐵, 𝐸,𝐺 , with proximities 2, 2, 4 respectively. Setting this
proximity is equivalent to traversing an (implied) relationship edge
from the sibling with minimum proximity. After this augmenta-
tion, GDPRizer continues with the proximity rule used for the first
component, and picks the column with the minimum proximity as
the secondary starting column. GDPRizer then repeats a BFT using
the relationship edges in that component. The secondary starting
columns in the figure are then 𝐶, 𝐷, 𝐽 and the respective BFTs are
indicated on the graph. This process of using relationship edges
and implied relationships alternately continues until GDPRizer has
traversed all the columns in the graph, or no more viable sibling
columns exist.

Data extraction. GDPRizer’s data extraction proceeds along-
side the graph traversal. GDPRizer starts by issuing a query for the
all records associated with the data subject identifier (DS ID) in the
primary table, and then associating the value of DS ID with the
starting column. In subsequent steps, for each relationship edge
between columns 𝐴 and 𝐵, traversed 𝐴 → 𝐵, column 𝐴 already
has some associated value from the previous step of the traversal.
GDPRizer issues a SQL query for all the records with this value in
column 𝐵, as the relationship edge requires the values of𝐴 and 𝐵 to
be identical. This process repeats for all relationship edges. When
GDPRizer uses an implied relationship, say from 𝐵 to 𝐶 , it already
knows the value for 𝐵 (which was reached via the relationship edge
from 𝐴 to 𝐵). GDPRizer queries the records with that value in 𝐵

and obtains the matching values in sibling column 𝐶 . These associ-
ated values then initiate the traversal (and thus, data extraction) in
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Figure 3: An example graph traversal: 𝐴 is the primary col-
umn of the primary table (*), and each column is annotated
with its proximity. We show the first BFT in blue and sub-
sequent BFTs using implied relationships in green, orange
and yellow.

that component of the graph. Finally, GDPRizer combines the SQL
queries’ results, optionally redacting them as described in §6.2.

6 CUSTOMIZING THE GRAPH TRAVERSAL
In practice, application databases’ structure may have semantic
properties that the relationship graph fails to capture. GDPRizer
offers manual customization options to modify the relationship
graph and the extracted data. These options are semi-automated:
the developer or DBA adds customizations either in response to
prompts from GDPRizer (e.g., if there are disconnected components
of the relationship graph that GDPRizer’s traversal cannot reach)
or after inspecting the data returned by GDPRizer’s extraction.

6.1 Graph customization
GDPRizer supports three graph customizations: (i) edge removal
or pruning; (ii) edge addition; and (iii) vertex addition.

Edge Pruning.When a database schema contains columns that
GDPRizer should avoid using to extract data, a DBA can anno-
tate the columns to avoid traversal (and further data extraction)
via these columns. In HotCRP, for instance, a paper in the Paper
table is linked to conflicted individuals’ records via a relation-
ship to PaperConflict, which in turn has a relationship with
ContactInfo. GDPRizer should not extract information about
the conflicted individuals. To avoid this, the DBA might prune
the contactId column in the PaperConflict table, removing all
edges incident on it.

Edge Addition. Edge addition becomes necessary when the re-
lationship graph lacks edges to some tables in the schema. This
happens if: (i) in RS, no explicit foreign keys were specified between
the tables, and, (ii) in RQ, the tables were never joined by application
queries, or (iii) in RD, no data dependency was discovered between
the tables. In such cases, GDPRizer prompts the DBA to “connect”
these tables to the rest of the relationship graph. The prompt pro-
vides a list of plausible edges based on matching column datatypes,
primary key constraints, and inclusion dependencies in the data.

Vertex Addition. Vertex addition is the most complex cus-
tomization GDPRizer supports. It is required when the database
contains conditional or implicit relationships. These relationships
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are computed programmatically, rather than being expressed as sim-
ple foreign keys or joins. One example of this is how HotCRP repre-
sents the co-author relationship on a paper. A co-author is specified
using a row in the PaperConflict table, with the conflictType
column set to a specific bitfield value. Based on this relationship,
GDPRizer must extract the data for papers that a user has co-
authored. Rows with other conflict types (e.g., institutional, advisor-
advisee) also have relationships with Paper and ContactInfo, but
GDPRizer must not extract their data.

To support this, GDPRizer allows a DBA to add a virtual column
to a table, effectively defining a view. The virtual column trans-
forms the implicit or conditional constraint into an explicit column,
i.e., a vertex in the relationship graph. The virtual column is de-
rived from a source column, and GDPRizer copies all edges of the
source column to the virtual column. In HotCRP, the DBA provides
GDPRizer with the query to create a view of the Paper table. The
view contains one row for each co-author user ID, and bases the co-
author ID column on the source column leadContactId. Hence,
GDPRizer copies all the relationships of leadContactId to the
virtual co-authors column. The graph traversal then uses this view
in place of the Paper table.

6.2 Output customization
GDPRizer must also take care to avoid returning internal informa-
tion or the information of other data subjects as part of the data it
extracts for a data access request. For this purpose, and to reduce
unnecessary output, GDPRizer supports post-processing of the data
extracted during the graph traversal.

Filtering. After the data is extracted, GDPRizer allows the DBA
to filter out any unnecessary columns from the output using filter-
ing annotations. This is expressed as a list of columns to drop or
rewrite in the output. In order to reduce manual input, GDPRizer
automates filtering for one specific case: amapping table, which is a
table that consists entirely of relationship columns (i.e., all columns
are foreign keys). For example, in HotCRP, the PaperTopic table
maps paper IDs to their topic IDs, but contains no other information.
Since GDPRizer will return records from both the Paper and the
TopicArea tables, it is unnecessary to return the mapping table
records as well, and GDPRizer drops these tables from the output.

Roles. Finally, GDPRizer supports roles, which allow applying
different customizations by data subject type. In TPC-H, for in-
stance, customer rows or supplier rows can represent data sub-
jects who can issue data access requests, but GDPRizer should
return different information depending on whether the request orig-
inated with a customer or a supplier. The traversal must account
for these roles and avoid extracting more data than is necessary
for each role. The customers’ primary table is customer and the
suppliers’ primary table is supplier. GDPRizer allows the DBA to
specify separate roles, each associated with a different primary table
and a set of per-role customizations, which specify a custom tra-
versal for each role. Since roles are application-specific, GDPRizer
requires manual input to specify them and their customizations.

7 EVALUATION
We prototyped GDPRizer in approximately 1, 700 lines of Python.
We evaluate it with a synthetic benchmark (TPC-H) and with

three real web applications (Lobsters [26], HotCRP [24], and Word-
Press [8]). Our evaluation seeks to answer these questions:

(1) Does GDPRizer correctly identify the data to return from a
data access request, and how does the method of relationship
graph generation impact results? (§7.2)

(2) How many manual customizations do applications require
to achieve perfect results? (§7.3)

(3) What impact do specific manual customizations have on
GDPRizer’s results, and when are they required? (§7.4)

(4) How does GDPRizer compare to the third-party GDPR com-
pliance plugins available for some applications? (§7.5)

Our implementation of GDPRizer uses moz-sql-parser [3] to parse
SQL queries. Since this parser can only handle some subset of SQL-
92 queries, GDPRizer skips over the queries that moz-sql-parser
cannot handle. This only affects a small number of queries. To
detect candidate foreign keys from data, we implemented inclu-
sion dependency detection and standard heuristics to detect for-
eign keys (F2, F8, and a modified F6 from Rostin et al. [36]; and a
Wilcoxon test [45]). These heuristics rely heavily on thresholds. We
determined GDPRizer’s thresholds through experiments, selecting
thresholds beyond which the number of edges passing the heuristic
were stable. For out-of-range (F8), coverage (F2), the Wilcoxon test,
and column name matching (modified F6), we chose 0.2, 0.8, 0.7 and
1.0 respectively. We use the same thresholds for all applications.

Accuracy measurements. We measure GDPRizer’s accuracy
for four applications: TPC-H, HotCRP, Lobsters, and Wordpress.
None of these applications currently have native support for data
access requests. Hence, they lack a ground truth on the data that
should be returned for each data subject. We used our knowledge of
the applications to determine the data that we believe a data access
request should return. We studied the application’s schema and for
each table in its database, we manually wrote a set of “ground truth”
queries. For Wordpress, which has publicly-available GDPR plugins,
we compare our results to the data extracted by these plugins.

We then compare the rows that GDPRizer extracts with the rows
included in these ground truths. To measure GDPRizer’s accuracy,
we compute precision, recall and F1 score relative to the ground
truth. We denote precision by 𝑃 , recall by 𝑅 and F1 score by 𝐹1 and
use their standard definitions:

𝑃 =
tp

tp + fp
, 𝑅 =

tp
tp + fn

, 𝐹1 =
2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

,

where tp, fp, fn, respectively are the number of true positives, false
positives and false negatives in GDPRizer’s results. We report the
averages of per-table accuracy results, which in turn are averaged
over individual users’ data access requests. Table-level analysis
helps us measure the performance of GDPRizer on different parts
of the database and uncover any specific shortcomings.

Inflated per-table averages. Before we discuss our results, we
consider a problem that could skew the precision and recall metrics
when a majority of data subjects have no data in certain tables.

Suppose that GDPRizer’s extraction should avoid querying a
table𝑇 for any data subject with a particular role, e.g., the customer
table for suppliers. If GDPRizer queries 𝑇 for data subjects with no
data in𝑇 , the database will return no data, and hence GDPRizer will
appear to have 100% precision. For such data subjects, GDPRizer
did the right thing—extracting no data—but for the wrong reasons.
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Specifically, in this example, GDPRizer extracts no data because
𝑇 had no matching records, not because GDPRizer did not query
it. Averaging over many such data subjects, this yields an inflated
averaged precision value. A similar issue can occur with recall. To
ensure our results meaningfully report GDPRizer’s correctness, we
exclude the data subjects with no data in𝑇 from the table’s results.

7.1 Applications
We evaluate our prototype with the TPC-H benchmark and three
applications: HotCRP, Lobsters andWordpress.While TPC-H serves
as a sanity check, the three applications evaluate GDPRizer’s real-
world performance. In this section, we describe the setup of each
application: how we populate the application database, how we
collect its queries, and how we establish the ground truth.

TPC-H. The TPC-H benchmark models events between sup-
pliers and customers in a warehousing system [6]. We generated
100MB of data, with 150 customers and 10 suppliers. TPC-H’s 22
SQL queries contain 62 joins, and the schema has 10 foreign-key
constraints [7, Fig. 2]. GDPRizer can use the foreign-key relation-
ships, but also successfully extracts them from the queries.

We run experiments for the customer and supplier roles. For a
customer, the customer table is the primary table and its primary
key, c_custkey, the primary column. The ground truth contains
queries for each table except the supplier and partsupp tables,
because supplier contains the suppliers’ private information (e.g.,
account balance), while partsupp contains sales information for a
supplier (e.g., supply cost). For suppliers, supplier is the primary
table and its primary key, s_suppkey, the primary column. We
exclude data from the customer, orders, and lineitem tables
from the ground truth, since customer details and order processing
details of the warehouse do not concern suppliers.

Lobsters. Lobsters is a link aggregator page, similar to Hack-
erNews [2] or Reddit [4]. Its database has 25 tables which describe
user posts, comments, votes, moderations, and so on. Lobsters
comes with a sample dataset for 44 users, which we used to pop-
ulate the database. We created three additional users and logged
queries generated during interactions with the application. We at-
tempted to exercise all possible actions and collected 3,960 queries.
We extracted 41 edges from foreign-key constraints in the Lob-
sters schema and 2 additional edges from joins in the queries. For
Lobsters, the users table is the primary table and its id column
the primary column. We included 23 queries in the ground truth,
covering 17 tables. We excluded eight tables that contain Lobsters’s
Ruby-on-Rails metadata rather than user data (e.g., ar_internal-
_metadata, keystores, and schema_migrations).

HotCRP. HotCRP is a conference peer review application [24]
and its database has 24 tables. We use an anonymized HotCRP
dataset from a real conference, which contains 1,273 authors and
507 papers. We also use a sample of 251 queries. Since the schema
lacks foreign-key constraints, GDPRizer uses the queries and data
to build the relationship graph (Figure 2). We set ContactInfo as
the primary table and its primary key, contactId, as the primary
column. For the ground truth, we wrote 17 queries that extract data
from 12 tables and exclude data from 12 others. Tables excluded
are either application management tables such as Settings and
MailLog, or mapping tables such as PaperTopic.
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WP_COMMENTS
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WP_POSTS

WP_TERM_RELATIONSHIPS
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Figure 4:Without customizations,Wordpress’s RS,Q has four
disconnected components; we manually added the green
edges and pruned the red edges. RD has three edges (not
shown, §7.2).

Table 1: Relationship graph statistics.

# edges
in RS

# edges
in RQ

# edges
in RD

# edges
in RS,Q

# edges in
RQ ∩ RD

TPC-H 10 10 10 10 10
Lobsters 41 17 25 43 3
HotCRP 0 30 31 30 10
WP (base) 0 5 3 5 1

WP (+plugins) 0 12 120 12 2

Wordpress. WordPress is a popular blogging platform and con-
tent management system [8]. A key feature of WordPress is its
plugin architecture, which allows users to add functionality to their
WordPress installation. For example, theWooCommerce [12] plugin
adds e-commerce functionality, allowing users to host online shops.
The base WordPress database has 12 tables which describe users,
comments, posts, terms, and other metadata. The WooCommerce
plugin adds 27 new tables to support online shops. We investigate
how GDPRizer performs on the base installation of WordPress and
how it adapts to the updated database when WooCommerce is
added. We generated sample data for 46 users using another Word-
Press plugin, FakerPress [21]. For WooCommerce, we manually
generated sample data. As with Lobsters, we logged the queries gen-
erated during interactions with the WordPress site and attempted
to replicate all possible actions. Overall, we collected 9,301 queries.

As the WordPress schema does not specify any explicit foreign
keys, the relationship graph includes edges from queries (Figure 4)
and database contents. We treat wp_users as the primary table and
its id column as the primary column. For base WordPress, we in-
cluded six queries over six tables in the ground truth. We excluded
tables that did not contain data directly related to users (there
were six such tables: wp_links, wp_terms, wp_termmeta, wp_op-
tions, wp_term_relationships, wp_term_taxonomy.) For the
WooCommerce plugin’s 27 new tables, we included nine new queries
in our ground truth, covering nine of the new tables.

7.2 High-level Accuracy Results
We study the accuracy of GDPRizer’s results for each application,
based on different relationship graphs, with and without manual
customization. Each application contains many data subjects and
tables, and we report the the averages of per-table accuracy results,
which in turn are averaged over the data subjects. A good result
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Table 2: High-level results for GDPRizer by application: without any manual input GDPRizer achieves 62–73% F1 score with
RQ and 48–70% both with RD and RQ∩RD; with manual input, it achieves 100% F1 score, except for HotCRP. Values reported here
averaged over per-table values, which in turn are averages over individual data subjects. Lobsters uses RS,Q and RS,D.

Pre-customization Post-customization
Using join queries (RQ) Using database contents (RD) RQ ∩ RD RQ RD

Precision (avg.) Recall (avg.) F1 (avg.) Prec. (avg.) Rec. (avg.) F1 (avg.) F1 (avg.) F1 (avg.) F1 (avg.)
TPC-H (customer) 0.68 1 0.7 0.68 1 0.7 0.7 1 1
TPC-H (supplier) 0.62 1 0.62 0.62 1 0.62 0.62 1 1
Lobsters (+ RS) 0.70 0.99 0.73 1 0.48 0.48 0.48 1 1

HotCRP 0.76 0.76 0.64 0.62 0.88 0.58 0.63 0.96 0.93
WP (base) 1 0.67 0.67 1 0.58 0.58 0.58 1 1

WP (w/ plugins) 1 0.66 0.66 1 0.64 0.64 0.64 1 1

for GDPRizer would show high F1 score both with and without
manual customization.

Table 1 shows the numbers of edges in each type of relationship
graph. Except for the synthetic TPC-H benchmark, all applications’
RQ and RD contain edges not otherwise discovered. Only Lobsters
has explicit foreign keys (i.e., RS is not empty), of which RQ captures
15 and RD captures 4 edges. But at least 26 foreign keys aremissing in
Lobsters’s RQ and RD, which illustrates that it is helpful for GDPRizer
to use explicit foreign keys when available. RD in WordPress with
plugins is large (120 edges) as GDPRizer’s heuristics suggest many
false positive foreign keys between WooCommerce’s customer IDs
and WordPress user ID columns. Finally, RQ ∩ RD is generally small.

Table 2measures the correctness of the data GDPRizer returns for
the different relationship graphs. Without any manual customiza-
tions, GDPRizer achieves at least 62% F1 score across applications
with RQ and 48%with RD. Individual precision or recall metrics reach
100% for some applications, but no application sees both perfect
precision and recall. Since privacy compliance is all-or-nothing, this
would be insufficient in a practical setting. The final columns in Fig-
ure 2 illustrate that, with inputs from the DBA, GDPRizer achieves
perfect F1 score for all applications except HotCRP, whose score is
96% with RQ and 93% with RD. With RQ, this imperfect score hap-
pens because there are two paths into HotCRP’s TopicArea table.
GDPRizer ignores the longer path, and hence under-extracts from
TopicArea. However, TopicArea only contains public informa-
tion (the paper topic categories), so a DBA could plausibly annotate
the table to indicate that GDPRizer should always return it in its
entirety. With RD, the same problem persists with the TopicArea
table; moreover, GDPRizer uses the ActionLog table to extract
papers written by a data subject, but over-extracts for data subjects
who are PC members, reducing the precision (and F1 score).

These results show that RQ achieves slightly better results than
RD, suggesting that GDPRizer prefer RQ when both are available.
However, if no query log is available, RD is an adequate substitute.
Finally, using RQ ∩ RD provides no benefit over using RD directly.

7.3 Manual Customizations Needed
While minimal input from the DBA is desirable, our experiments
show that some manual input is usually necessary. We now investi-
gate the inputs required for our applications. Given the relationship
graph and suggestions from GDPRizer, we believe that any DBA
with some background knowledge of the database should be able to

apply these customizations. Table 3 summarizes the customizations
for each application and relationship graph type.

Across applications, all the relationship graphs require some
amount of manual customization. The specifics vary between rela-
tionship graphs, however: the combined relationship graph, RQ∩RD,
consistently requires the largest number of customizations. This
makes sense, as the combined graph has only a few edges in gen-
eral (see Table 1). Comparing RQ and RD produces a more nuanced
picture. In HotCRP, RQ requires more annotations (31) than RD (29),
while in Lobsters, RS,D requires more annotations (26) than RS,Q
(16). Moreover, RD consistently requires a larger number of edge ad-
dition customizations, which are more challenging for a DBA than
column pruning annotations. This suggests that, in general, using
RQ is preferable (if it is available). RD is still useful, but potentially
adds overhead as GDPRizer must do work proportional to the size
of the database to build RD, and it requires more sophisticated input
from the DBA, which suggests it is best used when no other infor-
mation is available. Next, we give examples of the customizations
required by different applications.

Columns added.Adding “virtual” columns helps GDPRizer deal
with implied or conditional relationships, but is rarely required.
Only HotCRP with RQ requires this customization. This is because
HotCRP stores co-authorship information in the PaperConflict
table, since papers can have an arbitrary number of co-authors.
(This makes sense because each co-author has a conflict of interest
with their own paper.) Specifically, the value in the conflictType
column of the PaperConflict determines if the row represents a
co-authorship or a different type of conflict.

To handle this in GDPRizer, the DBA defines a virtual column.
This adds a new column, named v_author, to the Paper table,
which is a direct foreign key into the ContactInfo table (i.e.,
v_author stores the contact IDs of the co-authors of a paper).
This results in a new relationship graph vertex, v_author, which
captures the author relationship and lets GDPRizer traverse the
relationship graph in its usual way. This customization is not re-
quired with RD, because that graph provides an auxiliary mapping
between ContactInfo and Paper via the ActionLog table.

Edges pruned. Edge pruning is the most common customiza-
tion, and affects the most tables and columns. Ideally, the reasons
for pruning should be easily evident to a DBA. In our example
applications, pruning annotations fall into three categories.
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Table 3: Number of manual customizations needed to achieve perfect accuracy. In TPC-H, RS, RQ, and RD are identical; in
Lobsters, GDPRizer uses the available explicit foreign keys, and hence all results include RS.

TPC-H (cust) TPC-H (supp) HotCRP Lobsters WP (base) WP (w/ plugins)
RQ/RS/RD RQ/RS/RD RQ RD RQ ∩ RD RS,Q RS,D RS,Q ∩ RS,D RQ RD RQ ∩ RD RQ

# cols added 0 0 1 0 1 0 0 0 0 0 0 0
# cols filtered 0 0 18 18 18 0 0 0 0 0 0 0
# edges added 0 0 2 5 11 1 0 2 3 4 5 9
# edge pruning
annotations 4 7 10 6 4 15 26 15 1 0 0 3

Total #
customizations 4 7 31 29 34 16 26 17 4 4 5 12

Tables without user relevance. GDPRizer should not extract ap-
plication data that is irrelevant to users. A DBA identifies internal
tables and annotates all columns in these tables with incident edges
for pruning. For example, in Lobsters, three columns in manage-
ment tables need annotating; in HotCRP, we annotate four columns;
and in WordPress, we prune one column in the base setup and an-
other column that represents global product permissions with the
WooCommerce plugin. These prunings are unnecessary if the DBA
decides to return data from these tables; in our experiments, we
considered data in management tables irrelevant and removed their
data from the ground truth, so pruning made sense.

Other data subjects’ information. Privacy laws require avoiding
to return personal information of other individuals when satisfying
a data access request, meaning that such information cannot be
returned by GDPRizer. For example, if the data subject is a customer
in TPC-H, we prune the edges into the the supplier and the
partsupp tables, whereas for a supplier, we prune edges into the
customer, lineitem and order tables (see §6).

Avoiding over-extraction. The third kind of edge pruning requires
the DBA to identify individual edges that might extract incorrect
data. For example, in Lobsters, we prune the story_id column
from six tables to stop GDPRizer from retrieving information about
stories that a data subject might have acted upon but does not own.
For instance, we prune votes.story_id to avoid information on
stories that a data subject voted on but has not written (although
GDPRizer still extracts the vote records themselves). This pruning
also occurs in HotCRP. With RQ, we prune shepherdContactId
from Paper to stop GDPRizer from extracting details of papers
which a data subject shepherded but did not write. We prune seven
columns of this type in HotCRPwith RQ and six with RD. These prun-
ing annotations require a DBA to consider and inspect GDPRizer’s
output, and to potentially iterate until the output is correct.

Edge additions. Edge additions provide GDPRizer with miss-
ing relationships in the relationship graph. This customization is
crucial if an application’s schema lacks foreign keys and RQ and RD
both provide incomplete information. RQ may lack edges because
application developers never joined the columns, e.g., because they
compute joins in application code. This sometimes happens as de-
velopers seek to improve scalability by avoiding joins that require
locking multiple tables. RD sometimes lacks edges because the data
is inconsistent (violating the inclusion dependency requirement) or
because the edges fail to pass the heuristics’ thresholds. For exam-
ple, Lobsters’s mod_nodes.moderator_user_id and users.id

form an actual foreign key, but the pair fails the coverage threshold
as only a small number of users are moderators.

In our applications, between one and nine edges needed adding
with RQ, and four to 14 edges needed adding with RD. In HotCRP,
we add an edge between ContactInfo.contactId and Review-
Rating.contactId to capture the review ratings a user contributed.
With RQ (but not RD), we also add an edge between the topicId
columns in Paper and TopicArea to capture topics. In Lobsters,
RD lacks any of the 13 edges on the primary users.id column.
But these edges are a part of RS and therefore of RS,D, so no cus-
tomizations are needed for these edges. With RS,Q, only the edge be-
tween users.id and messages.author_user_id needs adding,
ensuring that private messages a data subject wrote are captured.
Lobsters’s schema lacks this edge because it avoids having two for-
eign keys between the same pair of tables (users and messages),
but the relationship nevertheless exists. Wordpress has the least
well-connected relationship graphs, likely due to client-side joins
(RQ) and its column naming conventions (in RD, the name matching
heuristic filters six of the nine edges that pass other heuristics). RQ
for the base Wordpress setup contains four disconnected compo-
nents (Figure 4) while RD has seven disconnected components. To
connect the components, we manually add the three edges to RQ
and four edges to RD. Edges users.ID ↔ posts.post_author
and comments.ID↔ commentmeta.comment_id need adding to
both. With the WooCommerce plugin and RQ, we add six edges
in addition to the above. These edges connect disconnected tables
that have user IDs to the wp_users table. For example, we connect
wp_wc_payment_tokens.user_id to wp_users.id to capture a
user’s payment tokens. GDPRizer recognizes the disconnected com-
ponents and helps identify the possible connecting edges based on
inclusion dependencies. With the plugin, RD includes these edges,
but also includes dozens of false-positive edges between WooCom-
merce’s customer IDs and the WordPress user ID columns, which
the DBA must remove.

Output filtering. GDPRizer’s output filtering removes columns
that contain sensitive data. How often this customization is re-
quired depends on the application; in the applications we looked
at, only HotCRP requires filtering. For example, we filter 18 (out
of 42) columns of the PaperReview table. These columns contain
reviewer-specific information such as the reviewer’s user ID, the re-
viewer’s qualifications, and their private comments to the program
committee. Relative to the total number of columns in the database
(200 in HotCRP), filtering affects only a small number of columns.
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7.4 Impact of Customizations
We now evaluate how individual customizations affect GDPRizer
when using RQ. Generally, output filtering and edge pruning im-
prove precision, while vertex and edge additions improve recall.
Most applications benefit most from a single type of customization,
while the others improve accuracy in smaller, but still important,
ways. We present the results as grouped bar charts (Figures 5a–5c).
The first bar in a group represents data extraction using the relation-
ship graph only, and each successive bar indicates the impact of an
additional customization. Our graphs show the mean of per-table
averages over all data subjects.

TPC-H. For the customer role, all tables have 100% recall even
without customization, and all but four tables (part, supplier,
partsupp, and lineitem) have 100% precision. After we prune
the edges for tables that are irrelevant to customers, precision
increases to 100% (Figure 5a). The supplier role shows similar results,
except that pruning edges to three tables with customer-related
data increases precision to 100% (Figure 5a). With RD, the results
are the same (cf. Table 2), since RD and RQ are identical in TPC-H.

Lobsters. Figure 5b shows the results for Lobsters with RQ. After
pruning, GDPRizer achieves 100% precision on all the tables and
100% recall on all but the messages table, for which recall is 92%.
This is due to a missing edge between users.id and messages.
author_user_id; once we add the missing edge, GDPRizer’s recall
improves to 100%. With RD, pre-customization, GDPRizer achieves
only 48% F1 score. This is worse than the pre-customization F1 score
of 70% with RS,Q. This is because the primary users.id column is
completely disconnected from the rest of the graph in RD, and hence
GDPRizer extracts nothing from any table except users. However,
once we combine RS with RD and do some pruning, GDPRizer’s F1
score improves to 100% (Table 2).

HotCRP. Figure 5c shows how successive customizations af-
fect precision, recall and F1 score for HotCRP with RS,Q. Without
customizations, precision and recall are both around 76% and the
F1 score is 64%. The main reason for the low precision and recall
is that GDPRizer fails to identify the papers authored by a data
subject, and under-extracts on their information. Fixing recall re-
quires a virtual column representing HotCRP’s co-authorship (see
§7.3). The reason for the low precision is that GDPRizer traverses
the edge between PaperConflict.paperId and Paper.paperId
and erroneously extracts papers that the data subject is conflicted
with. As with recall, this problem propagates to other paper-related
tables. The pruning and filtering described earlier improve their
precision. After these customizations, ReviewRating (0%) and
TopicArea (6%) are the only tables with imperfect recall. Adding
a missing edge between the contactId columns of ContactInfo
and ReviewRating helps GDPRizer retrieve the review ratings.
The recall of TopicArea remains imperfect (6%) even after we
add the edge between the topicId columns of PaperTopic and
TopicArea. The is because the relationship graph of HotCRP has
two paths into TopicArea, one of which represents topic areas for
papers that a data subject submitted, while the other represents
areas of review interest of a data subject (meaningful only for pro-
gram committee members). The former path is longer than the
latter and GDPRizer ignores it, missing topic areas for submitted
papers that aren’t also the data subject’s preferred review areas.

With RD, pre-customization precision, recall and F1 score re-
spectively are 62%, 88%, and 58% (Table 2). The main problem is
again that GDPRizer extracts conflicted papers’ information via
PaperConflict.paperId, reducing precision. Low precision (0%)
and recall (79%) also occur in TopicInterest, as GDPRizer uses
edge PaperComment.contactId↔ TopicInterest.contactId
to extract topic interests of the data subject’s papers, even though
these may be private PC comments. After pruning edges from
PaperConflict and PaperComment, and adding an edge between
the contactId columns of ContactInfo and TopicInterest,
precision and recall improve. However, recall of PaperReview
(38%) and TopicArea (6%) still remain imperfect and the final F1
score achieved with RD is 93%.

WordPress. Figure 6 shows that for the base installation of
WordPress, GDPRizer with RQ achieves perfect precision for all
tables even before customization. However, it only achieves perfect
recall on two tables (wp_users and wp_usermeta). For other tables
with user data, such as wp_comments and wp_posts, recall is zero
because wp_users and wp_usermeta are in a component that is
disconnected from the rest of the relationship graph (Figure 4).
Manually adding the missing edges to connect the components
improves the recall to 100%, however. We see similar results for
WordPress with theWooCommerce plugin: the original relationship
graph RS,Q has seven disconnected components, but after edge
additions, recall improves to 100% for all tables. We see similar
results both for the base installation and the WooCommerce plugin
when starting with RD (Table 2). We conclude from this experiment
that edge additions are crucial for GDPRizer to support applications
with disconnected components in their relationship graphs.

7.5 Comparison with GDPR Compliance
plugins

WordPress’s extensive collection of third-party plugins includes
several plugins which are designed to aid administrators with GDPR
compliance. Some of these plugins also support data access requests,
and we compare GDPRizer to three existing GDPR plugins: GDPR
Compliance and Cookie Consent [42], The GDPR Framework by
Data443 [17], and WP GDPR Compliance [32]. These plugins are
quite popular: the first two have over 30k installations, and WP
GDPR Compliance has 200k+ installations. We assess whether these
plugins capture the information specified in our ground truth.

The results for the base installation are in Table 4 and those
with the WooCommerce plugin in Table 5. We find that GDPRizer
successfully identifies user information from all the tables in the
ground truth, while the existing plugins miss some of the tables. For
example, all the plugins fail to extract information from wp_posts.
This may be because the plugins are designed to serve data access
requests from users who have interacted with the WordPress site,
but do not have accounts on it (e.g., casual commenters). However,
our results illustrate that installing such a plugin may be insufficient
to achieve true compliance; GDPRizer, working at the level of the
database schema, offers a broader set of options to the DBA.

Finally, with the WooCommerce plugin, the plugins once again
overlook some tables. This might be due to an oversight on the
part of the plugin developers, or due to a different understanding
of what information must be returned to users to comply with the
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Figure 5: Precision, recall and F1 score of GDPRizer with successive customizations over RQ (RS,Q in Lobsters). Edge pruning im-
proves precision themost across applications; in Lobsters, manual edge addition is necessary to reach 100% recall on messages,
while a virtual column handling co-authorship is essential for recall in HotCRP.
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Figure 6: Precision of GDPRizer for the base installation of
Wordpress. Manual edge additions improve recall but make
precision worse, but the overall F1 score still improves. Fur-
ther edge pruning is required to achieve 100% F1 score.

Table 4: Comparison of GDPRizer with existing GDPR plug-
ins for WordPress. For a table𝑇 , green boxes represent com-
plete extraction of data while red represent no extraction.

[42] [17] [32] GDPRizer
wp_user ✓ ✓ ✓
wp_usermeta ✓ ✓ ✓
wp_posts ✓
wp_postmeta ✓
wp_comments ✓ ✓ ✓ ✓
wp_commentmeta ✓ ✓ ✓

GDPR. For example, some of the tables included in our ground truth,
such as download_log and api_keys, contain backend informa-
tion meant for the application rather than end-users, even though
this information is tied to a data subject. Under the GDPR, this
information (e.g., download events) must nevertheless be returned
because it is identifiably associated with a data subject—a nuance
that may have escaped the plugin developers, but which puts the
plugins’ users at risk of violating the GDPR.

Table 5: Comparison of GDPRizer with existing GDPR plug-
ins for WordPress with WooCommerce. For a table 𝑇 , green
boxes represent complete extraction of data, red represents
no extraction, and yellow represents partial extraction.

[42] [17] [32] GDPRizer
customer_information ✓ ✓ ∼ ✓
order_information ✓ ✓ ∼ ✓
order_to_product ✓ ✓ ✓
order_to_coupon ✓
download_log ✓
webhooks ✓
api_keys ✓
download_permissions ✓
payment_tokens ✓

8 CONCLUSIONS
Our goal in building GDPRizer was to understand the trade-offs
between automation and manual effort in retrofitting compliance
onto applications’ legacy databases. We started out with the basic
components that we could expect for real-world applications—a
schema, a query log, and database contents—and studied general-
purpose approaches to compliance using these inputs. However,
each application we studied required a small but specific amount
of manual customization. Although this is much less effort than a
completely manual solution, it still requires human intervention.
While further work is needed, we believe that it unlikely that a fully-
automated solution exists. Yet, even partially automated solutions
will go a long way in making the transition smoother for legacy
systems.
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