
NewQuery Optimization Techniques in the Spark Engine of
Azure Synapse

Abhishek Modi
Microsoft, India

Abhishek.Modi@microsoft.com

Kaushik Rajan
Microsoft Research, India
krajan@microsoft.com

Srinivas Thimmaiah
Microsoft, India

s.srinivas@microsoft.com

Prakhar Jain∗
Databricks, USA

prakhar.jain@databricks.com

Swinky Mann
Microsoft, India

Swinky.Mann@microsoft.com

Ayushi Agarwal
Microsoft, India

Ayushi.Agarwal@microsoft.com

Ajith Shetty
Microsoft, India

Ajith.Shetty@microsoft.com

Shahid K I
Microsoft, India

Shahid.K@microsoft.com

Ashit Gosalia
Microsoft, USA

Ashit.Gosalia@microsoft.com

Partho Sarthi∗
University of Wisconsin-Madison

sarthi@wisc.edu

ABSTRACT

The cost of big-data query execution is dominated by stateful oper-
ators. These include sort and hash-aggregate that typically materi-
alize intermediate data in memory, and exchange that materializes
data to disk and transfers data over the network. In this paper we
focus on several query optimization techniques that reduce the
cost of these operators. First, we introduce a novel exchange place-
ment algorithm that improves the state-of-the-art and significantly
reduces the amount of data exchanged. The algorithm simultane-
ously minimizes the number of exchanges required and maximizes
computation reuse via multi-consumer exchanges. Second, we in-
troduce three partial push-down optimizations that push down
partial computation derived from existing operators (group-bys,
intersections and joins) below these stateful operators. While these
optimizations are generically applicable we find that two of these
optimizations (partial aggregate and partial semi-join push-down)
are only beneficial in the scale-out setting where exchanges are
a bottleneck. We propose novel extensions to existing literature
to perform more aggressive partial push-downs than the state-of-
the-art and also specialize them to the big-data setting. Finally we
propose peephole optimizations that specialize the implementation
of stateful operators to their input parameters. All our optimiza-
tions are implemented in the spark engine that powers azure
synapse. We evaluate their impact on TPCDS and demonstrate that
they make our engine 1.8× faster than Apache Spark 3.0.1.

PVLDB Reference Format:

Modi et al. New Query Optimization Techniques in the Spark Engine of
Azure Synapse. PVLDB, 15(4): 936 - 948, 2022.
doi:10.14778/3503585.3503601

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503601

1 INTRODUCTION

Modern query compilers rely on a combination of logical SQL
level query optimization techniques and low-level code-generation
techniques to produce efficient query executables. In the big-data
setting they produce plans withmultiple stages, such that each stage
can run in a data-parallel manner across many machines. Operators
within a stage are further grouped together into code-generation
blocks that are complied such that data is materialized only at block
boundaries [23]. Spark [6] is a popular big-data system that is based
on such a compilation methodology.

As one would expect, stateful operators, operators that material-
ize data at stage or code-generation boundaries, dominate the cost
of execution in these settings. In particular we find exchange, hash
aggregate and sort are the three most expensive operators in Spark.
An exchange operator is used to transfer data between stages. It
requires that data be materialized to disk at the end of every stage
and shuffled over the network to the tasks in the next stage. Hash
aggregate and sort on the other-hand are operators that materialize
data within a stage and hence demarcate code-generation blocks.
They both maintain state in memory, spilling to disk if needed.

In this paper we focus on a set of techniques that reduce the cost
of these operators. The optimizations fall into three categories.
Exchange placement. First, we introduce a new algorithm that
determines where exchange operators should be placed and what
exchange keys to be used by each of them. Exchange operators serve
a dual purpose. They re-partition data to satisfy the requirements
of key based operators like group-by, join and window functions so
that they can run in a data-parallel manner. In addition, exchanges
enable reuse of computation across different parts of the tree. If two
different sub-trees rooted at exchanges are performing the exact
same computation, then one could perform the computation only
once, persist the output in a partitioned manner at the source stage
and consume it multiple times.

∗Work done while at Microsoft.

936

https://doi.org/10.14778/3503585.3503601
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503601

Existing systems [14, 27, 29, 35] determine exchange placement
without considering reuse opportunity. We find that there are sev-
eral cases where exchange placement conflicts with exchange reuse
and leads to a sub-optimal plan overall. To address this, we propose
a new algorithm that takes into account the possibility of exchange
reuses during exchange placement to determine candidate plans
with interesting trade-offs (see Section 2.2.1 for examples). We cost
these alternatives and pick the least cost plan.

To efficiently realize the algorithm we introduce a new imple-
mentation mechanism called plan-marking which enables us to
perform global reasoning across different parts of the tree. Our ex-
change placement algorithm utilizes plan-marking to tag identical
sub-trees with the same marker, indicating reuse opportunity.

Partial push-down. Second, we introduce partial push-down
techniques into the big-data query optimizer. These techniques do
not substitute an operator but derive an auxiliary operator that
can be pushed down the tree. We extend the Spark optimizer to
enable three different partial pushdown techniques, namely partial
aggregation, semi-join push-down and bit-vector filtering.

Our partial aggregate push-downmechanism builds upon known
techniques to partially push-down group-by below joins [10, 20, 22,
30]. We adapt these techniques to push-down partial aggregates
not just below select and join as proposed in existing literature
but also unions, project and expand [2]. The Spark optimizer today
only introduces a partial aggregate directly before a group-by and
does so during physical planning. In contrast, we enable more
aggressive push-down by adding a new logical operator to represent
partial aggregates and new rules that incrementally push partial-
aggregates down. Further we propose new rewrites that derive
partial aggregates from other operators (semi-join and intersect).

We also propose a new partial semi-join push-down rule that
converts inner-joins in trees rooted at semi-joins into semi-joins
without changing the root (see Section 2.2.2 for examples). We
demonstrate (see Section 7.3) that both partial aggregation and semi-
join push-down are much more impactful in the big-data setting
when compared to the classical scale-up database setting.

Finally we incorporate push-down of bit-vector filters into the
Spark optimizer. While bit-vector filtering is well-known [11–13,
15] we propose an efficient implementation based on plan-marking
to avoid unnecessary materialization in the big-data setting. Further
we rely on Spark’s execution strategy to construct the filters in-
parallel; starting at tasks and finally combining across executors.

Partial push-downs perform additional computation but can
save on exchange. We therefore introduce them in a cost-based
manner. Our cost-functions combine column level statistics with
partitioning properties in novel ways to determine when these
partial push-downs are likely to be beneficial.

Peephole optimizations. Third, we propose a set of peephole
optimizations that improve the implementation of stateful opera-
tors. For example, we optimize the order of keys for a multi-column
sorting. Spark’s sorter compares keys in the byte space and lazily
de-serializes data. Our optimization brings down the cost by picking
an order that leads to fewer de-serializations and comparisons. Note
that while sort is order sensitive, operators like (sort-merge) join

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

Spark 3.0.1 Exchange Placement Partial-Aggregate

Other Partial Push-down Peephole

Figure 1: Speedup from optimizations in the spark engine

of azure synapse over latest version of Apache Spark

only need keys to be consistently ordered on both sides. Such an op-
timization again requires global reasoning and our implementation
once again relies on plan-marking to enforce consistent ordering.

Summary of performance benefits. We implement all these op-
timizations in the spark engine of azure synapse (synapse spark
for short) and compare it against the latest version of Apache Spark,
Spark 3.0.1 (in this paper whenever we mention Spark we implic-
itly refer to this distribution). Figure 1 illustrates the speedup that
the various optimizations bring about over all queries in TPCDS, a
standard data analytics benchmark (at 1TB scale factor). As can be
seen the optimizations together speedup the benchmark suite by
1.8×. Exchange placement brings about 27% speedup, the partial
push-down techniques together bring a speedup of 40% and the
rest of comes from our peephole optimizations.
Applicability of optimizations. synapse spark is a scale-out
big-data system derived from Apache Spark. While the peephole
optimizations we propose are specific to Spark based systems, the
other optimizations are more broadly applicable. The exchange
placement algorithm is applicable to all big-data systems [14, 27,
29, 35] as they all need an exchange operator. The patial push-
down techniques are not just applicable to scale-out systems but to
scale-up single machine databases as well. However, our empirical
evaluation brings up an interesting finding.While bit-vector filtering
brings significant benefits in scale-up settings (as they filter data
right after scan), we find that partial-aggregation and semi-join
push-down are not as beneficial in the scale-up setting. We observe
that they only bring benefits when they save on the amount of data
exchanged.
In summary, the paper makes the following core contributions.
• We characterize the performance bottlenecks in Spark. The
previous analysis [24] was done before Spark incorporated code-
generation and is out-dated.
• We propose a new algorithm for exchange placement that im-
proves over the state-of-the-art and significantly reduces the
number of exchanges needed to evaluate a query.
• We extend ideas from existing literature to provide holistic sup-
port for partial aggregation. We add new rules to push-down
below operators not considered in the past and propose a spe-
cialized cost model for big-data systems that incorporates parti-
tioning information.
• We propose a novel semi-join push-down technique that, we find,
benefits scale-out big-data systems much more than scale-up
databases (partial aggregation is similar).
• We propose a set of peephole optimizations that significantly
improve the performance of Spark’s sort implementation.
• All these optimizations are implemented in the synapse spark,
a production system available for general use. We demonstrate
that these optimizations bring significant performance gains.

937

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Q
2
3
b

Q
6
7

Q
2
3
a

Q
4

Q
9
5

Q
1
4
a

Q
8
8

Q
6
4

Q
1
4
b

Q
9
3

Q
2
4
a

Q
2
4
b

Q
5
0

Q
7
8

Q
9
7

Q
7
5

Q
1
6

Q
1
1

Q
9
4

Q
8
0

Exchange Aggregate Sort FileScan Join Select/Project Bloom Other

Figure 2: Normalized cost of operators in top 20 queries. Each

query has two bars, the left bar corresponds to costs in base-

line Spark. The right bar shows the reduced percentages

after our optimizations as implemented in synapse spark.

⋈ 𝑎1=𝑎2

𝑒2{𝑎2}

𝑇2𝑇1

⋈ 𝑎1=𝑚3∧𝑏1=𝑏3

Γ 𝑏3,min 𝑑3 ←𝑚3

𝑒1{𝑎1}

𝑇3

𝑒3{𝑏3}

𝑒4{𝑎1 𝑏1 𝑎1, 𝑏1}

⋈ 𝑎1=𝑎2

𝑇2𝑇1

𝑒6{𝑎1}

Γ 𝑎1,𝑏1

𝑒8{𝑎1, 𝑏1}𝑒5{𝑚3 𝑏3 𝑚3, 𝑏3}

Figure 3: Querywithmultiple partitioning options. Each edge

is annotated with a set of partitioning options any of which

suffices to satisfy the requirement of the parent operator.

2 MOTIVATION AND EXAMPLES

We begin with a performance characterization of Spark.

2.1 Workload characterization

We enhanced the instrumentation done by Spark to measure the
time spent in each operator1 by each task. Figure 2 reports the
time spent in various operators for the most expensive 20 queries in
TPCDS (at 1TB scale factor). For each query it shows the breakdown
before and after our optimizations, we focus on the cost before (left
bar) in this section. We make the following observations.
• Exchange, hash-aggregate and sort are the three most expensive
operators. They contribute to 80% of the total task time in half
the queries and 50 − 80% in another quarter of the queries.
• Exchange is uniformly expensive and contributes 20 − 40% of
the cost in all but a few (5%) scan heavy queries.
• Sort and hash-aggregate are almost equally expensive, they to-
gether contribute 20 − 50% of cost in most queries.
• Scan and Join, the other two significant operators are much less
expensive on average. However, they are the most expensive
operator in specific queries (like 𝑄88 and 𝑄95 respectively).

1Spark today only reports metrics per code generation block and not per operator.

Table 1: Symbols used for SQL operators are as shown. We

use 𝑇,𝑇1,𝑇2,𝑇3 as table names and 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 as column names.

We sub-script column names with the numeric sub-script of

tables they come from. For example 𝑏2 come from table 𝑇2.
A union renames columns, we ensure that inputs have the

same column names but differ in suffixes and we assign new

suffixes to the output. Solid lines represent exchanges, and

dashed connect operators in the same stage.

Operator Symbol

Select 𝜎𝑝𝑟𝑒𝑑 (𝑇)
Project Π𝑒𝑥𝑝𝑟 (𝑇)
Group-by Γ𝑘𝑒𝑦𝑠,[𝑎𝑔𝑔𝑠 (𝑒𝑥𝑝𝑟𝑠)] (𝑇1)
Inner Join ⊲⊳𝑎1=𝑎2∧𝑏1=𝑏2 ...
Left/right Semi Join ⋉/⋊𝑎1=𝑎2∧𝑏1=𝑏2 ...
Union (all)

⋃︁(𝑇1,𝑇2 ...𝑇𝑛)
Intersect (distinct)

⋂︁(𝑇1,𝑇2)
Partial aggregate 𝛾𝑘𝑒𝑦𝑠,[𝑎𝑔𝑔𝑠 (𝑒𝑥𝑝𝑟𝑠)] (𝑇)

𝑇1

⋈ 𝑎1=𝑎2

𝑇2

⋈ 𝑎1=𝑚3∧𝑏1=𝑏3

Γ[𝑏3]

𝑎1 𝑎2
𝑏3

𝑚3

⋈ 𝑎1=𝑎2

Γ 𝑎1,𝑏1

𝑇1 𝑇2

⋈[𝑎1=𝑚3∧𝑏1=𝑏]3

Γ[𝑏3]

𝑏3

Γ 𝑎1,𝑏1

⋈ 𝑎1=𝑎2

𝑏1

𝑎1 𝑎2

𝑇3 𝑇3

(a) Max overlap (b)Overlap+reuse

Figure 4: Exchange placement for query in Figure 3. Maximiz-

ing overlap leads to sub-optimal plans. Combining overlap

with reuse information leads to better plans.

2.2 Examples of optimizations

Next we motivate the proposed optimizations with examples from
TPCDS. Table 1 describes the notation we use to represent queries.

2.2.1 Exchange placement. Consider a variant of Q23 (we show
only 2 of the 4 subtrees and modify some operators for ease of
exposition) as shown in Figure 3. The tree shows operators as nodes
and their required partitioning properties annotated on edges. In
case there are multiple possibilities the edge is annotated with a
set of partitioning options, any one of which would suffice. For
example, edge 𝑒4 requires partitioning on either the pair of columns
𝑎1, 𝑏1 or just 𝑎1 or just 𝑏1. All these are valid options as key based
operators (join, group-by etc.) can execute in parallel as long as
inputs are partitioned on some subset of the keys. Notice that the
query performs 𝑇1 ⊲⊳ 𝑇2 twice but with different parent operators.

An exchange operator takes as input a set of columns (and a
partition count) and partitions the data on those columns. Figure 4
shows two ways of placing exchanges in this query. The plan on
the left is generated by state-of-the-art algorithms that minimize
the number of exchanges needed to satisfy the required properties
of all the operators. To do so it picks partitioning options at edges

938

⋈𝑏1=𝑏2

𝑇2

Γ𝑎1

𝑇1

𝑇2𝑇1

Γ𝑎1

Partial agg
in Spark

Γ𝑎1

𝑇1

𝛾𝑎1

𝑇2

Γ𝑎1

Γ𝑏2Γ𝑎1,𝑏1
𝛾𝑎1,𝑏1 𝛾𝑏2

⋈𝑏1=𝑏2

𝑇2𝑇1

𝛾𝑎1

Single machine/
distributed plan

⋈𝑏1=𝑏2

Distributed plan

Single machine plan

⋈𝑏1=𝑏2

Figure 5: The figure shows the partial aggregation optimiza-

tion as done in Spark today, the group-by push-down pro-

posed in literature and the proposal made in this paper.

such that they can be satisfied by exchanges introduced lower in
the tree. For example, if we pick a partitioning option 𝑎1 at 𝑒8,
it can be satisfied by the previous exchange on 𝑎1 at 𝑒6 (we use
shorthand 𝑒6 ← 𝑎1 to represent exchange assignments). Similarly
if the partitioning option 𝑎1 at 𝑒4 is chosen, it can make use of
𝑒1 ← 𝑎1. We refer to the careful choice of picking partitioning
options to use a previous exchange as overlapping an exchange.
Such an assignment would lead to six exchanges (at all but 𝑒8
and 𝑒4). For this example, the above assignment is minimal in the
number of exchanges needed to satisfy partitioning requirements
of all operators. The exchange reuse rule would then trim this list
down to 4 (Figure 4(a) shows the final plan). Note that in this plan
the join between 𝑇1 and 𝑇2 is performed twice and the exchanges
after 𝑇1 and 𝑇2 are reused and each is read by two consumer stages.

However as shown in Figure 4(b) there is another assignment
which overlaps fewer exchanges but is better. Consider the plan
when only exchange 𝑒3 ← 𝑏3 is overlapped (with 𝑒5). This would
lead to seven exchange assignments (before reuse exchange). Notice
here we deliberately pick the partitioning choice 𝑏1 at 𝑒8 and this is
clearly sub-optimal from an exchange overlap perspective. Despite
this we get a better plan after the reuse exchange rule is applied
(as shown in Figure 4(b)). This plan directly reuses the exchange
𝑒4 ← 𝑏1 at 𝑒8 (thus reusing the result of the join) to generate a plan
with 4 exchanges. As this is a deeper exchange reuse, this planwould
not only avoid exchanges at 𝑒6, 𝑒7 and 𝑒8 but also avoid performing
the join a second time. Further note that this plan would also likely
lead to lesser I/O as only one exchange is reused as opposed to two
(2 reads instead of 4). Hence overall we expect this plan to be better.

In summary, combining exchange reuse opportunities with ex-
change overlap produces better plans, this is the focus of the ex-
change placement algorithm we propose.

2.2.2 Partial pushdown optimizations. Next we demonstrate ex-
amples of partial aggregate push-down and semi-join push-down.
Figure 5 shows a basic query that performs a join on a column 𝑏

followed by an aggregation on a different key 𝑎. It also shows three
existing optimizations for this type of query. These are described
in the box below.

Previous work on partial push-down of aggregates

The first optimization is specific to the big-data setting, it is
targeted at reducing the amount of data exchanged. Notice
that the un-optimized plan in Figure 5 (bottom-left) would
require 3 exchanges (on 𝑏1, 𝑏2 and 𝑎1) as highlighted by bold
lines. This optimization (bottom right) performs a partial ag-
gregation where it would perform an additional aggregation
before exchange, that is even before data is partitioned on the
grouping key. Such partial aggregation would bring down the
amount of data exchanged as it would produce only one row
per group at each task in the stage before final aggregation.

The second optimization is one that pushes down an en-
tire aggregation below the join [10, 20, 30]. This optimized
plan (as shown on the top left) performs aggregations along
the inputs to the join on a key set containing the join and
aggregation keys available at that input. Previous literature
describes conditions under which such rewrites are safe. It
advocates doing such push-downs in a cost based manner
to ensure that pushing the group-by actually brings down
the amount of data joined. Note that in the big-data setting
this optimization in itself does not save on exchanges as the
group-by and join would likely get placed in the same stage
by the exchange placement rule.

A third optimization [22] that is closest to our proposal
combines these two optimizations to produce the single ma-
chine plan shown in the top-right, where a partial aggregation
is performed before the join instead of a full aggregation. As
on a single machine all intermediate data remains in memory,
they also propose a specialized implementation of such trees
that performs the partial aggregation along the input phase
of the subsequent join. Such an implementation is not feasible
in the big-data setting where data is materialized at exchange.

The proposal in [22] is specific to pushing aggregates below joins.
We extend it to all other SQL operators and do so by adding first
class support for partial aggregation during query optimization. We
introduce a new logical operator (𝛾) to represent partial aggregates
and introduce new rules into the optimizer that transform them.
The distributed plan shown in the top-right of Figure 5 requires
two rewrites. The first introduces a partial aggregation operator
(𝛾) above the join and the second pushes it down below the join.
Note that in our optimized plan the push-down does not intro-
duce additional exchanges. In the big-data setting this optimization
introduces an interesting trade-off, it increases the number of hash-
aggregates but reduces the amount of data exchanged. We propose
a costing mechanism to determine if the optimization is beneficial.

Next we show examples where we derive partial aggregates from
operators other than group-by and push them down below standard
SQL operators. Figure 6(a) illustrates a standard query template that
performs a chain of joins and (optionally) unions before performing
an aggregation. As shown in the figure we can push-down partial
aggregates in such queries all the way to the leaf. Such push downs
are only possible because we added partial aggregates as first class
logical operators and pushed them down operator by operator. Note
the figure shows all candidate locations for partial aggregates, not
all of them necessarily reduce the amount of data exchanged. In fact

939

⋉𝑏

𝑇3𝑇2

𝛾𝑏3
𝛾𝑎2,𝑏2

⋉𝑎1=𝒂𝟐

𝑇1 ⋈𝑏

𝑇2

⋉𝑎1=𝒂𝟐

𝑇1

𝑇3

⋈𝑏

𝑇2

𝑇3

𝛾𝑎13

𝑇1 𝑇2

𝛾𝑎3

𝑇1

𝛾𝑏2
𝛾𝑎1,𝑏1

⋃
⋃

𝑇3

𝛾𝑎13

⋈𝑏

𝛾𝑎1
Partial-agg below

Union
Semi-join

push-downs

(a) (b)

Figure 6: Partial push-down examples. Left, Partial-agg

pushed below union, like in Q11. Right, Semi-join push-down

and partial-agg derived from semi-join in Q95

some of the push-downs (shown in gray/light shade) do not affect
exchange at all. Our costing mechanism eliminates such options.
Figure 6(b) illustrates partial push-down opportunities in queries
with semi-joins. A left semi-join only checks if a row in the left
table has a match in the right table, and hence only needs unique
values of the columns from the right side that are referred to in
the join predicate. This leads to two optimizations. First, we can
introduce partial aggregates (refer figure) to eliminate duplicates.
Second, other inner joins on the right tree could be converted
into semi-joins. This is another example of a previously unexplored
partial push-down that converts inner-joins into semi-joins without
modifying the parent semi-join.

3 EXCHANGE PLACEMENT

This section describes the exchange placement algorithm we use
in synapse spark. Figure 7 provides an overview of what existing
systems do today and our proposal. Broadly there are two kinds
of systems. Scope [35], employs cost based exploration to select
among different exchange placement options [34]. As we describe
later such exploration allows it to maximally overlap exchanges. On
the other hand systems like Spark do not support exploration and
instead maintain just a single plan. They traverse the plan bottom
up and introduce exchanges after performing a local overlap check.
As shown in the figure, both systems apply the exchange reuse rule
separately, after exchange placement. In both systems, it transforms
the final chosen plan without exploration.

In synapse spark we perform exchange placement in a cost
based manner, while taking into account both exchange overlap and
exchange reuse opportunities. Now, cost based exploration can be
expensive, and Scope employs a large optimization time budget
(several minutes). In synapse spark on the other-hand we im-
pose a hard constraint on the optimizer time (in seconds) to meet
customers expectations. To achieve this we improve the state-of-
the-art algorithm that has a large exploration space (Section 3.1).
We do so by exploring multiple options only when there are multi-
ple ways to overlap exchanges or when exchange overlap conflicts
with exchange reuse (Section 3.2). Finally, to determine conflicting
options, we need to identify potential for exchange reuse early. We
employ plan marking for this (Section 3.3).

3.1 Exploration based exchange placement

Lets begin by examining the state-of-the-art algorithm for exchange
placement [34]. Algorithm 1 shows pseudo-code for a recursive
routine that computes the interesting partitioning options at each
operator in the plan. For ease of exposition, we assume that the plan

Cost based exploration

Exchange Reuse

Exchange placement

exchange
overlap

exchange
reuse

Exchange placement

Existing systems Synapse Spark

Single best
plan

(spark today)

exchange
overlap

Local maximum

Cost based
exploration

(Scope)

exchange
overlap

maximizes overlap

maximizes overlap and reuse

Figure 7: Exchange placement overview

Algorithm 1 DetermineInterestingPartitionKeysDefault
Require: Physical Plan 𝑝𝑙𝑎𝑛

1: for all child ∈ plan.children do

2: DetermineInterestingPartitionKeysDefault(child)
3: plan.iKeysSet← P′ (plan.keys)

Algorithm 2 OptimizePlan
Require: Physical Plan 𝑝𝑙𝑎𝑛

Require: Required Distribution 𝑟𝑒𝑞𝑑𝐷𝑖𝑠𝑡𝑟

1: If the plan has top k plans computed for reqdDistr already, fetch them
from the map;

2: for all partnKeys ∈ plan.iKeysSet do

3: childrenTopPlans← ∅ ⊲ Compute top K plans for children
4: for all child ∈ plan.children do

5: childTopPlans← OptimizePlan(child,Distr(partnKeys))
6: childrenTopPlans.add(childTopPlans)
7: for all childrenCombo ∈ allCombinations(childrenTopPlans) do

8: newPlan← plan.updateChildren(childrenCombo)
9: optPlan← EnforceExchange(newPlan, reqdDistr)
10: plan.updateTopKPlans(reqdDistr, (optPlan, getCost(optPlan)))
11: return plan.getTopKPlans(reqdDistr)

only consists of key based operators. The implementation of-course
deals with all SQL operators. First, we define P ′(X) = P(X) \ ∅
where P(X) is the power set of X. In the this section when we
mention power set, we refer to P ′. Now in this method, the inter-
esting partitioning options consists of all possible combinations of
the operator keys i.e. P ′(plan.keys). In Figure 3, the join having
{𝑎1, 𝑏1} as keys, would have {𝑎1 |𝑏1 |𝑎1, 𝑏1} in its iKeysSet.

Next, plans with different combinations of partition keys are
explored using a standard plan space exploration algorithm. Al-
gorithm 2 shows a simplified version of the dynamic program-
ming based exploration algorithm used in both synapse spark and
Scope2. The algorithm tracks up to 𝑘 plans per node. We discuss
how 𝑘 is chosen at the end of the section.

In line 2, for each interesting partitioning key partnKeys of this
operator, the best (up to 𝑘) plans for its children are computed first.
Next, these alternative plans from the children are combined to get
the alternative plans for the current operator. For example, if the
plan has two children𝐶1 and𝐶2, having two and three top plans re-
spectively,there would be six alternative options - plan having chil-
dren as {{𝐶1

1,𝐶
1
2}, {𝐶

1
1,𝐶

2
2}, {𝐶

1
1,𝐶

3
2}, {𝐶

2
1,𝐶

1
2}, {𝐶

2
1,𝐶

2
2}, {𝐶

2
1,𝐶

3
2}}.

This is followed by iterating over these alternatives, adding ex-
changes (using EnforceExchange at line 9) and selecting the top 𝑘

2There are several differences in the specifics of the algorithm used by the two systems.
We focus here on exchange placement relevant aspects.

940

Table 2: Examples showing overlap scenarios between two identical sub-trees’ keys (ST1 and ST2) and common partitioning

keys from both parents (P1 and P2). Last column shows the one of the possible keys selection for exchange reuse.

Overlap

Partitioning Keys 𝑺𝑻1
iKeysSet

𝑺𝑻2
iKeysSet

𝑷1
iKeysSet

𝑷2
iKeysSet

Common

P Keys

New 𝑷1
iKeysSet

New 𝑷2
iKeysSet

Keys for Reuse

𝑺𝑻1, 𝑺𝑻2 𝑷1 𝑷2 𝑺𝑻1, 𝑺𝑻2 𝑷1, 𝑷2

Partial {𝑎1} {𝑎1,𝑏1} {𝑎1,𝑏1} {𝑎1} {𝑎1} {𝑎1} {𝑎1} {𝑎1,𝑏1} {𝑎1,𝑏1} {𝑎1,𝑏1} {𝑎1} {𝑏1}

None {𝑎1,𝑏1} {𝑑1,𝑒1} {𝑐1,𝑑1} {𝑎1,𝑏1} {𝑎1,𝑏1} {𝑑1,𝑒1} {𝑐1,𝑑1} {𝑑1} {𝑑1,𝑒1} {𝑐1,𝑑1} {𝑎1,𝑏1} {𝑑1}

Total {𝑎1,𝑏1} {𝑎1,𝑏1} {𝑎1,𝑏1} {𝑎1 |𝑏1 |𝑎1𝑏1} {𝑎1 |𝑏1 |𝑎1𝑏1} {𝑎1 |𝑏1 |𝑎1𝑏1} {𝑎1 |𝑏1 |𝑎1𝑏1} {𝑎1,𝑏1} {𝑎1 |𝑏1 |𝑎1𝑏1} {𝑎1 |𝑏1 |𝑎1𝑏1} {𝑎1} {𝑏1}

Algorithm 3 DetermineInterestingPartitionKeys
Require: Physical Plan 𝑝𝑙𝑎𝑛

1: for all child ∈ plan.children do

2: DetermineInterestingPartitionKeys(child)
3: iKeys, iKeysSet← ∅
4: ⊲ Pruning plan.keys
5: iKeys.addAll(plan.keys ∩ parent.keys)
6: for all child ∈ plan.children do

7: iKeys.addAll(plan.keys ∩ child.keys)
8: ⊲ Pruning the power set of above
9: iKeysSet.checkAndAddAll(P′ (iKeys) ∩ P′ (parent.keys))
10: for all child ∈ plan.children do

11: iKeysSet.checkAndAddAll(P′ (iKeys) ∩ P′ (child.keys))
12: ⊲ Add additional keys if child is a reusable sub-tree
13: for all child ∈ plan.children do

14: if child.marker ∈ reuseMap then

15: cmmnParntKeysForReuse← ⋂︁
reuseMap(child.marker)

16: iKeysSet.addAll(cmmnParntKeysForReuse)
17: if iKeysSet ≠ ∅ then
18: plan.iKeysSet← iKeysSet
19: else
20: plan.iKeysSet← {plan.keys}

Algorithm 4 PlanMarking
Require: Physical Plan 𝑝𝑙𝑎𝑛

1: for all child ∈ plan.children do

2: PlanMarking(child)
3: plan.marker← SemanticHashFunc(plan)
4: reuseMap(plan.marker) .add(plan.parent.keys)

plans having minimum cost. EnforceExchange, as explained in more
detail in [34], inserts an exchange only if the child partitioning
does not satisfy the partitioning option at the parent. Specifically it
checks for exchange overlap, that is whether the child partitioning
is a (non-empty) subset of the partitioning option being explored.

This algorithm is exhaustive in the enumeration of interesting
partitioning options. Scope, the existing system that uses the algo-
rithm, can afford to employ a large value of 𝑘 (as it has a large time
budget). This ensures that it is able to produce maximum overlap
plans like the one shown in Figure 4(a).

3.2 Pruning the space with overlap reasoning

Algorithm 3 describes our implementation to prune the exploration
space by reducing the partitioning options (lines 5-7). Instead of
relying on EnforceExchange to detect overlap opportunities, we
prune the options in two phases. First, we compute individual

partitioning keys of the operator that have an overlap with its
parent’s or children’s keys. We add3 all of them to set iKeys.

In the second phase, we obtain all overlap options by intersecting
the power set of iKeys with the power set of parent’s keys and the
children’s keys. We insert only these as options (in iKeySet) using
a checkAndAddAll method. This method checks if the number of
distinct values for the set is more than the number of partitions
required (a job parameter) before adding it as a partitioning option.
Table 2 demonstrates how this adds all overlap options. The third
row (labeled Total) has 3 different ways to overlap between parent
(P1) and child (ST1), all these are added as options. Row Partial
(representative of example in Figure 3) only adds one option. This
is sufficient to produce maximal overlap plan Figure 4(a). Finally,
if no options are added based on overlap (row None in table), we
only consider one option which is the entire key set (line 20). This
pruning reduces the search space significantly whenever operators
are keyed on multiple columns (like in TPCDS queries).

3.3 Incorporating exchange reuse

As we saw in Section 2.2.1 exchange reuse can conflict with exchange
overlap. This happenswhen there is an overlap between partitioning
keys of the reusable sub-tree and its parent. For example, in Figure 3,
there is an overlap in the partitioning keys of join having keys {𝑎1}
and its parent join having keys {𝑎1, 𝑏1}. If we simply maximize
overlap we may not introduce an exchange after the join at all and
hence there would be no scope for an exchange reuse (after join).

To resolve this, we will have to include additional keys in the
interesting partitioning options (iKeysSet) tracked at the parents of
the reusable sub-trees. We accomplish this in two steps.

We begin by executing a new routine before Algorithm 3 which
is described in Algorithm 4. This algorithm adds plan markers at
nodes in the tree such that if two nodes have the same marker value,
the sub-trees rooted on them are identical. In addition to it, we use
a reuseMap, to store the partitioning keys from these identical sub-
trees’ parent. This algorithm is followed by a cleanup routine (not
shown) that removes singleton entries from the reuseMap.

Next, we extend Algorithm 3 to support exchange reuse by adding
the common keys (derived from reuseMap) in the interesting parti-
tioning keys set if the child is a reusable sub-tree (lines 13-16).

Lets revisit row Partial in Table 2. Consider the two nodes at (𝑆𝑇1,
𝑆𝑇2) at ⊲⊳𝑎1=𝑎2 (𝑇1,𝑇2) in Figure 3 and their parents (𝑃1, 𝑃2). We
already established that their iKeysSet based on overlap reasoning
would contain one element 𝑎1. Now in order to take reuse into
3X.addAll(Y) indicates adding all elements from Set Y to Set X. X.add(Y) indicates
adding the Set Y to Set X as a single entity.

941

account, we will add the common keys between the 𝑃1 and 𝑃2 in
their iKeysSet. Thus, the parents’ new iKeysSet would be {𝑎1 |𝑏1}.
The exploration will now include exchange on 𝑏1 as an option. If
costed right this should lead to the plan shown in Figure 4(b).

Since, we are depending on the costing model for the keys selec-
tion, we need to ensure that during costing we take exchange reuse
into account. To accomplish this, we add a sub-routine AddReuse-
Exchange after line 9 in Algorithm 2. At this point, optPlan would
contain exchange operators at the required places, added by Enforce-
Exchange. Since we have previously accomplished plan-marking,
AddReuseExchange will identify exchange operators, whose chil-
dren are marked for reuse. Now, for each group (consisting of iden-
tical sub-trees), it replaces all except one such exchange operators
by exchange reuse operators in the optPlan. We will now use this
optPlanWithReuse while updating the operator’s top k plans set.

optPlanWithReuse← AddReuseExchange(optPlan)
In summary, synapse spark incorporates cost based exploration
to decide on the placement of exchanges. By detecting exchange
reuse opportunity early and by using this along with overlap infor-
mation it is able to prune the search space significantly to make
exploration practical. Specifically, in synapse spark we desire to
optimize every query within 30 seconds. We achieve this by dynam-
ically choosing the values of 𝑘 based on the complexity of the query.
We observe that because of pruning a value of 𝑘 = 4 is sufficient
to find the optimal exchange placement for all queries. We show
in Section 7.4 that a value above 16 (as would be needed without
pruning) significantly slows down the optimizer.

4 PARTIAL AGGREGATION PUSH-DOWN

This sections discusses partial aggregate push-down. We discuss
other partial push-down techniques in the next section.

The spark optimizer has a physical operator PhyOp-PartialAgg
to represent partial aggregates [3] and a physical rewrite rule to
add them to the physical operator tree [1]. This rule in-fact re-
places every group-by with a pair of partial and final aggregate
operators (PhyOp-PartialAgg and PhyOp-FinalAgg). Today it does
so without any costing. The two operators incrementally com-
pute the result of standard commutative and associative aggregates
(𝑠𝑢𝑚,𝑚𝑖𝑛,𝑚𝑎𝑥, 𝑐𝑜𝑢𝑛𝑡). PhyOp-PartialAgg has no partitioning re-
quirements, it computes partial results of standard aggregates even
before data is partitioned. PhyOp-FinalAgg has a required parti-
tioning property, it expects inputs to be partitioned on a subset of
the grouping keys. It combines the partial results for each unique
combination of grouping key values to produce the final aggregates.

In synapse spark we introduce a new logical operator LogOp-
PartialAgg to represent partial-aggregates. We use the shorthand
𝛾𝑘𝑒𝑦𝑠, [𝑎𝑔𝑔𝑠 (𝑒𝑥𝑝𝑟𝑠)] whenever we need to refer to its arguments. Like
a group-by (Γ𝑘𝑒𝑦𝑠, [𝑎𝑔𝑔𝑠 [𝑒𝑥𝑝𝑟𝑠)]) the operator has two arguments,
𝑘𝑒𝑦𝑠 is a list of aggregation keys, and 𝑎𝑔𝑔𝑠 (𝑒𝑥𝑝𝑟𝑠) is a list of com-
mutative and associative aggregate functions. Each aggregation
𝑎𝑔𝑔𝑖 is applied after computing 𝑒𝑥𝑝𝑟𝑖 on the elements of the group.
The rest of the section describes how we utilize this operator.

4.1 Seed rules to derive partial aggregates

We begin by describing seed rules, rules that introduce partial-
aggregates into the query tree.

Γ𝑎,[𝑠𝑢𝑚 𝑏 ,
𝑐𝑜𝑢𝑛𝑡(∗)

min 𝑐 ,
𝑚𝑎𝑥 𝑑]

𝑆𝑄

Γ𝑎,[𝑠𝑢𝑚 𝑏𝑝𝑟𝑒 ,

𝑠𝑢𝑚 𝑐𝑛𝑡𝑝𝑟𝑒 ,

min(𝑐𝑝𝑟𝑒)

max(𝑑𝑝𝑟𝑒)]

𝜸 𝒂,[𝒔𝒖𝒎 𝒃 →𝒃𝒑𝒓𝒆,

𝒄𝒐𝒖𝒏𝒕 ∗ →𝒄𝒏𝒕𝒑𝒓𝒆,

𝒎𝒊𝒏 𝒄 →𝒄𝒑𝒓𝒆,

𝒎𝒂𝒙 𝒅 →𝒅𝒑𝒓𝒆]

𝑆𝑄

𝛾𝑎1,𝑏1

ځ 𝑎1,𝑏1

𝑆𝑄1 𝑆𝑄2 𝑆𝑄1 𝑆𝑄2

𝛾𝑎2,𝑏2

(a) partial-agg from group-by (c) partial-agg from intersect

𝑆𝑄1

⋉𝑎1=𝑎2

𝑆𝑄2 𝑆𝑄1 𝑆𝑄2

⋉𝑎1=𝑎2

𝜸𝒂𝟐

(b) partial-agg from semi-join

ځ 𝑎1,𝑏1

Figure 8: Seed rules to derive partial agg from SQL operators.

Figure 8(a) depicts how we derive a partial-aggregate 𝛾 from a
group-by Γ. This rule is exactly like the physical rule that introduces
PhyOp-PartialAgg (discussed above) except that its in the logical
space. The rule introduces a partial aggregate with the same keys
as the group-by and introduces appropriate aggregation functions
to compute the aggregate incrementally. The figure shows partial
functions for standard aggregates.

We add two more seed rules which are not part of the optimizer
today, even as physical rules. Figure 8(b) shows how we derive a
partial aggregate from a left semi-join. The rule introduces a partial-
aggregate (𝛾𝑎2) on the right child of a left semi-join. The partial
aggregate is keyed on the equi-join keys from the right side and it
does not perform any aggregates (such an aggregate is also referred
to as a distinct aggregation). This is semantics preserving as a left
semi-join only checks for an existence of a match on the equi-join
keys from the right side. The partial aggregate simply removes
duplicate keys from the right side, this does not affect the existence
check. A similar rule (not shown) derives partial aggregates on the
left child of a right semi-join.

Figure 8(c) shows how we derive a partial-aggregate from an
Intersect operator. An intersect [4] is a set based operator that only
outputs those rows from the left that match with rows in the right.
The output of an intersect is a set (and not a bag) so duplicate rows
are eliminated from the output. Given these semantics it is safe to
eliminate duplicates from both the inputs of intersect. We introduce
partial aggregates on each input to intersect for this.

An important property of partial-aggregates that we exploit later
is that they are optional operators, not including them in the plan
does not affect the correctness of the optimization. Adding a partial
aggregate below a group-by is optional as the final aggregate is
responsible to producing the fully aggregated value. One detail that
needs to be taken care of is that the partial and final aggregate for
a 𝑐𝑜𝑢𝑛𝑡 (∗) are different, so it may appear that the plan would be
different depending on whether or not a partial aggregate is intro-
duced. We exploit the fact that its possible to simulate a 𝑐𝑜𝑢𝑛𝑡 (∗)
with a 𝑠𝑢𝑚(1) aggregate [31], which simply adds a constant 1 for
every row in the group. So in the rest of the section we assume that
every group-by with a 𝑐𝑜𝑢𝑛𝑡 (∗) is rewritten before the seed rule
and hence the partial and final aggregate have then same functions.
Its also obvious that partial aggregates derived from semi-join and
intersect are optional as they just eliminate duplicates early.

942

𝑆𝑄1

⋈𝑎1=𝑎2

𝑆𝑄2 𝑆𝑄1 𝑆𝑄2

𝛾 𝑏1,𝑐2,

[𝑠𝑢𝑚 𝑑1 ,
min(𝑒2)]

𝛾 𝑎1,𝑏1,

[𝑠𝑢𝑚 𝑑1

→𝑑1
𝑝𝑟𝑒

]

𝛾𝑎2,𝑐2,[min 𝑒2

→𝑒2
𝑝𝑟𝑒

𝑐𝑜𝑢𝑛𝑡 ∗

→𝑐𝑛𝑡𝑝𝑟𝑒]

⋈𝑎1=𝑎2

Π𝑏1,𝑐2,𝑒2
𝑝𝑟𝑒

,𝑑1
𝑝𝑟𝑒

×𝑐𝑛𝑡𝑝𝑟𝑒→𝑑𝑝𝑟𝑒

𝛾𝑏1,𝑐2,[𝑠𝑢𝑚 𝑑𝑝𝑟𝑒 ,min 𝑒2
𝑝𝑟𝑒

]

Figure 9: Rule to push-down partial-aggregate below join

4.2 Partial aggregate push-down rules

Push-down below joins. Our rules for pushing down partial-
aggregates below join are based on rules from past literature [10, 20,
30] that describe how to push a group-by below a join. We describe
the rewrite in detail in the box below. Note that the same rule can
be used when every instance of 𝛾 is replaced with a group-by Γ and
the correctness of our partial-aggregate push-down follows from
the correctness of the group-by push down rule.

Pushing down partial aggregates based on rule from liter-

ature to push-down group-by below join

We describe how a partial aggregate 𝛾𝑝𝑘𝑒𝑦𝑠, [𝑝𝑎𝑔𝑔𝑠 (𝑝𝑒𝑥𝑝𝑟𝑠)]
can be pushed down below a join ⊲⊳𝑎1=𝑎2 (𝑇1,𝑇2)). Figure 9
shows an example plan before and after the rule is applied. The
rule has a pre-condition that checks if for each aggregation
(𝑝𝑎𝑔𝑔𝑠𝑖) its parameter (𝑝𝑒𝑥𝑝𝑟𝑠𝑖) can be computed from exactly
one of the inputs to the join. In Figure 9, 𝑑1 comes from the
left and 𝑒2 comes from the right. So the pre-conditions are
satisfied. After checking the pre-condition the rule rewrites
the tree by introducing partial- aggregates at both inputs to
the join. Further, it adds a project above the join that combines
results from the newly introduced operators.

The arguments of the partial-aggregates on each side and
the project are derived as follows. The keys for the new partial-
aggregates are derived by splitting the parent keys between
the left and the right. These sets are then appended with the
join keys from that side. In the example, (𝑎1, 𝑏1) become the
keys for the 𝛾 on the left and (𝑎2, 𝑐2) become the keys for the
right. Next, the aggregation functions on the two sides are
derived by splitting the 𝑎𝑔𝑔𝑠 into those whose expressions
can be computed from the left and those from the right. In the
example, 𝑠𝑢𝑚(𝑑1) comes from left and𝑚𝑖𝑛(𝑒2) comes from
right. Each aggregation is then replaced with the correspond-
ing partial computation. Further, if any of the aggregates on
the right (left) side perform a 𝑠𝑢𝑚 or 𝑐𝑜𝑢𝑛𝑡 , a 𝑐𝑜𝑢𝑛𝑡 aggregate
is added on the left (right). These counts are needed in the
final project (Π) to scale up the partial results from that side
appropriately. For the example query we introduce a partial
count on the right as the left has a 𝑠𝑢𝑚 aggregate. The project
after the join is used to scale up the partial results. In the
example, 𝑐𝑛𝑡𝑝𝑟𝑒 is used to scale up the partial sum from the
left 𝑑𝑝𝑟𝑒1 to compute the new partial sum 𝑑𝑝𝑟𝑒 .

𝑆𝑄1

⋃𝑎2,𝑏2

𝑆𝑄2 𝑆𝑄1 𝑆𝑄2

𝛾𝑎,𝑠𝑢𝑚(𝑏)

𝛾𝑎1,𝑠𝑢𝑚 𝑏1

→𝑏1
𝑝𝑟𝑒

⋃𝑎2,𝑏2
𝑝𝑟𝑒

𝑎1, 𝑏1
𝛾𝑎2,𝑠𝑢𝑚 𝑏2

→𝑏2
𝑝𝑟𝑒

𝛾𝑎,𝑠𝑢𝑚(𝑏)

𝑎1, 𝑏1
𝑝𝑟𝑒

Figure 10: push-down of partial aggregates below union

One important difference between rules for partial-aggregate
push-down and prior work on partial push-down of a group-by
below a join is that the newly introduced partial aggregates are
optional. As the parent is optional its clear that retaining any subset
of (left, right, parent) aggregates leads to a valid plan. In particular
its possible to push-down a partial aggregate on one side alone with-
out having a parent aggregate. On the other hand with a group-by
push-down more care needs to be taken. A group-by in the origi-
nal query can only rarely4 be completely eliminated [10]. Pushing
down on one side without having a parent group-by is even more
rare. Such push-downs are always possible with partial-aggregates.

Push down below unions. A union is an n-ary operator that
concatenates 𝑛 inputs that have the same number of columns. A
push-down below union is simple. Unlike join, the other multi-input
operator, there are no pre-conditions to check and no additional
keys to be added. We can simply push down the parent aggregate
(𝛾𝑘𝑒𝑦𝑠, [𝑎𝑔𝑔𝑠]) on each side, replacing the aggregate functions with
their partial computations. Figure 10 shows an example with a 𝑠𝑢𝑚
aggregate , other aggregates can be supported as we have already
seen in this section. Like with joins any subset of partial aggregates
can be pushed down and retaining the parent partial aggregate is
optional regardless of which subset was pushed down.

Push down below row-wise SQL operators. Partial aggregates
can be pushed down below select and project. To push-down be-
low a Select we need to extend the keys with the columns refer-
enced in the selection predicates. For example, 𝛾𝑎, [𝑠𝑢𝑚 (𝑑)] can be
pushed below 𝜎𝑏>𝑐 as 𝛾𝑎,𝑏,𝑐, [𝑠𝑢𝑚 (𝑑)] . Prior work [20] describes
a similar rule that can push a group-by below a select. A partial-
aggregate can also be pushed down below a project. A project can
assign results of expressions on input columns to its output columns
(e.g. 𝑜𝑝 = Π𝑎,𝑏+𝑐→𝑑). We enable push-down under the simple pre-
condition that the project uses expressions only to compute the
aggregation keys but not columns used in aggregation expressions.
For example we push down 𝛾𝑑, [𝑚𝑎𝑥 (𝑎)] below 𝑜𝑝 as 𝛾𝑏,𝑐, [𝑚𝑎𝑥 (𝑎)]
but disallow push-down of𝛾𝑎, [𝑚𝑎𝑥 (𝑑)] as here 𝑑 which is used in an
aggregation function is the result of an expression in 𝑜𝑝 . Its easy to
see that these push-downs are semantics preserving as they retain
every unique combination of the columns used in the 𝑠𝑒𝑙𝑒𝑐𝑡 and
𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 . Its also obvious that the pushed down partial-aggregates
are optional. Finally we introduce rules to push a partial-aggregates
below 𝑒𝑥𝑝𝑎𝑛𝑑 [2], an operator that produces multiple output rows
for each input row. This operator is used to evaluate advance SQL
4If there is a primary key, foreign key relationship between the joining tables. Such
constraints are neither enforced nor tracked in Spark.

943

operators, roll-up and cube, and also for aggregation functions that
apply on distinct values of a column (e.g. count(distinct c)) . We do
not describe the rules in details here in the interest of space.

4.3 Cost based placement of partial aggregates

A partial aggregate introduced by the seed rules in Section 4.1 can
be pushed down to multiple places in a logical tree by recursively
applying rules in Section 4.2. A partial aggregate can be expensive
as it requires building a hash-table, sometimes on more keys than
the seed aggregate. We rely on costing to decide which partial
aggregates to retain if any. We exploit the property that all partial
aggregates are optional to cost each 𝛾 independently. We apply
the following two costing heuristics to determine which all partial
aggregates pushed down from a single seed rule to retain.
(1) As the primary benefit of partial aggregation is a reduction in

the amount of data exchanged we only consider a single partial-
aggregate in each stage. In particular, we consider the top-most
partial aggregate as it occurs right before the exchange.

(2) We only retain a partial aggregate if the number of rows ex-
changed reduces by a threshold value. That is, at the parent
exchange we check if the reduction ratio:

𝑟𝑟 = 𝑟𝑜𝑤𝑠𝑎𝑓 𝑡𝑒𝑟 /𝑟𝑜𝑤𝑠𝑏𝑒 𝑓 𝑜𝑟𝑒 < 𝑇ℎ

where 𝑟𝑜𝑤𝑠𝑎𝑓 𝑡𝑒𝑟 and 𝑟𝑜𝑤𝑠𝑏𝑒 𝑓 𝑜𝑟𝑒 are the number of rows ex-
changed with and without the partial aggregate respectively.
Empirically we find that a value𝑇ℎ = 0.5 leads to good benefits
(see Section 7.2 for sensitivity analysis).

To determine 𝑟𝑜𝑤𝑠𝑏𝑒𝑓 𝑜𝑟𝑒 and 𝑟𝑜𝑤𝑠𝑎𝑓 𝑡𝑒𝑟 we build upon the sta-
tistics propagation done by the optimizer.

Statistics propagation in Spark and the combinatorial

blow-up for group-by

Today the optimizer maintains an estimate of the total number
of rows and some column level statistics (number of distinct
values, range of values etc) at each node in the plan. Starting
from statistics on input tables, it derives the statistics for the
output at each operator from the statistics at its input. Statis-
tics propagation is well-studied [9] and the Spark optimizer
builds on this literature. We only discuss propagation across
a group-by here as it is relevant to how we derive cost for
partial aggregates. A group-by produces one output row per
distinct combination of its keys, so to calculate 𝑟𝑜𝑤𝑠𝑎𝑓 𝑡𝑒𝑟 we
need an estimate for the number of distinct values for a set
of keys. A well established conservative way (upper-bound)
to determine the number of distinct values of a set of keys
is to multiply the distinct values of individual columns. This
is what the optimizer uses today. It is well known that with
keys spanning many columns this can lead to a large over
count. As it assumes every combination of values is possible
this estimator suffers from a combinatorial blow-up.

Finally note that statistics are computed for logical plans
and apply to the entire result of the operator. Propagation in
itself is not specialized to the distributed nature of execution,
where each operator is executed with several tasks that each
compute parts of the results.

⋈𝑎1=𝑎3

⋈𝑏2=𝑏3

𝑏3

𝛾𝑐1,𝑑1,𝑒2,𝑓2[…]
⊤

𝛾𝑏2,𝑒2,𝑓2,[…]
𝑙

𝛾𝑎3,𝑏3,[…]
𝑟𝑟𝛾𝑎1,𝑐1,𝑑1,[…]

𝑙𝑙 𝑐𝑜𝑠𝑡𝑟𝑟 = | 𝑎3| × | 𝑏3|/𝑑𝑜𝑝

c𝑜𝑠𝑡⊤ = | 𝑐1| × | 𝑑1| × | 𝑒2| × | 𝑓2|

𝛾𝑐1,𝑑1,𝑏3,[…]
𝑟
𝑐𝑜𝑠𝑡𝑟 = | 𝑐1| × | 𝑑1| × | 𝑏3|/𝑑𝑜𝑝

𝑆𝑄3

𝑆𝑄2 𝑆𝑄1

Figure 11: Costing partial aggregates

We derive costs for partial-aggregate from statistics by taking
into account the distributed nature of execution. In particular its
possible that some of the columns for partial aggregate overlap with
the input/exchange partitioning of that stage. Figure 11 shows an
example where 𝛾𝑟𝑟 and 𝛾𝑟 have a key 𝑏3 that is also the partitioning
key for that stage. So we make use of this to scale down the distinct
values of the partition keys by the degree of parallelism, 𝑑𝑜𝑝 (which
is a configuration parameter). For all other keys we (conservatively)
assume that each task can get all distinct values for such columns.
As shown in the figure, the costs formula for𝛾𝑟𝑟 and𝛾𝑟 are products
of distinct values of columns scaled down by the 𝑑𝑜𝑝 .

Another improvement we make is for stages that perform broad-
cast joins. Such stages usually have a single large input that is
joined with multiple small tables (small enough to fit in memory
even without partitioning) using one or more broadcast joins. Fig-
ure 11 shows a plan where a large input is joined with two other
broadcastable inputs. In such stages the partial aggregates at the
lower levels may include partition keys (like in the example) of the
stage while the aggregate at the end of stage does not. To enable
partial aggregation in this scenario we check if the reduction ratio
at any of the partial aggregates along the chain from the large input
is above threshold. If so we place a partial aggregate in the stage.
So in the example we check the reduction ratio at 𝛾𝑟𝑟 and 𝛾𝑟 and
based on that make decisions for 𝛾⊤. This can help mitigate the
combinatorial blow-up that statistics propagation suffers from. 𝛾⊤
has 5 multiplication terms while 𝛾𝑟𝑟 has only 2!, one of which is a
partition key. These extensions to costing enable partial aggregate
push-down in 8 additional TPCDS queries.

5 OTHER FORMS OF PARTIAL PUSH-DOWN

This section covers two other partial push-down optimizations,
namely semi-join push-down and bit-vector filters.

5.1 Semi-join push-down

A semi-join is different from an inner-join in how it handles mul-
tiple matches. If a record from the left table has 𝑛 matches on the
right , an inner-join duplicates the record 𝑛 times while a left semi-
join only performs an existence check (𝑛 ≠ 0) and outputs the

944

⋉𝑎1=𝒂𝟐

𝑇1 ⋈𝑏2=𝑏3

𝑇2 𝑇3

𝑇1 ⋉𝑏2=𝑏3

𝑇2 𝑇3

⋉𝑎1=𝒂𝟐
⋉𝑎1=𝒂𝟑

𝑇1
⋈𝑏2=𝑏3

𝑇2 𝑇3

𝑇1 ⋊b2=b3

𝑇2 𝑇3

⋉𝑎1=𝒂𝟑

⋊𝒂𝟏=𝑎3

⋈𝑏1=𝑏2

𝑇2

𝑇3

𝑇1

⋉𝑏1=𝑏2

𝑇3

⋊𝒂𝟏=𝑎3

𝑇2𝑇1

⋊𝒂𝟐=𝑎3

⋈𝑏1=𝑏2

𝑇3 ⋊𝑏1=𝑏2

𝑇3

⋊𝒂𝟐=𝑎3

𝑇2𝑇1𝑇2𝑇1

(a) (b)

(c) (d)

Figure 12: Semi-join push-down

record once. As we have seen in the previous section we can exploit
this to derive partial aggregates from semi-joins. Semi-joins offer
another interesting optimization opportunity. Consider a left semi-
join whose right child is an inner-join and that the semi-join keys
come from one of the inputs to the inner-join (refer Figure 12(a)). In
such cases we can convert the inner-join (⊲⊳𝑏2=𝑏3) itself into a left
semi-join without modifying the root semi-join. This is safe because
we are only interested in the unique values of 𝑎2 for checking at
the root semi-join. As 𝑎2 comes from the left child of the inner-join
we can avoid duplicates of 𝑎2 by converting the inner-join into a
left semi-join. The figure shows other valid variants of this rule.

These rules can be recursively applied to introduce additional
semi-joins in a query that performs a multi-way join. Further, one
can see that there are interesting connections between this and
partial aggregate push-down. An inner-join followed by a distinct
partial aggregation can be converted into a semi-join followed by
a distinct partial aggregation. We exploit such properties to push
semi-joins below union and other SQL operators.

A note on performance.While both inner-join and semi-join
require data to be sorted (for a sort merge join) or inserted/looked-
up in a hash-table (for a hash-join), a key difference between them
is that a semi-join produces fewer output rows. Our evaluations
showed that in queries where the inner-join and semi-join were hap-
pening in the same stage, we see little or no improvement with this
optimization. But they yield significant gains when the amount of
data exchanged reduces, that is when there is an exchange between
the inner-join and the semi-join. As we do not expect a degradation,
we perform this push-down without any costing.

5.2 Bit-vector filtering

Bit-vector filtering is a well-studied technique to partially filter
the larger input of a (semi/inner) join. The filtering is done by
probing an approximate, bit-vector representation (e.g. a bloom
filter) of the set of keys present on the smaller side. Note that
as the representation is approximate, the filter cannot substitute
a join, it is just a partial operator. Several standard algorithms
to introduce bit-vector filters [11–13, 15] and data structures to
represent bit vectors [8, 16, 25] have been proposed in literature.
We build upon this to incorporate bit-vector filtering into Spark.
We use a standard algorithm [18] to derive bit-vector filters and
then carefully implement the technique in a distributed setting.

First, we perform the computation of the bit-vector itself in a dis-
tributed manner. A Spark run-time employs a set of tasks (typically

one per core) to do the actual processing and a set of executors
(one or two one per machine) that each manage a subset of the
tasks. Finally each spark job is orchestrated by a single orchestrator
task. We exploit this to construct bloom filters incrementally5. Each
task processing the smaller input constructs its own bloom filter.
We then 𝑜𝑟 the bloom filters at the executor level and finally at
the orchestrator. The final bloom filter is then passed back to the
executors, and all tasks running at that executor probe the same
in-memory (read-only) bit-vector without needing concurrency
control.

Second, we make use of plan marking to avoid duplicate com-
putation. There are two potential sources of redundancy. First, the
same small input can be joined with several large inputs. Surpris-
ingly, the reuse exchange rule often misses out on detecting that
the multiple computations are identical. This happens because the
rule runs right at the end and the different instances of the same
sub-query are optimized differently. We make use of plan markers
to work-around this. We have a special rule that detects if the same
bit-vector computation is repeated multiple times, and associate
the same marker with them. This computation is similar to what
is described in Algorithm 4. Second, the sub-query that prepares
the smaller join is needed both to compute the bit-vector and for
the actual join. We piggyback on the above plan marking scheme
to avoid this redundancy too.

6 PEEPHOLE OPTIMIZATIONS

This section highlights some of the peephole optimizations we im-
plement in synapse spark. We focus on optimizations to sort in this
paper as they bring significant benefits. Due to space constraints
we do not include other optimizations in this paper (we exclude
them when reporting results as well).

The sorting algorithm employed by Spark is a variant of insertion
sort called Tim sort [5]. The core step in the algorithm (performed
repeatedly) is the insertion of a new row into a previously sorted ar-
ray. The sort implementation in Spark employs lazy de-serialization.
It first tries to sort based on a fixed width (4B) prefix of the serialized
row. Only if there is a collision, that is another row with the same
prefix exists in the sorted array, does it deserialize the row and per-
form a comparison. We employ two peephole optimizations to the
sort implementation that significantly save 10× the comparisons in
some of the most expensive queries in TPCDS.

6.1 Sort key re-ordering

We re-order sort keys so that the columns with more distinct values
occur before columns with fewer distinct values. This brings down
the probability of collisions. A reduction in collisions reduces the
number of times we need to deserialize the data and the number of
comparisons we need to perform.

Note that sort is sensitive to order, re-rodering the keys can pro-
duce a different output. However when introduced to satisfy the
requirements of a specific operator like sort-merge-join, any consis-
tent ordering between the different inputs to the operator is safe.
We rely on plan-marking to enforce such consistency constraints.

5We choose bloom filters to as they allow for incremental computation. Other newer
filter data structures like quotient filters [25] could also have been used.

945

2
0

2
0

1
9

1
7

1
6

1
5

1
5

1
4

1
3

1
3

1
3

1
2

1
2

1
1

1
1

1
1

1
1 9 7

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

Q
1

7
Q

2
5

Q
4

0
Q

1
Q

8
1

Q
1

0
Q

3
0

Q
4

8
Q

6
9

Q
8

Q
3

9
a

Q
3

9
b

Q
7

9
Q

3
4

Q
6

Q
5

4
Q

8
9

Q
6

1
Q

7
3

Sp
ee

d
u

p

(b) Queries with execution time less than 20 sec

Other Partial Push-down Peephole

6
3

3

5
2

4

5
1

8

5
1

1

3
4

3

3
3

6

3
2

5

2
5

7

2
5

3

2
4

5

1
7

3

1
5

5

1
1

9

1
0

2

6
6

6
2

5
6

5
3

5
1

5
1

5
0

4
9

4
7

4
6

4
5

4
5

4
3

3
9

3
7

3
3

2
8

2
7

2
5

2
4

2
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Q
2

3
b

Q
6

7

Q
2

3
a

Q
4

Q
9

5

Q
1

4
a

Q
1

4
b

Q
6

4

Q
2

4
b

Q
9

3

Q
2

4
a

Q
5

0

Q
7

8

Q
1

6

Q
1

1

Q
9

4

Q
7

4

Q
2

9

Q
8

0

Q
4

7

Q
7

2

Q
5

7

Q
5

Q
6

5

Q
8

7

Q
8

2

Q
3

8

Q
8

3

Q
8

5

Q
4

9

Q
1

3

Q
3

1

Q
3

7

Q
3

5

Q
5

8

Sp
e

ed
u

p

(a) Long running queries

Spark-3 (baseline) Exchange Placement Partial-aggregate

Figure 13: Per-query speed-up from optimizations. Queries are sorted in descending order of execution time, label in each bar

reports execution time in seconds.

6.2 Two-level sort

Some operators like window functions do not allow for a re-ordering
of sort keys. In scenarios where first column has few distinct values,
the prefix comparisons will have lots of collisions. In such cases we
employ a two level sort. We first bucket rows based on the value of
the first column. We then sort rows within each bucket using the
standard sort algorithm and then output buckets in increasing order
(decreasing for descending sort) of the value of the first column.
We employ this technique so long as the number of distinct values
of the first column is below a (configurable) threshold.

Table 3: Number of queries affected by each optimization

and the reduction in execution time in seconds

Optimization #Rules #Queries Improvement

Exchange Placement 3 26 1149(27%)

Partial-Aggregate 10 19 888(21%)

Other Partial
Push-down

Semi-Join 6 10 289(7%)

Bit vector 2 13 510(12%)

Peephole key re-order 1 11 324(7%)

Two-level 1 1 196(5%)

7 EVALUATION

We compare synapse spark against Spark (Apache Spark 3.0.1)
using the TPCDS benchmark suite at 1TB scale factor. These experi-
ments were performed on a cluster with 64 cores and main memory
of 512GB spread across 8 worker nodes. Each query was executed
5 times and we report the average speedup (along with width of
the 95% confidence interval). We also evaluate some optimizations
on a scale-up single machine database. This was done at 30GB scale
factor using SQL server on a node with 8 cores and 64GB RAM.

7.1 Performance summary

Table 3 reports the number of rules needed to implement each op-
timization, the number of queries affected and the corresponding
reduction in execution time (both in absolute and in percentage).

The partial push-downs contribute to 75% of the new rules we added.
Overall the optimizations impact about half the queries (53 out of
103, 17 of top 20) in the benchmark suite, speeding up this subset
of queries by 2.1× and the entire suite by 1.8× (shown in Figure 1).
Exchange placement (Section 3) and partial-aggregation (Section 4)
have the biggest impact, both in terms of number of queries im-
pacted and overall speedup. Figure 13 reports the breakdown of
speedup from these optimization in each of the 53 queries. We ob-
serve significant improvements in long running queries where often
multiple optimizations apply and bring non-overlapping benefits.

7.2 Impact of each optimization

Next we highlight some of the most notable improvements for each
optimization covering impacted queries from the top 20 (for opera-
tor costs before and after optimizations refer Figure 2).
Exchange Placement Some of the biggest gains due to this opti-
mization are because of reuse reasoning via plan-marking. Q23b,
14a, 14b, Q47, Q57 leverage this to attain 2−4× speedup. In addition
to the bottleneck operators we target, this optimization reduces the
cost of scans too by avoiding redundant scans (14a,14b).
Partial aggregate push-down We were able to push down the
aggregates all the way to the first stage in all but two impacted
queries (17 out of 19). Some of the most significant gains were when
the partial aggregates were derived from intersect (Q14a,Q14b) and
semi-join (Q82,Q37). All this was only possible because of our funda-
mental extensions to add first-class support for partial-aggregation.
A careful look at the operator breakdown reveals that the cost
model is quite effective at assessing the benefit. The optimization
always brings down the cost of the bottleneck operators. The model
infact rejects push-down of partial aggregates in about 25 queries
(not shown), and we cross validated (see sensitivity analysis) that
none would have seen significant benefits.
Other partial push-down Semi-join push-down and bit-vector
filtering together had a significant impact on Q95 (the only join
heavy query in the benchmark) where they not only saved on ex-
change but also on join cost. Interestingly there were two instances
(Q82,Q37) where there was no exchange between the inner-join
and the root semi-join, and in these instances semi-join push-down
yielded no benefit.

946

Figure 14: Comparison of speedup from partial aggregation

and semi-join push-down, in scale-up and scale-out systems.

About half the queries impacted by bit-vector filtering benefited
from plan marking to avoid duplicate computation. As seen from
Figure 2 (bloom) our optimized distributed implementation ensures
that overhead of constructing the filter is negligible.
Peephole Apart from the partial push-downs, sort key re-ordering
further reduced the execution time of Q50 and Q93 by an average
of 38%. In Q93, the numbers of record comparisons decreased from
13 billion to 120 million (10× improvement) almost eliminating sort
cost altogether. Two-level sort decreased the record comparisons in
Q67 by 89× (8.5 billion to 950 million) and reduced sort time by 7×.

7.3 Impact on scale-up databases

We evaluate two of the partial push-down optimizations, namely
partial-aggregation push-down and semi-join push-down, in the scale-
up setting as well. For these experiments we manually modified
the queries to reflect the optimizations and verified that they had
the desired effect on the plans. Note that for partial aggregation
push-down we introduce addition full aggregates in place of partial
aggregates. In essence our manual modifications simulate what
would happen if the aggregation push-down from [10, 20, 30] were
extended to other operators as proposed in this paper.

Figure 14 shows the speedup on queries that were most impacted
by these two optimizations. As can be seen the benefits are much
lower in scale-up settings as compared to synapse spark. Partial
push-downs bring a maximum improvement of 20% in scale-up
settings with several queries seeing no benefit at all, whereas in
scale-out settings we see 1.5 − 3× improvement. We conclude that
while these two optimizations are applicable to the scale-up setting,
they are not as effective as they are in the scale-out setting.

7.4 Sensitivity analysis

Partial aggregate sensitivity analysis We measured the impact
of increasing the threshold 𝑇ℎ (see Section 4.3) on the applicabil-
ity and performance of the partial aggregation optimization. We
observe that increasing the value from 0.5 to 0.95 increases the
number of queries impacted (by 4) but these queries do not see any
significant improvement or degradation.
Sensitivity to 𝑘 for exchange placement Recall that our ex-
change placement algorithm incorporates an aggressive pruning
of the search space. With our algorithm the optimizer takes 1 − 12
seconds to optimize a TPCDS query, never needing a 𝑘 value (num-
ber of plans memoized per node) of more than 4 to search over

all options. Without pruning optimization time increases by more
than 2× for 7 queries (including Q24,Q47,Q57 that benefit a lot from
exchange placement), all of which require a 𝑘 of 16 or more to
search the complete space.𝑄24 in-fact needs more time to optimize
and reach the same optimal plan, than to run. This is unacceptable.

8 RELATEDWORK

Query optimization is a very well researched area, with several
decades of literature and significant industrial impact. We already
described (in boxes in earlier sections) some important and closely
related work. We provide a few additional details here.

Fundamentals components. Query costing, statistics propaga-
tion and plan space exploration are richly studied areas [7, 9, 18, 19].
We propose specific improvements targetting big-data systems. We
propose a cost model (for partial push-downs) that accounts for
exchanges and extend Spark to perform cost-based exploration.

Exchange and sorting. Recent literature proposes algorithms to
introduce and implement exchanges [26, 28, 32–35]. We improve on
the best exchange placement algorithm [34]. One interesting aspect
of the prior algorithm is that it simultaneously optimizes sorting
and partitioning in a cost-based manner. They support an order
preserving exchange that interleaves reads from many machines .
Spark today does not support such an exchange, it instead employs
a carefully optimized sort implementation (winner of sort competi-
tion [5]) and relies on re-sorting data after exchange if required. In
synapse spark we propose a peephole optimization that directly
picks the best key order instead of exploring all combinations.

Finally our plan tagging mechanism is similar to what is used
in other areas like view materialization and multi-query optimiza-
tion [17, 21]. But our use case is very different, we are using it in
the process of independently optimizing a single query.

Partial push-down. synapse spark differs from prior work [10,
20, 22, 30] in that it extends the big-data optimizer with first class
support for partial aggregation. We add a new logical operator to
and introduce several rules to seed partial aggregates and push
them down below all SQL operators. [22] also proposes ways to
limit the memory requirement of partial aggregation by using a
bounded sized hash-table that can emit out multiple results for each
set of partial aggregation keys. They also propose a cost model to
specialize the parameters of their implementation. We explore a
different trade-off (between hash-aggregate and exchange) that is
more important in the big-data setting and propose a cost model to
decide which partial aggregates are likely to be beneficial. Partial
push-downs via bit-vector filtering [11–13, 15] is richly studied. We
propose a specialized distributed implementation.

9 CONCLUSIONS

This paper describes new query optimization techniques we in-
corporate in synapse spark. We identify the main bottlenecks
in big-data systems and propose three types of optimizations to
address them. We extend the Spark query optimizer with new op-
erators and several new logical and physical rules to implement the
optimizations.

947

REFERENCES

[1] Spark SQL Aggregate Rewrite Rule. https://github.com/apache/spark/blob/
master/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/
AggUtils.scala.

[2] Spark SQL Expand Operator. https://github.com/apache/spark/blob/master/
sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/
basicLogicalOperators.scala.

[3] Spark SQL HashAggregate Operator. https://github.com/apache/spark/blob/
master/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/
HashAggregateExec.scala.

[4] Spark SQL Set Operators. https://spark.apache.org/docs/latest/sql-ref-syntax-
qry-select-setops.html.

[5] Apache Spark the Fastest Open Source Engine for Sorting a Petabyte. https:
//databricks.com/blog/2014/10/10/spark-petabyte-sort.html, 2014.

[6] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, andMatei
Zaharia. Spark sql: Relational data processing in spark. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, SIGMOD
’15, pages 1383–1394, New York, NY, USA, 2015. ACM.

[7] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P.
Griffiths, W. F. King, R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L.
Traiger, B. W. Wade, and V. Watson. System r: Relational approach to database
management. ACM Trans. Database Syst., 1(2):97–137, June 1976.

[8] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[9] Surajit Chaudhuri. An overview of query optimization in relational systems.
In Proceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’98, page 34–43, New York, NY, USA, 1998.
Association for Computing Machinery.

[10] Surajit Chaudhuri and Kyuseok Shim. Including group-by in query optimization.
In Proceedings of the 20th International Conference on Very Large Data Bases, VLDB
’94, page 354–366, San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers
Inc.

[11] M. S. Chen and P. S. Yu. Interleaving a join sequence with semijoins in distributed
query processing. IEEE Trans. Parallel Distrib. Syst., 3(5):611–621, September
1992.

[12] Ming-syan Chen, Hui-i Hsiao, and Philip Yu. On applying hash filters to im-
proving the execution of multi-join queries. The VLDB Journal The International
Journal on Very Large Data Bases, 6, 02 2000.

[13] Ming-Syan Chen, Hui-I Hsiao, and Philip S. Yu. Applying hash filters to im-
proving the execution of bushy trees. In Proceedings of the 19th International
Conference on Very Large Data Bases, VLDB ’93, page 505–516, San Francisco,
CA, USA, 1993. Morgan Kaufmann Publishers Inc.

[14] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, AllisonW. Lee, AshishMotivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner.
The snowflake elastic data warehouse. In Proceedings of the 2016 International
Conference on Management of Data, SIGMOD ’16, page 215–226, New York, NY,
USA, 2016. Association for Computing Machinery.

[15] Bailu Ding, Surajit Chaudhuri, and Vivek Narasayya. Bitvector-aware query
optimization for decision support queries. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’20, page
2011–2026, New York, NY, USA, 2020. Association for Computing Machinery.

[16] Bin Fan, Dave G. Andersen, Michael Kaminsky, and Michael D. Mitzenmacher.
Cuckoo filter: Practically better than bloom. New York, NY, USA, 2014. Associa-
tion for Computing Machinery.

[17] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. Shareddb: Killing
one thousand queries with one stone. Proc. VLDB Endow., 5(6):526–537, February

2012.
[18] Goetz Graefe. Query evaluation techniques for large databases. ACM Comput.

Surv., 25(2):73–169, June 1993.
[19] Goetz Graefe. The cascades framework for query optimization. Data Engineering

Bulletin, 18, 1995.
[20] Ashish Gupta, Venky Harinarayan, and Dallan Quass. Aggregate-query process-

ing in data warehousing environments. In Proceedings of the 21th International
Conference on Very Large Data Bases, VLDB ’95, page 358–369, San Francisco,
CA, USA, 1995. Morgan Kaufmann Publishers Inc.

[21] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. Select-
ing subexpressions to materialize at datacenter scale. Proc. VLDB Endow.,
11(7):800–812, March 2018.

[22] P.-A. Larson. Data reduction by partial preaggregation. In Proceedings 18th
International Conference on Data Engineering, pages 706–715, 2002.

[23] Thomas Neumann. Efficiently compiling efficient query plans for modern hard-
ware. PVLDB, 4(9), 2011.

[24] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. Making sense of performance in data analytics frameworks. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 15),
pages 293–307, Oakland, CA, May 2015. USENIX Association.

[25] Anna Pagh, Rasmus Pagh, and S. Srinivasa Rao. An optimal bloom filter re-
placement. In Proceedings of the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’05, page 823–829, USA, 2005. Society for Industrial
and Applied Mathematics.

[26] Shi Qiao, Adrian Nicoara, Jin Sun, Marc Friedman, Hiren Patel, and Jaliya
Ekanayake. Hyper dimension shuffle: Efficient data repartition at petabyte
scale in. PVLDB, 12(10):1113–1125, 2019.

[27] Raghav Sethi, Martin Traverso, Dain Sundstrom, David Phillips, Wenlei Xie,
Yutian Sun, Nezih Yegitbasi, Haozhun Jin, Eric Hwang, Nileema Shingte, and
Christopher Berner. Presto: Sql on everything. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE), pages 1802–1813, 2019.

[28] Min Shen, Ye Zhou, and Chandni Singh. Magnet: Push-based shuffle service for
large-scale data processing. Proc. VLDB Endow., 13(12):3382–3395, August 2020.

[29] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,
Suresh Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: A ware-
housing solution over a map-reduce framework. Proc. VLDB Endow., 2(2):1626–
1629, August 2009.

[30] Weipeng P. Yan and Per-Åke Larson. Eager aggregation and lazy aggregation. In
Proceedings of the 21th International Conference on Very Large Data Bases, VLDB
’95, page 345–357, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers
Inc.

[31] Yuan Yu, Pradeep Kumar Gunda, and Michael Isard. Distributed aggregation for
data-parallel computing: Interfaces and implementations. In Proceedings of the
ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09, page
247–260, New York, NY, USA, 2009. Association for Computing Machinery.

[32] Haoyu Zhang, Brian Cho, Ergin Seyfe, Avery Ching, and Michael J. Freedman.
Riffle: Optimized shuffle service for large-scale data analytics. In Proceedings of
the Thirteenth EuroSys Conference, EuroSys ’18, pages 43:1–43:15, New York, NY,
USA, 2018. ACM.

[33] Jiaxing Zhang, Hucheng Zhou, Rishan Chen, Xuepeng Fan, Zhenyu Guo, Haoxi-
ang Lin, Jack Y. Li, Wei Lin, Jingren Zhou, and Lidong Zhou. Optimizing data
shuffling in data-parallel computation by understanding user-defined functions.
In 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), pages 295–308, San Jose, CA, April 2012. USENIX Association.

[34] J. Zhou, P. Larson, and R. Chaiken. Incorporating partitioning and parallel plans
into the scope optimizer. In ICDE, pages 1060–1071, 2010.

[35] Jingren Zhou, Nicolas Bruno, Ming-ChuanWu, Per-Ake Larson, Ronnie Chaiken,
and Darren Shakib. Scope: Parallel databases meet mapreduce. The VLDB Journal,
21(5):611–636, October 2012.

948

https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/AggUtils.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/AggUtils.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/AggUtils.scala
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicLogicalOperators.scala
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicLogicalOperators.scala
https://github.com/apache/spark/blob/master/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/basicLogicalOperators.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/HashAggregateExec.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/HashAggregateExec.scala
https://github.com/apache/spark/blob/master/sql/core/src/main/scala/org/apache/spark/sql/execution/aggregate/HashAggregateExec.scala
https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-setops.html
https://spark.apache.org/docs/latest/sql-ref-syntax-qry-select-setops.html
https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html

