New Query Optimization Techniques in the Spark Engine of Azure Synapse

Abhishek Modi
Microsoft, India
Abhishek.Modi@microsoft.com

Kaushik Rajan
Microsoft Research, India
krajan@microsoft.com

Srinivas Thimmaiah
Microsoft, India
s.srinivas@microsoft.com

Prakhar Jain*
Databricks, USA
prakhar.jain@databricks.com

Swinky Mann
Microsoft, India
Swinky.Mann@microsoft.com

Ayushi Agarwal
Microsoft, India
Ayushi.Agarwal@microsoft.com

Ajith Shetty
Microsoft, India
Ajith.Shetty@microsoft.com

Shahid K I
Microsoft, India
Shahid.K@microsoft.com

Asit Gosalia
Microsoft, USA
Asit.Gosalia@microsoft.com

Partho Sarthi*
University of Wisconsin-Madison
sarthi@wisc.edu

ABSTRACT
The cost of big-data query execution is dominated by stateful operators. These include sort and hash-aggregate that typically materialize intermediate data in memory, and exchange that materializes data to disk and transfers data over the network. In this paper we focus on several query optimization techniques that reduce the cost of these operators. First, we introduce a novel exchange placement algorithm that improves the state-of-the-art and significantly reduces the amount of data exchanged. The algorithm simultaneously minimizes the number of exchanges required and maximizes computation reuse via multi-consumer exchanges. Second, we introduce three partial push-down optimizations that push down partial computation derived from existing operators (group-bys, intersections and joins) below these stateful operators. While these optimizations are generically applicable we find that two of these optimizations (partial aggregate and partial semi-join push-down) are only beneficial in the scale-out setting where exchanges are a bottleneck. We propose novel extensions to existing literature to perform more aggressive partial push-downs than the state-of-the-art and also specialize them to the big-data setting. Finally we propose peephole optimizations that specialize the implementation of stateful operators to their input parameters. All our optimizations are implemented in the Spark engine that powers Azure Synapse. We evaluate their impact on TPCDS and demonstrate that they make our engine 1.8× faster than Apache Spark 3.0.1.

1 INTRODUCTION
Modern query compilers rely on a combination of logical SQL level query optimization techniques and low-level code-generation techniques to produce efficient query executables. In the big-data setting they produce plans with multiple stages, such that each stage can run in a data-parallel manner across many machines. Operators within a stage are further grouped together into code-generation blocks that are compiled such that data is materialized only at block boundaries [23]. Spark [6] is a popular big-data system that is based on such a compilation methodology.

As one would expect, stateful operators, operators that materialize data at stage or code-generation boundaries, dominate the cost of execution in these settings. In particular we find exchange, hash aggregate and sort are the three most expensive operators in Spark. An exchange operator is used to transfer data between stages. It requires that data be materialized to disk at the end of every stage and shuffled over the network to the tasks in the next stage. Hash aggregate and sort on the other-hand are operators that materialize data within a stage and hence demarcate code-generation blocks. They both maintain state in memory, spilling to disk if needed.

In this paper we focus on a set of techniques that reduce the cost of these operators. The optimizations fall into three categories.

Exchange placement. First, we introduce a new algorithm that determines where exchange operators should be placed and what exchange keys to be used by each of them. Exchange operators serve a dual purpose. They re-partition data to satisfy the requirements of key based operators like group-by, join and window functions so that they can run in a data-parallel manner. In addition, exchanges enable reuse of computation across different parts of the tree. If two different sub-trees rooted at exchanges are performing the exact same computation, then one could perform the computation only once, persist the output in a partitioned manner at the source stage and consume it multiple times.

*Work done while at Microsoft.
Existing systems [14, 27, 29, 35] determine exchange placement without considering reuse opportunity. We find that there are several cases where exchange placement conflicts with exchange reuse and leads to a sub-optimal plan overall. To address this, we propose a new algorithm that takes into account the possibility of exchange reuses during exchange placement to determine candidate plans with interesting trade-offs (see Section 2.2.1 for examples). We cost these alternatives and pick the least cost plan.

To efficiently realize the algorithm we introduce a new implementation mechanism called plan-marking which enables us to perform global reasoning across different parts of the tree. Our exchange placement algorithm utilizes plan-marking to tag identical sub-trees with the same marker, indicating reuse opportunity.

Partial push-down. Second, we introduce partial push-down techniques into the big-data query optimizer. These techniques do not substitute an operator but derive an auxiliary operator that can be pushed down the tree. We extend the Spark optimizer to enable three different partial pushdown techniques, namely partial aggregation, semi-join push-down and bit-vector filtering.

Our partial aggregate push-down mechanism builds upon known techniques to partially push-down group-by below joins [10, 20, 22, 30]. We adapt these techniques to push-down partial aggregates not just below select and join as proposed in existing literature but also unions, project and expand [2]. The Spark optimizer today only introduces a partial aggregate directly before a group-by and does so during physical planning. In contrast, we enable more aggressive push-down by adding a new logical operator to represent partial aggregates and new rules that incrementally push partial-aggregates down. Further we propose new rewrites that derive partial aggregates from other operators (semi-join and intersect).

We also propose a new partial semi-join push-down rule that converts inner-joins in trees rooted at semi-joins into semi-joins without changing the root (see Section 2.2.2 for examples). We demonstrate (see Section 7.3) that both partial aggregation and semi-join push-down are much more impactful in the big-data setting when compared to the classical scale-up database setting.

Finally we incorporate push-down of bit-vector filters into the Spark optimizer. While bit-vector filtering is well-known [11–13, 15] we propose an efficient implementation based on plan-marking to avoid unnecessary materialization in the big-data setting. Further we rely on Spark’s execution strategy to construct the filters in-parallel; starting at tasks and finally combining across executors.

Partial push-downs perform additional computation but can save on exchange. We therefore introduce them in a cost-based manner. Our cost-functions combine column level statistics with partitioning properties in novel ways to determine when these partial push-downs are likely to be beneficial.

Peephole optimizations. Third, we propose a set of peephole optimizations that improve the implementation of stateful operators. For example, we optimize the order of keys for a multi-column sorting. Spark’s sorter compares keys in the byte space and lazily de-serializes data. Our optimization brings down the cost by picking an order that leads to fewer de-serializations and comparisons. Note that while sort is order sensitive, operators like (sort-merge) join only need keys to be consistently ordered on both sides. Such an optimization again requires global reasoning and our implementation once again relies on plan-marking to enforce consistent ordering.

Summary of performance benefits. We implement all these optimizations in the Spark engine of Azure Synapse (Synapse Spark for short) and compare it against the latest version of Apache Spark, Spark 3.0.1 (in this paper whenever we mention Spark we implicitly refer to this distribution). Figure 1 illustrates the speedup that the various optimizations bring about over all queries in TPCDS, a standard data analytics benchmark (at 1TB scale factor). As can be seen the optimizations together speedup the benchmark suite by 1.8×. Exchange placement brings about 27% speedup, the partial push-down techniques together bring a speedup of 40% and the rest of comes from our peephole optimizations.

Applicability of optimizations. Synapse Spark is a scale-out big-data system derived from Apache Spark. While the peephole optimizations we propose are specific to Spark based systems, the other optimizations are more broadly applicable. The exchange placement algorithm is applicable to all big-data systems [14, 27, 29, 35] as they all need an exchange operator. The partial push-down techniques are not just applicable to scale-out systems but to scale-up single machine databases as well. However, our empirical evaluation brings up an interesting finding. While bit-vector filtering brings significant benefits in scale-up settings (as they filter data right after scan), we find that partial-aggregation and semi-join push-down are not as beneficial in the scale-up setting. We observe that they only bring benefits when they save on the amount of data exchanged.

In summary, the paper makes the following core contributions.

- We characterize the performance bottlenecks in Spark. The previous analysis [24] was done before Spark incorporated code-generation and is out-dated.
- We propose a new algorithm for exchange placement that improves over the state-of-the-art and significantly reduces the number of exchanges needed to evaluate a query.
- We extend ideas from existing literature to provide holistic support for partial aggregation. We add new rules to push-down below operators not considered in the past and propose a specialized cost model for big-data systems that incorporates partitioning information.
- We propose a novel semi-join push-down technique that, we find, benefits scale-out big-data systems much more than scale-up databases (partial aggregation is similar).
- We propose a set of peephole optimizations that significantly improve the performance of Spark’s sort implementation.
- All these optimizations are implemented in the Synapse Spark, a production system available for general use. We demonstrate that these optimizations bring significant performance gains.
2 MOTIVATION AND EXAMPLES

We begin with a performance characterization of Spark.

2.1 Workload characterization

We enhanced the instrumentation done by Spark to measure the time spent in each operator\(^1\) by each task. Figure 2 reports the time spent in various operators for the most expensive 20 queries in TPCDS (at 1TB scale factor). For each query it shows the breakdown before and after our optimizations, we focus on the cost before (left bar) in this section. We make the following observations.

- Exchange, hash-aggregate and sort are the three most expensive operators. They contribute to 80% of the total task time in half the queries and 50 – 80% in another quarter of the queries.
- Exchange is uniformly expensive and contributes 20 – 40% of the cost in all but a few (<5%) scan heavy queries.
- Sort and hash-aggregate are almost equally expensive, they together contribute 20 – 50% of the cost in most queries.
- Scan and Join, the other two significant operators are much less expensive on average. However, they are the most expensive operator in specific queries (like Q88 and Q95 respectively).

\(^{1}\text{Spark today only reports metrics per code generation block and not per operator.}\)

![Figure 2: Normalized cost of operators in top 20 queries. Each query has two bars, the left bar corresponds to costs in baseline Spark. The right bar shows the reduced percentages after our optimizations as implemented in Synapse Spark.}

The right bar shows the reduced percentages after our optimizations as implemented in Synapse Spark.

2.2 Examples of optimizations

Next we motivate the proposed optimizations with examples from TPCDS. Table 1 describes the notation we use to represent queries.

![Figure 3: Query with multiple partitioning options. Each edge is annotated with a set of partitioning options any of which suffices to satisfy the requirement of the parent operator.]

Figure 3 shows two ways of placing exchanges in this query. The plan on the left is generated by state-of-the-art algorithms that minimize the number of exchanges needed to satisfy the required properties of all the operators. To do so it picks partitioning options at edges

![Figure 4: Exchange placement for query in Figure 3. Maximizing overlap leads to sub-optimal plans. Combining overlap with reuse information leads to better plans.]

2.2.1 Exchange placement. Consider a variant of Q23 (we show only 2 of the 4 subtrees and modify some operators for ease of exposition) as shown in Figure 3. The tree shows operators as nodes and their required partitioning properties annotated on edges. In case there are multiple possibilities the edge is annotated with a set of partitioning options, any one of which would suffice. For example, edge \(e_4\) requires partitioning on either the pair of columns \(a_1, b_1\) or just \(a_1\) or just \(b_1\). All these are valid options as key based operators (join, group-by etc.) can execute in parallel as long as inputs are partitioned on some subset of the keys. Notice that the query performs \(T_1 \leftarrow T_2\) twice but with different parent operators.

An exchange operator takes as input a set of columns (and a partition count) and partitions the data on those columns. Figure 4 shows two ways of placing exchanges in this query. The plan on the left is generated by state-of-the-art algorithms that minimize the number of exchanges needed to satisfy the required properties of all the operators. To do so it picks partitioning options at edges

![Table 1: Symbols used for SQL operators are as shown. We use \(T, T_1, T_2, T_3\) as table names and \(a, b, c, d, e\) as column names. We sub-script column names with the numeric sub-script of tables they come from. For example \(b_2\) come from table \(T_2\). A union renames columns, we ensure that inputs have the same column names but differ in suffixes and we assign new suffixes to the output. Solid lines represent exchanges, and dashed connect operators in the same stage.]

<table>
<thead>
<tr>
<th>Operator Symbol</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Select (\sigma_{pred}(T))</td>
<td>(\Pi_{expr}(T))</td>
</tr>
<tr>
<td>Project (\Pi_{expr}(T))</td>
<td>Group-by (\Gamma_{keys,[\text{aggs}(expr)]}(T_1))</td>
</tr>
<tr>
<td>Inner Join (\bowtie_{a_1=a_2,b_1=b_2})</td>
<td>Left/right Semi Join (\bowtie_{a_1,a_2\bowtie b_1,b_2})</td>
</tr>
<tr>
<td>Union (all) (\bigcup(T_1,T_2,T_3))</td>
<td>Intersect (distinct) (\bigcap(T_1,T_2))</td>
</tr>
<tr>
<td>Partial aggregate (Y_{keys,[\text{aggs}(expr)]}(T))</td>
<td></td>
</tr>
</tbody>
</table>
such that they can be satisfied by exchanges introduced lower in the tree. For example, if we pick a partitioning option a_1 at e_8, it can be satisfied by the previous exchange on a_1 at e_6 (we use shorthand $e_6 \leftarrow a_1$ to represent exchange assignments). Similarly, if the partitioning option a_1 at e_4 is chosen, it can make use of $e_1 \leftarrow a_1$. We refer to the careful choice of picking partitioning options to use a previous exchange as overlapping an exchange. Such an assignment would lead to six exchanges (at all but e_8 and e_4). For this example, the above assignment is minimal in the number of exchanges needed to satisfy partitioning requirements of all operators. The exchange reuse rule would then trim this list down to 4 (Figure 4(a) shows the final plan). Note that in this plan the \bowtie between T_1 and T_2 is performed twice and the exchanges after T_1 and T_2 are reused and each is read by two consumer stages.

However as shown in Figure 4(b) there is another assignment which overlaps fewer exchanges but is better. Consider the plan when only exchange $e_3 \leftarrow b_3$ is overlapped (with e_5). This would lead to seven exchange assignments (before reuse exchange). Notice here we deliberately pick the partitioning choice b_1 at e_9 and this is clearly sub-optimal from an exchange overlap perspective. Despite this we get a better plan after the reuse exchange rule is applied (as shown in Figure 4(b)). This plan directly reuses the exchange $e_4 \leftarrow b_1$ at e_9 (thus reusing the result of the \bowtie) to generate a plan with 4 exchanges. As this is a deeper exchange reuse, this plan would not only avoid exchanges at e_6, e_7 and e_8 but also avoid performing the \bowtie a second time. Further note that this plan would also likely lead to lesser I/O as only one exchange is reused as opposed to two (2 reads instead of 4). Hence overall we expect this plan to be better.

In summary, combining exchange reuse opportunities with exchange overlap produces better plans, this is the focus of the exchange placement algorithm we propose.

2.2.2 Partial pushdown optimizations

Next we demonstrate examples of partial aggregate push-down and semi-join push-down.

Figure 5 shows a basic query that performs a join on a column b followed by an aggregation on a different key a. It also shows three existing optimizations for this type of query. These are described in the box below.
some of the push-downs (shown in gray/light shade) do not affect exchange at all. Our costing mechanism eliminates such options. Figure 6(b) illustrates partial push-down opportunities in queries with semi-joins. A left semi-join only checks if a row in the left table has a match in the right table, and hence only needs unique values of the columns from the right side that are referred to in the join predicate. This leads to two optimizations. First, we can introduce partial aggregates (refer figure) to eliminate duplicates. Second, other inner joins on the right tree could be converted into semi-joins. This is another example of a previously unexplored partial push-down that converts inner-joins into semi-joins without modifying the parent semi-join.

3 EXCHANGE PLACEMENT

This section describes the exchange placement algorithm we use in SYNAPSE SPARK. Figure 7 provides an overview of what existing systems do today and our proposal. Broadly there are two kinds of systems. SCOPE [35], employs cost based exploration to select among different exchange placement options [34]. As we describe later such exploration allows it to maximally overlap exchanges. On the other hand systems like Spark do not support exploration and instead maintain just a single plan. They traverse the plan bottom up and introduce exchanges after performing a local overlap check. As shown in the figure, both systems apply the exchange reuse rule separately, after exchange placement. In both systems, it transforms the final chosen plan without exploration.

In SYNAPSE SPARK we perform exchange placement in a cost based manner, while taking into account both exchange overlap and exchange reuse opportunities. Now, cost based exploration can be expensive, and SCOPE employs a large optimization time budget (several minutes). In SYNAPSE SPARK on the other-hand we impose a hard constraint on the optimizer time (in seconds) to meet customers expectations. To achieve this we improve the state-of-the-art algorithm that has a large exploration space (Section 3.1).

We do so by exploring multiple options only when there are multiple ways to overlap exchanges or when exchange overlap conflicts with exchange reuse (Section 3.2). Finally, to determine conflicting options, we need to identify potential for exchange reuse early. We employ plan marking for this (Section 3.3).

3.1 Exploration based exchange placement

Let's begin by examining the state-of-the-art algorithm for exchange placement [34]. Algorithm 1 shows pseudo-code for a recursive routine that computes the interesting partitioning options at each operator in the plan. For ease of exposition, we assume that the plan only consists of key based operators. The implementation of course deals with all SQL operators. First, we define $P'(X) = P(X) \setminus \emptyset$ where $P(X)$ is the power set of X. In this section when we mention power set, we refer to P'. Now in this method, the interesting partitioning options consists of all possible combinations of the operator keys i.e. P'(plan.keys). In Figure 3, the join having $\{a_1, b_1\}$ as keys, would have $\{a_1|b_1, a_1, b_1\}$ in its iKeysSet.

Next, plans with different combinations of partition keys are explored using a standard plan space exploration algorithm. Algorithm 2 shows a simplified version of the dynamic programming based exploration algorithm used in both SYNAPSE SPARK and SCOPE. The algorithm tracks up to k plans per node. We discuss how k is chosen at the end of the section.

In line 2, for each interesting partitioning key $partnKeys$ of this operator, the best (up to k) plans for its children are computed first. Next, these alternative plans from the children are combined to get the alternative plans for the current operator. For example, if the plan has two children C_1 and C_2, having two and three top plans respectively, there would be six alternative options - plans having children as $\{(C_1,C_2), (C_1,C_2), (C_1,C_2), (C_1,C_2), (C_1,C_2), (C_1,C_2)\}$. This is followed by iterating over these alternatives, adding exchanges (using EnforceExchange at line 9) and selecting the top k plans per node.
Algorithm 3 DetermineInterestingPartitionKeys

Require: Physical Plan plan
1: for all child ∈ plan.children do
2: DetermineInterestingPartitionKeys(child)
3: iKeys, iKeysSet ← ∅
4: ε Pruning plan.keys
5: iKeys.addAll(plan.keys ∩ parent.keys)
6: for all child ∈ plan.children do
7: iKeys.addAll(plan.keys ∩ child.keys)
8: ε Pruning the power set of above
9: iKeysSet.checkAndAddAll(\(P^r\) (iKeys) ∩ \(P^r\) (parent.keys))
10: for all child ∈ plan.children do
11: iKeysSet.checkAndAddAll(\(P^r\) (iKeys) ∩ \(P^r\) (child.keys))
12: ε Add additional keys if child is a reusable sub-tree
13: for all child ∈ plan.children do
14: if child.marker ∈ reuseMap then
15: cmmnParntKeysForReuse ← ∪ reuseMap(child.marker)
16: iKeysSet.addAll(cmmnParntKeysForReuse)
17: if iKeysSet ≠ ∅ then
18: plan.iKeysSet ← iKeysSet
19: else
20: plan.iKeysSet ← {plan.keys}

Algorithm 4 PlanMarking

Require: Physical Plan plan
1: for all child ∈ plan.children do
2: PlanMarking(child)
3: plan.marker ← SemanticHashFunc(plan)
4: reuseMap(plan.marker).add(plan.parent.keys)

Table 2: Examples showing overlap scenarios between two identical sub-trees’ keys (ST1 and ST2) and common partitioning keys from both parents (P1 and P2). Last column shows the one of the possible keys selection for exchange reuse.

<table>
<thead>
<tr>
<th>Overlap</th>
<th>ST1 iKeysSet</th>
<th>ST2 iKeysSet</th>
<th>P1 iKeysSet</th>
<th>P2 iKeysSet</th>
<th>Common P Keys</th>
<th>New P1 iKeysSet</th>
<th>New P2 iKeysSet</th>
<th>Keys for Reuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Partial</td>
<td>([a_1])</td>
<td>([a_1, b_1])</td>
<td>([a_1])</td>
<td>([a_1])</td>
<td>([a_1, b_1])</td>
<td>([a_1, b_1])</td>
<td>([a_1, b_1])</td>
<td>([b_1])</td>
</tr>
<tr>
<td>None</td>
<td>([a_1, b_1])</td>
</tr>
<tr>
<td>Total</td>
<td>([a_1, b_1])</td>
</tr>
</tbody>
</table>

3.2 Pruning the space with overlap reasoning

Algorithm 3 describes our implementation to prune the exploration space by reducing the partitioning options (lines 5-7). Instead of relying on EnforceExchange to detect overlap opportunities, we prune the options in two phases. First, we compute individual partitioning keys of the operator that have an overlap with its parent’s or children’s keys. We add\(^3\) all of them to set iKeys.

In the second phase, we obtain all overlap options by intersecting the power set of iKeys with the power set of parent’s keys and the children’s keys. We insert only these as options (in iKeysSet) using a checkAndAddAll method. This method checks if the number of distinct values for the set is more than the number of partitions required (a job parameter) before adding it as a partitioning option. Table 2 demonstrates how this adds all overlap options. The third row (labeled Total) has 3 different ways to overlap between parent (P1) and child (ST1), all these are added as options. Row Partial (representative of example in Figure 3) only adds one option. This is sufficient to produce maximal overlap plan Figure 4(a). Finally, if no options are added based on overlap (row None in table), we only consider one option which is the entire key set (line 20). This pruning reduces the search space significantly whenever operators are keyed on multiple columns (like in TPCDS queries).

3.3 Incorporating exchange reuse

As we saw in Section 2.2.1 exchange reuse can conflict with exchange overlap. This happens when there is an overlap between partitioning keys of the reusable sub-tree and its parent. For example, in Figure 3, there is an overlap in the partitioning keys of join having keys \(\{a_1\}\) and its parent join having keys \(\{a_1, b_1\}\). If we simply maximize overlap we may not introduce an exchange after the join at all and hence there would be no scope for an exchange reuse (after join).

To resolve this, we will have to include additional keys in the interesting partitioning options (iKeysSet) tracked at the parents of the reusable sub-trees. We accomplish this in two steps.

We begin by extending a new routine before Algorithm 3 which is described in Algorithm 4. This algorithm adds plan markers at nodes in the tree such that if two nodes have the same marker value, the sub-trees rooted on them are identical. In addition to it, we use a reuseMap, to store the partitioning keys from these identical sub-trees’ parent. This algorithm is followed by a cleanup routine (not shown) that removes singleton entries from the reuseMap.

Next, we extend Algorithm 3 to support exchange reuse by adding the common keys (derived from reuseMap) in the interesting partitioning keys set if the child is a reusable sub-tree (lines 13-16).

Let’s revisit row Partial in Table 2. Consider the two nodes at \((ST1, ST2)\) at \(a_1 = a_2\) \((T1, T2)\) in Figure 3 and their parents \((P1, P2)\). We already established that their iKeysSet based on overlap reasoning would contain one element \(a_1\). Now in order to take reuse into

\(^3\)X.addAll(Y) indicates adding all elements from Set Y to Set X. X.addAll(Y) indicates adding the Set Y to Set X as a single entity.
account, we will add the common keys between the \(P_1\) and \(P_2\) in their KeysSet. Thus, the parents’ new iKeysSet would be \((a_1 \mid b_1)\).

Since, we are depending on the costing model for the keys selection, we need to ensure that during costing we take exchange reuse into account. To accomplish this, we add a sub-routine AddReuseExchange after line 9 in Algorithm 2. At this point, optPlan would contain exchange operators at the required places, added by EnforceExchange. Since we have previously accomplished plan-marking, AddReuseExchange will identify exchange operators, whose children are marked for reuse. Now, for each group (consisting of identical sub-trees), it replaces all except one such exchange operators by exchange reuse operators in the optPlan. We will now use this optPlanWithReuse while updating the operator’s top k plans set.

\[
\text{optPlanWithReuse} \leftarrow \text{AddReuseExchange}(\text{optPlan})
\]

In summary, Synapse Spark incorporates cost based exploration to decide on the placement of exchanges. By detecting exchange reuse opportunity early and by using this along with overlap information it is able to prune the search space significantly to make exploration practical. Specifically, in Synapse Spark we desire to optimize every query within 30 seconds. We achieve this by dynamically choosing the values of \(k\) based on the complexity of the query. We observe that because of pruning a value of \(k = 4\) is sufficient to find the optimal exchange placement for all queries. We show in Section 7.4 that a value above 16 (as would be needed without pruning) significantly slows down the optimizer.

4 PARTIAL AGGREGATION PUSH-DOWN

This sections discusses partial aggregate push-down. We discuss other partial push-down techniques in the next section.

The spark optimizer has a physical operator PhyOp-PartialAgg to represent partial aggregates [3] and a physical rewrite rule to add them to the physical operator tree [1]. This rule in fact replaces every group-by with a pair of partial and final aggregate operators (PhyOp-PartialAgg and PhyOp-FinalAgg). Today it does so without any costing. The two operators incrementally compute the result of standard commutative and associative aggregates (\(\text{sum}, \text{min}, \text{max}, \text{count}\)). PhyOp-PartialAgg has no partitioning requirements, it computes partial results of standard aggregates even before data is partitioned. PhyOp-FinalAgg has a required partitioning property, it expects inputs to be partitioned on a subset of the grouping keys. It combines the partial results for each unique combination of grouping key values to produce the final aggregates.

In Synapse Spark we introduce a new logical operator LogOp-PartialAgg to represent partial-aggregates. We use the shorthand \(Y_{\text{keys}, \{\text{aggs}(\text{exprs})\}}\) whenever we need to refer to its arguments. Like a group-by (\(Y_{\text{keys}, \{\text{aggs}(\text{exprs})\}}\)) the operator has two arguments, keys is a list of aggregation keys, and aggs(exprs) is a list of commutative and associative aggregate functions. Each aggregation agg is applied after computing exprs, on the elements of the group.

The rest of the section describes how we utilize this operator.

4.1 Seed rules to derive partial aggregates

We begin by describing seed rules, rules that introduce partial-aggregates into the query tree.

\[
\text{seed rules to derive partial agg from SQL operators.}
\]

Figure 8(a) depicts how we derive a partial-aggregate \(\gamma\) from a group-by \(\Gamma\). This rule is exactly like the physical rule that introduces PhyOp-PartialAgg (discussed above) except that its in the logical space. The rule introduces a partial aggregate with the same keys as the group-by and introduces appropriate aggregation functions to compute the aggregate incrementally. The figure shows partial functions for standard aggregates.

We add two more seed rules which are not part of the optimizer today, even as physical rules. Figure 8(b) shows how we derive a partial aggregate from a left semi-join. The rule introduces a partial-aggregate \((\gamma_{a_2})\) on the right child of a left semi-join. The partial aggregate is keyed on the equi-join keys from the right side and it does not perform any aggregates (such an aggregate is also referred to as a distinct aggregation). This is semantics preserving as a left semi-join only checks for an existence of a match on the equi-join keys from the right side. The partial aggregate simply removes duplicate keys from the right side, this does not affect the existence check. A similar rule (not shown) derives partial aggregates on the left child of a right semi-join.

Figure 8(c) shows how we derive a partial-aggregate from an Intersect operator. An Intersect [4] is a set based operator that only outputs those rows from the left that match with rows in the right. The output of an Intersect is a set (and not a bag) so duplicate rows are eliminated from the output. Given these semantics it is safe to eliminate duplicates from both the inputs of intersect. We introduce partial aggregates on each input to Intersect for this.

An important property of partial-aggregates that we exploit later is that they are optional operators, not including them in the plan does not affect the correctness of the optimization. Adding a partial aggregate below a group-by is optional as the final aggregate is responsible to producing the fully aggregated value. One detail that needs to be taken care of is that the partial and final aggregate for a count(\(\ast\)) are different, so it may appear that the plan would be different depending on whether or not a partial aggregate is introduced. We exploit the fact that its possible to simulate a count(\(\ast\)) with a sum(1) aggregate [31], which simply adds a constant 1 for every row in the group. So in the rest of the section we assume that every group-by with a count(\(\ast\)) is rewritten before the seed rule and hence the partial and final aggregate have then same functions. Its also obvious that partial aggregates derived from semi-join and Intersect are optional as they just eliminate duplicates early.
4.2 Partial aggregate push-down rules

Push-down below joins. Our rules for pushing down partial-aggregates below join are based on rules from past literature [10, 20, 30] that describe how to push a group-by below a join. We describe the rewrite in detail in the box below. Note that the same rule can be used when every instance of γ is replaced with a group-by Γ and the correctness of our partial-aggregate push-down follows from the correctness of the group-by push-down rule.

Pushing down partial aggregates based on rule from literature to push-down group-by below join

We describe how a partial aggregate $\gamma_{p\text{keys}.[\text{paggs}(\text{pexprs})]}$ can be pushed down below a join $=$ a_1 $=$ a_2 (T_1, T_2). Figure 9 shows an example plan before and after the rule is applied. The rule has a pre-condition that checks if for each aggregation $\gamma_{p\text{exprs}}$ its parameter $\gamma_{p\text{exprs}}$ can be computed from exactly one of the inputs to the join. In Figure 9, d_1 comes from the left and e_2 comes from the right. So the pre-conditions are satisfied. After checking the pre-condition the rule rewrites the tree by introducing partial-aggregates at both inputs to the join. Further, it adds a project above the join that combines results from the newly introduced operators.

The arguments of the partial-aggregates on each side and the project are derived as follows. The keys for the new partial-aggregates are derived by splitting the parent keys between the left and the right. These sets are then appended with the join keys from that side. In the example, (a_1, b_1) become the keys for the γ_{pkeys} on the left and (a_2, c_2) become the keys for the right. Next, the aggregation functions on the two sides are derived by splitting the γ_{pexprs} into those whose expressions can be computed from the left and those from the right. In the example, $\text{sum}(d_1)$ comes from left and $\text{min}(e_2)$ comes from right. Each aggregation is then replaced with the corresponding partial computation. Further, if any of the aggregates on the right (left) side perform a sum or count, a $\gamma_{\text{cnt}\gamma_{\text{pre}}}$ aggregate is added on the left (right). These counts are needed in the final project (II) to scale up the partial results from that side appropriately. For the example query we introduce a partial count on the right as the left has a sum aggregate. The project after the join is used to scale up the partial results. In the example, $\gamma_{\text{cnt}\gamma_{\text{pre}}}$ is used to scale up the partial sum from the left $d_{\gamma_{\text{pre}}}$ to compute the new partial sum $d'_{\gamma_{\text{pre}}}$.

![Figure 9: Rule to push-down partial-aggregate below join](image)

One important difference between rules for partial-aggregate push-down and prior work on partial push-down of a group-by below a join is that the newly introduced partial aggregates are optional. As the parent is optional its clear that retaining any subset of (left, right, parent) aggregates leads to a valid plan. In particular its possible to push-down a partial aggregate on one side alone without having a parent aggregate. On the other hand with a group-by push-down more care needs to be taken. A group-by in the original query can only rarely\(^4\) be completely eliminated [10]. Pushing down on one side without having a parent group-by is even more rare. Such push-downs are always possible with partial-aggregates.

Push down below unions. A union is an n-ary operator that concatenates n inputs that have the same number of columns. A push-down below union is simple. Unlike join, the other multi-input operator, there are no pre-conditions to check and no additional keys to be added. We can simply push down the parent aggregate $(\gamma_{\text{keys}.[\text{aggs}]}$ on each side, replacing the aggregate functions with their partial computations. Figure 10 shows an example with a γ_{sum} aggregate, other aggregates can be supported as we have already seen in this section. Like with joins any subset of partial aggregates can be pushed down and retaining the parent partial aggregate is optional regardless of which subset was pushed down.

Push down below row-wise SQL operators. Partial aggregates can be pushed down below select and project. To push-down below a Select we need to extend the keys with the columns referenced in the selection predicates. For example, $\gamma_{\text{a}.[\text{sum}(\text{d})]}$ can be pushed below $\sigma_{b \bowtie c}$ as $\gamma_{\text{a}.b.c.[\text{sum}(\text{d})]}$. Prior work [20] describes a similar rule that can push a group-by below a select. A partial-aggregate can also be pushed down below a project. A project can assign results of expressions on input columns to its output columns (e.g. γ_{op}). We enable push-down under the simple pre-condition that the project uses expressions only to compute the aggregation keys but not columns used in aggregation expressions. For example we push down $\gamma_{\text{d}.[\text{max}(\text{a})]}$ below γ_{op} as $\gamma_{\text{b}.c.[\text{max}(\text{a})]}$. Disallow push-down of $\gamma_{\text{a}.[\text{max}(\text{d})]}$ as here d which is used in an aggregation function is the result of an expression in γ_{op}. Its easy to see that these push-downs are semantics preserving as they retain every unique combination of the columns used in the select and project. Its also obvious that the pushed down partial-aggregates are optional. Finally we introduce rules to push a partial-aggregates below expand [2], an operator that produces multiple output rows for each input row. This operator is used to evaluate advance SQL.

\(^4\)If there is a primary key, foreign key relationship between the joining tables. Such constraints are neither enforced nor tracked in Spark.
operators, roll-up and cube, and also for aggregation functions that apply on distinct values of a column (e.g., count(distinct c)). We do not describe the rules in details here in the interest of space.

4.3 Cost based placement of partial aggregates

A partial aggregate introduced by the seed rules in Section 4.1 can be pushed down to multiple places in a logical tree by recursively applying rules in Section 4.2. A partial aggregate can be expensive as it requires building a hash table, sometimes on more keys than the seed aggregate. We rely on costing to decide which partial aggregates to retain if any. We exploit the property that all partial aggregates are optional to cost each γ independently. We apply the following two costing heuristics to determine which all partial aggregates pushed down from a single seed rule to retain.

(1) As the primary benefit of partial aggregation is a reduction in the amount of data exchanged we only consider a single partial aggregate in each stage. In particular, we consider the top-most partial aggregate as it occurs right before the exchange.

(2) We only retain a partial aggregate if the number of rows exchanged reduces by a threshold value. That is, at the parent exchange we check if the reduction ratio:

\[rr = \frac{\text{rows}_{\text{after}}}{\text{rows}_{\text{before}}} < Th \]

where \(\text{rows}_{\text{after}} \) and \(\text{rows}_{\text{before}} \) are the number of rows exchanged with and without the partial aggregate respectively. Empirically we find that a value \(Th = 0.5 \) leads to good benefits (see Section 7.2 for sensitivity analysis).

To determine \(\text{rows}_{\text{before}} \) and \(\text{rows}_{\text{after}} \), we build upon the statistics propagation done by the optimizer.

Statistics propagation in Spark and the combinatorial blow-up for group-by

Today the optimizer maintains an estimate of the total number of rows and some column level statistics (number of distinct values, range of values etc) at each node in the plan. Starting from statistics on input tables, it derives the statistics for the output at each operator from the statistics at its input. Statistics propagation is well-studied [9] and the Spark optimizer builds on this literature. We only discuss propagation across a group-by here as it is relevant to how we derive cost for partial aggregates. A group-by produces one output row per distinct combination of its keys, so to calculate \(\text{rows}_{\text{after}} \) we need an estimate for the number of distinct values for a set of keys. A well established conservative way (upper-bound) to determine the number of distinct values of a set of keys is to multiply the distinct values of individual columns. This is what the optimizer uses today. It is well known that with keys spanning many columns this can lead to a large over count. As it assumes every combination of values is possible this estimator suffers from a combinatorial blow-up.

Finally note that statistics are computed for logical plans and apply to the entire result of the operator. Propagation in itself is not specialized to the distributed nature of execution, where each operator is executed with several tasks that each compute parts of the results.

Figure 11: Costing partial aggregates

We derive costs for partial-aggregate from statistics by taking into account the distributed nature of execution. In particular it is possible that some of the columns for partial aggregate overlap with the input/exchange partitioning of that stage. Figure 11 shows an example where \(γ_{rr} \) and \(γ_r \) have a key \(b_2 \) that is also the partitioning key for that stage. So we make use of this to scale down the distinct values of the partition keys by the degree of parallelism, dop (which is a configuration parameter). For all other keys we (conservatively) assume that each task can get all distinct values for such columns. As shown in the figure, the costs formula for \(γ_{rr} \) and \(γ_r \) are products of distinct values of columns scaled down by the dop.

Another improvement we make is for stages that perform broadcast joins. Such stages usually have a single large input that is joined with multiple small tables (small enough to fit in memory even without partitioning) using one or more broadcast joins. Figure 11 shows a plan where a large input is joined with two other broadcastable inputs. In such stages the partial aggregates at the lower levels may include partition keys (like in the example) of the stage while the aggregate at the end of stage does not. To enable partial aggregation in this scenario we check if the reduction ratio at any of the partial aggregates along the chain from the large input is above threshold. If so we place a partial aggregate in the stage. So in the example we check the reduction ratio at \(γ_r \) and \(γ_{rr} \) and based on that make decisions for \(γ_r \). This can help mitigate the combinatorial blow-up that statistics propagation suffers from. \(γ_r \) has 5 multiplication terms while \(γ_{rr} \) has only 2!, one of which is a partition key. These extensions to costing enable partial aggregate push-down in 8 additional TPCDS queries.

5 OTHER FORMS OF PARTIAL PUSH-DOWN

This section covers two other partial push-down optimizations, namely semi-join push-down and bit-vector filters.

5.1 Semi-join push-down

A semi-join is different from an inner-join in how it handles multiple matches. If a record from the left table has \(n \) matches on the right, an inner-join duplicates the record \(n \) times while a left semi-join only performs an existence check (\(n \neq 0 \)) and outputs the
record once. As we have seen in the previous section we can exploit this to derive partial aggregates from semi-joins. Semi-joins offer another interesting optimization opportunity. Consider a left semi-join whose right child is an inner-join and that the semi-join keys come from one of the inputs to the inner-join (refer Figure 12(a)). In such cases we can convert the inner-join (σ_{b_2=b_3}) itself into a left semi-join without modifying the root semi-join. This is safe because we are only interested in the unique values of a_2 for checking at the root semi-join. As a_2 comes from the left child of the inner-join we can avoid duplicates of a_2 by converting the inner-join into a left semi-join. The figure shows other valid variants of this rule.

These rules can be recursively applied to introduce additional semi-joins in a query that performs a multi-way join. Further, one can see that there are interesting connections between this and partial aggregate push-down. An inner-join followed by a distinct partial aggregation can be converted into a semi-join followed by a distinct partial aggregation. We exploit such properties to push semi-joins below union and other SQL operators.

A note on performance. While both inner-join and semi-join require data to be sorted (for a sort merge join) or inserted/looked-up in a hash-table (for a hash-join), a key difference between them is that a semi-join produces fewer output rows. Our evaluations showed that in queries where the inner-join and semi-join were happening in the same stage, we see little or no improvement with this optimization. But they yield significant gains when the amount of data exchanged reduces, that is when there is an exchange between the inner-join and the semi-join. As we do not expect a degradation, we perform this push-down without any costing.

5.2 Bit-vector filtering

Bit-vector filtering is a well-studied technique to partially filter the larger input of a (semi/inner) join. The filtering is done by probing an approximate, bit-vector representation (e.g. a bloom filter) of the set of keys present on the smaller side. Note that as the representation is approximate, the filter cannot substitute a join, it is just a partial operator. Several standard algorithms to introduce bit-vector filters \[11–13, 15\] and data structures to represent bit vectors \[8, 16, 25\] have been proposed in literature. We build upon this to incorporate bit-vector filtering into Spark. We use a standard algorithm \[18\] to derive bit-vector filters and then carefully implement the technique in a distributed setting.

First, we perform the computation of the bit-vector itself in a distributed manner. A Spark run-time employs a set of tasks (typically one per core) to do the actual processing and a set of executors (one or two per machine) that each manage a subset of the tasks. Finally each spark job is orchestrated by a single orchestrator task. We exploit this to construct bloom filters incrementally\(^2\). Each task processing the smaller input constructs its own bloom filter. We then or the bloom filters at the executor level and finally at the orchestrator. The final bloom filter is then passed back to the executors, and all tasks running at that executor probe the same in-memory (read-only) bit-vector without needing concurrency control.

Second, we make use of plan marking to avoid duplicate computation. There are two potential sources of redundancy. First, the same small input can be joined with several large inputs. Surprisingly, the reuse exchange rule often misses out on detecting that the multiple computations are identical. This happens because the rule runs right at the end and the different instances of the same sub-query are optimized differently. We make use of plan markers to work-around this. We have a special rule that detects if the same bit-vector computation is repeated multiple times, and associate the same marker with them. This computation is similar to what is described in Algorithm 4. Second, the sub-query that prepares the smaller join is needed both to compute the bit-vector and for the actual join. We piggyback on the above plan marking scheme to avoid this redundancy too.

6 PEEPHOLE OPTIMIZATIONS

This section highlights some of the peephole optimizations we implement in SYNPASE SPARK. We focus on optimizations to sort in this paper as they bring significant benefits. Due to space constraints we do not include other optimizations in this paper (we exclude them when reporting results as well).

The sorting algorithm employed by Spark is a variant of insertion sort called Tim sort \[5\]. The core step in the algorithm (performed repeatedly) is the insertion of a new row into a previously sorted array. The sort implementation in Spark employs lazy de-serialization. It first tries to sort based on a fixed width (4B) prefix of the serialized row. Only if there is a collision, that is another row with the same prefix exists in the sorted array, does it deserialize the row and perform a comparison. We employ two peephole optimizations to the sort implementation that significantly save \(10\times\) the comparisons in some of the most expensive queries in TPCDS.

6.1 Sort key re-ordering

We re-order sort keys so that the columns with more distinct values occur before columns with fewer distinct values. This brings down the probability of collisions. A reduction in collisions reduces the number of times we need to deserialize the data and the number of comparisons we need to perform.

Note that sort is sensitive to order, re-ordering the keys can produce a different output. However when introduced to satisfy the requirements of a specific operator like sort-merge-join, any consistent ordering between the different inputs to the operator is safe. We rely on plan-marking to enforce such consistency constraints.

\(^2\) We choose bloom filters to as they allow for incremental computation. Other newer filter data structures like quotient filters \[25\] could also have been used.
Table 3: Number of queries affected by each optimization and the reduction in execution time in seconds.

<table>
<thead>
<tr>
<th>Optimization</th>
<th>#Rules</th>
<th>#Queries</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exchange Placement</td>
<td>3</td>
<td>26</td>
<td>1149(27%)</td>
</tr>
<tr>
<td>Partial-Aggregate</td>
<td>10</td>
<td>19</td>
<td>888(21%)</td>
</tr>
<tr>
<td>Other Partial Push-down</td>
<td>Semi-Join</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Bit vector</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Peephole</td>
<td>key re-order</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Two-level</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

7 EVALUATION

We compare synapse spark against spark (Apache Spark 3.0.1) using the TPCDS benchmark suite at 1 TB scale factor. These experiments were performed on a cluster with 64 cores and main memory of 512 GB spread across 8 worker nodes. Each query was executed 5 times and report the average speedup (along with width of the 95% confidence interval). We also evaluate some optimizations on a scale-up single machine database. This was done at 30 GB scale factor using SQL server on a node with 8 cores and 64 GB RAM.

7.1 Performance summary

Table 3 reports the number of rules needed to implement each optimization, the number of queries affected and the corresponding reduction in execution time (both in absolute and in percentage).

The partial push-downs contribute to 75% of the new rules we added. Overall the optimizations impact about half the queries (53 out of 103, 17 out of top 20) in the benchmark suite, speeding up this subset of queries by 2.1x and the entire suite by 1.8x (shown in Figure 1). Exchange placement (Section 3) and partial-aggregation (Section 4) have the biggest impact, both in terms of number of queries impacted and overall speedup. Figure 13 reports the breakdown of speedup from these optimization in each of the 53 queries. We observe significant improvements in long running queries where often multiple optimizations apply and bring non-overlapping benefits.

7.2 Impact of each optimization

Next we highlight some of the most notable improvements for each optimization covering impacted queries from the top 20 (for operator costs before and after optimizations refer Figure 2).

Exchange Placement Some of the biggest gains due to this optimization are because of reuse reasoning via plan-marking. Q23b, 14a, 14b, Q47, Q57 leverage this to attain 2–4x speedup. In addition to the bottleneck operators we target, this optimization reduces the cost of scans too by avoiding redundant scans (14a, 14b).

Partial aggregate push-down We were able to push down the aggregates all the way to the first stage in all but two impacted queries (17 out of 19). Some of the most significant gains were when the partial aggregates were derived from intersect (Q14a, Q14b) and semi-join (Q82, Q37). All this was only possible because of our fundamental extensions to add first-class support for partial-aggregation. A careful look at the operator breakdown reveals that the cost model is quite effective at assessing the benefit. The optimization always brings down the cost of the bottleneck operators. The model infact rejects push-down of partial aggregates in about 25 queries (not shown), and we cross validated (see sensitivity analysis) that none would have seen significant benefits.

Other partial push-down Semi-join push-down and bit-vector filtering together had a significant impact on Q95 (the only heavy query in the benchmark) where they not only saved on exchange but also on join cost. Interestingly there were two instances (Q82, Q37) where there was no exchange between the inner-join and the root semi-join, and in these instances semi-join push-down yielded no benefit.
We evaluate two of the partial push-down optimizations, namely while these two optimizations are applicable to the scale-up setting, would happen if the aggregation push-down from \([10, 20, 30]\) were to search over \(k\) seconds to optimize a TPCDS query, never needing a \(k\). With our algorithm the optimizer takes \(1\) of more than 4 to search over the number of plans memoized per node) of more than 4 to search over \(k\).

Sensitivity to \(k\) for exchange placement

Recall that our exchange placement algorithm incorporates an aggressive pruning of the search space. With our algorithm the optimizer takes 1 – 12 seconds to optimize a TPCDS query, never needing a \(k\) value (number of plans memoized per node) of more than 4 to search over all options. Without pruning optimization time increases by more than \(2\times\) for 7 queries (including Q24,Q47,Q57 that benefit a lot from exchange placement), all of which require a \(k\) of 16 or more to search the complete space. Q24 in-fact needs more time to optimize and reach the same optimal plan, than to run. This is unacceptable.

8 RELATED WORK

Query optimization is a very well researched area, with several decades of literature and significant industrial impact. We already described (in boxes in earlier sections) some important and closely related work. We provide a few additional details here.

Fundamentals components. Query costing, statistics propagation and plan space exploration are richly studied areas [7, 9, 18, 19]. We propose specific improvements targetting big-data systems. We propose a cost model (for partial push-downs) that accounts for exchanges and extend Spark to perform cost-based exploration.

Exchange and sorting. Recent literature proposes algorithms to introduce and implement exchanges [26, 28, 32–35]. We improve on the best exchange placement algorithm [34]. One interesting aspect of the prior algorithm is that it simultaneously optimizes sorting and partitioning in a cost-based manner. They support an order preserving exchange that interleaves reads from many machines. Spark today does not support such an exchange, it instead employs a carefully optimized sort implementation (winner of sort competition [5]) and relies on re-sorting data after exchange if required. In Synapse Spark we propose a peephole optimization that directly picks the best key order instead of exploring all combinations.

Finally our plan tagging mechanism is similar to what is used in other areas like view materialization and multi-query optimization [17, 21]. But our use case is very different, we are using it in the process of independently optimizing a single query.

Partial push-down. Synapse Spark differs from prior work [10, 20, 22, 30] in that it extends the big-data optimizer with first class support for partial aggregation. We add a new logical operator to and introduce several rules to seed partial aggregates and push them down below all SQL operators. [22] also proposes ways to limit the memory requirement of partial aggregation by using a bounded sized hash-table that can emit out multiple results for each set of partial aggregation keys. They also propose a cost model to specialize the parameters of their implementation. We explore a different trade-off (between hash-aggregate and exchange) that is more important in the big-data setting and propose a cost model to decide which partial aggregates are likely to be beneficial. Partial push-downs via bit-vector filtering [11–13, 15] is richly studied. We propose a specialized distributed implementation.

9 CONCLUSIONS

This paper describes new query optimization techniques we incorporate in Synapse Spark. We identify the main bottlenecks in big-data systems and propose three types of optimizations to address them. We extend the Spark query optimizer with new operators and several new logical and physical rules to implement the optimizations.

![Figure 14: Comparison of speedup from partial aggregation and semi-join push-down, in scale-up and scale-out systems.](image)