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ABSTRACT
Data quality assessment is an essential process of any data analysis
process including machine learning. The process is time-consuming
as it involves multiple independent data quality checks that are
performed iteratively at scale on evolving data resulting from ex-
ploratory data analysis (EDA). Existing solutions that provide com-
putational optimizations for data quality assessment often separate
the data structure from its data quality which then requires efforts
from users to explicitly maintain state-like information. They de-
mand a certain level of distributed system knowledge to ensure
high-level pipeline optimizations from data analysts who should
instead be focusing on analyzing the data. We, therefore, propose
data-quality-aware dataframes, a data quality management sys-
tem embedded as part of a data analyst’s familiar data structure,
such as a Python dataframe. The framework automatically detects
changes in datasets’ metadata and exploits the context of each of
the quality checks to provide efficient data quality assessment on
ever-changing data. We demonstrate in our experiment that our
approach can reduce the overall data quality evaluation runtime
by 40-80% in both local and distributed setups with less than 10%
increase in memory usage.
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1 INTRODUCTION
In this era of big data, interpreting large volumes of data for business
advantages and decision making is becoming a common practise.
Data-driven analytics and machine learning are directly affected by
quality of the data. Anomalies in training data could significantly
affect machine learning models’ performance as models are sensi-
tive to variations in data values. Errors in serving data could result
in inability to understand the model or interpret its output.
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The importance of validating data quality has become increas-
ingly realized as various efforts [18, 19, 22, 27] have been put into
creating automated data quality verification frameworks for eval-
uating and improving data quality. These new libraries introduce
a learning curve as data quality information is disconnected from
the data structure used in the analysis process; data scientists have
to select and apply an appropriate data quality assessment library.

During exporatory Data Analysis (EDA), data is transformed and
examined iteratively. Unnecessary retrieval of data in a distributed
environment for validation is inefficient and could result in perfor-
mance degradation. Existing solutions for data quality verification
on evolving datasets such as [26] require explicit state information
maintenance in order to operate efficiently on evolving datasets.

In order to optimize data quality validation on evolving data and
require little to no effort from the users, we introduce Data-Quality-
Aware Dataframes (DQDF), a data quality management system
embedded in a data structure that is widely used by data scientists.
The specific implementation of our approach which we describe
in this paper is for Python applications. The analytics capabilities
which we add apply data quality checks to the underlying data.
It should be noted that the general approach could be applied to
other types of calculations in other programming languages. Our
library provides in-place data quality evaluation. The system utilizes
metadata to facilitate data quality validation and records its results
to optimize subsequent evaluations. To optimize the computation
and reduce the overall run time, each of the data quality checks takes
into account existing data quality information and data statistics
that indicate changes in the data from the previous evaluation. Our
contributions are the following.

• Provide state management and computational capabilities
by enhancing a commonly used data construct, such as
dataframes in Python.

• Embed data quality information as part of dataframes’ meta-
data by introducing a new primitive, ‘describe_quality()’,
for data quality evaluation.

• Provide top-level optimization for time series data valida-
tions by sharing commonly used complex dataframe opera-
tions’ results via an embedded metadata catalog.

The rest of this paper is organized as follows: Section 2 discusses
background and related work. Section 3 provides an overview of
our system. Section 4 details a set of performance experiments and
results from running DQDF. Section 5 describes future works.
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2 BACKGROUND AND RELATEDWORK
Different types of data quality assessments and definitions of data
quality standards are heavily studied and well-documented [20,
21, 25]. In order to deliver an efficient and automated data quality
validation on ever-changing data, we extended a pre-define list of
quality checks (validators) from an automated data quality verifi-
cation system, DQA [28]. It is important to note here that we use
validators from DQA as examples to demonstrate the benefits of
our data quality management system. Our library can be adjusted
to work with other python-based data quality validation libraries.
Here we briefly describe general dataframe properties, DQA, the
different types of its validators, and related works.

2.1 Dataframe
Dataframe is a two-dimensional data structure with labeled axes.
Dataframe is available through the pandas library [10] in Python.
Due to the intuitive data model and extensive features, dataframe
is a popular choice for data exploration [24]. In fact, the rich set
of operations available in pandas dataframes has been cited as
a reason that makes Python one of the most preferred language
for data science [6, 11]. However, pandas’ limitation is its ability
to operate on datasets at scale. Pandas only operates on a single
machine and fails to process data larger than memory. As a result,
several efforts [2, 7, 8, 15, 16] have been put into creating scalable
dataframe libraries (discussed next) to address pandas’ limitations.

2.2 Data Quality Advisor
Data Quality Advisor (DQA) [28] is a unified framework for data
quality validation. The tool generates human-readable data quality
reports and data quality pipelines to be integrated into the existing
AI ecosystem. In DQA, a validator is an abstraction that forms the
basis of data quality checking operations. The system supports
generic checks and domain-specific sets of validators such as time
series. A validator object has three main attributes: checker func-
tion, validity record, and execution backend. The checker function
is the function to be executed on the datasets. Validators produce
validity records after they perform the respective quality checks. Ex-
ecution backend contains information about each check’s preferred
execution engine (e.g., SQL, Spark, etc.).

2.3 Related Work
To our knowledge, there is no previous work that combines the
dataframe interface with data quality validation to deliver a seam-
less user experience and optimize the computation on repetitive
evaluations of the data resulting from EDA operations. We will
compare and contrast existing systems in terms of automated data
verification systems and dataframe technology.

2.3.1 Automated data verification systems. Here we consider sys-
tems that are capable of automatically performing data quality
assessments on distributed datasets.

Deequ: Deequ [27] is an automated data verification system built
on top of Apache Spark. Deequ utilizes Spark to perform data qual-
ity checks on large datasets that are typically stored in distributed
file systems. A new extension [26] to Deequ provides an optimiza-
tion to reduce the system’s overall runtime by utilizing state objects

(that need to be maintained for each of Spark’s data partitions) to
incrementally perform data verification on ever-changing data and
avoid re-evaluating the existing data. However, users are required
to explicitly create these external state objects. Since Deequ is only
available in Scala, it targets users that are already familiar with the
Spark ecosystem because it relies on data having a consistent parti-
tioning scheme in order to perform its incremental computation.
Another optimization that is available in Deequ is a shared data
scan which groups together aggregate functions (e.g., sum, average,
min, etc.) that will be performed on data attributes and translating
them into a single Spark SQL aggregation statement to reduce the
number of passes through the data. However, the shared data scan
benefit is only limited to aggregate functions.

TensorFlow Data Validation: TFDV [22] is a scalable data
validation system for machine learning pipelines in production
environments. TFDV automatically detects the data schema and
allows users to make adjustments that capture data constraints
and suit their expectations of the data characteristics (e.g., data
type, domain). The system detects anomalies by comparing the
data statistics against the system-generated schema definition. It
provides alerts with context to help users make informed decisions
to correct the errors. However, as the focus of TFDV is in automating
data quality validation specifically for machine learning pipelines,
it does not provide any optimizations for repetitive quality checks
on ever-changing data resulting from data exploration.

2.3.2 Scalable Dataframe Systems. There are several data cleaning
libraries [12, 17] that can operate on pandas dataframes but they
only operate on a local work station. In recent years, there have
been efforts to scale pandas dataframes to operate in a distributed
environment. Here we consider some of these scalable dataframe
systems that provide general pandas-like API and scale-out the
operations onto large distributed datasets.

Spark/Koalas DataFrame: Apache Spark [1] is an open-source
cluster computing framework that provides in-memory parallel
computation on a cluster with scalability and fault tolerance. Spark
provides Spark DataFrame [16], a module to interact with struc-
tured tabular data that incorporate relational data processing with
functional programming. However, Spark DataFrame syntax is very
different from the pandas dataframes’ due to its lazy evaluation
approach to optimize computations. As a result, Koalas [7] is in-
troduced as a library to ease transitioning from pandas to Spark.
Koalas provides a pandas-like API and translating the operations
to be executed on Spark.

Dask: Dask[2] is a framework that scales Python data analysis
libraries such as pandas, Scikit-learn[14], and NumPy[9] to operate
in a distributed environment. Dask provides a pandas dataframe
based implementation that scales to multiple machines by partition-
ing large datasets row-wise into multiple small pandas dataframes
and processes them in parallel. Due to its row-based partitioning
approach, Dask does not support the pandas accessing of rows and
columns by location. By using pandas internally, Dask does not
provide top-level optimization on a chain of operations.

3 DQDF SYSTEM ARCHITECTURE
Data quality validation is executed from scratch iteratively on evolv-
ing data. It is a time-consuming process and difficult to optimize
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as changes in the data might not be visible. Currently, an effort is
required from the users to maintain state information to provide
statistical information about the changes needed for optimizations.
In order to deliver data quality assessments and analyses geared
toward data scientists, we integrate data quality information as part
of the dataframe metadata. This design allows for optimizations to
take place right where data manipulations happen and requires no
external state information maintenance. DQDF is able to operate
on different types of data (e.g., tabular, timeseries) supported by
dataframe constructs as it is a centralized metadata management
system and it does not rely on a data partitioning scheme.

In order to demonstrate the feasibility of our design, we provide
two different implementations; pandas-DQDF which extends pan-
das dataframe and Dask-DQDF which is a scalable version of our
approach that extends Dask dataframe.

In this section, we describe the DQDF architecture, explain each
of its components in detail, describe our optimizations for repetitive
evaluations, and present the workflow.

3.1 System Overview
Figure 1 shows a system overview of DQDF. The core component of
DQDF is the Catalog Generator. The Catalog Generator is composed
of four main components. We use a term dataframe catalog, inspired
by the notion of database catalog in relational databases where
metadata and schemas of tables in database systems are stored.

DF1

Data 
Profiling/Statistics 

Calculator

Catalog Generator

Catalog 
Configurations

Catalog 
Updater

Catalog

Validators

DQA

Validator Set 
Identifier

Validator 
Operation 
Organizer

Validator 
Operation 
Executor

optional

Figure 1: DQDF System Overview

First, Validator Set Identifier is a component that selects a pre-
defined set of validators based on the type of the underlying data
indicated by end users at the time of dataframe initialization. Users
can add and drop any validators from the identified set at any point
after the dataframe initialization. The validator set identifier also
takes care of determining which validators need to be executed in
subsequent data quality evaluations based on the changes in the
underlying data received from the data profiler.

Second, Validator Operation Organizer is a component that rear-
ranges the identified validators and extract shared computations to
pre-execute. Validators can then utilize the pre-executed results in
place of the actual computations. As a result, operations that would
otherwise get executed multiple times are reduced to only once per
call to data quality evaluation.

After the commonly used functions are already executed, Valida-
tor Opearation Executor calls all the remaining validators’ checker
functions and collects validity reports from each validator. It will
then delete the shared computations’ results from the catalog.

Finally, the Catalog Updater will update the existing dataframe
catalogs with a new list of reports and the current data statistics.
Next, we will give an example of a dataframe catalog and describe
our pre-defined validators.

3.2 Catalog
Our catalog is an abstract class that stores metadata. There are
two types of catalogs in DQDF; one contains metadata about the
dataframe called Dataframe catalog and the other that contains
metadata specific to a validator called validator catalog.

3.2.1 Dataframe catalog. A catalog class contains statistical infor-
mation about the underlying data, its validators, each validator’s
independent computations, and the data quality information. The
dataframe catalog also contains a list of validator-specific informa-
tion (validator catalog).

3.2.2 Validator catalog. This catalog type contains validation-specific
information that DQDF uses to optimize the overall data quality
computation. A validator catalog contains a modified validator’s
checker function, a validity report, and a trigger function. A val-
idator catalog can also include a list of independent operations
used as part of its checker function. A trigger function is specific
to a validator. For example, a validator that only operates on a
numerical column would have a trigger function that returns false
if a string column has been dropped. However, a trigger function
of a dataset-based validator will likely return true if there is any
changes in the data.

3.3 Predefined Validators
Similar to other data quality verification systems, DQA also has
several validators for each type of data (e.g., generic tabular data,
time series data). The system also provides an interface for users
to define their own validators. We extended these validators to
take in DQDFs and re-design their checker functions to leverage
the embedded dataframe catalog to reduce the amount of needed
computation and efficiently utilize already pre-computed statistics.

Data cleaning is defined by [20] as a process to correct systematic
problems in the raw data. Domain expertise and finding and recti-
fying specific observations in the data are the most successful data
cleaning techniques. Incorrect values in the data can include du-
plicate, mistyped, and outlier data. When presented with expected
results, domain experts can easily recognize the observations that
are incorrect. Common techniques that allow effective data cleaning
then involve displaying helpful statistics about the dataset. We have
picked a subset of data quality checks that present data statistics
and could potentially help data scientists identify outliers in the
raw data such as null values, missing data, extreme values, and
most common values, etc.,

After examining the list of validators for both general tabular
data and time series data, we have identified repetitive operations
that are performed on the data each time data quality validation

951



Table 1: General Tabular Data Validators

Validator Operation Characteristic Optimization for
incremental calculation

Shared
Computation Descriptiondataset-based column-based record-based

check_na_columns ✓ Running sum of null values - Return null percentage
per column

check_infinity_column ✓ Running sum of infinity values - Return infinity (np.inf)
percentage per column

check_zero_ratio_column ✓ Running sum of zeros - Return zero value
percentage per column

check_duplicate_rows ✓ - - Check for duplicate rows
check_duplicate_column_names ✓ - - Compare column names

check_duplicate_values ✓ - - Compare column values

check_constant_columns ✓ - unique List of columns
with a constant value

check_columnwise_unique_values ✓ - nunique Number of unique values
per column

check_most_occurring_values ✓ - value_counts List of n most occurring values
per column

check_repeating_values_columns ✓ - value_counts List of non-unique values
per column

check_non_repeating_values_columns ✓ - value_counts List of unique
values per column

check_numeric_not_categorical_columns ✓ - unique Check if numerical columns
are also categorical

Table 2: Time Series Data Validators

Validator Target column Optimization for
incremental calculation

Shared Components Descriptiondrop_duplicates
(timestamp_col) sort_index sampling_freq

min_frequency Timestamp Running counts of True and False ✓ ✓
Check that sampling frequencies

are above a threshold

min_duration Timestamp index.min, index.max ✓ ✓
Determine if the dataset satisfies
the minimum amount of data

periodicity Timestamp - ✓ ✓ ✓ Determine if the data is periodic

find_duplicates_present_in_time Timestamp - ✓ ✓
Check duplicates values
in timestamp column

find_if_uniform_sampling_rate Timestamp - ✓ ✓ ✓
Check if the data has

a uniform sampling rate
find_outliers Data - ✓ ✓ ✓ Find outliers in data columns

happens. This is because originally in DQA each validator is isolated
from one another and they operate on the same data in a sequence.

3.3.1 Generic Tabular Data. Checker functions for generic tabular
data are shown in Table 1.We also identify their operation character-
istics which play an important role in optimizing the computation.
There are three types of operation characteristics; record-based,
column-based, and dataset-based. These characteristics indicate the
granularity level at which the checker functions operate. Record-
based functions are functions that consider each individual record
separate from other records. For example, the first record-based
checker function on the list is check_na_columns which counts
the number of null or missing values for each column. It returns
the percentages of these values per column if present. The check
passes if there are no null or missing values in all of the columns
and fails otherwise. Column-based functions need to consider the
entire column’s values in order to determine the final output. For
example, the check_most_occurring_values function returns the
top n most occurring values per column. This function needs to
consider each record’s value in comparison with the other records’
per column. The dataset-based functions are those that require
access to the entire dataset in order to compute the results.

3.3.2 Time Series Data. Time series validators in DQA are com-
plex functions that aim at evaluating the unique characteristics of
time series data such as order, frequency, and duration. Selected
predefined time series validators are displayed in Table 2. Their
checker functions consist of multiple operations. Instead of classify-
ing these checker functions based on the operation characteristics,
we identify their target columns because time series validators often
compare values between ordered consecutive records. The target
columns are either the timestamp column or other data columns.
This distinction also allows us to leverage the optimizations we
have implemented for the generic tabular validators and eliminate
the need to re-execute these checker functions if the identified data
changes do not affect their target columns.

3.4 Optimizations
We have selected DQA’s validators as an initial set of validators to
apply our metadata-driven optimizations. DQA does not provide
any optimizations on its own. Its validators are originally executed
independently and sequentially before the library generates the
data quality report. As such, we modified a selected set of DQA’s
validators so that they can take advantage of our in-place metadata
management mechanism to avoid executing unnecessary checks
on the data. Here we discuss our optimizations in detail.
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3.4.1 Shared computation. Carefully examining the repetitive
operations from Table 1 and 2, we notice that some of them are
computationally intensive which significantly affects the overall
system’s runtime. For tabular data, a commonly used solution is
distributed shared data scan by grouping together aggregate func-
tions to reduce the number of passes through the data. This works
well for tabular data validators as the majority of them involve
calculating aggregate values from the data, which can be done re-
gardless of the record order. However, in the case of time series
data analysis, the order of records needs to be maintained. Time
series validators often compare each individual data points with
their neighboring records ordered by the timestamp such as the
‘find_duplicate_present_in_time’ validator identifies the positions
of records with duplicate timestamps. Shared data scan simply does
not work for timeseries validators if the records are unordered be-
cause it is difficult to maintain row and column labels and express
them using plain SQL syntax as clearly explained in [24]. An order
will have to be enforced to enable such optimization. Fortunately,
dataframes treat both rows and columns labels equally and multiple
scalable dataframe libraries such as Dask supports these functional-
ities at scale. Since DQDF operates at the dataframe level we could
extract common time series operations by utilizing the dataframe
API.

As a result, we introduce a notion of shared computation through
an abstract class that utilizes the dataframe API. It can be used to
declare an operation or a set of operations for the system to pre-
compute prior to starting the usual evaluation. Shared computation
framework allows any type of operations beyond just aggregate
functions to be shared across validators. The results of these opera-
tions will be available in the dataframe catalog only for the duration
of a given quality evaluation. Therefore, validators that need to
perform any of the declared shared computations can retrieve the
computation results from the dataframe catalog and avoid redun-
dant computations. Users can declare new shared computations for
the system to pre-compute. An example of the shared computation
for general tabular data can be found in Table 1. For this set of
validators, the shared computations are the count of each distinct
values and a list of all unique values per column. For time series
validators, the shared components are displayed in Table 2.

After shared computations are extracted and executed, their
results are available in the dataframe catalog. Figure 2 displays
the modifications we made to the original DQA’s validators in or-
der to leverage shared computation results in place of the actual
computation. To the left of this figure we can see a portion of the
two original DQA’s time series validators which are min_frequency
and min_duration. These validators perform different data qual-
ity checks on the data but they all execute pandas’ to_datetime
function follows by drop_duplicates and set_index functions
as part of their validations. These sequence of operations prepare
the time series data by converting the timestamp coloumn to type
datetime object, drop duplicate rows, and use the timestamp as an
index column of the dataset. These data preparation steps could be
time-consuming and could involve multiple cross-network commu-
nications in a distributed environment. Utilizing shared computa-
tion allows us to only execute these operations once and cache the
results for other validators to utilize. To the right of the figure, we
have extracted the three operations as a function to preserve the

order and stored the results in a dictionary-like construct. Below
the shared computation example are the modified DQA’s validators
that take in a shared computation result available in the dataframe
catalog and use this result in place of their actual computation.

Validator 1 (min_frequency)
df[timestamp] = pd.to_datetime(df[timestamp])
df = df.drop_duplicates(subset=[timestamp])
df = df.set_index(timestamp).sort_index()

diff = df.index.to_series().diff()[1:]
np_unit = reg_to_np_mapper[min_freq["unit"]]

…
Validator 2 (min_duration)
df[timestamp] = pd.to_datetime(df[timestamp])
df = df.drop_duplicates(subset=[timestamp])
df = df.set_index(timestamp).sort_index()

max = df.index.max()
min = df.index.min()

…

Validator 1 (most_occurring_values)
df = shared_results[‘prepared_df’]
diff = df.index.to_series().diff()[1:]
np_unit = reg_to_np_mapper[min_freq["unit"]]
…

Validator 2 (count_repeating_values)
df = shared_results[‘prepared_df’]
max = df.index.max()
min = df.index.min()
…Original validators

Modified validators

def prep(df, timestamp):
df[timestamp] = pd.to_datetime(df[timestamp])
df = df.drop_duplicates(subset=[timestamp])
df = df.set_index(timestamp).sort_index()
return df

shared_results[‘prepared_df’] = prep(df, timestamp)

Shared computation

Figure 2: Shared Computation Example

3.4.2 Incremental computation. Incremental computation for
repetitive workload has been intensively studied and successfully
implemented in [26] for partitioned data by utilizing manually
created state-like objects accompanying each data partition. As
such, our focus is not on re-implementing such optimization but we
describe here how our catalog implementation and trigger functions
allow such optimization to take place efficiently on both partitioned
and non-partitioned data without requiring an external state object.

In order to enable incremental computation on changing data,
prior knowledge about the validated data is needed to be main-
tained. Similar systems often require users to create state objects
manually for each data partition to enable such optimization. While
this design works well for developers and data engineers, it could
be troublesome for data scientists. In DQDF, we embed validator-
specific statistics into the data structure allowing the incremental
computation of data quality to take place automatically without
requiring distributed system knowledge from users.

Trigger functions allow the incremental computation process to
be even more efficient by making it context-aware. Trigger func-
tions utilize the metadata catalog to eliminate the need to execute
the computation in the case that the change in metadata does not
affect certain validators.

3.5 Workflow
Figure 3 shows aworkflow after a user invokes the ‘describe_quality’
method. This method is part of the DQDF library which can be
called on a dataframe object. If this is the first time the method is
invoked or the value is null, a new dataframe catalog will be created
and initialized with a list of predefined validators based on the type
of data indicated. Then the system will compute and record the
current data statistics including row count, column names, and
column types. If a dataframe catalog exists, the current dataframe
catalog will be sent to a catalog generator. The generator compares
the recorded data statistics with the current statistics. It will then
identify a list of affected validators that need to be re-run. After
a list of affected validators has been assembled, each validator’s
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checker function will be called on the underlying data. Each valida-
tor will then produce a validity record containing the result of the
evaluation and a recommendation for users to make corrections
to the data in case the check fails. The generator will update the
dataframe catalog with the current information.

Figure 3: Algorithm for describe_quality

3.6 User Model
Here we showcase the interface of our library in a Jupyter notebook
environment. Users would be importing in our library as if they
would the regular Pandas dataframe. Figure 4 shows how users
can run 12 pre-selected set of validations and receive a data quality
report. This is done by calling the describe_quality method on a
dataframe object (df). After manipulating and cleaning the data,
users can call the same method to get a new report which gets
updated automatically. Each validation check is executed in an opti-
mized manner according to the change in the dataset metadata. This
design does not requires users to maintain a state object explicitly
which simplifies their interactions. DQA provides a pretty-print
method called ‘print_summary’ for result visualization. The quality
report contains the validations’ results and recommendation. Fig-
ure 5 shows a process required to add a custom validator. Line 14
shows a custom function that takes a dataframe object and checks
for any negative values in each of the numerical columns. DQA
requires that each checker function returns a ValidationOutput.
Line 15 adds the custom validator to DQDF by supplying the name,
a checker function, and select one of our provided validator cata-
log (we provide 3 levels of support; record-based, column-based,
and dataset-based). Line 16 prints all of the validations and the
‘check_negative_columns’ has been added at the end of the list.

4 EXPERIMENTAL EVALUATION
In order to demonstrate the generality of our approach and ensure
the scalability of our design, we implemented the DQDF architec-
ture by extending the pandas dataframe library to operate on a
single workstation and extending the Dask dataframe library to
operate on a multi-node cluster. It is important to note here that
we conducted this experiment as a demonstration of the scalability
of our new architecture rather than to compare the performance
of pandas and Dask. Important points to consider when choosing
between Dask and pandas are well documented on the official Dask

Figure 4: Running Data Quality Validation

Figure 5: Adding a Custom Validator

documentation [3]. The environment setups for both single node
and multi-node experiments are described below.

4.1 Experimental Setup
We extended Pandas and Dask dataframe implementations using
their provided subclassing interface by embedding a dataframe cat-
alog object as part of the library. Our implementation provides a
method for users to invoke a data quality evaluation. As such, we
compare the system’s overall performance by invoking the quality
evaluation method (which enables our optimizations) against run-
ning all of the validators on a dataframe without any optimizations.

We performed our evaluations on machines with 4 processing
cores, 8 GB RAM, 100 GB hard drive, and each running CentOS 7.
The tested operations are adding and deleting rows and columns.
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Table 3: Experimental Setup and Result Summary

Category/ Operation
Pandas-DQDF Dask-DQDF
(Single Node) (4-Node)

Tabular Time Series Tabular Time Series
Experimental Setup

Data sizes 0.5GB - 2.5GB 20MB - 100MB 2GB - 10GB 100MB - 500MB
# of data quality checks 12 6 12 6

Average Percentage of Runtime Reduction
Increase # of rows 44% 30.50% 41.80% 46.40%
Decrease # of rows 45.18% 29.50% 44.20% 46.80%

Increase # of columns 50.30% 81.04% across 4 runs 47.60% 85.23% across 4 runs
(31.2% on the 1st run) (46.45% on the 1st run)

Decrease # of columns 83.7% across 4 runs 81.2% across 4 runs 74.3% across 4 runs 85.1% across 4 runs
(33.8% on the 1st run) (30.15% on the 1st run) (39.2% on the 1st run) (46.9% on the 1st run)

4.1.1 Single Node Setup. We used the Wisconsin benchmark
data [23] for our general tabular data evaluation. This dataset allows
us to precisely control the selectivity percentages, to generate data
with uniform value distributions, and to broadly represent data for
general analysis use cases. We used a data generator to generate
our experimental datasets with data sizes ranging from 500 MB to
2.5 GB. For time series data, we used a time series data generator to
generate the data with increasing timestamps to represent sensor
or IoT data. Time series data sizes ranged from 20 MB to 100 MB.
We picked time series data sizes that were smaller than tabular
data because our time series validators perform computationally
intensive operations that result in much longer runtimes.

4.1.2 Multi-node Setup. In order to demonstrate the scalability
of our design, we extended Dask dataframe to produce a parallel
variant of DQDF allowing it to operate in a distributed environment.
For the multi-node experiment, we set up Dask on a cluster with
four processing machines. Each machine has the same specifica-
tions as the machine used for the single node evaluation. For the
benchmark data, we setup HDFS 3.3.0, allowing all workers access
to the data. We used the Wisconsin benchmark dataset with the
data sizes ranging from 2.5 GB to 10 GB. For the time series data
use case, we generated data of sizes ranged from 100 MB to 500 MB.

We summarize the setups and experimental results in Table 3
before highlighting some of the experimental scenarios in detail
in the next subsection. We use ‘pandas DQDF’ and ‘Dask DQDF’
for our extended pandas dataframe and extended Dask dataframe
implementations respectively. We evaluated DQDF using 12 tabular
data validators and 6 time series data validators.

4.2 General Tabular Data Results
Weevaluated the overall data quality validation runtimes on four dif-
ferent scenarios (increasing/decreasing number of rows/columns).
Due to space limitations, we only show some of the results here.

For general tabular data validation, DQDF benefits from 6 shared
computations and 3 incremental computations. As a result, 9 out of
12 quality checks have been optimized, leaving it with only three
quality checks without any optimization.

Figure 6 displays results for both single node and cluster evalu-
ations on increasing number of records. We started with reading
in a JSON file to create a dataframe and evaluated its data quality.
We then read in another four files, appended their content to the
previously evaluated dataframe (one file at a time) before evaluating
the resulting dataframe’s data quality. For this experiment, Pandas
DQDF was able to reduce the quality evaluation runtime by 44% on
average. Dask DQDF was able to reduce the runtime for datasets
with an increasing number of records by 41.8% on average. In the
case of decreasing the number of records, we observe the same
trend in the opposite direction (decreasing runtime).

In the case of decreasing number of columns, the results of both
single-node and cluster evaluations are shown in Figure 7. DQDF
can benefit from eliminating unnecessary validations because all
validators have already evaluated the entire dataset. Almost all of
the validators that have passed can be eliminated on subsequent
evaluations. As a result, the first time we ran the validation, the
run time is significantly higher than the subsequent runs.
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Figure 6: Tabular data: increasing number of rows

4.3 Time Series Data Results
Time series validators perform complex and computationally in-
tensive operations such as getting sampling frequency, rate, and
duration from the dataset. Five out of six validators only examine
each record’s timestamp to detect anomalies without touching the
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Figure 7: Tabular data: decreasing number of columns

other data columns. As a result, our datasets contain one timestamp
column and two numerical columns for row-based evaluations. For
column-based evaluations, we increased the number of numerical
data columns from 3 up to 11.

All six time series validators we utilized in our experiments
benefited from shared computations as they rely on data being
sorted and duplicate values have been dropped. For the case of
increasing the number of records, two out of the six validators also
benefited from incremental computations.

Results on a dataset with an increasing number of columns are
shown in Figure 8 for both a single node and a four-node cluster.
As previously mentioned, all but one of our time series validators
operate on the timestamp column. Increasing the number of data
columns does not trigger evaluation of validators that only consider
the timestamp column. As a result, the first time we validated the
data quality, the DQDF’s runtime was significantly higher than
its subsequent runs that benefited from eliminating unnecessary
execution of timestamp-based validators. Data quality validation
on regular pandas and Dask dataframes resulted in repetitive vali-
dations of the timestamp column.
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Figure 8: Time series data: increasing number of columns

4.4 Case Study and Memory Footprint
In order to assess the usability of our library, we conducted a case
study of applying our library to an existing exploratory data anal-
ysis [4] on a housing dataset [13]. The goal of this analysis is to
predict housing price fluctuations. The notebook contains multiple
repetitive data cleaning operations as the author tries to correct er-
roneous records by filling null values, dropping unwanted columns,

and computing statistics. We modeled our study after this note-
book and used DQDF in place of Pandas Dataframes to produce the
same outputs as the original notebook. We also declared custom
validators to take advantage of commonly computed values. The
notebooks can be found at [5]. We include the end-to-end runtime
comparison of applying Pandas and DQDF in Figure 9a. On average,
using Pandas dataframe took 12.52% longer to finish because DQDF
was able to eliminate repetitive execution of operations such as null
value detection. Even though the benefits of DQDF will be more
significant as the size of the data grows, this case study shows that
the optimizations also apply to static data.

In order to provide visibility into our design and ensure efficiency,
we also conducted data structure size comparison. The total memory
usages of DQDFs include the sizes of their catalogs along with
their recorded quality results. The comparison results of DQDF
and the regular pandas dataframes’ sizes are displayed in Figure 9b.
DQDFs acquire up to 9.38%morememory space than regular pandas
dataframes on average. The reason for such a small percentage
is because results of the shared computations are only available
during the data quality evaluation and they are not maintained
across evaluation sessions.
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Figure 9: Space and Runtime Comparisons

5 CONCLUSION AND FUTUREWORK
In this work, we have presented a system that integrates data qual-
ity information as part of a data structure’s metadata allowing
data scientists access to relevant information embedded into data
structures that they are familiar with. We have demonstrated the
practicality of our approach by implementing two different pro-
totypes by extending the widely used Python dataframe libraries,
pandas and Dask, to operate on a local machine as well as across
machines in a distributed environment. Our decision to embed a
data quality management system as part of dataframe libraries al-
lows us to optimize repetitive data quality evaluation on changing
data efficiently without requiring efforts from users to maintain
additional state information. We demonstrated in our experiments
that the system leveraging shared and incremental computations
can significantly reduce the overall validation runtime by 40% and
up to 80% depending on the type of operations.

Moving forward, we would like to optimize the shared compu-
tation extraction process to automatically detect common com-
putations across multiple validators. Our implementations can be
extended to other scalable data structure libraries to provide users
with options that better suit their analysis requirements.
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