
Federated Matrix Factorization with Privacy Guarantee
Zitao Li

Purdue University

li2490@purdue.edu

Bolin Ding

Alibaba Group

bolin.ding@alibaba-

inc.com

Ce Zhang

ETH Zürich

ce.zhang@inf.ethz.ch

Ninghui Li

Purdue University

ninghui@purdue.edu

Jingren Zhou

Alibaba Group

jingren.zhou@alibab-

a-inc.com

ABSTRACT
Matrix factorization (MF) approximates unobserved ratings in a

rating matrix, whose rows correspond to users and columns corre-

spond to items to be rated, and has been serving as a fundamental

building block in recommendation systems. This paper compre-

hensively studies the problem of matrix factorization in different

federated learning (FL) settings, where a set of parties want to coop-

erate in training but refuse to share data directly. We first propose

a generic algorithmic framework for various settings of federated

matrix factorization (FMF) and provide a theoretical convergence

guarantee. We then systematically characterize privacy-leakage

risks in data collection, training, and publishing stages for three

different settings and introduce privacy notions to provide end-to-

end privacy protections. The first one is vertical federated learning
(VFL), where multiple parties have the ratings from the same set

of users but on disjoint sets of items. The second one is horizontal
federated learning (HFL), where parties have ratings from different

sets of users but on the same set of items. The third setting is local
federated learning (LFL), where the ratings of the users are only

stored on their local devices. We introduce adapted versions of FMF
with the privacy notions guaranteed in the three settings. In partic-

ular, a new private learning technique called embedding clipping is
introduced and used in all the three settings to ensure differential

privacy. For the LFL setting, we combine differential privacy with

secure aggregation to protect the communication between user de-

vices and the server with a strength similar to the local differential

privacy model, but much better accuracy. We perform experiments

to demonstrate the effectiveness of our approaches.

PVLDB Reference Format:
Zitao Li, Bolin Ding, Ce Zhang, Ninghui Li, and Jingren Zhou. Federated

Matrix Factorization with Privacy Guarantee. PVLDB, 15(4): 900 - 913, 2022.

doi:10.14778/3503585.3503598

1 INTRODUCTION
Federated learning (FL) has been applied as a paradigm for multiple

parties to collaboratively train a model without directly sharing

their data. FL can be categorized according to the data partition as

summarized in [26]. Based on whether the data are partitioned by

features or users, there are vertical FL (VFL) and horizontal FL (HFL),
respectively. Based on how much users’ data each party can access,

the HFL setting can be extended from the cross-silo setting to the

cross-device setting, which we call local FL (LFL) in this paper.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.

doi:10.14778/3503585.3503598

This paper investigates the matrix factorization problem (e.g.,

[18, 30, 45, 51]) under the above three settings of federated learning.

Matrix factorization is an important building block in recommenda-

tion systems. In its simplest form, with a rating matrix as the input,

it learns to represent users (rows) and items (columns or features)

as low-dim vectors, called user embeddings and item embeddings,
respectively, so that the dot-product of a user embedding and an

item embedding measures how the user prefers the item. The em-

beddings, preferably learned in a privacy-preserving way, can be

used in downstream applications [4, 52].

1.1 Coordination and Trust Models
For federated matrix factorization, we assume that the coordination

pattern is the classic server-client model [26, 50]. There are three

types of entities: 𝑛 users, totally 𝑠 parties holding users’ data, and
a coordination server. We assume that users’ ratings for items are

fixed and stored on parties beforehand; each party does not trust

the server or other parties, and wants to protect its users’ privacy.

It is challenging in FL to prevent privacy leakage. As shown in

[39], users in the anonymized rating matrices can still be identified.

Without sharing the ratings directly, training samples can still

be recovered from shared gradients in FL [53]. Even if no local

data are shared explicitly and the secure multiparty computation

techniques [6, 49] are applied in communication between parties,

the final models are still vulnerable to inference attacks [12]. To

provide provable resistance to such attacks, efforts have been made

to protect federate learning with differential privacy (DP) [13].

In all following settings, we aim to ensure that all the information

sent out by one party satisfies DP relative to its user’s data. That

is, the privacy boundary for each party is directly surrounding that

party. In other words, each party does not need to trust any other

party in order to protect the data it has. We identify whether a

certain kind of information (e.g., user/item embeddings) cross such

privacy boundaries depending on the settings below.

We give an overview of the coordination and trust models pro-

posed in this paper for different FL settings in Figures 1(a)-1(c).

Vertical FL (VFL). The rating matrix is partitioned on columns

across different parties. All parties share the same set of users, but

each owns a different subset of items. A typical application scenario

for VFL is that two companies, e.g., an online content platform and

a local retailer, have the same set of users, but each has different

user-behavior information; they want to cooperate in training a

recommendation model, which learns from both users’ behavior

on online contents (items such as videos) and items in local stores.

During the learning procedure, different parties exchange user

embeddings with the coordination server; the shared user embed-

dings are aggregated at the coordination server and sent back to

each party to refine local user/item embeddings for the next itera-

tions. In the trust model of this setting, the communication between

900

https://doi.org/10.14778/3503585.3503598
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503598

(a) VFL setting (b) HFL setting (c) LFL setting

Figure 1: Different FL settings (a)-(c) with sensitive information exchanged on privacy
boundaries (the dashed lines). Each 𝑢𝑖 is a user embeddings, 𝑣 𝑗 is an item embedding. Figure 2: Communication cost

parties and the coordination server (purple arrows) and the output
of final user/item embeddings (red/orange arrows) cross the pri-
vacy boundary, and they need to be protected under DP. Note that

since one user’s data is split amongmultiple parties, the joint output

satisfies DP relative to a user if all parties follow the protocol.

Horizontal FL (HFL). In HFL, each party has a subset of users and

all their ratings, so the rating matrix is partitioned on rows across

different parties. Different from distributed learning, there is no

i.i.d. assumption about the partitioning in HFL. A typical scenario

for HFL is that different hospitals have records for different groups

of patients (users) about the same set of diseases (items); hospitals

want to train a patient-disease prediction model cooperatively.

The coordination for HFL is symmetric to the one for VFL. As

different parties have different sets of users, a coordination server

synchronizes all updates on item embeddings periodically, and

sends them back to each party to refine user embeddings learned

for the users in this party. The final user embeddings do not have

to be published (within the privacy boundary, following the similar

assumptions as [24, 33]); thus, only the shared updates on item

embeddings (purple arrows), as well as the aggregated item em-

beddings if to be published, need to be protected with DP.

Local FL (LFL). LFL is a special case of HFL, where a user as one

party by her/himself has all her/his ratings. It is a common scenario

in mobile applications: each user holds the information about which

items s/he visits only on her/his own mobile device, and does not

want to share it directly with other parties; LFL enables the service

provider to train a recommender without collecting the sensitive

information about exact interactions between users and items.

Each user’s device exchanges updates on item embeddings with

the coordination server who aggregates them for the shared item

embeddings; afterwards, the shared item embeddings are broadcast

to each user’s device to refine user embedding which is kept only

locally. Note that under the trust model similar to [41], the user

embedding does not have to be published, as the ranking proce-

dure, e.g., calculating the dot-product of user embedding and item

embedding for a specific user, can be done locally in users device.

Only the shared updates on item embeddings (purple arrows) and
the aggregated item embeddings, need to be protected with DP.

Formal description about the coordination and trust models in

these three FL settings will be given in Sections 3-6.

1.2 Our Contributions
This paper comprehensively studies the matrix factorization prob-

lem under the three FL settings (i.e., HFL, VFL and LFL). Our con-

tributions in this paper can be summarized as the following:

• We introduce an abstracted computation paradigm in Section 3

for solving the matrix factorization problem in FL settings. This

paradigm is applicable for the three settings. We prove the conver-

gence of our proposed paradigm with limited communication and

coordination between parties and no assumption on whether the

data are distributed uniformly across parties or not.

• Different FL settings confront different potential privacy-leakage

risks. In the context of matrix factorization, we systematically char-

acterize privacy-leakage risks setting by setting, and propose corre-

sponding notions of privacy in different settings to prevent such

risks. Based on DP and secure aggregation, these privacy notions

provide end-to-end privacy guarantees on the information across

the privacy boundary. Depending on the protection granularity and

strength needed, there are two versions for each privacy notion,

per-rating version (protecting each rating at one time) and per-user

version (protecting each user’s behavior as a whole). We design FL

algorithms based on these privacy notions for different settings.

• Gradient clipping is a standard technique in private optimization

under DP when solving problems with unbounded gradients, but

it also has drawbacks as introducing additional bias and requiring

complicated hyper-parameter tuning [3, 10]. Instead, we propose

using embedding clipping to bound the sensitivity of the embedding

updates: (intermediate) item/user embeddings are projected into a

subspace so that their norms and thus the sensitivity is bounded by

a threshold, which is dependent on the range of the ratings in the

task and does not need to be tuned. We introduce our embedding

clipping technique under the VFL setting in Section 4, and will

repeatedly use it in other settings as well. We show with experi-

ments that embedding clipping can have more accurate updates

than gradient clipping and other approaches.

• Based on our proposed FL paradigm and embedding clipping,

we design VFL-SGDMF algorithm for matrix factorization under the

VFL setting in Section 4, providing privacy protection for both user

embeddings and item embeddings in both intermediate and final

outputs. Compared with training only locally with no communi-

cation, our experiments show that our VFL-SGDMF algorithm can

provide high accuracy in predictions by absorbing heterogeneous

information owned by different parties.

901

• We propose HFL-SGDMF algorithm for matrix factorization under

the HFL setting in Section 5. In this setting, the communication

between different parties is protected by DP, but the parties can

fine-tune the final results to obtain more accurate models. Our

experiments show VFL-SGDMF outperforms the non-private local

training method and a strawman method based on DPSGD [1, 42]

synchronizing privatized gradient from all parties in every iteration.

• Extending from the cross-silo HFL setting to cross-device LFL

setting in Section 6, we combine secure aggregationwith differential

privacy and propose LFL-SGDMF algorithm to ensure the server can

only obtain aggregated and privatized sum of gradients. A novel

two-round aggregation approach is introduced to ensure that our

algorithm tolerates user dropouts (disconnection of users’ devices)

during training without introducing too much excessive DP noise.

With similar strength of privacy protection, our algorithm provides

more accurate predictions on the testing set than the approach

purely based on local differential privacy.

1.3 Related Work
The majority of the work enforcing DP in FL is under the HFL

setting [26, 50], and they can be categorized into two classes. One

class of works, such as DP-FedSGD [36, 48], are extensions based

on the DPSGD [1, 42], in which a server aggregates the (privatized)

gradients from each party and updates models centrally. Another

class of techniques, like DP-FedAvg [35, 47], performs model aver-

age periodically, where local parties send their (privatized) updated

local models to the server, and the server updates the centralized

model by averaging those local models. DP-FedAvg has less com-

munication cost than DP-FedSGD, by avoiding sharing gradients

in every iteration. Our paper has the following differences in the

HFL setting compared with those existing works. 1) Different from

[35, 36], we assume that there is no fully trusted coordinator, and

all the information shared by the parties must be differentially pri-

vate. 2) Compared with [47, 48], MF is a non-convex optimization

problem with unbounded norm of gradient. 3) Different from the

DPSGD [1], we propose embedding clipping for this problem. Em-

bedding clipping can maintain the aggregated gradient information

better than the gradient clipping approaches, as shown in Section 4.

There are also results under non-private HFL setting [28, 29].

Existing work about other problems in the VFL setting includes

learning tree models with secure multiparty computation tech-

niques [32, 49] and training composed models [23]. A recent work

[22] studies the generalized linear model with distributed features

under the ADMM framework. Another paper [9] discussing asyn-

chronous supervised learning with VFL assumes the labels are pub-

lic accessible. According to our knowledge, this is the first paper to

discuss the MF problem in VFL setting with a privacy guarantee.

Existing work of privacy-preserving learning under the LFL

setting aligns with the local differential privacy (LDP), such as

[11, 15, 16, 19]. There are cryptographic methods in the LFL setting

called secure aggregation [5, 6] in parallel. The authors of [41]

proposed a algorithm to learn item embeddings with the local

differential privacy (LDP). However, we show that their algorithm

is not better than training only the user embeddings locally.

Some work about matrix factorization with DP in a centralized

setting includes [24, 25, 33, 40]. Also, the MF problem was studied

with homomorphic encryption [8]. Without privacy protection,

federated matrix factorization was studied as a multi-view learning

problem in [17]. Some other work focuses on the tensor factoriza-

tion in HFL, like [27] with non-private aggregation and [34] solving

the problem with EASGD and output perturbation for DP.

2 BACKGROUND
2.1 Matrix Factorization
The input to the matrix factorization (MF) [30] problem is a matrix

X ∈ (R ∪ {⊥})𝑛×𝑚 consisting of ratings from 𝑛 users on𝑚 items

(e.g., movies). An element X𝑖 𝑗 ∈ R is the observed rating from user 𝑖

on item 𝑗 , andX𝑖 𝑗 =⊥means that the rating is unobserved. Although
𝑛 and𝑚 can be very large, the matrix is sparse in the sense that only

a small fraction, e.g., 1%, of ratings, are observed. We denote the

set of indices of observed ratings as 𝛀 = {(𝑖, 𝑗) |X𝑖 𝑗 ≠⊥}. With the

assumption that the rating matrix can be approximated by the inner

product of two low rank matrices,𝑈 ∈ R𝑛×𝑝 and 𝑉 ∈ R𝑚×𝑝 where

𝑝 ≪ 𝑛,𝑚, the matrix factorization problem can be formalized as

minimizing the loss function ℒ (X,𝑈 ,𝑉):
1

|𝛀 |

(𝑖, 𝑗) ∈𝛀

ℒ𝑖, 𝑗 (X,𝑈 ,𝑉) = 1

|𝛀 |

(𝑖, 𝑗) ∈𝛀


X𝑖 𝑗 − ⟨𝑢𝑖 , 𝑣 𝑗 ⟩


2

, (1)

where 𝑢𝑖 and 𝑣 𝑗 are the row vectors of𝑈 and 𝑉 , which are called

user embeddings and item embeddings, respectively. For a specific
user 𝑖 , ratings on items 𝑗 ∈ [𝑚] can be approximated by the inner

product of user embedding and item embeddings ⟨𝑢𝑖 , 𝑣 𝑗 ⟩. We will

formalize the federated matrix factorization problem in Section 3.

2.2 Differential Privacy
In the federated learning settings, any non-trivial solution requires

parties (or user devices in the LFL setting) to share information

distilled from local datasets with others. Recent research results [38,

53] have shown that sharing gradients directly can leak user privacy.

In this paper, we employ DP [13] to protect user’s information

from privacy leakage because DP is more powerful in resisting

membership inference attacks, re-identification or reconstruction

attacks than other privacy notations, such as 𝑘-anonymity [14, 31].

Definition 1 ((𝜖, 𝛿)-DP). A randomized mechanism M is differ-
entially private iff given any pair of neighboring datasets X and
X′, the following holds for all possible output 𝑜 : Pr [M(X) = 𝑜] ≤
𝑒𝜖Pr [M(X′) = 𝑜] + 𝛿 .
Sequential composition: moments accountant. The private

dataset may be accessed multiple times. Moments accountant [1]

can be used to provide tight analysis for the privacy loss of a se-

quence of adaptive mechanisms. In general, let M(X, aux) be a func-
tion that returns outputs from the dataset X and an auxiliary input

aux. The auxiliary input aux can include all intermediate results

from previous steps. The logarithm of the moment generating func-

tion (of privacy loss in M) evaluated at the value 𝜆 is defined as

𝛼M (𝜆; X,X′, aux) = logE𝑜∼M(X,aux)


exp(𝜆 log

Pr [M(X, aux) = 𝑜]
Pr [M(X′, aux) = 𝑜])


,

which is upper bounded by 𝛼M (𝜆) = maxX,X′,aux 𝛼M (𝜆; X,X′, aux) .
Suppose there is a sequence of such adaptivemechanisms M1, . . . , M𝑇 ,
where each M𝑡 takes the dataset X ∈ 𝒳 and the outputs of all previ-

ous 𝑡 − 1 mechanisms as input. The moment accountant technique

bounds the total privacy loss in M1, . . . , M𝑇 via composing the loga-

rithms of the moment generating functions, 𝛼M𝑡 (𝜆)’s for 𝑡 ∈ [𝑇].

902

Theorem 1 (Moment accountants (MA) [1]). Let a mechanism
M be a sequence of adaptive mechanisms M1, . . . , M𝑇 defined as above.
Then we have 1) [composition] for any 𝜆, 𝛼M (𝜆) ≤

𝑇
𝑡=1

𝛼M𝑡 (𝜆); and
2) [tail bound] for any 𝜖 > 0, the mechanism M is (𝜖, 𝛿)-differentially
privacy for 𝛿 = min𝜆 exp(𝛼M (𝜆) − 𝜆𝜖).

This paper applies MA to analyze the privacy guarantee of our

solutions to federated MF. In the experiments, we calculate the

exact privacy loss using the package [44].

Parallel composition.Other than sequential composition, parallel

composition is another useful property of DP in FL. When the

parties have disjoint datasets, the total privacy loss in the FL process

is equal to the maximum privacy loss of an individual party.

Proposition 1 (Parallel composition [37]). If mechanisms
M1, . . . , M𝑇 are (𝜖 (1) , 𝛿 (1)), . . . , (𝜖 (𝑠) , 𝛿 (𝑠)) differentially private and
they are computed on disjoint datasets X1, . . . ,X𝑠 , then the overall
privacy loss will be (max𝑘 {𝜖 (𝑘) },max𝑘 {𝛿 (𝑘) }).

2.2.1 Differential Privacy in Federated Matrix Factorization. When

we enforce DP on the MF problem in FL settings, some details need

to be specified as the following.

Privacy definitions related toMF.Different definitions of “neigh-
boring datasets” imply different privacy guarantees. In this paper,

we consider two types of guarantees, per-rating privacy and per-user
privacy. We formally define them as follows.

• Per-rating privacy. To provide per-rating privacy, two rating ma-

trices X and X′ are neighboring datasets if there is an index (𝑖, 𝑗),
such that either X𝑖 𝑗 =⊥ is unobserved and X′

𝑖 𝑗
≠⊥ is observed, or

the reverse; and for any other index (𝑖 ′, 𝑗 ′) ≠ (𝑖, 𝑗), X𝑖′ 𝑗 ′ = X′
𝑖′ 𝑗 ′ .

Thus, per-rating privacy protects every single rating given by each

user. The protection provided by per-rating privacy on the overall

behavior of a user can be weak if a user contributes a large number

of ratings due to the sequential composition of differential privacy.

• Per-user privacy. To provide per-user privacy, two rating matrices

X and X′ are neighboring datasets if and only if there exists a

user 𝑖 such that i) for any user 𝑖 ′ ≠ 𝑖 , X𝑖′ · = X′
𝑖′ ·, and ii) either

X𝑖 𝑗 =⊥ for all items 𝑗 ∈ [𝑚] or X′
𝑖 𝑗

=⊥ for all items 𝑗 ∈ [𝑚].
The same definition has been used in [25]. This definition helps

prevent the adversary from distinguishing any individual user 𝑖’s

ratings from not rating anything. The “dummy row” is only used

to define neighboring rating matrix and sensitivity calculation, but

it is never added in the computation process. We use the above

per-user definition in this paper because it works with moment

accountants more naturally for composition. An alternative is to

define X and X′ as neighboring if they have the same number of

rows and differ in at most one row. This definition helps prevent

the adversary from distinguishing any individual user 𝑖’s ratings

from any other behavior. Satisfy (𝜖, 𝛿)-DP using the former satisfies

(2𝜖, 2𝛿)-DP under the latter.

Bounding sensitivity. In DP, the effect of adding/removing one

record is called sensitivity. Gradient clipping and trimming are two

techniques to bound the sensitivities in MF.

• Gradient clipping. In differentially private optimization, when the

gradient-based method is applied (e.g., DPSGD) but the gradients

are unbounded, gradient clipping is the technique to bound the

sensitivity of gradients [1]. For example, for per-rating privacy, the

gradient for the user embedding from a rating of user 𝑖 on item 𝑗 ,

∇𝑈ℒ𝑖, 𝑗 (𝑈 ,𝑉), is not bounded if there are no additional constraints.
Thus, the gradient has to be clipped as

∇𝑈ℒ𝑖,𝑗 (𝑈 ,𝑉)
max{1,∥∇𝑈ℒ𝑖,𝑗 (𝑈 ,𝑉)∥

2
/𝐶 } .

However, gradient clipping has several disadvantages in practice.

Firstly, gradient clipping limits the effect of each rating. So gradient

clipping limits the effects of gradients with large magnitudes in

aggregation, the useful updates may be canceled out. Secondly,

gradient clipping requires extract space to store the gradients from

each rating/user. In this paper, we propose to use embedding clipping
(in Section 4) to bound the sensitivity of the gradient.

• Trimming [33]. The bounded gradients from a single rating are

sufficient to derive the sensitivity of per-rating privacy. However, a

user can have many ratings, and the sensitivity of per-user privacy

is linear to the maximum number of ratings a user can have. An

excessive noise is required to provide per-user privacy because of

the high sensitivity. Thus, when per-user privacy is enforced, as

the first step, each user’s record keeps at most 𝜃 (𝑘) ratings in the

local rating matrix of party 𝑘 , and turns the rest of ratings to ⊥.
• Privacy budget composition. Solving the federated MF problem

requires multiple accesses to the dataset. Based on different data

partitions and privacy settings, both parallel composition and se-

quential composition can be used in this paper. The privacy losses

are bounded for the three different settings in Section 4 to 6.

3 FEDERATED MATRIX FACTORIZATION
The goal of federated matrix factorization is to let the involved

parties learn some common components cooperatively. In the VFL

setting, the parties want to learn the user embeddings together;

in the HFL and LFL setting, the item embeddings are shared be-

tween the different parties. This section formalizes the problems in

VFL, HFL and LFL, then introduces a non-private federated matrix

factorization paradigm with convergence guarantees.

3.1 Problem Formulation
We assume there are 𝑠 parties in the learning process. The party

is an abstraction that has different meanings in cross-silo FL and

cross-device FL [26] scenarios. When a party has more than one

user’s data, it represents an organization, and the scenario is cross-

silo FL; when each party has only one user’s data, it represents a

user device in practice, and the scenario becomes cross-device FL.

MF in vertical federated learning (VFL). As described in Fig-

ure 1(a), each party in the VFL setting has data from the same set of

𝑛 usersU, corresponding to 𝑛 rows in the rating matrix X, but owns

only a subset of items. Let {F1, . . . , F𝑠 } be a partition of the set of all

items [𝑚] with |F𝑘 | =𝑚𝑘 , and each F𝑘 be the subset of items owned
by party 𝑘 ∈ [𝑠]. Thus, the rating matrix is partitioned vertically
into X = [XF1

, . . . ,XF𝑠] with XF𝑘 ∈ (R ∪ {⊥})𝑛×𝑚𝑘
as the rating

information owned by party 𝑘 . We assume that the users in local

rating matrices are aligned in the way that for all 𝑘 ∈ [𝑠], the 𝑖𝑡ℎ
rows (𝑋F𝑘)𝑖 are corresponds to the same user 𝑖 . The 𝑠 parties want

to collaboratively learn user embeddings 𝑈 = [𝑢𝑖]𝑖∈[𝑛] ∈ R𝑛×𝑝 ,
and item embeddings𝑉F𝑘 = [𝑣 𝑗]𝑗 ∈F𝑘 ∈ R𝑚𝑘×𝑝

for the items owned

by each of them. In practice, the number of parties involved in the

vertical federated learning is limited in most scenarios, i.e. 𝑠 ≤ 10.

• Loss functions in VFL. For each party 𝑘 , the local loss function is

ℒ

XF𝑘 ,𝑈 ,𝑉F𝑘


= 1

|𝛀𝑘 |

(𝑖, 𝑗) ∈𝛀𝑘


X𝑖 𝑗 − ⟨𝑢𝑖 , 𝑣 𝑗 ⟩


2

. The global loss

903

function can be rewritten as: ℒ (X,𝑈 ,𝑉) = 
𝑘
|𝛀𝑘 |
|𝛀 | ℒ


XF𝑘 ,𝑈 ,𝑉F𝑘


=

1

|𝛀 |


𝑘


(𝑖,𝑗)∈𝛀𝑘


X𝑖 𝑗 − ⟨𝑢𝑖 , 𝑣𝑗 ⟩


2

.

Our algorithms in this paper are based on stochastic gradient

descent (SGD). Based on the loss function, the gradients to the

user/item embeddings are the following:

∇𝑈ℒ(X,𝑈 ,𝑉) =

𝑘

|𝛀𝑘 |
|𝛀 | ∇𝑈ℒ(XF𝑘 ,𝑈 ,𝑉F𝑘), (2)

∇𝑉F𝑘 ℒ(X,𝑈 ,𝑉) = |𝛀𝑘 |
|𝛀 | ∇𝑉F𝑘 ℒ(XF𝑘 ,𝑈 ,𝑉F𝑘) . (3)

Equation (2) indicates that the updates on the global user embed-

dings need to be the weighted average of the updates of local user

embedding; Equation (3) suggests that the local updates on the item

embeddings, although no need to be aggregated, need to be scaled

by the a different ratio |𝛀𝑘 |/|𝛀 | for each party 𝑘 .

When using the SGD, each party can sample a submatrix from

the local rating matrix consisting of 𝑛′ rows and𝑚′
𝑘
columns. The

observed ratings in this sampled submatrix is denoted as 𝐼𝑘 . We

assume that all parties have about the same “density” of observed

ratings, 𝜏 = |𝛀 |/(𝑛𝑚). The normalized stochastic gradients on

party 𝑘 to user embeddings and item embeddings are denoted as:

g(𝑘)
𝑈

=
1

𝑛′𝑚′
𝑘
𝜏


(𝑖,𝑗)∈𝐼𝑘

∇𝑈ℒ𝑖,𝑗


XF𝑘 ,𝑈

(𝑘) ,𝑉F𝑘


≈ ∇𝑈ℒ(XF𝑘 ,𝑈 ,𝑉F𝑘),

g(𝑘)
𝑉F𝑘

=
1

𝑛′𝑚′
𝑘
𝜏


(𝑖,𝑗)∈𝐼𝑘

∇𝑉F𝑘 ℒ𝑖,𝑗


XF𝑘 ,𝑈

(𝑘) ,𝑉F𝑘


≈ ∇𝑉F𝑘 ℒ(XF𝑘 ,𝑈 ,𝑉F𝑘) .

MF in horizontal federated learning (HFL). As in Figure 1(b),

instead of partitioned items, let {U1, . . . ,U𝑠 } be a partition of the

set of all users [𝑛], and U𝑘 is the subset of users belongs to party 𝑘 .

Compared with the vertical setting, data of a user are on a single

party. All parties potentially have ratings for all the items in F
with size𝑚. The rating matrix X is thus partitioned horizontally as

X = [XU1
; . . . ; XU𝑠] where each party 𝑘 has the rating information

as a submatrix XU𝑘 ∈ (R ∪ {⊥})𝑛𝑘×𝑚 , in which we can observe a

subset of ratings𝛀𝑘 . The goal of the 𝑠 parties in the HFL setting is to

learn item embeddings𝑉 = [𝑣 𝑗]𝑗 ∈F if size𝑚×𝑝 cooperatively with

higher utility by exchanging privacy-preserved information, and

each party 𝑘 ∈ [𝑠] learns a set of user embeddings𝑈U𝑘 = [𝑢𝑖]𝑖∈U𝑘
of size 𝑛𝑘 × 𝑝 for the users in their local dataset.

• Loss functions in HFL. Similar to the VFL, the local loss function is

ℒ

XU𝑘 ,𝑈U𝑘 ,𝑉


= 1

|𝛀𝑘 |

(𝑖, 𝑗) ∈𝛀𝑘


X𝑖 𝑗 − ⟨𝑢𝑖 , 𝑣 𝑗 ⟩


2

, and the global

loss function is ℒ (X,𝑈 ,𝑉) = 
𝑘
|𝛀𝑘 |
|𝛀 | ℒ


XU𝑘 ,𝑈U𝑘 ,𝑉


. Similarly,

we denote the gradients and the normalized stochastic gradients

on party 𝑘 to user embeddings and item embeddings and denote

them as ℒ𝑈U𝑘
(XU𝑘 ,𝑈U𝑘 ,𝑉), ℒ𝑉 (XU𝑘 ,𝑈U𝑘 ,𝑉), g(𝑘)

𝑈U𝑘
and g(𝑘)

𝑉
.

MF in horizontal federated learning (LFL). When formalized

as an optimization problem, the LFL setting is an extreme case of

the HFL setting with 𝑠 = 𝑛 and U𝑖 = {𝑖}. Thus, the loss functions,
the gradients and convergence can inherit naturally from HFL.

3.2 Common FL Paradigm for MF Problem
We introduce a paradigm for solving the MF problem in both VFL

and HFL settings. It consists of three stages: [Stage 1]: initializa-
tion and local pre-computation; [Stage 2] cooperative learn-
ing; [Stage 3] local fine-tuning. The paradigm is described as

vanilla FMF in Figure 3(a). In VFL settings, the shared embeddings

are the user embeddings, while the local embeddings are item em-

beddings. The roles switch in the HFL setting, where the shared
embeddings are the item embeddings and the local embeddings are
the user embeddings. The first and the last stages are done locally

by each party, while the second stage requires communication.

The [Stage 2] cooperative learning of FMF consists of Step (c2)

and (s2). The user embeddings and item embeddings are updated

locally with SGD. The updating step are shown as the following:

VFL: 𝑈 (𝑘) ← 𝑈 (𝑘) − 𝛾𝑡g(𝑘)
𝑈

,𝑉F𝑘 ← 𝑉F𝑘 −
𝛾𝑡𝑚𝑘

𝑚
g(𝑘)
𝑉F𝑘

; (4)

HFL: 𝑈U𝑘 ← 𝑈U𝑘 −
𝛾𝑡𝑛𝑘

𝑛
g(𝑘)
𝑈U𝑘

,𝑉 (𝑘) ← 𝑉F𝑘 − 𝛾𝑡g(𝑘)
𝑉 (𝑘)

. (5)

Herewe assume that all parties have about the same rating “density”,

|𝛀𝑘 |
|𝛀 | ≈

𝑚𝑘

𝑚 or
|𝛀𝑘 |
|𝛀 | ≈

𝑛𝑘
𝑛 . As mentioned in the previous subsection,

the global loss function is a weighted average of the local ones.

Thus, the weights are applied in (4) and (5) to match the global

loss. Besides, the global shared embeddings are updated as the

weighted average of the local ones in Step (s2) of FMF, which is

either𝑈 =
𝑠
𝑘=1

𝑚𝑘

𝑚 𝑈 (𝑘) for VFL or 𝑉 =
𝑠
𝑘=1

𝑛𝑘
𝑛 𝑉 (𝑘) for HFL.

Coordination and communication cost of FMF. Communica-

tion only happens in the cooperative learning stage. The coor-

dination logic behind (c2) and (s2) is that for each iteration, the

coordination server first requests the locally updated embeddings

from each party; after receiving the request, each party uploads

their embeddings; the server aggregated the updated embeddings

from parties and broadcast the weighted average to all the parties.

The coordination server of FMF performs synchronization over all

involved parties 𝑇 times. The total communication cost is 𝑂 (𝑇𝑛𝑝)
for VFL or 𝑂 (𝑇𝑚𝑝) for HFL. Notice that there are 𝑇 ′ local itera-
tions between each update. Compared with the gradient-aggregated

methods (e.g., [36, 48]), FMF saves a factor of 𝑇 ′ synchronizations.
In practice, it suffices to have 𝑇 and 𝑇 ′ no less than 100 and 10,

respectively, for FMF to converge.

Convergence of FMF. To analyze the theoretical convergence ratio
of FMF, the first condition is that the sampled gradients are unbiased

to the true gradients with bounded variance.We further assume that

1) the true local gradients are bounded, 2) the global loss function

is smooth and 3) the initial loss is bounded by a constant 𝐷 . These

assumptions are practical given a dataset and a proper initialization

of the embeddings.

Theorem 2. If the aforementioned assumptions hold, Algorithm

FMF converges in 1

𝑇

𝑇
𝑡=1
E [∥∇ℒ (X,𝑈 ,𝑉) ∥] = 𝑂


𝐷
𝑇
(1 + 𝑐)


with

fixed step size 𝛾 = 𝑂

 √
𝐷

𝑇 ′
√
𝑇


, and 𝑐 =

𝑠
𝑘=1

𝑚2

𝑘

𝑚2
in VFL, 𝑐 =

𝑠
𝑘=1

𝑛2

𝑘

𝑛2

in HFL and 𝑐 = 1

𝑛 for LFL.

4 PRIVATE VFL MATRIX FACTORIZATION
Although the parties in FMF algorithm do not share the local rating

matrices directly with others, the shared embeddings still carry

users’ recoverable private information. The VFL privacy leakage

risks and expected protections are formalized as the following.

VFL privacy leakage and protection. In this setting, as shown
in Figure 1(a), we assume that users trust the party as long as their

data are handled properly later on, so there is no need to protect

the privacy of the information exchange between users and parties.

904

Input: {X(1) , . . . ,X(𝑠) } owned by 𝑠 different parties; the total iteration𝑇 and

local update iterations𝑇 ′ .
Output: User embeddings and item embeddings

[Stage 1]: initialization and local pre-computation
(s1) Server: Initialize {shared embeddings}, share to all parties;

(c1) All parties 𝑘 ∈ [𝑠]: Initialize {local embeddings};

[Stage 2]: cooperative learning
while 𝑡 ∈ [𝑇] do

(c2) All parties 𝑘 ∈ [𝑠]: Update local version of {shared embeddings} and

{local embeddings} for𝑇 ′ local iterations; upload {shared embeddings};

(s2) Server: Aggregate and weighted average the {shared embeddings},

and share the average to all parties.

end while
[Stage 3] local fine-tuning
(c3) All parties 𝑘 ∈ [𝑠]: Pass.

(a) Vanilla FMF

Input: {XF1
, . . . ,XF𝑠 } owned by 𝑠 different parties; the total iteration𝑇 and

local update iterations𝑇 ′ .
Output: Private user embeddings and private item embeddings

Define: shared embeddings =𝑈 ; local embeddings =𝑉F1
, . . .𝑉F𝑠

Replace (c2) in FMF: Update 𝑈 (𝑘) and 𝑉F𝑘 for 𝑇 ′ local iterations with em-

bedding clipping and DP noise; upload𝑈 (𝑘) to server;

Replace (c3) in FMF: Fine-tune𝑉F𝑘 locally for 𝜅 iterations with embedding

clipping and DP noise;

(b) Changes FMF→ VFL-SGDMF

Input: {XU1
, . . . ,XU𝑠 } owned by 𝑠 different parties; the total iteration𝑇 and

local update iterations𝑇 ′ .
Output: Each party has its own version user/item embeddings

Define: shared embeddings =𝑉 ; local embeddings =𝑈U1
, . . .𝑈U𝑠

Replace (c1) in FMF: Initialize and pre-train𝑈U𝑘 ;

Replace (c2) in FMF: Update 𝑉 (𝑘) for 𝑇 ′ local iterations with embedding

clipping and DP noise; upload𝑉 (𝑘) to server;

Replace (c3) in FMF: Fine-tune𝑈U𝑘 and𝑉 (𝑘) locally;

(c) Changes FMF→ HFL-SGDMF

Input: {X1, . . . ,X𝑛 } owned by 𝑛 different users; the total iteration𝑇 .

Output: Shared item embeddings𝑉

Define: shared embeddings =𝑉 ; local embeddings =𝑈1, . . . ,𝑈𝑛

Replace (c1) in FMF: All parties 𝑖 ∈ [𝑛]: Initialize and pretrain𝑈𝑖 ;

Replace (c2) in FMF: (Round 1) Calculate noise update g̃(𝑖,𝑡)
𝑉

and invoke SA𝜔 -

report(g̃(𝑖,𝑡)
𝑉
) ; (Round 2) If receive |U(𝑡,1) | from server, upload

¯𝝃 (𝑖,𝑡) =

−𝝃 (𝑖,𝑡) + 𝝃 ′(𝑖,𝑡) ;
Replace (s2) in FMF: (Round 1) Invoke SA𝜔 -agg to get g̃(𝑡)

𝑉
=


𝑖∈U(𝑡,1) g̃(𝑖,𝑡)
𝑉

;

if |U(𝑡,1) | ≤ (1 −𝜔)𝑛 then next iteration; Send user 𝑖 ∈ U(𝑡,1) an integer

|U(𝑡,1) |; (Round 2) Update𝑉 (𝑡) = 𝑉 (𝑡−1) − 𝛾𝑡

|U(𝑡,1) |


g̃(𝑡)
𝑉
+

𝑖∈[U(𝑡,2)]
¯𝝃 𝑖


;

Replace (c3) in FMF: Fine-tune local𝑈𝑖 ;

(d) Changes FMF→ LFL-SGDMF

Figure 3: Federated matrix factorization algorithms

During the learning process of VFL, the exchanged intermediate

results, such as locally updated embeddings, may leak users’ private

information to other parties and the server. A naive privacy leakage

is that when a party never updates a user embedding, the coordina-

tion server can easily conclude that the user has no rating with that

party. Besides, the learned user/item embeddings are used in pub-

lic services (e.g., recommendation systems), so privacy protection

needs to be provided for both user/item embeddings. Thus, privacy

protect is expected for information exchange between parties and

coordination server, and user/item embeddings in VFL.

4.1 Private MF in VFL: VFL-SGDMF
Compared with the non-private FMF, a few additional steps are

required in [Stage 2] (s2) to change it into a differentially private

mechanism, called VFL-SGDMF.

4.1.1 Bounding sensitivity. In order to bound the sensitivity of the

loss function (1), [33] sets constraints on the inner product of 𝑢𝑖
and 𝑣 𝑗 . Gradient clipping method in [1] can be for MF problem and

[41] projects each element of the gradient to [−1, 1]. Unlike the
previous works, we propose embedding clipping, which imposes

hard constraints on the norms of user/item embeddings in order to

bound the gradients from a single rating. Extending for per-user

privacy, we also adapt the same strategy, random trimming, as [33]
in addition to bound the user level sensitivity.

Embedding clipping. We notice that the scores in rating matri-

ces are usually in a bounded range [0, 𝑅] where 𝑅 is some finite

number (e.g., 5 or 10). This property motivates the non-negative

matrix factorization [2, 46], in which the user embeddings and item

embeddings are restricted to be non-negative. In this paper, we

enforce stronger constraints that the norm of the user embeddings

and item embeddings are also bounded. That is,

𝒰 : ∀𝑖 ∈ [𝑛], ∥𝑢𝑖 ∥22 ≤ 𝑅,𝑢𝑖 ≥ 0, 𝒱 : ∀𝑗 ∈ [𝑚], ∥𝑣𝑗 ∥22 ≤ 𝑅, 𝑣𝑗 ≥ 0. (6)

With constraints in (6) and Cauchy–Schwarz inequality, we have

⟨𝑢𝑖 , 𝑣 𝑗 ⟩ ≤ 𝑅. The gradient with respect to 𝑢𝑖 from the 𝑗-th item is

∇𝑢𝑖ℒ𝑖, 𝑗 (𝑈 ,𝑉) = −2𝑣 𝑗

X𝑖 𝑗 − ⟨𝑢𝑖 , 𝑣 𝑗 ⟩


if X𝑖 𝑗 is observed, otherwise

is 0. For per-rating privacy, a pair of neighbouring dataset X and

X′ differ at index (𝑖∗, 𝑗∗) with X𝑖∗ 𝑗∗ ≠⊥ and X′
𝑖∗ 𝑗∗ =⊥. With 𝑢𝑖

and 𝑣 𝑗 bounded as (6), then the sensitivity of the gradient to a

user embedding is Δ2,𝑢 =
−2𝑣 𝑗∗


X𝑖∗ 𝑗∗ −


𝑢𝑖∗ , 𝑣 𝑗∗


− 0


2
≤ 2𝑅3/2

.

Similarly, we can obtain sensitivity Δ2,𝑣 = 2𝑅3/2
for ∇𝑣𝑗ℒ𝑖, 𝑗 (𝑈 ,𝑉).

We denote the embedding clipping on user embeddings Π𝒰 (𝑈),
a projection functions that first turns all negative entries of𝑈 into

0, then normalizes each row vector with
𝑢𝑖

max{1, ∥𝑢𝑖 ∥2/
√
𝑅 }

to satisfy

(6); Π𝒱 (𝑉) performs the same projection for 𝑉 to satisfy (6). We

provide proof that this two-step operation indeed can project each

row vector to the closest point in 𝒰 or 𝒱 in our full version.

Although the additional restrictions may affect user embeddings

and item embeddings’ expressiveness, it can provide regularization

to prevent overfitting and provide a nice bounded-gradient property.

While gradient clipping method clips the gradient from different

records, then aggregates the gradient and updates the embeddings,

embedding clipping is equivalent to first aggregating the gradients

then clip. Bothmethods introduce bias in the update, but embedding

clipping has advantages over the gradient clipping in the MF as

shown in our experiments.

Random trimming. To bound the sensitivity in per-user privacy,

each party trims their local dataset so that there are at most 𝜃 (𝑘)

905

ratings per user remaining in the local rating matrix of party 𝑘 , and

turns the others to ⊥.

4.1.2 Amplifying privacy with mini-batches. It has been proven

in other literature that sampling can amplify privacy. Notice that

per-user privacy has a stronger constraint on sampling to achieve

privacy amplification compared with per-rating privacy. Because

all ratings from the same user are considered as one record in

per-user privacy, the sampling needs to be applied on user-level

when per-user privacy is required; sampling on columns has no

privacy amplification. That is, 𝑛′ rows from the local (trimmed)

rating matrix are sampled , and the sampling rate is 𝜂 = 𝑛′
𝑛 . To

be more consistent and easy to compare, we apply this user-level

sampling under both the per-rating and per-user privacy.

4.1.3 Private local updates. To protect both intermediate and final

results, both𝑈 and 𝑉 need to be perturbed with random noise and

projected back to the feasible domain as defined as (6). The locally

updates on user embeddings and item embeddings becomes:

𝑈 (𝑘) = Π𝒰

𝑈 (𝑘) − 𝛾𝑡 g̃(𝑘)

𝑈


,𝑉F𝑘 = Π𝒱


𝑉F𝑘 −

𝛾𝑡𝑚𝑘

𝑚
g̃(𝑘)
𝑉F𝑘


, (7)

where g̃(𝑘)
𝑈

= g(𝑘)
𝑈
+𝝃 (𝑘,𝑡,𝑡

′)
𝑈

, g̃(𝑘)
𝑉F𝑘

= g(𝑘)
𝑉F𝑘
+𝝃 (𝑘,𝑡,𝑡

′)
𝑉F𝑘

. The noise 𝝃 (𝑘,𝑡,𝑡
′)

𝑈

and 𝝃 (𝑘,𝑡,𝑡
′)

𝑉F𝑘
have the same shape as the gradients, and their ele-

ments are sampled independently from zero-mean Gaussian distri-

bution for each local update, with variance depending on privacy

definitions and privacy parameters. Details are discussed later.

4.1.4 VFL-SGDMF local fine-tuning. We notice that compared with

the convergence of the non-private and fully centralized matrix

factorization algorithm, the convergence of the VFL-SGDMF algo-

rithm mainly suffers from two aspects: the DP noise and the non-

convexity of the problem. In our experiments, the user embeddings

change little in the final iterations, and the loss decreases very slow

in the final iterations. Thus, we can add a local fine-tuning (c3) as
the following: for the last 𝜅 iterations, user embeddings are fixed,

only item embeddings are updated locally on each party. So each

party accesses the local rating matrices 𝑇𝑇 ′ + 𝜅 times in training.

The benefit of fixing the users embedding and training item em-

beddings locally is that the problem becomes a convex optimization

problem, and the sensitivity of each local update is smaller as only

item embeddings change in the final iterations. Turning the prob-

lem into a convex problem and the smaller noise for each update,

we can obtain smaller and more stable losses in training.

4.2 Analysis of Privacy Guarantee
To analysis both per-rating and per-user privacy, quantifying pri-

vacy loss of a party is an intermediate step. So we use (𝜖 (𝑘) , 𝛿 (𝑘))
to characterize the privacy loss of party 𝑘 after participating in the

VFL computation. Although these quantities are not our final goal,

(𝜖 (𝑘) , 𝛿 (𝑘)) can be understood as the privacy loss of party 𝑘 when

the other 𝑠 − 1 parties collude or controlled by an adversary.

• Sensitivity of per-rating privacy.When each party updates local𝑈

and𝑉F𝑘 together in VFL-SGDMF, the ℓ2 sensitivity of the gradient to

(𝑈 ,𝑉F𝑘) will be Δ𝑟𝑎𝑡𝑖𝑛𝑔 = 2

√
2𝑅3/2

if adding/removing one rating;

in the final 𝜅 iterations where only local item embeddings are

updated, the sensitivity of each iteration is Δ𝑟𝑎𝑡𝑖𝑛𝑔 = Δ2,𝑣 = 2𝑅3/2
.

• Sensitivity for per-user privacy after trimming. After trimming, for

any pair of neighboring database XF𝑘 and X′F𝑘 , we have a user 𝑖
such that ratings (XF𝑘)𝑖 𝑗 =⊥ for all items 𝑗 ∈ [F𝑘] in XF𝑘 while at

most 𝜃 (𝑘) ratings (X′F𝑘)𝑖 𝑗 ≠⊥. Thus, the per-user ℓ2-sensitivity is

Δ𝑢𝑠𝑒𝑟 = 𝜃 (𝑘)Δ𝑟𝑎𝑡𝑖𝑛𝑔 on party 𝑘 when updating𝑈 and 𝑉 together,

and Δ𝑢𝑠𝑒𝑟 = 𝜃 (𝑘)Δ2,𝑣 if only updating item embeddings.

Composition of privacy across iterations. The standard devia-

tion of the Gaussian distribution, from which 𝝃 (𝑘,𝑡,𝑡
′)

𝑈
and 𝝃 (𝑘,𝑡,𝑡

′)
𝑉F𝑘

are sampled from, is determined by the sensitivity and the privacy

budget. It can be written as 𝜎 (𝑘) = 𝑧Δ𝑟𝑎𝑡𝑖𝑛𝑔 for per-rating privacy

or 𝜎 (𝑘) = 𝑧Δ𝑢𝑠𝑒𝑟 for per-user privacy, where 𝑧 is called noise multi-
plier. Based on moment accountants [1], the relation between noise

multiplier 𝑧 and privacy budget is as the following:

Proposition 2. Let the sampling rate be 𝜂 in each local iteration.
After running𝑇𝑇 ′ +𝜅 local iterations, VFL-SGDMF introduces at most
(𝜖 (𝑘) , 𝛿 (𝑘)) per-rating or per-user privacy loss for party 𝑘 if the noise

multiplier 𝑧2 = 𝑐1

𝜂2 (𝑇𝑇 ′+𝜅) ln 1/𝛿 (𝑘)

(𝜖 (𝑘))2 with some constant 𝑐1.

End-to-end privacy guarantees. The per-rating and per-user pri-
vacy of VFL-SGDMF can be bounded as the following.

• Per-rating privacy composition in VFL.Notice that the parallel com-

position property holds in the context of moment accountants as

well. In per-rating setting, global privacy loss can be bounded with

the following theorem derived based on the parallel composition:

Theorem 3 (Global per-rating privacy). If the noise multiplier
is set as above, then VFL-SGDMF is (max𝑘∈[𝑠] 𝜖

(𝑘) ,max𝑘∈[𝑠] 𝛿
(𝑘))

per-rating differentially private globally.

• Per-user privacy composition in VFL. Users may have ratings dis-

tributed across multiple parties, so the parallel composition prop-

erty does not hold when composing per-user privacy loss. A naive

composition gives 𝜖 =
𝑠
𝑘=1

𝜖 (𝑘) . However, composing with mo-

ment accountants can give a tighter loss:

Theorem 4 (Global per-user privacy). If for each party 𝑘 has
per-user privacy loss at most (𝜖 (𝑘) , 𝛿 (𝑘)) and 𝛿 = 𝛿 (1) = . . . = 𝛿 (𝑠) ,

then overall per-user privacy loss of VFL-SGDMF is (
𝑠

𝑘=1


𝜖 (𝑘)


2

, 𝛿).

Notice that we only consider one-time training in this paper.

The privacy budget and the hyper-parameters are predefined, so

that privacy budget will not run out during the training. However,

the real-world DP applications often provide a privacy guarantee

within a given time period (i.e. a day) [43]. Following the same

spirit, our algorithm can also be executed daily.

4.3 Empirical Evaluation for VFL
Datasets.We use three datasets in our experiments. The first one

is the MovieLens 10M (ML10M) dataset [21], the second one is

MovieLens 25M (ML25M) and the other one is the LibimSeTi [7]

dataset. MovieLens 10M is a dataset with 10 million ratings on

10, 681 movies by 71, 567 users from the MovieLens website. Movie-

Lens 25M dataset has 25 million ratings on 62,000 movies by 162,000

users. ML10M and ML25M are similar as their ratings are all be-

tween 0.5 to 5. LibimSeTi contains more than 17 million anonymous

ratings of 168, 791 profiles made by 135, 359 LibimSeTi users, and

906

(a) Per-rating privacy (b) Per-user privacy, 𝜃 = 10

Figure 4: Embedding clip v.s. gradient clip.

(a) Per-rating privacy (b) Per-user privacy, 𝜃 = 10

Figure 5: Compare VFL-SGDMF (s=1), DP-SGLD and ObjPertb.

the scores in LibimSeTi are between 0 to 10. We also pre-process

the LibimSeTi dataset with the same process as [41].

We split the datasets into 𝑠 disjoint sub-datasets bymovie/profiles,

such that the ratings of each movie/profile can appear in only one

dataset. Each of the sub-dataset simulates the local dataset for a

party. We keep 10% of the ratings for testing in each local dataset

and use the remaining for training. To measure the quality of the

embeddings, we use the mean squared error (MSE) to measure the

closeness between the inferences and the true ones in testing sets.

Because the existing DP MF methods are mainly in central set-

ting, so we first compare [1, 24, 33] with VFL-SGDMF and set 𝑠 = 1.

To show the benefit of the communication in VFL-SGDMF, we also
use local-only as a baseline. In the local-only method, each party

trains locally with 𝑇𝑇 ′ iterations DP-SGD [1] to get local private

user embeddings𝑈 (𝑘) and private item embeddings 𝑉F𝑘 , but they

never communicate with each other during the training process.

Hyper-parameters. We fix 𝑝 = 20 for the embeddings in all ex-

periments. Although there are possible trade-offs between 𝑇 , 𝑇 ′,
sampling rate and variance of Gaussian noise for a fixed 𝜖 , we fix

𝑇𝑇 ′ = 1000 (each party access local dataset 1000 times), sampling

rate 0.01 and adjust the variance of Gaussian noise for different 𝜖

for the experiments in this paper. Also, the best trimming threshold

𝜃 (𝑘) for per-user privacy may vary for different numbers of par-

ties, different datasets and different privacy budgets. For per-user

privacy, we fix the trimming threshold 𝜃 = 10 when 𝑠 = 1, 𝜃 (𝑘) = 5

when 𝑠 ∈ {2, 5, 10}, and set 𝜃 (𝑘) = 2 when 𝑠 = 18. Because a too

large 𝜃 (𝑘) requires large noise to protect privacy, a too-small 𝜃 (𝑘)

abandons too much information. We tune the learning rates for

different privacy budgets based on the training loss and pick the

one giving the lowest training loss. The learning rates decrease

linearly as [1] for the first 80% iterations and stay the same for the

final 20% iterations. While we only report the results with the fixed

setting mentioned above, there may be multiple optimal combi-

nations. One can also tune the hyper-parameters with part of the

privacy budget in a differentially private way as [1, 20].

Experiment results.We evaluate the VFL-SGDMF against gradient
clipping and other methods [24, 33] with 𝑠 = 1. We also analyze the

effect of data partition and the effect of different parameters, i.e.,

synchronization frequencies and number of parties.

• Non-private central (s=1) results. For references, the embeddings

trained in the non-private central setting with SGD have MSE

of 0.83012, 0.8631, 4.23981 on testing sets of ML10M, ML25M and

LibimSeTi datasets, respectively.

•Comparing embedding clipping with gradient clipping. To exclude
the effect of trimming, we first show the per-rating setting and

compare gradient clipping with embedding clipping in the central

setting (s=1). We show in Figure 4(a) that if we only do the clipping

but do not add noise, we observe that the gradient clipping method

can easily overfit the training dataset so that the final results are bad,

especially when the grading clipping threshold 𝐶 = 50. With per-

rating privacy, embedding clipping hasMSEs slightly lower than the

gradient clipping method with the best threshold 𝐶 = 10. Gradient

clipping has slightly worse performance because gradients have

similar magnitudes and cancel out with each other after clipping.

We can observe similar comparison result in Figure 4(b) for per-user

privacy with trimming 𝜃 = 10. The best clipping threshold is again

𝐶 = 10, while embedding clipping still slightly outperforms it in

different privacy levels. A lesson from these experiments is that

embedding clipping is better than the gradient clipping approach

regardless of the additional effort needed to pick the optimal 𝐶 .

• Comparing VFL-SGDMF with [24, 33]. In Figure 5, we compare our

embedding clippingmethodwith DP-SGLD in [33] and the objective

perturbation (ObjPertb) approach in [24] with both per-rating and

per-user privacy. We show that VFL-SGDMF can do better in both

per-rating and per-user privacy. Compared with the DP-SGLD,

our privacy composition is based on moment accountants, which

shows a tighter composition of privacy loss so that smaller noise is

required for each iteration. Besides, the DP-SGLD approach bounds

the sensitivity by bounding the difference between predicted ratings

and true ratings, introducing huge computation and communication

overhead in the FL setting. The ObjPertb method performs poorly in

our experiments, especially for per-user privacy. The main reason

could be that the noise added in the objective function biases the

gradients and the algorithm never has a chance to correct the errors.

• Comparing different data partition.We split the dataset ML10M in

two different ways. 1) There are 18 categories of movies in ML10M,

so we assume each party owns only one of those categories. When

splitting by category, if a movie belongs to multiple categories, we

assign it to the category with fewest movies to prevent the case

that a category has too few movies. 2) We also randomly assign a

movie to one of the 18 parties in a random split setting.

Comparing Figure 6(a) with Figure 6(b) for per-rating privacy, or

comparing Figure 6(c) with Figure 6(d) for per-user privacy setting,

with our VFL-SGDMF method and set 𝑇 = 100 and 𝑇 ′ = 10, there

is no significant difference for per-rating privacy between those

two split settings except for most cases; for per-user privacy, MSEs

with random-split are slightly smaller than the split-by-category

setting. The local-only method has no significant difference be-

tween the two splitting methods and per-rating privacy, but the

MSEs are significantly higher with split-by-category than the one

of random-split with per-user privacy. The results suggest that with

appropriate private synchronization frequencies, VFL-SGDMF can

learn the embeddings regardless of how items are distributed.

907

(a) Split by category, s=18 (b) Split randomly, s=18 (c) Split by category, s=18 (d) Split randomly, s=18

Figure 6: Per-rating and per-user privacy split by category v.s. split randomly on MovieLens 10M dataset.

(a) MovieLens 10M (per-rating) (b) MovieLens 10M (per-user) (c) MovieLens 25M (per-user) (d) LibimSeTi (per-user)

Figure 7: Results of randomly split items into different number of parties 𝑠.

• Comparing different synchronization frequencies. In Figure 6, we

also compare the results of different 𝑇 and 𝑇 ′ but fixing the total
local update iteration as 𝑇𝑇 ′ = 1000. When 𝑇 = 1000,𝑇 ′ = 1, the

algorithm becomes similar to the method aggregating private gradi-

ent in each iteration; when𝑇 = 1,𝑇 ′ = 1000, the algorithm becomes

similar to model average as it only averages the local user embed-

ding of different parties finally. Comparing different settings of 𝑇

and𝑇 ′, we find that the setting𝑇 = 100,𝑇 ′ = 10 and𝑇 = 20,𝑇 ′ = 50

are usually the two with the best results. All settings of VFL-SGDMF
have smaller MSE than the local-only method. The results indicate

that frequent synchronization prevents the parties from learning

good embeddings. It is because each local update step is noisy, and

each party needs a few local steps to make meaningful progress;

aggregating the noisy updates improves the quality of embeddings

less than aggregating the one with meaningful progress.

•Comparing the number of parties and the value of cooperation.We

compare our VFL-SGDMF to the local-only method with different

numbers of parties (𝑠 = 2, 5, 10) and fix 𝑇 = 100,𝑇 ′ = 10 for the

experiments in Figure 7. In all levels of privacy guarantees and

different numbers of parties, our VFL-SGDMF has smaller MSEs than

the local-only methods. We observe that when the number of par-

ties increases, the MSEs of our VFL-SGDMF algorithm decrease as

the number of parties increases. In the per-rating privacy context,

as the number of parties increases, the total number of local updates

also increases, but the noise added to each update remains the same.

Although as the number of parties increases in the per-user privacy,

the noise in each local update increases, but the maximum number

of ratings from the same user after trimming also increases as we

fix 𝜃 (𝑘) = 5, and the total number of local updates increase as well.

These benefits may outweigh the increase of noise in our algorithm

VFL-SGDMF. LibimSeTi MSEs are higher because the range of the

LibimSeTi (0 to 10) is larger than the one of MovieLens (0.5 to 5).

5 PRIVATE HFL MATRIX FACTORIZATION
This section considers solving the MF problem in HFL setting. The

use cases of HFL are different from the VFL setting, sowe summarize

different privacy risks and expected protection as following.

HFL privacy leakage and protection. The exchange of informa-

tion under the HFL setting is described in Figure 1(b). Each party

manages the ratings of a subset of users. The privacy risks are differ-

ent for user/item embeddings in the HFL setting. Because each user

has all his/her data stored on only one party and the embeddings

are only used internally, the users have higher trust levels on the

parties in our specification. Therefore, we assume that the users

allow the parties to learn non-private embeddings locally as long as

they are unpublished and only for internal usage. The main privacy
leakage risk is in the communication between the coordinate server

and the parties. Thus, our algorithm is designed to protect privacy

for the communication between parties and the coordinate server,

and limit the sensitive information learned by others.

5.1 Private MF in HFL: HFL-SGDMF
In order to provide the expected protection, we propose HFL-SGDMF

with privacy guarantee. We denote g̃(𝑘)
𝑉

as the noisy gradients with

DP noise. We observed that when updating both user/item embed-

dings together and the updates of item embeddings are protected

by DP noise, the user embeddings make limited progress in our

experiments. It is because when the user embeddings are optimized

together with noisy item embeddings, item embeddings updated

noisily transmit the noise to user embeddings. We show how to

convert FMF into HFL-SGDMF in Figure 3(c), and summarize as below.

• [Stage 1]: initialization and local pre-computation. Besides ran-
domly initializing the embeddings in (1c), each party pre-trains

their user embeddings locally with embedding clipping but without

trimming and noise, and not updating item embeddings.

908

(a) per-rating privacy 𝜖 = 0.055 (b) per-user privacy 𝜖 = 1.0

Figure 8: Compare pre-train-U with vanilla train-both.

• [Stage 2]: cooperative learning. Same as the VFL-SGDMF, embedding

clipping and random trimming are used to bound the privacy in the

privacy context in (2c). Each party updates the local item embed-

ding with differential privacy protection:𝑉 (𝑘) = Π𝒱

𝑉 (𝑘) − 𝛾𝑡 g̃(𝑘)

𝑉


,

where g̃(𝑘)
𝑉

is the privatized gradients of item embeddings from

mini-batchwith sampling rate𝜂 = 𝑛′
𝑘
/𝑛𝑘 and fixed𝑈U𝑘 . The parties

in this HFL process synchronize and averaging the item embeddings
after every 𝑇 ′ local iterations in Step (2s).

• [Stage 3]: local fine-tuning. After Stage 2, each party further fine-

tunes their local version of user/item embeddings to get more accu-

rate local inference results with untrimmed local data.

5.2 Analysis of Privacy Guarantee
In HFL-SGDMF, only the communication in the second stage and

{𝑉 (𝑘) |𝑘 ∈ [𝑠]} are protected by differential privacy. The final local

user/item embeddings after fine-tuned are unpublished.

DP sensitivity and necessary noise. Notice that since we only
need to protect privacy on the exchange of item embeddings in the

HFL stage, the sensitivity is Δ𝑟𝑎𝑡𝑖𝑛𝑔 = Δ2,𝑣 for per-rating privacy

or Δ𝑢𝑠𝑒𝑟 = 𝜃 (𝑘)Δ2,𝑣 for per-user privacy for each local update.

Per-rating privacy and per-user privacy. The required stan-

dard deviation for per-rating or per-user privacy can be written

in the same way as 𝜎 (𝑘) = 𝑧Δ𝑟𝑎𝑡𝑖𝑛𝑔 for per-rating privacy or

𝜎 (𝑘) = 𝑧Δ𝑢𝑠𝑒𝑟 for per-user privacy with noise multiplier 𝑧. The par-

allel composition can be applied to both the per-rating and per-user

privacy. So similar to the privacy analysis in Section 4.2, the follow-

ing proposition can conclude the privacy loss in the HFL-SGDMF.

Proposition 3 (HFL-SGDMF privacy). HFL-SGDMF ensures that
the shared information from party 𝑘 satisfies (𝜖 (𝑘) , 𝛿 (𝑘)) per-rating/
per-user privacy , if the noise in each local update is sampled from
Gaussian distribution with zero mean and noise multiplier 𝑧2 =

𝑐2

𝜂2𝑇𝑇 ′ ln 1/𝛿 (𝑘)

(𝜖 (𝑘))2 with some constant 𝑐2. The overall HFL-SGDMF is

(max𝑘∈[𝑠]

𝜖 (𝑘)


,max𝑘∈[𝑠]


𝛿 (𝑘)


) per-rating/per-user private.

5.3 Empirical Evaluation for HFL
We use the same two datasets as in the VFL setting, MovieLens

10M and LibimSeTi. We horizontally partition these datasets into 𝑠

subsets randomly to simulate the HFL setting in our experiments.

• HFL Baselines. For the HFL setting, we compare HFL-SGDMF with

two baselines: one is non-private local training with SGD; the other

one is the adaptation of DPSGD in HFL setting, called HFL-synSGD,

where the noisy gradients g̃(𝑘)
𝑉

are aggregated every iteration.

• Hyper-parameters. For HFL-SGDMF, we set 𝑇 = 100 and 𝑇 ′ = 10

as the previous section, which means each party queries the lo-

cal dataset 1000 times during the HFL on item embeddings stage.

To make it a fair comparison, we set the number synchronization

iteration in HFL-synSGD to be 1000, and we let HFL-SGDMF and

HFL-synSGD have the same number of iteration in the fine-tuning

stage as well. For per-user privacy, we set 𝜃 (𝑘) = 10 for all experi-

ments with both HFL-synSGD and HFL-SGDMF and for all datasets.

We set 𝜃 (𝑘) larger than the one in the VFL setting because all ratings
of a user are stored on one party in the HFL setting. The learning

rates in the experiments are tuned in the same way as in Section 4.3.

Empirical results. We show the experiments how the pretrain-U

approach outperform the train-both approach, and compare our

HFL-SGDMF with the HFL-synSGD for 𝑠 = 10 and 40.

• Improvement with pre-train U. In Figure 8, we provide experi-

ments comparing the pre-train-U approach and the vanilla train-

both (user/item embeddings together) approach with numbers of

parties from 2 to 40, with or without fine-tuning. The results show

that pre-train U can significantly improve the prediction quality

compared to the vanilla approach training user and item embedding

in the same iteration. The main intuition is that if we update the

user embedding and the item embedding in the same iteration, the

user embeddings are largely affected by the noisy item embedding.

The user embedding updates do not make much progress because

the item embeddings oscillate with the DP noise, and the progress

made on the user embeddings may be canceled out in the next

iteration. However, when the user embeddings are pre-trained, the

item embeddings are fixed so that every update in the pre-train

phase can very likely improve the quality of user embeddings. In

the cooperative learning stage, fixing the user embedding can con-

vert the problem into a convex problem, so that item embeddings’

privacy preserved learning process is easier.

• Comparing with gradient-average. The horizontal dotted lines in

Figure 9 are the MSE of training locally and non-privately with

SGD. We show that after fine-tuning, the final embeddings given

by HFL-SGDMF have lower MSEs than local non-private training in

most cases. It means that each party can benefit from the privacy-

preserving HFL process with our HFL-SGDMF. When the number of

parties becomes 40, the MSEs of HFL-SGDMF before the fine-tuning

stage are already lower than the non-private local training ones in

bothML10M and LibimSeTi datasets, which means the differentially

private item embeddings have better utility than the ones trained

non-privately only from local data when 𝑠 = 40. Figure 9 also

compares the results of HFL-synSGD. It shows that the HFL-synSGD
gives higher MSE in all settings, no matter before or after fine-

tuning. Thus, the experiments show that our HFL-SGDMF, in which

user embeddings and item embedding are updated separately in

the first two stages, can provide better utility compared to the

HFL-synSGD, while has smaller communication cost.

6 TO CROSS-DEVICE LEARNING: LFL-SGDMF
In the previous section, we focused on the HFL setting, which can

be categorized as the cross-silo setting in FL. The HFL setting can

be naturally extended from to cross-device setting with the number

of parties the same as number of users, 𝑠 = 𝑛. That is, each party in

the LFL setting is just a proxy of a user holding one user’s ratings.

909

(a) MovieLens 10M, s=10 (b) MovieLens 10M, s=40 (c) MovieLens 10M, s=10 (d) MovieLens 10M, s=40

(e) LibimSeTi, s=10 (f) LibimSeTi, s=40 (g) LibimSeTi, s=10 (h) LibimSeTi, s=40

Figure 9: Horizontal random split with different number of parties (per-rating: left two columns; per-user: right two columns).

LFL privacy leakage and protection. As analyzed in Section

1.1, the user embeddings are trained and used only locally, so there

is no risk of privacy leakage. LFL privacy leakage happens in the

information exchange with the coordination server about the item

embeddings training. A coordination server controls the item em-

beddings, so all the users share the same item embeddings. Although

the coordination server has no access to the user data directly, the

updates of item embeddings can reveal users’ sensitive information.

Thus, we need to ensure the shared updates of item embeddings

are protected by privacy in our LFL setting.

• MF with LDP and its limitation. Compared with the centralized

privacy setting, LDP considers a strictly stronger privacy-preserved

model such that any output shared by a user device should be about

as likely regardless of the actual user data. With LDP protocols,

user data are randomized on local devices before being sent to the

data aggregator. However, given the large number of items and the

sparsity of the ratings, hiding which items are rated and protecting

the exact ratings require large noise. An LDP method for the MF

problem was proposed in [41], Private-GD-DR, which uses an LDP

mean-estimation protocol and a dimension reduction technique.

However, their algorithm can provide limited improvement on

embeddings as shown in Section 6.3.

• Secure aggregation and its limitation. Secure aggregation [5, 6]

was proposed to aggregate numerical data and reveals only the

aggregated sum of the user updates to the server. Because user

dropout is unavoidable in the LFL setting, the SA protocols in [5, 6]

are designed to tolerate at most 𝜔 fraction of dropout users during

the execution. An individual user’s input is protected by compo-

sition of masks, but after summing up all reports, the symmetric

masks are canceled out if less than 𝜔𝑛 users drop out, and only the

true sum remains. We denote the user reporting process as SA𝜔 -
report, and the server aggregation process as SA𝜔 -agg. However,
secure aggregation protocols are vulnerable to membership attacks

or re-identification attacks.

6.1 DP with Secure Aggregation
Different from the HFL setting, user devices in LFL may become

unavailable and/or the communication between user devices and

the central party may be disconnected from time to time – a user

is said to drop out if either of the two cases happens. For example,

if a user device is in an area where the internet connection is not

stable, its update may be lost; or a user device can be busy with

local tasks and refuses to be involved in the computation. So we

need to ensure that the privacy guarantees of algorithms in the LFL

setting hold even when a significant amount of users drop out in

one or multiple iterations during the federated training process.

To overcome the limitations of both LDP and secure aggrega-

tion, we propose a new algorithm with the central DP guaran-

tee, LFL-SGDMF, which is adapted from the FMF as shown in Fig-

ure 3(d). The changes from FMF in [Stage 1] initialization and lo-

cal pre-computation and [Stage 3] local fine-tuning are similar to

HFL-SGDMF, where the user embeddings are pre-trained after initial-

ization, and the item embeddings are fixed. Somewhat surprisingly,

only pre-training𝑈 can already outperform the reported results in

[41] with LDP as shown in our experiments in Section 6.3.

The main changes are in the steps of [Stage 2] cooperative learn-

ing. The basic idea here is to aggregate the update of item embed-

dings through SA but ensure the aggregated gradients satisfy DP,

while introducing noise as small as possible. If we consider SA as

an oracle, there are two rounds of communication in each iteration.

• Round 1 coordination pattern. In the first round of communi-

cation, the coordination server initiates the SA𝜔 and request up-

date from each party. After receiving the requests from the server,

each party 𝑖 samples one rating, X𝑖 𝑗 and reports noisy update is

g̃(𝑖,𝑡)
𝑉

= ∇𝑉ℒ𝑖,𝑗


𝑢𝑖 ,𝑉

(𝑡)

+ 𝝃 (𝑖,𝑡) . The elements of noise 𝝃 (𝑖,𝑡) are

sampled from Gaussian distribution (0, 𝜁1𝜎
2

𝑣). Then the party in-

vokes the oracle SA𝜔 - report(g̃(𝑖,𝑡)𝑉
). The server aggregates the

reported updates by invoking SA𝜔 -agg. We denote the set of sur-

vivors in the first round as U(𝑡,1) . SA𝜔 is designed with a toler-

able dropout rate 𝜔 . If less than (1 − 𝜔)𝑛 users survive in this

iteration, the SA𝜔 protocol halts, and the server learns nothing

in this iteration and execute next iteration. Otherwise, the aggre-

gated gradients decoded from SA𝜔 can be decomposed as g̃(𝑡)
𝑉

=
𝑖∈U(𝑡,1) ∇𝑉ℒ𝑖,𝑗


𝑢𝑖 ,𝑉

(𝑡)

+

𝑖∈U(𝑡,1) 𝝃
(𝑖,𝑡) .

910

(a) MovieLens 10M, 𝜔 = 0.3 (b) MovieLens 10M, 𝜔 = 0.6 (c) LibimSeTi, 𝜔 = 0.3 (d) LibimSeTi, 𝜔 = 0.6

Figure 10: Results under LFL setting with different dropout rates.

• Round 2 coordination pattern. The coordination server first broad-

casts |U(𝑡,1) | to the survivors and requests replacing noise from

them. After notified by the coordination server, the survive party 𝑖

sends
¯𝝃 (𝑖,𝑡) = −𝝃 (𝑖,𝑡) + 𝝃 ′(𝑖,𝑡) to the server, where the elements of

𝝃 ′(𝑖,𝑡) are sampled from Gaussian distribution (0, 𝜁2𝜎
2

𝑣). Dropout
can also happen in Round 2, so we denote the set of survivors as

U(𝑡,2) . The server aggregates the replacing noise and the aggregated
noisy gradients after this two-round exchange are decomposed as:

g̃(𝑡)
𝑉

=

𝑖∈U𝑡
∇𝑉ℒ𝑖,𝑗


𝑢𝑖 ,𝑉

(𝑡)

+


𝑖∈U(𝑡,1)−U(𝑡,2)

𝝃 (𝑖,𝑡) +


𝑖∈U(𝑡,2)
𝝃 ′(𝑖,𝑡)

With such information, the coordination server updates the item

embeddings and broadcasts the updated embedding to all parties.

• Communication cost. The first round aggregation in every itera-

tion depends on the SA oracle, which requires 𝑂 (log𝑛 +𝑚𝑝) for
each user, and it dominate the cost for each iteration. So the total

communication cost of LFL-SGDMF is 𝑂 (𝑇 (log𝑛 +𝑚𝑝)) per user.

6.2 Analysis of Privacy Guarantee
There are three parameters directly affecting the privacy privacy

guarantee, 𝜎2

𝑣 , 𝜁1 and 𝜁2. 𝜎
2

𝑣 is the nob for (𝜖, 𝛿)-DP guarantee

when there is no dropout. When SA𝜔 finishes successfully, the sum

is composed of at least |U(𝑡,1) | ≥ (1 − 𝜔)𝑛 users and 𝜁1 makes

sure that the aggregated sum obtained by the server through SA𝜔
should be at least (𝜖, 𝛿)-DP. Another parameter 𝜁2 is used to reduce

“unnecessary” noise added in the SA𝜔 round. By setting 𝜎2

𝑣 , 𝜁1 and

𝜁2 properly, LFL-SGDMF has the following privacy guarantee.

Theorem 5. If 𝜎2

𝑣 = 𝑐3 (Δ2,𝑣)2𝑇𝑣 ln 1/𝛿
𝜖2

, 𝜁1 = 1

(1−𝜔)𝑛 and 𝜁2 =

1

|U(𝑡,1) | and a constant 𝑐3, the LFL-SGDMF can satisfy (𝜖, 𝛿)-DP and
tolerate at most 𝜔 fraction of user dropping out in each iteration.

Whenever the serve can decode the aggregated sum with SA𝜔 ,

the aggregated sum contains noise with variance
|U(𝑡,1) |
(1−𝜔)𝑛𝜎

2

𝑣 ≥ 𝜎2

𝑣 .

If there is a set U(𝑡,2) users survived in the second round, the final

noise variance is


|U(𝑡,2) |
|U(𝑡,1) | +

|U(𝑡,1) |− |U(𝑡,2) |
(1−𝜔)𝑛


𝜎2

𝑣 . Notice that
|U(𝑡,2) |
|U(𝑡,1) | +

|U(𝑡,1) |− |U(𝑡,2) |
(1−𝜔)𝑛 ≥ 1, which means the noise is still sufficient to

provide (𝜖, 𝛿)-DP on the aggregated sum.

6.3 Empirical Evaluation for LFL
Our experiments in the LFL setting still use the two datasets: Movie-

Lens 10M and LibimSeTi. We faithfully implement the GD-DR

method in [41] for comparison. To make it a fair comparison, we

amplify the privacy budget of LDP to the central DP with the

best-known result [16]. We also use the stage 1 of LFL-SGDMF as a
baseline to show the MSEs without learning item embeddings. Be-

cause communication between user devices and the central server

is expensive in the LFL setting in LFL, we set 𝑇 = 10 for both

LFL-SGDMF and GD-DR, which is the same as [41].

• Comparing with LDP methods. In Figure 10, we first compare our

LFL-SGDMF with the LDP algorithm, GD-DR, from [41]. The main

observation is that LFL-SGDMF can outperform the GD-DR method

evenwith the local training part (Stage 1) only. It means pre-training

the local user embeddings can significantly improve the quality

of predictions. We also conduct experiments applying the LDP

level noise with LFL-SGDMF. The figures show that with such large

noise, cooperation can not help improve the result. Although our

proposed method, LFL-SGDMF, has a higher communication cost

than the GD-DR, it shows significant improvement over the GD-DR

because of the adaptive noise with central DP guarantee.

• Comparing different dropout rates. Figure 10 also shows the em-

pirical evaluation of the two datasets. We set the tolerable dropout

rate𝜔 to be either 0.3 or 0.6. We vary the actual dropout rate from 0

to 0.2 when 𝜔 = 0.3 and we also show additional results of dropout

rate 0.3, 0.4, 0.5 when 𝜔 = 0.6. From the result, as the dropout rate

increases, the MSE also increases a little.

When comparing the results with different 𝜔 , our method with

different 𝜔 gives almost the same MSEs for different epsilons when

there is no dropout. When there are dropout users, the MSEs of

𝜔 = 0.6 are higher than those of 𝜔 = 0.3. This is because with the

same dropout rate, a similar number of users drop out in the second

rounds, the higher 𝜔 means larger noise remains.

7 CONCLUSION
This paper comprehensively investigates and provides solutions

for the MF problem under three different FL settings, namely, VFL,

HFL, and LFL, with provable privacy guarantees, based on the

common algorithmic framework FMF. We demonstrate the utility

of our proposed methods with extensive experiments. Challenging

future tasks can be generalizing the algorithms to solve the problem

with continuous updating ratings with privacy guarantees, and

providing solutions to handle the new coming users and items.

ACKNOWLEDGMENTS
This work is supported in part by the United States National Science

Foundation under Grant No. 1931443.

911

REFERENCES
[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Differential Privacy. In

Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (Vienna, Austria) (CCS ’16). Association for Computing Machinery, New

York, NY, USA, 308–318. https://doi.org/10.1145/2976749.2978318

[2] Charu C Aggarwal et al. 2016. Recommender systems. Vol. 1. Springer, New York,

USA.

[3] Eugene Bagdasaryan, Omid Poursaeed, and Vitaly Shmatikov. 2019. Differential

privacy has disparate impact on model accuracy. Advances in Neural Information
Processing Systems 32 (2019), 15479–15488.

[4] Oren Barkan and Noam Koenigstein. 2016. Item2vec: neural item embedding

for collaborative filtering. In 2016 IEEE 26th International Workshop on Machine
Learning for Signal Processing (MLSP). IEEE, IEEE, New York, NY, USA, 1–6.

https://doi.org/10.1109/MLSP.2016.7738886

[5] James Henry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-

iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic

Overhead. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security (Virtual Event, USA) (CCS ’20). Association for Comput-

ing Machinery, New York, NY, USA, 1253–1269. https://doi.org/10.1145/3372297.

3417885

[6] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Practi-

cal Secure Aggregation for Privacy-Preserving Machine Learning. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communications Security
(Dallas, Texas, USA) (CCS ’17). Association for Computing Machinery, New York,

NY, USA, 1175–1191. https://doi.org/10.1145/3133956.3133982

[7] Lukas Brozovsky and Vaclav Petricek. 2007. Recommender System for Online

Dating Service.

[8] Di Chai, Leye Wang, Kai Chen, and Qiang Yang. 2021. Secure Federated Matrix

Factorization. IEEE Intelligent Systems 36, 5 (2021), 11–20. https://doi.org/10.

1109/MIS.2020.3014880

[9] Tianyi Chen, Xiao Jin, Yuejiao Sun, and Wotao Yin. 2020. VAFL: a Method of

Vertical Asynchronous Federated Learning. arXiv:2007.06081 [cs.LG]

[10] Xiangyi Chen, Steven Z. Wu, and Mingyi Hong. 2020. Understanding Gra-

dient Clipping in Private SGD: A Geometric Perspective. In Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Had-

sell, M. F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., Red

Hook, NY, USA, 13773–13782. https://proceedings.neurips.cc/paper/2020/file/

9ecff5455677b38d19f49ce658ef0608-Paper.pdf

[11] Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. 2017. Collecting Telemetry

Data Privately. In Proceedings of the 31st International Conference on Neural
Information Processing Systems (Long Beach, California, USA) (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 3574–3583.

[12] Irit Dinur and Kobbi Nissim. 2003. Revealing Information While Preserving

Privacy. In Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems (San Diego, California) (PODS ’03).
Association for Computing Machinery, New York, NY, USA, 202–210. https:

//doi.org/10.1145/773153.773173

[13] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. Cali-

brating Noise to Sensitivity in Private Data Analysis. In Theory of Cryptography,
Shai Halevi and Tal Rabin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,

265–284.

[14] Cynthia Dwork, Adam Smith, Thomas Steinke, and Jonathan Ullman. 2017. Ex-

posed! a survey of attacks on private data. Annual Review of Statistics and Its
Application 4 (2017), 61–84.

[15] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. 2014. RAPPOR: Ran-

domized Aggregatable Privacy-Preserving Ordinal Response. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security
(Scottsdale, Arizona, USA) (CCS ’14). Association for Computing Machinery, New

York, NY, USA, 1054–1067. https://doi.org/10.1145/2660267.2660348

[16] Vitaly Feldman, Audra McMillan, and Kunal Talwar. 2021. Hiding Among the

Clones: A Simple and Nearly Optimal Analysis of Privacy Amplification by

Shuffling. arXiv:2012.12803 [cs.LG]

[17] Adrian Flanagan, Were Oyomno, Alexander Grigorievskiy, Kuan E. Tan,

Suleiman A. Khan, and Muhammad Ammad-Ud-Din. 2021. Federated Multi-view

Matrix Factorization for Personalized Recommendations. In Machine Learning
and Knowledge Discovery in Databases. Springer International Publishing, Cham,

324–347. https://doi.org/10.1007/978-3-030-67661-2_20

[18] Rainer Gemulla, Erik Nijkamp, Peter J. Haas, and Yannis Sismanis. 2011. Large-

Scale Matrix Factorization with Distributed Stochastic Gradient Descent. In

Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (San Diego, California, USA) (KDD ’11). Association
for Computing Machinery, New York, NY, USA, 69–77. https://doi.org/10.1145/

2020408.2020426

[19] Antonious Girgis, Deepesh Data, Suhas Diggavi, Peter Kairouz, and Ananda

Theertha Suresh. 2021. Shuffled Model of Differential Privacy in Federated

Learning. In Proceedings of The 24th International Conference on Artificial In-
telligence and Statistics (Proceedings of Machine Learning Research), Arindam
Banerjee and Kenji Fukumizu (Eds.), Vol. 130. PMLR, USA, 2521–2529. https:

//proceedings.mlr.press/v130/girgis21a.html

[20] Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal

Talwar. 2010. Differentially private combinatorial optimization. SIAM,

Philadelphia, PA, USA, 1106–1125. https://doi.org/10.1137/1.9781611973075.90

arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611973075.90

[21] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History

and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (dec 2015), 19 pages.
https://doi.org/10.1145/2827872

[22] Yaochen Hu, Peng Liu, Linglong Kong, and Di Niu. 2019. Learning Privately over

Distributed Features: An ADMM Sharing Approach. arXiv:1907.07735 [cs.LG]

[23] Yaochen Hu, Di Niu, Jianming Yang, and Shengping Zhou. 2019. FDML: A Collab-

orative Machine Learning Framework for Distributed Features. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (Anchorage, AK, USA) (KDD ’19). Association for Computing Machinery,

New York, NY, USA, 2232–2240. https://doi.org/10.1145/3292500.3330765

[24] Jingyu Hua, Chang Xia, and Sheng Zhong. 2015. Differentially private matrix

factorization. In Proceedings of the 24th International Conference on Artificial
Intelligence (Buenos Aires, Argentina) (IJCAI’15). AAAI Press, USA, 1763–1770.

[25] Prateek Jain, Om Dipakbhai Thakkar, and Abhradeep Thakurta. 2018. Differ-

entially Private Matrix Completion Revisited. In Proceedings of the 35th Inter-
national Conference on Machine Learning (Proceedings of Machine Learning Re-
search), Jennifer Dy and Andreas Krause (Eds.), Vol. 80. PMLR, USA, 2215–2224.

https://proceedings.mlr.press/v80/jain18b.html

[26] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Ben-

nis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, Rafael G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb,

David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B.

Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,

Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Kho-

dak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,

Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer

Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar,

Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha

Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng

Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. 2021. Advances and Open

Problems in Federated Learning. arXiv:1912.04977 [cs.LG]

[27] Yejin Kim, Jimeng Sun, Hwanjo Yu, and Xiaoqian Jiang. 2017. Federated tensor

factorization for computational phenotyping. In Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. Asso-
ciation for Computing Machinery, New York, NY, USA, 887–895.

[28] Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik.

2016. Federated Optimization: Distributed Machine Learning for On-Device

Intelligence. arXiv:1610.02527 [cs.LG]

[29] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. 2017. Federated Learning: Strategies

for Improving Communication Efficiency. arXiv:1610.05492 [cs.LG]

[30] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[31] Ninghui Li, Wahbeh Qardaji, and Dong Su. 2012. On sampling, anonymization,

and differential privacy or, k-anonymizationmeets differential privacy. In Proceed-
ings of the 7th ACM Symposium on Information, Computer and Communications
Security. Association for Computing Machinery, New York, NY, USA, 32–33.

[32] Yang Liu, Yingting Liu, Zhijie Liu, Yuxuan Liang, Chuishi Meng, Junbo Zhang,

and Yu Zheng. 2020. Federated forest. IEEE Transactions on Big Data 01 (2020),
1–1. https://doi.org/10.1109/TBDATA.2020.2992755

[33] Ziqi Liu, Yu-Xiang Wang, and Alexander Smola. 2015. Fast Differentially Private

Matrix Factorization. In Proceedings of the 9th ACM Conference on Recommender
Systems (Vienna, Austria) (RecSys ’15). Association for Computing Machinery,

New York, NY, USA, 171–178. https://doi.org/10.1145/2792838.2800191

[34] JingMa, Qiuchen Zhang, Jian Lou, Joyce C. Ho, Li Xiong, and Xiaoqian Jiang. 2019.

Privacy-Preserving Tensor Factorization for Collaborative Health Data Analysis.

In Proceedings of the 28th ACM International Conference on Information and
Knowledge Management (Beijing, China) (CIKM ’19). Association for Computing

Machinery, New York, NY, USA, 1291–1300. https://doi.org/10.1145/3357384.

3357878

[35] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks

from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics (Proceedings of Machine Learning Research),
Aarti Singh and Jerry Zhu (Eds.), Vol. 54. PMLR, USA, 1273–1282. https://

proceedings.mlr.press/v54/mcmahan17a.html

[36] HBrendanMcMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. 2018. Learning

Differentially Private Recurrent Language Models. In International Conference on
Learning Representations. OpenReview.net. https://openreview.net/forum?id=

BJ0hF1Z0b

912

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1109/MLSP.2016.7738886
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1109/MIS.2020.3014880
https://doi.org/10.1109/MIS.2020.3014880
https://arxiv.org/abs/2007.06081
https://proceedings.neurips.cc/paper/2020/file/9ecff5455677b38d19f49ce658ef0608-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/9ecff5455677b38d19f49ce658ef0608-Paper.pdf
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/773153.773173
https://doi.org/10.1145/2660267.2660348
https://arxiv.org/abs/2012.12803
https://doi.org/10.1007/978-3-030-67661-2_20
https://doi.org/10.1145/2020408.2020426
https://doi.org/10.1145/2020408.2020426
https://proceedings.mlr.press/v130/girgis21a.html
https://proceedings.mlr.press/v130/girgis21a.html
https://doi.org/10.1137/1.9781611973075.90
https://arxiv.org/abs/https://epubs.siam.org/doi/pdf/10.1137/1.9781611973075.90
https://doi.org/10.1145/2827872
https://arxiv.org/abs/1907.07735
https://doi.org/10.1145/3292500.3330765
https://proceedings.mlr.press/v80/jain18b.html
https://arxiv.org/abs/1912.04977
https://arxiv.org/abs/1610.02527
https://arxiv.org/abs/1610.05492
https://doi.org/10.1109/TBDATA.2020.2992755
https://doi.org/10.1145/2792838.2800191
https://doi.org/10.1145/3357384.3357878
https://doi.org/10.1145/3357384.3357878
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://openreview.net/forum?id=BJ0hF1Z0b
https://openreview.net/forum?id=BJ0hF1Z0b

[37] Frank D McSherry. 2009. Privacy integrated queries: an extensible platform

for privacy-preserving data analysis. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data. Association for Computing

Machinery, New York, NY, USA, 19–30.

[38] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.

2019. Exploiting unintended feature leakage in collaborative learning. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, New York, NY, USA, 691–706.

https://doi.org/10.1109/SP.2019.00029

[39] Arvind Narayanan and Vitaly Shmatikov. 2006. How to break anonymity of the

netflix prize dataset.

[40] Yilin Shen and Hongxia Jin. 2014. Privacy-preserving personalized recommenda-

tion: An instance-based approach via differential privacy. In 2014 IEEE Interna-
tional Conference on Data Mining. IEEE, New York, NY, USA, 540–549.

[41] Hyejin Shin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. 2018. Privacy

enhanced matrix factorization for recommendation with local differential privacy.

IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1770–1782.

[42] Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. 2013. Stochastic

gradient descent with differentially private updates. In 2013 IEEE Global Confer-
ence on Signal and Information Processing. IEEE, New York, NY, USA, 245–248.

https://doi.org/10.1109/GlobalSIP.2013.6736861

[43] Apple Differential Privacy Team. 2021. Differential Privacy Overview - Apple.
Apple. inc. https://www.apple.com/privacy/docs/Differential_Privacy_Overview.

pdf

[44] TensorFlow-Privacy. 2021. TensorFlow Privacy. https://github.com/tensorflow/

privacy. Accessed: 2021-12-01.

[45] Yu-Xiong Wang and Yu-Jin Zhang. 2012. Nonnegative matrix factorization: A

comprehensive review. IEEE Transactions on Knowledge and Data Engineering 25,

6 (2012), 1336–1353.

[46] Yu-Xiong Wang and Yu-Jin Zhang. 2012. Nonnegative matrix factorization: A

comprehensive review. IEEE Transactions on Knowledge and Data Engineering 25,

6 (2012), 1336–1353.

[47] KangWei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi, Shi Jin,

Tony QS Quek, and H Vincent Poor. 2020. Federated learning with differential

privacy: Algorithms and performance analysis. IEEE Transactions on Information
Forensics and Security 15 (2020), 3454–3469.

[48] Nan Wu, Farhad Farokhi, David Smith, and Mohamed Ali Kaafar. 2020. The value

of collaboration in convex machine learning with differential privacy. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, New York, NY, USA, 304–317.

https://doi.org/10.1109/SP40000.2020.00025

[49] Yuncheng Wu, Shaofeng Cai, Xiaokui Xiao, Gang Chen, and Beng Chin Ooi.

2020. Privacy Preserving Vertical Federated Learning for Tree-based Models.

Proceedings of the VLDB Endowment 13, 11 (2020), 2090–2103.
[50] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. 2019. Federatedmachine

learning: Concept and applications. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 1–19.

[51] Sheng Zhang, Weihong Wang, James Ford, and Fillia Makedon. 2006. Learning

from incomplete ratings using non-negative matrix factorization. Proceedings of
the 2006 SIAM international conference on data mining 1 (2006), 549–553.

[52] Handong Zhao, Zhengming Ding, and Yun Fu. 2017. Multi-view clustering

via deep matrix factorization. Proceedings of the AAAI Conference on Artificial
Intelligence 31, 1 (2017), –. https://ojs.aaai.org/index.php/AAAI/article/view/

10867

[53] Ligeng Zhu and Song Han. 2020. Deep leakage from gradients. Federated Learning
12500 (2020), 17–31.

913

https://doi.org/10.1109/SP.2019.00029
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://github.com/tensorflow/privacy
https://github.com/tensorflow/privacy
https://doi.org/10.1109/SP40000.2020.00025
https://ojs.aaai.org/index.php/AAAI/article/view/10867
https://ojs.aaai.org/index.php/AAAI/article/view/10867

