
Chukonu: A Fully-Featured High-Performance Big Data
Framework that Integrates a Native Compute Engine into Spark

Bowen Yu, Guanyu Feng, Huanqi Cao, Xiaohan Li, Zhenbo Sun, Haojie Wang, Xiaowei Zhu,
Weimin Zheng, Wenguang Chen

Department of Computer Science and Technology and BNRist, Tsinghua University
{yubw15,fgy18,caohq18,xh-li18,sunzb20}@mails.tsinghua.edu.cn

{wanghaojie,zhuxiaowei,zwm-dcs,cwg}@tsinghua.edu.cn

ABSTRACT
Apache Spark is a widely deployed big data analytics framework
that offers such attractive features as resiliency, load-balancing,
and a rich ecosystem. However, there is still plenty of room for
improvement in its performance. Although a data-parallel system
in a native programming language significantly improves perfor-
mance, it may require re-implementing many functionalities of
Spark to become a full-featured system. It is desirable for native big
data systems to just write a compute engine in native languages to
ensure high efficiency, and reuse other mature features provided
by Spark rather than re-implement everything. But the interaction
between the JVM and the native world risks becoming a bottleneck.

This paper proposes Chukonu, a native big data framework that
re-uses critical big data features provided by Spark. Owing to our
novel DAG-splitting approach, the potential Spark integration over-
head is alleviated, and its even outperforms existing pure native
big data frameworks. Chukonu splits DAG programs into run-time
parts and compile-time parts: The run-time parts are delegated to
Spark to offload the complexities due to feature implementations.
The compile-time parts are natively compiled. We propose a se-
ries of optimization techniques to be applied to the compile-time
parts, such as operator fusion, vectorization, and compaction, to
significantly reduce the Spark integration overhead. The results of
evaluation show that Chukonu has a speedup of up to 71.58× (geo-
metric mean 6.09×) over Apache Spark, and up to 7.20× (geometric
mean 2.30×) over pure-native frameworks on six commonly-used
big data applications. By translating the physical plan produced
by SparkSQL into Chukonu programs, Chukonu accelerates Spark-
SQL’s TPC-DS performance by 2.29×.

PVLDB Reference Format:
Bowen Yu, Guanyu Feng, Huanqi Cao, Xiaohan Li, Zhenbo Sun, Haojie
Wang, Xiaowei Zhu, Weimin Zheng, Wenguang Chen. Chukonu: A
Fully-Featured High-Performance Big Data Framework that Integrates a
Native Compute Engine into Spark. PVLDB, 15(4): 872-885, 2022.
doi:10.14778/3503585.3503596

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503596

1 INTRODUCTION
Big data refers to a large volume of rapidly growing datasets in
heterogeneous formats from which interesting value can be ex-
tracted [31]. Apache Hadoop [2] is an early open-source big data so-
lution that includes a distributed file system (HDFS) to persistently
store big data, together with an analytics framework based on the
MapReduce abstraction [13]. More recently, Apache Spark [44] has
introduced a new abstraction called Resilient Distributed Datasets
(RDD) [42] to enable fault-tolerant data reusing for iterative work-
loads. It can achieve performance that is better by an order of
magnitude compared with Hadoop MapReduce. Spark offers an
expressive and easy-to-use API that can naturally express func-
tional transformation, MapReduce, and join, making it possible to
build supportive libraries for graph computing [19], stream pro-
cessing [9, 43], machine learning [25], and SQL queries [10]. Spark
is widely deployed nowadays to serve big data analytics [3].

Despite Spark’s advantage in in-memory dataset reusing, recent
work has shown that its performance can be significantly improved.
For example, by building big data analytics frameworks in C++,
Thrill [11] achieves a geometric mean of 3.26× in speedup over
Spark on typical big data workloads. Actually, there is plenty of
room for performance improvement: For a Java matrix-multiply
kernel, switching to C yields a 4.4× speedup, and performance
further improves by 9.45× from the vectorization andAVX intrinsics
provided by the C compiler [23].

However, performance is only one aspect of big data processing.
Spark provides many other critical features, such as its lineage-
based resiliency: Big data analytics are typically performed in multi-
tenant commodity clusters, in which task failures are very common
due to machine failures, network jitters, and preemptive schedul-
ing, making checkpointing not efficient to handle such frequent
failures. Spark’s lineage-based fault-tolerance mechanism allows to
just recompute partial data instead of all. Its resiliency also enables
other features, such as load balancing, straggler mitigation, and
auto-scaling, which improve the resource utilization of the clus-
ters. Moreover, Spark’s ecosystem, such as its performance profiler
with a Web UI and its integration with various resource managers,
makes it easy to deploy, monitor, and profile applications on vari-
ous private or public clouds. Thrill [11] features a native RDD-like
abstraction called DIA, but tightly couples the data distribution to
physical machines and that invalidates resiliency. Husky [41] uses
an upstreammessage logging fault-tolerancemechanism that incurs
a non-negligible overhead even when there is no failure [40, 42].
Compared with Spark, they lack many essential features needed
for them to be fully-featured.

872

https://doi.org/10.14778/3503585.3503596
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503596

Spark RDD Library (9,246 LoC)

Spark Engine (65,101 LoC)
Distributed Execution Resilliency Straggler Mitigation

Resource Manager (YARN, AWS, …) Monitoring ….

Native Compute Engine Fully-
featured Big

Data
Framework

Figure 1: Building a fully-featured native big data frame-
work by standing on the shoulders of Spark

It is clearly desirable to have a fully-featured native big data
framework. An immediate solution would be to re-implement a
new pure-native framework in a native programming language,
which is straight-forward and theoretically possible but can be
prohibitively expensive and unnecessary: The core component of
Spark 3.0.1 has 74𝐾 lines of code1, of which only 9𝐾 lines are
directly related to the programming framework, including the RDD
API and operator implementations, and the others are components
that serve various big data features. Ousterhout et al. [32] have
revealed that computation is the bottleneck of Spark. This inspires
us to design an efficient big data framework by building a native
programming framework that can reuse Spark’s well-developed
big data features (more than 87% of the LoC of the Spark core), as
illustrated in Figure 1.

However, the feature-reusing approach creates several chal-
lenges. First, existing pure-native big data frameworks are incom-
patible with Spark’s execution model, making it unfeasible to in-
tegrate them into Spark. For example, Thrill couples each dataset
partition to a specific machine, and Husky relies on stateful task
execution, which violate Spark’s dynamic-scheduling and assump-
tion of statelessness. Second, fine-grained interactions between the
JVM and the native world, either through JNI or JNA, incur high
overhead [15, 35] that risks becoming a new performance bottle-
neck. Therefore, a native programming framework that respects
the Spark execution model is needed, and it is crucial to minimize
the overheads related to Spark integration.

This paper presents Chukonu, a native big data framework with
full features and high performances at the same time by taking
the feature-reusing approach. It supports critical big data features
by integrating into Spark and reusing its features. Chukonu is
developed with a reasonable amount of human effort, 9K lines of
C++ code, and 1.5K lines of Scala code, as it reuses well-developed
big data features. Despite the risks of high integration overheads,
Chukonu has successfully overcome the challenge: Its performance
even goes beyond existing pure native big data frameworks that are
designed for performance. This is due to our novel approach that
splits the DAG program into compile-time parts and run-time parts:
The compile-time parts handle such simple dataflow behaviors as
transformation, data filtering, and per-partition sorting. The run-
time parts handle such complex dataflow behaviors as scheduling,
caching, and communication. Chukonu delegates the run-time parts
to Spark so that complexities are offloaded.

To reduce the Spark integration overheads, Chukonu applies
a series of optimizations to the compile-time parts: Operator fu-
sion eliminates unnecessary JNA calls. Vectorization batches the
per-element data processing to reduce the number of JNA calls.
Compaction stores a batch of elements compactly in a few buffers
so that data copies can be eliminated in JNA calls.

1Using cloc command. Comments and empty lines are excluded.

To execute the run-time parts in Spark, Chukonu implements
a thin encapsulation over Spark. It is non-intrusive and can be
easily submitted to existing environments, without the need of
re-configuring existing cluster resource managers or recompiling
existing Spark. It alsomakes several enhancements to further reduce
the Spark integration overheads, including an optimized fast path
for serialization, explicit pointer passing, and efficient data loading.

Despite Chukonu’s superior performance, the optimizations
needed for the compile-time parts prolong the compilation time.
This makes Chukonu unsuitable for ad-hoc analytics when the
reduced execution time is not large enough to cover the penalty
from extra compilation time.

This paper makes the following contributions:

(1) We propose an approach to integrate a native compute en-
gine into Spark with low overhead by splitting the DAG
program into compile-time parts and run-time parts for na-
tive compilation and Spark execution respectively.

(2) We develop a series of optimizations to reduce the number
of JNA calls and alleviate the JNA calls overhead, including
operator fusion, vectorization, and compaction.

(3) To the best of our knowledge, this is the first implementation
of a big data framework built based on the DAG splitting
approach, with full features of the Spark core, that delivers
performance competitive to pure-native frameworks.

(4) We provide a careful evaluation of Chukonu by comparing
it with Spark and pure-native baseline frameworks.

We evaluated Chukonu on our in-house Hadoop cluster managed
by YARN, and compare Chukonu with Spark RDD, Spark Tung-
sten [7], Husky [41], and Thrill [11]. Six big data applications were
selected to evaluate these systems. We also implemented a code gen-
erator that translates the physical plan produced by SparkSQL into
Chukonu programs. All the queries of the TPC-DS benchmark were
used to evaluate the structured analytics of Spark and Chukonu.
Although it is standing on the shoulder of Apache Spark, the results
show that Chukonu delivers superior performance. On the six big
data applications, its average speedups in comparison with Spark,
Husky, and Thrill were 6.09× (up to 71.58×), 2.53× (up to 7.20×),
and 2.08× (up to 3.45×), respectively. For the TPC-DS benchmark,
its speedup of the total query execution time in comparison with
Spark was 2.29× (up to 5.14× for Q67). This shows that Chukonu
has significantly better performance than Spark, and also has per-
formance competitive to pure-native frameworks, which justifies
the DAG splitting approach.

2 RELATEDWORK
Data-Parallel Systems. Data-parallel systems [1, 2, 13, 20, 22, 34,
44] provide users with a programming abstraction to hide the com-
plicated details of distributed processing. MapReduce [13] is a user-
friendly programming model that enables low-overhead fault toler-
ance based on re-execution. This is required in cluster computing to
resist server failures or preemptions. Dryad [22] introduces dataflow
graphs to facilitate multi-stage pipelines. RDD [42] and Apache
Spark [44] were subsequently proposed to enable in-memory data
reusing for iterative workloads. This provides lineage-based fault
tolerance to provide low-overhead resiliency. Piccolo [34] provides

873

an alternative approach that exposes the user to a distributed shared
mutable KV interface. It relies on checkpoints for fault tolerance.

Optimizing Big Data Systems within JVM. Some studies
have examined optimizing the performance of existing big data
systems within JVM. Optimizing within JVM allows for the API to
remain unchanged so that user applications do not need to change.
Facade [30], Lu et al. [24], and Gerenuk [27] proposed the automatic
transformation of user-defined functions to enable them to support
accessing data in serialized form and reduce garbage collection over-
heads by contiguously storing the serialized data. NumaGiC [18]
proposes a NUMA-aware garbage collector for JVM. Yak [29] pro-
poses a big-data-friendly garbage collector that is aware of the
object lifetime patterns of big data.

Native Integration into Apache Spark. Using the power
of native compilation helps to eliminate the overheads of JVM
and achieves significant speedup [8, 15, 25, 35, 38]. Rosenfeld et
al. [35] accelerated SparkSQL in a C++ native engine but leaves
Java UDFs within an embedded JVM. Flare [15] exhibits order-of-
magnitude speedups compared with SparkSQL by native-compiling
the entire query plan into a single-machine native backend, but
abandons Spark’s support for distributed execution. Anderson et
al. [8] provided an order-of-magnitude speedup by integrating
MPI [36] programs into Spark. However, MPI does not support
the low-overhead fault tolerance required by big data analytics on
commodity servers [13]. MLlib [25] and SparkJNI [38] accelerates
performance-critical computation by offloading to native kernel
functions, but this leads to computation without native kernels
in the JVM world, which may be a new bottleneck, and incur the
cross-language data marshalling overhead.

Pure Native Big Data Systems. Some studies have built na-
tive systems from scratch to improve performance [11, 21, 41].
Thrill [11] proposes a native data-parallel system based on the
Distributed Immutable Array (DIA) memory abstraction that is
tightly coupled with the execution model of MPI, and does not
support lineage-based fault tolerance like RDD. Husky [41] and
Tangram [21] introduce data mutation to enable fine-grained access
and asynchronous execution, at the cost of expensive data logging
and checkpointing for fault tolerance.

3 DAG SPLITTING OVERVIEW
In this section, we introduce the idea of DAG splitting and illus-
trate how it helps to integrate a native compute engine into Spark
with low overhead. A big data analytics program can be logically
represented by a directed acyclic graph in which vertices are oper-
ators and edges are dependencies between two operators, and we
call it a DAG program. Our approach splits the DAG program into
run-time parts and compile-time parts. The compile-time part is
a subgraph of a DAG program that will be natively compiled and
optimized at compile time. The run-time part is a subgraph of a
DAG program that will be directly executed by Spark. In §3.1 and
§3.2, we will discuss how a DAG program is split into two parts
and how compile-time parts are optimized, respectively.

3.1 Policy of Splitting the DAG Program
Chukonu splits the DAG program according to the category of
the operator. Each operator may belong to either the compile-time

Hash
Aggregate

Shuffle
Write

Shuffle
Read

Hash
Aggregate

Map
Values

Build
Hash

links

Map
Values

reduceByKey join

Probe
Hash

compile-time partrun-time part

contribs.reduceByKey(_+_).mapValues(v => 0.85 * v).mapValues(v => 0.15 + v).join(links)

Zip
Partitions

run-time part

Figure 2: Chukonu splits the DAG program into compile-
time parts and run-time parts.

part or the run-time part. Figure 2 shows a simple example of how
Chukonu splits the DAG program. The code is excerpted from the
PageRank application, and it corresponds to the DAG program
below. In this example, the shuffle and zip operators are in the
run-time part, and other operators are in the compile-time part.

It worths discussing the policy of assigning operators to the two
categories. If an operator is assigned to the run-time part, it is dele-
gated to Spark, and requires little human effort to implement, but
potentially suffers from Spark integration overheads. We follow the
principle that operators which are hard to implement should prefer
the run-time part, unless they are shown to be a performance bot-
tleneck. Under this approach, we try to avoid unnecessary human
effort, as long as the Spark integration overheads are kept small.
Chukonu assigns the following operators to the run-time part: First,
the partition-pruning operator and operators with more than one
dependencies, such as union, zip, and cartesian, are in the run-time
part. This provides lineage-related information to Spark and reuses
Spark’s lineage-based fault tolerance mechanism. Second, the shuf-
fle operator is in the run-time part. This reuses Spark’s fault tolerant
data shuffling mechanism, which is not only hard to implement
but also intrusive to deploy: It requires re-configuring the cluster
resource manager so that a dedicated shuffle service is deployed in
each node of the cluster. Third, the cache operator is in the run-time
part. This reuses Spark’s intermediate data management mecha-
nism. Fourth, the data-source operator is in the run-time part. This
provides locality information to Spark and reuses Spark’s locality-
aware task scheduling. Other operators, such as map, filter, and
flatMap, are assigned to the compile-time part, so that they can be
optimized at compile time.

3.2 Optimizing Compile-Time Parts
Optimizations to compile-time parts are necessary to alleviate the
Spark integration overheads. To illustrate this, Figure 3 (a) shows a
naïve mapping from a compile-time part to Spark. Each mapValues
transformation is directly mapped to a Spark RDD, and each value is
mapped to a Java object. Despite its simplicity, the naïve integration
suffers from a large overhead: Processing a value as simple as a long-
double pair requires serialization/deserialization once in the JVM
world and once in the native world, and the creation of a Java object.
This cancels out the performance advantage of native efficiency.
Chukonu performs the following three optimizations to compile-
time parts: First, Chukonu performs operator fusion, meaning that
each compile-time part of the DAG is fused, to eliminate unnec-
essary native/JVM interactions. Figure 3 (b) illustrates its effect:
Two subsequent mapValues are fused into one mapValues. Then,
Chukonu performs vectorization, which transforms per-element
JNA calls into per-batch JNA calls on the boundary of the run-time
part and the compile-time part, and also vectorizes the fused opera-
tors within the compile-time part. Figure 3 (c) illustrates its main

874

.mapValues(
v=>
0.15 + 0.85*v)

(Long, Double)

b) After operator fusion

JVM World Native World

.mapValues(V=>
[0.15 + 0.85*v
for v in V])

JVM World Native World

Array[(Long, Double)]

c) After vectorization

.mapValues(
v => 0.85 * v)

(Long, Double)for each Item from dep. Pointer

a) Naïve integration to Spark

JVM World Native World

JNA

.mapValues(
v => 0.15 + v)

serialize deserialize

serializedeserialize

serialize deserialize

serializedeserialize

serialize deserialize

serializedeserialize

d) After compaction

serialize

deserialize

deserialize

serialize

.mapValues(V=>
[0.15 + 0.85*v
for v in V])

JVM World Native World

CompactArray[(Long, Double)]

pointer
passing

1 - fused into one mapValues

2 – process in a batch

3 – use compact collections

for each Item from dep.

for each Batch from dep.

for each Batch from dep.

contribs.reduceByKey(_+_)
.mapValues(v => 0.85 * v).mapValues(v => 0.15 + v).join(links)

original program before optimization

Figure 3: An example illustrating optimizations in Chukonu
to alleviate overheads due to JNA calls

effect: The number of JNA calls is reduced because an array of
pairs is passed by JNA at one time. Finally, Chukonu performs com-
paction, in which a few continuous memory buffers (called compact
data layout) are used to represent a batch of elements. Figure 3 (d)
illustrates its impact: A compact array of pairs backed by a buffer
is explicitly passed by a pointer without data serialization. These
optimizations are powered by code transformation. Figure 4 illus-
trates the optimizations of Chukonu from the perspective of code
transformation with a slice of the page rank Chukonu program.
These optimizations are further discussed in §4.1 and §4.2.

4 CHUKONU PROGRAMMING FRAMEWORK
In this section, we introduce the detailed design of the Chukonu pro-
gramming framework. The architecture of Chukonu is illustrated
in Figure 5. Chukonu provides a native RDD-like API for users to
build DAG programs. The Chukonu (dataset) representation imple-
ments the DAG splitting and optimizations to compile-time parts.
Chukonu implements a thin encapsulation over Spark called the
Chukonu engine to execute run-time parts. §4.1 introduces the
Chukonu representation and discusses how the DAG splitting and
optimizations are implemented. §4.2 presents typical compact data
layouts. §4.3 presents the API of Chukonu.

4.1 Implementing the DAG Splitting
Chukonu’s internal dataset representation for DAG programs (re-
ferred to as Chukonu representation) enables the DAG splitting.
Similar to Apache Spark, the Chukonu representation of each RDD

Table 1: RDD representations of Spark and Chukonu

Spark Chukonu
DAG type run-time only hybrid

Op. implementation compiled binary code template
Op. fusion no yes

Vectorization no yes
Compaction run-time compile-time
Data partition abstract iterator batched object

Elements extract iterator get scanner scan
Distribution share the same designPlacement

contains a set of partitions, a set of dependencies, a definition of
computation, and metadata about dataset distribution and data
placement. However, the Chukonu representation introduces sev-
eral differences to enable optimizations that are summarized in
Table 1. First, Chukonu representation tracks both the run-time
part and the compile-time part of the DAG program to support
the DAG splitting. Figure 6 illustrates how the Chukonu represen-
tation represents the hybrid DAG. In contrast, Spark representa-
tion can only represent the run-time part. Second, operators in
Chukonu representation are in the form of code templates so that
optimizations to compile-time parts are enabled by C++ template
meta-programming. In contrast, operators in Spark representation
are in the form of binaries and prevent compile-time optimizations.

Figure 7 demonstrates the Chukonu representation in a C++-
specific way. RDD represents a lazily-evaluated dataset that consists
of a run-time part and a compile-time part. The run-time part is a
data structure that stores a graph of run-time operators, and each
run-time operator knows how to evaluate the result given a parti-
tion id. The compile-time part is represented by the compile-time
operator based on scanner, which pushes a sequence of values to a
consumer callback function given a result of run-time operators.
Figure 6 shows how to perform operator fusion. The scan, fil-
ter, and flatMap are a chain of compile-time operators. When the
produce of flatMap is called, it prepares a consumer that handles
incoming values and passes the consumer to the produce of fil-
ter. Similarly, filter calls scan, and scan finally pushes values
in the result to the consumer given by filter. The compiler will
fuse the nested consumers calls via inlining. This operator fusion
mechanism is inspired by the code generation approach proposed
by Neumann et al. [28], but our approach is suitable for compile-
time optimizations. To support vectorization, the result of run-time
operators is a batch of values rather than a single value. As eval-
uating run-time operators involves heavy native/JVM overheads,
vectorization will significantly reduce such overheads. To support
compaction, the batch of values can be stored in a memory- and
computing-efficient compact data layout. These optimizations ad-
here to the deterministic assumption of the RDD abstraction, so
that the lineage-based fault tolerance is preserved.

The Chukonu representation and the optimizations are kept
internal within the Chukonu framework. Users only need to un-
derstand that an RDD is logically a distributed dataset of elements,
regardless of its type of partitions or producers. This is enabled by
the placeholder-type [6] feature provided by C++14.

875

Naïve integration

agg = HashMap[Long, Double]()
while shuffleRead.hasNext():
k, v = shuffleRead.next()
agg[k] += v

yield k, v for k, v in agg

while in.hasNext():
k, v = in.next()
yield k, 0.85 * v

join = MultiMap[Long, Double]
while in.hasNext()
k, v = in.next()
join[k].add(v)

while in2.hasNext()
k, v2 = in2.next()
yield k,(v1,v2) for v1 in join[k]

agg = HashMap[Long, Double]()
while shuffleRead.hasNext():
k, v = shuffleRead.next()
agg[k] += v

join = MultiMap[Long, Double]
for k, v in agg:
join[k].add(0.15+0.85*v)

while cachedLinks.hasNext():
k, v2 = cachedLinks.next()
yield k,(v1,v2) for v1 in join[k]

contribs.reduceByKey(_+_).mapValues(v => 0.85 * v).mapValues(v => 0.15 + v).join(links)

agg = HashMap[Long, Double]()
kv_array = shuffleRead.next()
for k, v in kv_array:

agg[k] += v
join = MultiMap[Long, Double]
for k, v in agg:
join[k].add(0.15+0.85*v)

kv_array_2 =
cachedLinks.next()

out_array = []
for k, v2 in kv_array_2:

for v1 in join[k]:
out_array.add((k,(v1,v2)))

yield out_array

agg = HashMap[Long, Double]()
kv_compact_array =

shuffleRead.next()
for k, v in kv_compact_array:

agg[k] += v
join = MultiMap[Long, Double]
for k, v in agg:

join[k].add(0.15+0.85*v)
kv_compact_array_2 =

cachedLinks.next()
out_builder =

newCompactArrayBuilder()
for k, v2 in kv_array_2:

for v1 in join[k]:
out_builder.add(k,(v1,v2))

yield out_builder.build()

Original Program:

+Operator fusion +Vectorization +Compaction

while in.hasNext():
k, v = in.next()
yield k, 0.15 + v

Figure 4: How Chukonu alleviates the integration overhead by code transformations. Most of the codes are executed natively
except the iterator operations marked by red font, which present JNA call overheads.

+Native

+Opt.

Re-use

(Sec. 4) Programming
Framework (RDD)

Chukonu Dataset Repr.

Chukonu RDD API

Native World

(Sec. 5) Chukonu Engine

JVM World

Spark Dataset Repr.

Programming
Framework (RDD)

Spark RDD API

Spark Engine
Distributed Execution

Resilliency
Straggler Mitigation Monitoring
Resource Manager (YARN, AWS)

Spark Engine
Distributed Execution Resilliency
Straggler Mitigation Monitoring
Resource Manager (YARN, AWS)+Enhan.

JNA

Figure 5: Chukonu architecture

Run-time DAG delegated to Spark Chain of Nested Scanners

filter
Task 𝑇

scan flatMap
call produce

push the elements to consume (fused
by compiler optimization)

Figure 6: The hybrid DAG in the Chukonu representation

1 template <typename Scanner >
2 class RDD {
3 DAG <RunTimeOperator > run_time_part;
4 Scanner compile_time_part;
5 };
6 class RunTimeOperator {
7 virtual Any compute(int partitionId) = 0;
8 };
9 template <typename T> class ScannerImpl {
10 using value_type = T;
11 /** Scans an input and feeds values to consumeOp */
12 void produce(Any input , auto consumeOp) {...}
13 };

Figure 7: Chukonu representation in C++

Flat Array: fixed length record F

Array Array: array of fixed-length records F

tuple array: tuple type (T1, T2, …)

data [F]

index [int]
data [F]

data1 [T1]
data2 [T2]
……………………………………

Bitmap Array: Boolean
data [Bool]

Nullable Array: T
isNull [bool]

data: [T]

String Array: String
index [int]
data [char]

Buffer Flat Array Bitmap Array Nested Array

Figure 8: Chukonu provides code templates for generating
compact data layout.

4.2 Typical Compact Data Layouts
For efficient processing, Chukonu internally represents partitions
as compact partition layouts, in which elements of a partition are
stored efficiently in a few buffers. This helps avoid memory frag-
mentation due to the allocation of small objects, and eliminates
the requirement of run-time compaction of a garbage collector.
Moreover, it increases data locality and provides a regular memory
access pattern so that CPU efficiency can be improved.

Chukonu provides several templates to generate compact parti-
tion layout for various data structures, as shown in Figure 8. The
flat-array places fixed-length elements in a buffer. The bitmap places
boolean elements in a buffer. The array-array and the string-array
place array elements in the CSR layout [45]. The nullable-array
places nullable elements in a bitmap and an array. The tuple-array
places tuple elements in a tuple of arrays. Although more kinds of
compact layouts can be implemented if needed, Chukonu’s compact
partition layouts cover most of the cases in big data analytics: All
of our workloads are based on these compact partition layouts.

Elements yielded from the compact data layout are views, like
string-views or spans, and avoid the need to physically construct
a string or vector to reduce the object creation overhead. Views
are fundamentally pointers, and thus need to be carefully handled.
Chukonu guarantees that input views, or their slices, can be re-
turned from a UDF. However, it is illegal to return a view pointing
to local object. To solve this problem, Chukonu allows users to
return objects in their object form, and internally converts them to
their view form.

876

4.3 Chukonu RDD API
The Chukonu RDD API is designed to be almost identical to the
Spark RDD API, but in a native programming language C++. It
provides a dataset abstraction based on coarse-grained immutable
transformations in which a new dataset is created based on previ-
ous datasets. Dataset transformations are lazily evaluated: Datasets
generated by the transformations do not hold the values but the
DAG to generate the values. The name and semantics of its opera-
tors are identical to those of Spark to make it easily accessible to
Spark users. Owing to the modern C++ syntax, programs based on
the Chukonu RDD API and Spark RDD API are very similar. Fig-
ure 9 compares logistic regression programs with both Spark and
Chukonu RDD APIs. They generate almost identical DAGs and the
differences at the source code level reflect only language-specific
details, such as the "auto" in C++.
1 val points = spark.textFile (...)
2 .map(parsePoint). persist ()
3 var w = // randomly initialized vector
4 for (i <- 1 to ITERATIONS) {
5 val gradient = points.map{ p =>
6 p.x * (1/(1+ exp(-p.y*(w dot p.x))) -1)*p.y
7 }. reduce ((a,b) => a+b)
8 w -= gradient
9 }

a) Logistic regression in Spark API (Scala)
1 auto points = ctx.textFile (...)
2 .map(parsePoint). persist ()
3 auto w = // randomly initialized vector
4 for (int i=1; i<= ITERATIONS; ++i) {
5 auto gradient = points.map(FN((auto p){
6 return p.x*(1/(1+ exp(-p.y*(dot(w,p.x))) -1)*p.y);
7 }, w)). reduce(FN((auto l, auto r) { return l+r; }))
8 w -= gradient
9 }

b) Logistic regression in Chukonu API (C++)
Figure 9: Logistic regression in Spark API and Chukonu API

Owing to a lack of standard serialization support in C++, Chukonu
uses the serialization interface of cereal [4], which is a widely-used
C++ serialization library. Spark requires that user-defined func-
tions be serializable to enable the passing of control and support
resiliency. Lambda expressions in standard C++ simplify the writ-
ing of UDFs but are not serializable. Therefore, Chukonu provides a
macro "FN" to help users define UDFs through lambda expressions.

5 CHUKONU ENGINE
The Chukonu engine borrows most of the features of the Spark
engine but enhanced it to support efficient Spark integration. §5.1 in-
troduces how the Chukonu engine reuses Spark features. §5.2 intro-
duces how the Chukonu engine provides safe explicit pointer pass-
ing for efficient Spark integration. §5.3 introduces how Chukonu
eliminates integration overheads.

5.1 Integration Methodology
Figure 10 shows the workflow of running a Chukonu program,
and illustrates the integration methodology. In the native world,
the Chukonu engine contains a library that provides a trivial C++
binding of Apache Spark (referred to as CppSpark). Due to the
space limit, we do not present its API here. The transformation
of run-time part of DAGs is realized by CppSpark. The Chukonu

Chukonu
Program

Chukonu
Library

Chukonu
Driver

Loadable
Module

1) Compiled by a native compiler
YARN Cloud

2) Loaded and submitted to
resource managers

Figure 10: Chukonu workflow illustrating its integration
methodology.

programs are compiled together with the library to yield a dynam-
ically loadable module. In the JVM world, the Chukonu engine
contains a driver that executes the compiled Chukonu programs.
The Chukonu driver is a normal Spark application implemented in
Java that can be submitted to Spark-compatible clusters, like nor-
mal Spark applications. Once submitted successfully, the Chukonu
driver loads the compiled Chukonu program, registers the engine
implementations to the module, and invokes the main routine of
the Chukonu program. To support remote execution, the Chukonu
driver also instructs newly created executors to prepare for the
environment, for example, downloading the compiled Chukonu
programs from HDFS.

5.2 Safe and Efficient Explicit Pointer Passing
Figure 11 illustrates how the Chukonu driver and the Chukonu
library interact to provide a safe and efficient explicit pointer pass-
ing mechanism between JVM and the native environment. The
Chukonu driver in the JVM world provides the DAG building and
evaluation functionalities to the Chukonu library. This is provided
by the JNA, in which the Chukonu driver passes the Java functions
as native function pointers to the Chukonu library. The DAG in the
Chukonu library is backed by the Spark RDD. Each object in the
Chukonu library is backed by a Java object in the Chukonu driver.
The Java object holds the pointer of objects. When finalized, Java
wrappers free the underlying Chukonu objects. However, deferred
finalization due to Java garbage collections will bloat the memory
usage, making it desirable to release the Java wrappers as soon as
possible, without waiting for the GC to start.

Object

Dag

keeps a pointer ofObject
Disposable Registration-free fast

serializationSerializable

UDF implements ObjectRDD[Object]
keeps an id of

Chukonu LibraryChukonu Driver

Spark EngineEngine Impl.
textFile transform …

function pointers

Figure 11: Interaction between Chukonu driver and
Chukonu library. Dashed arrows are "owns-a" relationship,
i.e., destruction of owner will destruct the owned.

Chukonu enforces a move-in move-out life-time contract for
correct eager object freeing. For example, to call a native function
in the JVM world, pointers passed to the function are considered to
have been moved to it. After this, the JVM site can no longer access
the moved pointers, and it is the native function’s responsibility
to free the input pointers or move them elsewhere. Such a life-
time contract may encounter a few exceptions in which move-in is

877

not allowed, for example, when in-memory cached data are to be
reused later and should not be moved in. To fix this issue, Chukonu
wraps Chukonu objects within a std::shared_ptr, which is a
smart reference mechanism provided by the C++ standard that
offers automatic lifetime management similar to the references in
Java. In the case of in-memory cached data, the reference pointed
to by the raw pointer is duplicated and then moved in.

5.3 Other Overhead Elimination
The Chukonu engine also eliminates other overheads, including a
fast data serialization and an accelerated data loading method.

11011110
Compact
Strings
size

indices
contents

type_hash
factory_ptr

Metadata
size type_hash
factory_ptr

Data
indices
contents

1) Slow path for
general cases

0x5100a0 110-byte
0x44cca0 500-byte

2) Fast path for
copy-avoidance

0x75d4f0
24-byte

Chukonu
Driver

Java I/O
Stream

(Standard I/O stream)

Figure 12: Chukonu provides a fast path for serializing the
compact data layout.

5.3.1 Fast data serialization. Cereal supports serialization from/to
standard I/O streams, which is a common practice, and is general
enough to support every serializable type. However, its limitation is
in its performance: Serialization based on I/O streams is inefficient.
Chukonu proposes a data serialization technique that provides a
fast path based on pointer-passing for the compact data layout that
divides the data serialization process into two stages, meta-data
serialization and data serialization, as illustrated in Figure 12. Meta-
data serialization uses stream-based serialization considering its
generality and makes it compatible with cereal. It is suitable for
serializing meta-data such as dependencies, producers, and UDFs
in the Chukonu RDD representation. Data serialization is a fast
path that supports zero-copy serialization for continuous memory
regions in compact data layouts, involves only a small amount
of pointer-passing overheads, and does not incur the large data-
copying overhead.

5.3.2 Acceleration of data loading. It is necessary to use Spark’s
data source to enable locality-aware scheduling. However, trivially
reusing Apache Spark’s data source API incurs a large overhead
because it includes per-element data processing in the JVM world,
whichwould bemuchmore efficient if processed in the native world.
For example, Spark’s data source for text files creates a Java string
for each line in the text file. Thus, the Chukonu engine provides an
accelerated data loading implementation, in which the data source
is partitioned and scheduled correctly, but each partition is read
into a native buffer as a whole and passed to the native world for
per-element data processing.

6 EVALUATION
We examined the benefits and limitations of building a big data
framework standing on the shoulder of Apache Spark by evaluating
the performance of our prototype system Chukonu, and comparing
its performancewith those of vanilla Apache Spark, domain-specific
frameworks based on Apache Spark, and two pure native big data

frameworks: Thrill and Husky. We evaluated these methods on
four typical domains of big data: unstructured analytics, graph
computing, machine learning, and structured analytics. Two repre-
sentative big data applications were selected for each of the first
three domains, and all queries of TPC-DS [33] were selected to rep-
resent structured analytics. In summary, we studied the following
questions throughout the evaluation:

(1) How much performance can be improved by using Chukonu
from the perspective of Spark users? (§6.2)

(2) How effective is the compile-time optimizations and the
elimination of Spark integration overheads? (§6.3)

(3) Does Chukonu consume less memory than Spark? (§6.4)
(4) What are Chukonu’s advantages compared with state-of-

the-art pure-native big data frameworks? (§6.5, §6.6, §6.7)
(5) How much room is Chukonu leaving for future improve-

ment? (§6.8, §6.9)

6.1 Experimental Methodology
We ran the experiments on our Hadoop cluster, which consisted of 8
nodes, each with 56 cores (two Intel E5-2680 v4 processors), 256GB
of main memory, a 100Gbps network (InfiniBand EDR, configured
IPoIB to expose it as a normal TCP/IP network), and a 6.4𝑇𝐵 NVMe
SSD that could provide 5.3GB/s of bandwidth. The distributed file
system (HDFS) and cluster resource manager (YARN) were pro-
vided by Hadoop 3.0.0. The metastore of Apache Hive 3.1.2 was
deployed to store the metadata of tables for structured analytics.
Apache Spark 3.0, which was recently released and has significant
performance enhancements over its predecessor, was used in our
evaluation. Spark’s shuffle service was configured in YARN to man-
age the intermediate results. Because Spark 3.0 supports both Java
8 and Java 11, we also used the newer version of JVM (Oracle JDK
11.0.8) because it has better performance. Both Chukonu and Spark
programs were submitted through YARN, in which each container
for the Spark executor had 7 cores and 22GB of memory. This fol-
lows the convention to avoid using large executors because this
hampers performance [5]. The Chukonu and Chukonu programs
are compiled by GCC 10.1.

We selecteded six representative big data applications.WC (Word
Count, counting the occurrences of words from a given corpus) and
TS (TeraSort, sorting a distributed dataset with 10-byte keys and
90-byte records with global ordering) were selected to represent un-
structured analytics, which are non-iterative workloads that involve
processing large datasets with heterogeneous data formats stored
in a distributed file system, and optionally writing the results back
into the distributed file system. PR (PageRank) and CC (Weakly
Connected Components) were selected to represent graph comput-
ing. KM (K-Means2) and LR (Logistic Regression) were selected to
represent machine learning.

Example applications of Apache Spark3 were used as reference
Spark applications, and were then manually ported to Chukonu as
Chukonu programs. Several other baseline systems were also evalu-
ated to compare with Chukonu. PR and CC were implemented using
GraphX [19], which is a graph computing framework built on top
of the RDD API. KM and LR were implemented using MLLib [25],

2The number of clusters K = 500
3See https://github.com/apache/spark/tree/v3.0.1/examples

878

which is a machine learning framework built on top of the RDDAPI,
but users were provided with both the RDD API and the DataFrame
API. In MLlib, numerical computations were accelerated by using a
fast native BLAS library. Both Spark’s and Chukonu’s KM and LR
were directly implemented by using Scala and C++ without native
BLAS acceleration. To examine the improvement brought about by
using a native BLAS library from Spark, we also implemented an
accelerated version of KM and LR for Spark (referred to as Spark-
BLAS) by using the native BLAS library bundled in MLlib. Project
Tungsten [7] optimizes Apache Spark via unsafe serialized data
processing with an SQL-like DataFrame API and query planner [10],
and should be considered a baseline to investigate improvements
in it.WC and TS were implemented directly using the DataFrame
API. PR and CC were implemented using GraphFrame [12], which
is a graph computing framework built on top of the DataFrame
API. Thrill4 and Husky5 were also tested in the experiments to
reveal their native performance as reference. Most of the applica-
tions have built-in implementations in the framework, and we have
implemented the rest (CC for Thrill6 and TS, KM for Husky7).

Table 2: Datasets used in the evaluation

App Dataset (Size)
WC Gutenberg corpus (43GB) [14]
TS TeraSort generator in Hadoop examples (233GB)

PR, CC Twitter-2010 (24GB) [17]

KM
Synthetic 80m points from BigDataBench [39]

each with 64 features (43GB)

LR
Synthetic 120m points by duplicating MNIST [16]

each with 784 features (213GB)

The datasets are summarized in Table 2. The datasets were stored
in HDFS in text format, with the only exception being TS, which
requires a binary format. End-to-end time is reported, which is the
time from the start to the end of the application, and may include
the time required to read from HDFS, pre-process data, and write
to HDFS. To properly warm-up the JVM, the performance of each
application was measured three times in the same session, and
the average of the latter two times was reported. PR, KM , and LR
performed 10 iterations in a single run. CC, instead, was iterated
until it converged in a single run.

Since Spark 3.0, Spark provides monitoring features to periodi-
cally report the performance metrics of each executors in csv files,
which makes it easy to profile and find the bottleneck of applica-
tions. Our evaluation uses Spark’s performance monitoring feature
with a one-second sampling interval. The clock skew of the clus-
ter was within 100ms, and thus it was acceptable to aggregate the
metrics of nodes in the cluster by timestamp to form the overall
metrics. We only report the metrics of interest due to space limit.

To evaluate the TPC-DS benchmark, we used the data generator
and query scripts developed by Databricks8. A scale factor of 1,000

4https://github.com/thrill/thrill [commit 12c5b59]
5https://github.com/husky-team/husky [commit 9e66349]
6https://github.com/thu-pacman/thrill/tree/vldb22
7https://github.com/thu-pacman/husky/tree/vldb22
8https://github.com/databricks/spark-sql-perf [commit ca4ccea]. Although TPC-DS
defined 99 queries, this implementation further divided each multi-part query into
multiple single-part queries, and thus had 103 query scripts.

was selected so that a 1TB dataset was generated. The metadata
of tables were stored in the metastore of Apache Hive, and the
data of tables were stored as Snappy-compressed Parquet files in
the HDFS. We implemented a translator to translate SparkSQL’s
physical plan into the C++ source code of Chukonu programs.
Chukonu shared the execution plans of Spark, which ensured a
fair comparison between Chukonu and Spark. Owing to the DAG-
splitting design of Chukonu, complexities due to input data formats
and DAG scheduling were offloaded to Spark, leading to a simple
implementation: 2K lines of Scala code for the translator and 1.9K
lines of C++ code for the operators.

6.2 Overall Performance
The overall performance results are sketched in Figure 13, and
provides preliminary answers to our questions. Chukonu achieved
an average speedup of 6.09× with respect to Spark, which is a
significant improvement. When considering each application, their
speedups diverged: TS recorded only a 1.41× speedup, but KM had
a speedup as high as 71.58×. By checking the Spark Web UI, we
found that the relatively small speedup of TS was owing to a large
amount of HDFSwrite: Chukonuwas unable to accelerate the HDFS
write, this rendering its acceleration in computation less significant.
However, KM is a computation-intensive application, which makes
accelerating computation important.

Although using the Tungsten backend is shown to be effective
for structured analytics workloads like TPC-DS, our results show
that despite a slight improvement, the Tungsten backend was not
significantly effective for either unstructured analytics or graph
computing: Chukonu had an average speedup of 2.04× compared
with SparkSQL forWC and TS, and 8.98× compared with Graph-
Frame for PR and CC. Moreover, GraphFrame performed poorly
compared to GraphX for both PR and CC: GraphFrame slowed
down by 6.85× and 1.97×, respectively. This result seems counter-
intuitive because the Tungsten backend should have eliminated the
creation of Java objects by directly processing serialized data within
a region of continuous memory. However, such an improvement is
obtained by using an unnatural, low-level API called Unsafe in Java
that is not directly applicable to existing applications. It requires a
code generator, SparkSQL here, to fill the gap. Even if we can use
the DataFrame API to represent unstructured analytics or graph
computing, SparkSQL itself is designed for structured analytics
workloads, and may not be effective for other domains. This sug-
gests an advantage of Chukonu: Using an easy-to-use native API,
it is guaranteed to achieve native performance without the need
for domain-specific code generators.

Chukonu achieved competitive performance compared with
state-of-the-art pure native frameworks including Thrill and Husky.
The average speedups of Chukonu with respect to Thrill and Husky
were 2.08× and 2.53×, respectively. Chukonu’s end-to-end perfor-
mance was better than that of Thrill and Husky for most applica-
tions, except Husky’s CC. Husky’s CC had an end-to-end speedup
of 1.39× compared with Chukonu. This is because Husky is based
onmutable datasets, which allows the user to place a source vertex’s
neighboring vertices list and mutable state together. However, the
immutable execution model requires storing them separately, and
this incurs a join overhead. It should be noted that despite Husky’s

879

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n
Ti

m
e (

s)

Spark SparkSQL Thrill Husky Chukonu
0

200

400

600

1.41× 1.41×
3.39×

7.20×

1.00×

TeraSort

Spark GraphX G.Frame Thrill Husky Chukonu
0

200

400 5.98×

2.18×

4.31×
3.45×

0.72× 1.00×

Connected Components

Spark MLlibSpark+BLAS Thrill Husky Chukonu
0

100

200

300
4.10×

1.34×
2.01× 1.38×

3.06×

1.00×

Logistic Regression
Spark SparkSQL Thrill Husky Chukonu

0

20

40

60

3.18× 2.94×
1.44×

6.15×

1.00×

Word Count

Spark GraphX G.Frame Thrill Husky Chukonu
0

500

1000

1500

6.49×
2.73×

18.71×

1.61× 1.89× 1.00×

Page Rank

Spark MLlibSpark+BLAS Thrill Husky Chukonu
0

100

200 71.58×
2.81× 2.37× 2.19×

1.41× 1.00×

K-Means

Figure 13: The end-to-end time and normalized time for each big data application (lower is better)

performance advantage in CC due to its mutable execution model,
it was slower than Chukonu on the other five big data applications.
Notably, for unstructured analytics workloads (WC and TS), Husky
was 6.65× slower on average.

Chukonu’s straight-forward implementations were better than
those of all domain-specific frameworks based on Spark, with an
average speedup of 2.85×, including Spark-BLAS, GraphX, MLLib,
SparkSQL, and GraphFrame, although they are free to include opti-
mizations tailored to a specific domain. For example, Spark-BLAS
offloads numerical computations to a well-optimized native BLAS
library, which significantly improves performance. But the conver-
sion between Java objects and native buffers caused by the JNI calls
requires memory copies, thus canceling out part of the advantage of
the native BLAS library. This suggests that using Spark is not a free
lunch: It offers Spark compatibility and provides RDD abstraction,
but reduces efficiency. Chukonu can be an efficient fundamental
framework based on which domain-specific frameworks can be
built: It has Spark compatibility, provides RDD abstraction, but pre-
serves opportunities for optimizing domain-specific frameworks.

WC TS PR CC KM LR
0

1

2

3

Sl
ow

-d
ow

n
fro

m
 H

DD Spark
Chukonu

Figure 14: Slowdown of changing each NVMe SSD to 6 HDDs
Although our experiments were performed in an all-flash cluster

equippedwith NVMe SSDs, the performance advantage of Chukonu
still holds in conventional HDD clusters. Figure 14 illustrates the
performance slowdown when each NVMe SSD was changed to 6
HDDs for each machine in our cluster. Most of the applications,
except TS, were not affected because the size of the dataset fitted
into the memory, and was cached in either Spark’s block manager
or the operating system’s page cache. However, TS’s HDFS writing
operation suffers from the low bandwidth of HDDs because it waits
for the data to be completely written to disks for durability.

6.3 Optimizations Validity
Chukonu relies on several techniques to optimize Chukonu pro-
grams and reduces the overhead incurred due to integration into

Apache Spark. To validate these techniques, we evaluated two straw-
man baselines (referred to as Strawman A/B) and compared their
performance with that of Chukonu.

Strawman A turns off the optimizations to Chukonu programs,
including operator fusion, vectorization, and compaction, by map-
ping each element-centric user-defined function directly to Apache
Spark. Strawman A involves per-element overhead of object cre-
ation and object serialization, representing the naïve integration
approach. Evaluation results revealed that Strawman A has an av-
erage slowdown of 5.89× compared with Chukonu, as shown in
Figure 15, justifying the benefits of the optimizations. ItsWC, TS,
and PR were slower than those of Spark, which suggests that over-
heads in the naïve integration approach canceled out the benefits of
native efficiency. Strawman A also required more memory because
the elements in datasets were stored in object form. CC ran out of
memory due to the requirement of a large amount of memory.

WC TS PR CC KM LR
0

5

10

15

Sl
ow

do
wn

 to
 C

hu
ko

nu

1.0x 1.0x 1.0x 1.0x 1.0x 1.0x

11.5x

5.4x

39.8x

OOM
1.4x 2.1x

3.4x 4.2x

1.3x
3.6x

1.8x
OOM

Chukonu
Strawman A
Strawman B

Figure 15: Normalized execution times of Strawman A and
B relative to Chukonu

Strawman B is a baseline that turns off the enhancements of the
Chukonu engine. Rather than explicit memory management with
pointers, it uses Java’s on-heap buffers to store continuous memory
regions. It simplifies object lifetimemanagement, but requires an ad-
ditional memory copy to convert a buffer between its Java form and
its native form. Moreover, HDFS data sources of Apache Spark were
used directly, rather than Chukonu’s efficient HDFS data source.
The results reveal that Strawman B has an average slowdown of
2.62× compared with Chukonu, as shown in Figure 15. The simple
lifetime management not only degraded the performance, but also
consumed more memory because buffers both in Java form and
the native form needed to be allocated simultaneously to perform
memory copy. LR ran out of memory due to this issue.

880

6.4 Memory Consumption
We also evaluated the memory consumption of Chukonu by ana-
lyzing the ProcessTreeJVMRSSMemory metric, which monitors the
amount of physical memory being used by the executor. Table 3
summarizes the memory usages, defined as the maximum amount
of memory used during the executions of Spark and Chukonu for
each application. The results show that Chukonu consumed on
average 30.02% of memory consumed by Spark. This justifies the
design of Chukonu: Although the partition-centric execution design
of Chukonu coarsened data evaluation, which potentially increases
the amount of memory used, its memory overhead was canceled out
by the benefits of the compact data layouts and native executions.

Table 3: Maximummemory usages of Spark and Chukonu

WC TS PR CC KM LR
Spark (GB) 635 904 1415 1578 943 1488

Chukonu (GB) 108 780 369 419 123 859
% 17 86 26 26 13 57

To confirm the results in detail, we analyzed traces of the mem-
ory usages of Spark, Spark libraries, and Chukonu, as shown in
Figure 16, fromwhich several observations can be made. First, using
the maximum memory usages reported in Table 3 is a valid way to
summarize the memory requirement in normal conditions, because
the maximum memory is reached due to a steady increasing, rather
than due to spikes. Second, the memory usages of Chukonu were
the best inWC, PR, CC, KM , and LR, with the only exception being
that the TS of SparkSQL consumed less memory. This is because
the Tungsten backend optimized TS while avoiding the memory
overhead due to the partition-centric execution in Chukonu. How-
ever, its effectiveness depends on the code generator, which may
even have a negative impact if it cannot handle this well, as in the
case of PR of GraphFrame.

6.5 Fault Tolerance
We evaluated the fault tolerance functionality of the baseline sys-
tems via failure injection. Both Husky and Thrill crashed when
one of their workers was killed. Chukonu supported fault tolerance
with robust and fast recovery, owing to the lineage-based fault tol-
erance provided by the Spark engine. When a failure was injected,
a randomly chosen executor process was killed. For non-iterative
applications, includingWC and TS, which consist of a map stage
and a reduce stage, a failure was injected at the beginning of the
reduce stage. For iterative applications, including PR, CC, KM , and
LR, a failure was injected at the beginning of the 6-th iteration.

Figure 17 shows the results. Like Spark, Chukonu survived the
tests and produced results as expected, with an average slowdown
of 1.22×, comparing to 1.07× of Spark. The recovery overheads
ofWC and TS were small despite failures occurring in the reduce
stage because the intermediate data produced by the map stage
were managed by the shuffle service, and remained intact upon
executor failure. The overheads of other iterative applications were
incurred primarily from recomputing the lost cached data, such as
reading from HDFS or the shuffle service. The recovery overhead
of Chukonu LR was high because it had a short computation time,
and reading from HDFS accounted for a significant portion of its
end-to-end time.

6.6 Straggler Mitigation
We evaluated the straggler mitigation functionality of Chukonu by
constructing stragglers through misconfiguration, in which one of
the 8 machines simulated a straggler by offlining its 53 CPU cores,
leaving only 3 CPU cores online. Chukonu can tolerate stragglers
by detecting tasks that fall behind the overall progress and spec-
ulatively launching cloned tasks. We compared the performance
slowdown of Chukonu and Spark under this configuration, with
speculative execution enabled. Figure 18 shows that the average
slowdowns of Chukonu and Spark were 1.35× and 1.50×, respec-
tively, near the theoretical slowdown of 1.14× due to a reduction
in computing resources.

6.7 Programmer Productivity
We then compared the programmer productivity of Chukonu with
the baseline systems: Spark, Thrill, and Husky. Programmer pro-
ductivity was measured by counting the lines of code (LoC) of each
application using the cloc tool, excluding blank lines and com-
ments. The result is shown in Figure 19. The LoCs of Chukonu
programs were slightly higher than those of Spark due to different
programming languages. Due to RDD abstraction, Chukonu had
much fewer lines of codes to implement its applications.

6.8 Bottleneck Analysis
To assess how much performance is Chukonu leaving on the table,
we analyzed its resource utilization. Ousterhout et al. [32] found
that the CPU is the major bottleneck in Spark. With the significant
improvement in CPU efficiency, the average CPU utilization of
Chukonu was 78.05% that of Spark’s, as shown in Table 4.
Table 4: Average numbers of cores of Spark and Chukonu
(maximum=448)

WC TS PR CC KM LR
Spark (cores) 312 231 300 313 295 369

Chukonu (cores) 203 184 211 215 293 332
% 65 80 70 69 100 90

What causes Chukonu’s CPU under-utilization? The traces of
resource utilization shown in Figure 20 provide detailed information.
First, repetitive launching and waiting for a group of small tasks for
each iteration was the primary cause of CPU under-utilization, as
reflected in the iterative workloads in KM , LR, PR, and CC. This is
because task-launching incurs unscalable overheads on the driver
side, for example, task serialization and state tracking, and task-
waiting causes the computing resources to become idle. A large
number of small tasksmagnify their effects. Second, shuffle readwas
a major source of CPU under-utilization, and shown by the shuffle-
intensive workloads like TS, PR, and CC. Network bandwidth was
not to blame: Our cluster provided about 80GB/s of total bandwidth,
and was far from saturated. Thus, the problem lies in the software
stack, either in the Spark shuffler or in the TCP/IP protocol. We
exepcted an ideal speedup of 1.91× if the CPU under-utilization
could be eliminated, and plan to address this in future work.

6.9 Compilation time
The compilation time of Chukonu was compared with those of
the baselines. For C++ frameworks including Chukonu, Thrill, and

881

0.0 0.2 0.4 0.6 0.8 1.0
Timestamp (sec)

0.0

0.2

0.4

0.6

0.8

1.0

M
em

or
y

Us
ag

e (
GB

)

0 50 100 150 200 250 300 350
0

500

1000
TeraSort

Chukonu Spark SparkSQL

0 200 400 600 800 1000
0

1000

Connected Components
Chukonu Spark GraphX G.Frame

0 100 200 300 400 500 600
0

1000

Logistic Regression
Chukonu Spark MLlib Spark+BLAS

0 20 40 60 80 100
0

500

Word Count
Chukonu Spark SparkSQL

0 500 1000 1500 2000 2500 3000
0

1000

Page Rank
Chukonu Spark GraphX G.Frame

0.0 0.2 0.4 0.6 0.8 1.0
×104

0

500

1000
K-Means

Chukonu Spark MLlib Spark+BLAS

Figure 16: Memory usage traces of Spark, Spark libraries, and Chukonu for each application

WC TS PR CC KM LR
0.0

0.5

1.0

1.5

2.0

Fa
ul

t /
 N

on
-fa

ul
t R

ati
o

Spark
Chukonu

Figure 17: Comparing the recovery overhead of Chukonu
and Spark

WC TS PR CC KM LR
0.0

0.5

1.0

1.5

2.0

M
isc

on
fig

 /
No

rm
al Spark

Chukonu

Figure 18: Comparing the slowdown due to misconfigura-
tion in Chukonu and Spark

WC TS PR CC KM LR
0

100

200

Li
ne

s o
f C

od
e

Spark
Chukonu

Thrill
Husky

Figure 19: Comparing the lines of code of each application

Husky, the times to compile the .cpp source file into a .o binary
file were measured. For Spark, the time to compile the .scala
source file into a .class bytecode file was measured. The results
are shown in Figure 21. Because Chukonu performs operator fusion,
vectorization, and compact data layout for RDD abstraction, its
compilation time was significantly higher than those of Thrill and
Husky. Thrill performs only operator fusion for DIA abstraction,
because of which its compilation time was shorter than that of
Chukonu but longer than that of Husky. Spark had the shortest
compilation time because Java programs are fast to compile.

It is worth discussing how the long compilation time of Chukonu
affected its applicability. We considered two cases: scheduled an-
alytics that were periodically executed and ad-hoc analytics that
were impromptu and constructed to answer immediately. Because

scheduled analytics allow for the reuse of the compiled binaries,
the penalty owing to long compilation times vanished in multiple
runs. Thus, Chukonu is applicable to scheduled analytics. However,
the compilation times should be accounted for in ad-hoc analytics.
Figure 21 illustrates the latency of ad-hoc analytics. The average
speedup of Chukonu compared with Spark was 3.25×, illustrat-
ing penalties due to compilation times. Even though the execution
time of Chukonu’sWC decreased by 18.23𝑠 , its compilation time
increased by 25.70𝑠 , making Chukonu’s WC worse than that of
Spark for ad-hoc analytics. The other five applications of Chukonu
were faster even when the compilation times were included. This is
because their durations were much longer than that ofWC, and the
reduced execution time tended to compensate for the compilation
time. Thus, Chukonu is applicable to long running ad-hoc analytics.

6.10 Structured Analytics
We evaluated the performance of Chukonu on the TPC-DS bench-
mark and compared it with that of Spark. The total execution times
of Spark and Chukonu were 2757.79s and 1204.75s, respectively,
with a speedup of 2.29×. Most of the queries were short: 61 queries
had a query time of less than 10s in Spark. Several long-duration
queries dominated the total query time: the top five queries ac-
counted 1322s (48%) to Spark’s total run time.

Figure 22 shows the speedup of each query. It shows that Chukonu
accelerated its performance on 98 queries. Most notably, the time of
Q67 was reduced from 786.63𝑠 to 152.93𝑠 with a speedup of 5.14×.
This suggests that Chukonu’s optimization is effective and its inte-
gration into Spark incurs a low overhead. Five queries were slightly
slower than Spark, and their average slowdown was only 2.76%.
This is because their bottlenecks were in processing the Parquet
input data format, which is not accelerated by Chukonu.

7 DISCUSSION
7.1 Chukonu versus SparkSQL
It is possible to generate native code from SparkSQL to improve
performance [15]. But SparkSQL is dedicated to structured analyt-
ics. It is difficult and counterintuitive to use SparkSQL to express
numerically-intensive algorithms, such as Logistic Regression and
K-Means. Although SparkSQL supports UDFs to extend its func-
tionality, its query optimizer cannot optimize these UDFs efficiently
because the query language and the UDFs are in different systems.

882

0.0 0.2 0.4 0.6 0.8 1.0
Timestamp (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CP
U

Ut
ili

za
tio

n
(C

or
es

)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sh
uf

fle
 R

ea
d

Ba
nd

wi
dt

h
(G

B/
s)

0 50 100 150 200 250
0

200

400

TeraSort
CPU Util. (Cores)

0 50 100 150 200
0

200

400

Connected Components
CPU Util. (Cores)

0 50 100 150
0

200

400

Logistic Regression
CPU Util. (Cores)

0 10 20 30 40
0

200

400

Word Count
CPU Util. (Cores)

0 50 100 150 200
0

200

400

Page Rank
CPU Util. (Cores)

0 25 50 75 100 125 150
0

200

400

K-Means
CPU Util. (Cores)

0

5

10

15
TeraSort

Shuffle Read (GB/s)

0

5

10

15
Connected Components

Shuffle Read (GB/s)

0

5

10

15
Logistic Regression

Shuffle Read (GB/s)

0

5

10

15
Word Count

Shuffle Read (GB/s)

0

5

10

15
Page Rank

Shuffle Read (GB/s)

0

5

10

15
K-Means

Shuffle Read (GB/s)

Figure 20: Resource utilization traces of Chukonu

WC TS PR CC KM LR
0

100

200

Ti
m

e (
s)

Spark-C
Spark-E

Chukonu-C
Chukonu-E

Thrill-C
Thrill-E

Husky-C
Husky-E

Figure 21: Compilation times (like Spark-C) and execution
times (like Spark-E). The summation of both represents the
latency in ad-hoc analytics.

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 10
1

TPC-DS Query ID

0

2

4

6

Ch
uk

on
u

Sp
ee

du
p

Figure 22: Speedup of Chukonu for each TPC-DS query.
Queries are ordered by names and mapped to 1∼103. For ex-
ample, Q14a is mapped to 14 and Q14b is mapped to 15.

Chukonu is an optimized RDD layer enabling general-purpose na-
tive compilation, based on which we can intuitively express these
applications. We argue that a fast RDD layer system is critical for
data processing because it is a fundamental layer for other modules,
such as graph processing and machine learning.

7.2 Chukonu versus Flare
Flare accelerates SparkSQL using native acceleration. Lacking a
fast RDD-layer forces Flare to abandon Spark RDD altogether [15];
it turns to a single-machine architecture and sacrifices scalability.
Chukonu is a fast and native RDD infrastructure, based on which
we implemented a simple SQL layer that accelerated SparkSQL, and
enabled faster distributed structured analytics. Although we are
glad to try Flare, its source code is not publicly available..

7.3 Pros and Cons of Using C++
Although traditional C++ leads to tedious implementations, modern
C++ has a rich set of language constructs that allows for building

a concise API. Chukonu is based on C++20, and can provide an
API that is almost identical to the Spark RDD API. A potential
problem with C++ is its longer compilation time, as revealed in §6.9.
We argue that a compilation time within a minute is acceptable
for big data analytics, considering the improvement in computing
efficiency. Another potential problem is that C++ lacks standard
support for an interactive REPL. A community C++ REPL like
Cling [37] could provide interactive analytics support. But for now,
it does not support C++20, and thus Chukonu cannot use it for
interactive analytics. We will consider this in our future work when
C++20 support for Cling is available.

7.4 Alternative Execution Engines
Ray [26] is a distributed execution engine that implements actor
abstraction, supports stateful execution, and scales for fine-grained
task-launching. Extending Chukonu to build native RDD abstrac-
tions on top of Ray can help overcome the task launching overhead
in Spark and improve scalability. We will try this in future work.

8 CONCLUSION
In this paper, we proposed an verified cost-effective means of
building a fast, general, and resilient big data system Chukonu
by reusing the attractive big data features provided by Spark. Users
develop Chukonu programs using a native RDD API, which is
aligned with the RDD API of Spark. With a novel DAG splitting ap-
proach, Chukonu programs can be efficiently executed from within
Spark. The results of evaluations on six big data applications in
our 448-core in-house Hadoop cluster showed that Chukonu can
obtain an end-to-end speedup of up to 71.58× (geometric mean
6.09×) over Spark, and up to 7.20× (geometric mean 2.30×) over
pure-native big data frameworks. Chukonu also accelerates Spark-
SQL’s TPC-DS performance by 2.29×. The results justify Chukonu’s
feature-reusing approach: Chukonu not only has comprehensive
features inherited from Spark, but also delivers performance com-
petitive to pure-native frameworks. We expect that our work will
motivate future efforts in the community to build fast, easily pro-
grammable, and resilient data parallel systems.

ACKNOWLEDGMENTS
This work was partially supported by National Key Research &
Development Plan of China under grant 2017YFA0604500 and NSFC
U20B2044. The corresponding author is Wenguang Chen.

883

REFERENCES
[1] [n.d.]. Apache Flink. https://flink.apache.org/. [Online; accessed 2021-12-22].
[2] [n.d.]. Apache Hadoop. https://hadoop.apache.org/. [Online; accessed 2021-12-

22].
[3] [n.d.]. Apache Spark Survey 2016 Report. https://pages.databricks.com/2016-

spark-survey.html. [Online; accessed 2021-12-22].
[4] [n.d.]. Cereal. https://github.com/USCiLab/cereal. [Online; accessed 2021-12-22].
[5] [n.d.]. How-to: Tune Your Apache Spark Jobs. https://blog.cloudera.com/how-

to-tune-your-apache-spark-jobs-part-2/. [Online; accessed 2021-12-22].
[6] [n.d.]. placeholder type specifiers. https://en.cppreference.com/w/cpp/language/

auto. [Online; accessed 2021-12-22].
[7] [n.d.]. Project Tungsten. https://databricks.com/blog/2015/04/28/project-

tungsten-bringing-spark-closer-to-bare-metal.html. [Online; accessed 2021-12-
22].

[8] Michael Anderson, Shaden Smith, Narayanan Sundaram, Mihai Capotă,
Zheguang Zhao, Subramanya Dulloor, Nadathur Satish, and Theodore L. Willke.
2017. Bridging the Gap between HPC and Big Data Frameworks. Proc. VLDB
Endow. 10, 8 (April 2017), 901–912. https://doi.org/10.14778/3090163.3090168

[9] Michael Armbrust, Tathagata Das, Joseph Torres, Burak Yavuz, Shixiong Zhu,
Reynold Xin, Ali Ghodsi, Ion Stoica, and Matei Zaharia. 2018. Structured Stream-
ing: A Declarative API for Real-Time Applications in Apache Spark. In Proceed-
ings of the 2018 International Conference on Management of Data (Houston, TX,
USA) (SIGMOD ’18). Association for Computing Machinery, New York, NY, USA,
601–613. https://doi.org/10.1145/3183713.3190664

[10] Michael Armbrust, Reynold S. Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K.
Bradley, Xiangrui Meng, Tomer Kaftan, Michael J. Franklin, Ali Ghodsi, and Matei
Zaharia. 2015. Spark SQL: Relational Data Processing in Spark. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data (Mel-
bourne, Victoria, Australia) (SIGMOD ’15). ACM, New York, NY, USA, 1383–1394.
https://doi.org/10.1145/2723372.2742797

[11] T. Bingmann, M. Axtmann, E. Jöbstl, S. Lamm, H. C. Nguyen, A. Noe, S. Schlag,
M. Stumpp, T. Sturm, and P. Sanders. 2016. Thrill: High-performance algorithmic
distributed batch data processing with C++. In 2016 IEEE International Conference
on Big Data (Big Data). 172–183. https://doi.org/10.1109/BigData.2016.7840603

[12] Ankur Dave, Alekh Jindal, Li Erran Li, Reynold Xin, Joseph Gonzalez, and Matei
Zaharia. 2016. GraphFrames: An Integrated API for Mixing Graph and Relational
Queries. In Proceedings of the Fourth International Workshop on Graph Data
Management Experiences and Systems (Redwood Shores, California) (GRADES
’16). Association for ComputingMachinery, New York, NY, USA, Article 2, 8 pages.
https://doi.org/10.1145/2960414.2960416

[13] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing
on Large Clusters. Commun. ACM 51, 1 (Jan. 2008), 107–113. https://doi.org/
10.1145/1327452.1327492

[14] deepmind. accessed September 16, 2020. PG-19 Language Modelling Benchmark.
https://github.com/deepmind/pg19.

[15] Gregory Essertel, Ruby Tahboub, James Decker, Kevin Brown, Kunle Olukotun,
and Tiark Rompf. 2018. Flare: Optimizing Apache Spark with Native Compila-
tion for Scale-Up Architectures and Medium-Size Data. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 18). USENIX As-
sociation, Carlsbad, CA, 799–815. https://www.usenix.org/conference/osdi18/
presentation/essertel

[16] Yann LeCun et al. accessed September 16, 2020. THE MNIST DATABASE of
handwritten digits. http://yann.lecun.com/exdb/mnist.

[17] Laboratory for Web Algorithmics. accessed September 16, 2020. Webgraph
Datasets. http://law.di.unimi.it/datasets.php.

[18] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen.
2015. NumaGiC: A Garbage Collector for Big Data on Big NUMA Machines. In
Proceedings of the Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (Istanbul, Turkey) (ASPLOS ’15).
Association for Computing Machinery, New York, NY, USA, 661–673. https:
//doi.org/10.1145/2694344.2694361

[19] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw, Michael J.
Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in a Dis-
tributed Dataflow Framework. In 11th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 14). USENIX Association, Broomfield,
CO, 599–613. https://www.usenix.org/conference/osdi14/technical-sessions/
presentation/gonzalez

[20] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath, Yuan
Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and Computa-
tion in Datacenters. In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (Vancouver, BC, Canada) (OSDI’10). USENIX
Association, USA, 75–88.

[21] Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin, James Cheng, An Xu,
Zhanhao Liu, and Shuo Tu. 2019. Tangram: bridging immutable and mutable
abstractions for distributed data analytics. In 2019 {USENIX} Annual Technical
Conference ({USENIX}{ATC} 19). 191–206.

[22] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: Distributed Data-parallel Programs from Sequential Building Blocks. In
Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007 (Lisbon, Portugal) (EuroSys ’07). ACM, New York, NY, USA, 59–72.
https://doi.org/10.1145/1272996.1273005

[23] Charles E. Leiserson, Neil C. Thompson, Joel S. Emer, Bradley C. Kuszmaul,
Butler W. Lampson, Daniel Sanchez, and Tao B. Schardl. 2020. There’s plenty
of room at the Top: What will drive computer performance after Moore’s
law? Science 368, 6495 (2020). https://doi.org/10.1126/science.aam9744
arXiv:https://science.sciencemag.org/content/368/6495/eaam9744.full.pdf

[24] Lu Lu, Xuanhua Shi, Yongluan Zhou, Xiong Zhang, Hai Jin, Cheng Pei, Ligang He,
and Yuanzhen Geng. 2016. Lifetime-based Memory Management for Distributed
Data Processing Systems. Proc. VLDB Endow. 9, 12 (Aug. 2016), 936–947. https:
//doi.org/10.14778/2994509.2994513

[25] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, et al.
2016. Mllib: Machine learning in apache spark. The Journal of Machine Learning
Research 17, 1 (2016), 1235–1241.

[26] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging {AI} applications. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 561–577.

[27] Christian Navasca, Cheng Cai, Khanh Nguyen, Brian Demsky, Shan Lu, Miryung
Kim, and Guoqing Harry Xu. 2019. Gerenuk: Thin Computation over Big Na-
tive Data Using Speculative Program Transformation. In Proceedings of the
27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). ACM, New York, NY, USA, 538–553. https://doi.org/10.1145/
3341301.3359643

[28] Thomas Neumann. 2011. Efficiently Compiling Efficient Query Plans for Modern
Hardware. Proc. VLDB Endow. 4, 9 (June 2011), 539–550. https://doi.org/10.14778/
2002938.2002940

[29] Khanh Nguyen, Lu Fang, Guoqing Xu, Brian Demsky, Shan Lu, Sanazsadat
Alamian, and Onur Mutlu. 2016. Yak: A High-Performance Big-Data-Friendly
Garbage Collector. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 349–365. https:
//www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen

[30] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, Jianfei Hu, and Guoqing Xu.
2015. FACADE: A Compiler and Runtime for (Almost) Object-Bounded Big
Data Applications. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Systems (Istanbul,
Turkey) (ASPLOS ’15). Association for Computing Machinery, New York, NY,
USA, 675–690. https://doi.org/10.1145/2694344.2694345

[31] Ahmed Oussous, Fatima-Zahra Benjelloun, Ayoub Ait Lahcen, and Samir Belfkih.
2018. Big Data technologies: A survey. Journal of King Saud University - Com-
puter and Information Sciences 30, 4 (2018), 431–448. https://doi.org/10.1016/
j.jksuci.2017.06.001

[32] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon
Chun. 2015. Making Sense of Performance in Data Analytics Frameworks. In 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). USENIX Association, Oakland, CA, 293–307. https://www.usenix.org/
conference/nsdi15/technical-sessions/presentation/ousterhout

[33] Meikel Poess, Raghunath Othayoth Nambiar, and David Walrath. 2007. Why You
Should Run TPC-DS: A Workload Analysis. In VLDB, Vol. 7. 1138–1149.

[34] Russell Power and Jinyang Li. 2010. Piccolo: Building Fast, Distributed Programs
with Partitioned Tables. In Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation (Vancouver, BC, Canada) (OSDI’10). USENIX
Association, Berkeley, CA, USA, 293–306. http://dl.acm.org/citation.cfm?id=
1924943.1924964

[35] Viktor Rosenfeld, Rene Mueller, Pinar Tözün, and Fatma Özcan. 2017. Processing
Java UDFs in a C++ Environment. In Proceedings of the 2017 Symposium on Cloud
Computing (Santa Clara, California) (SoCC ’17). Association for Computing Ma-
chinery, New York, NY, USA, 419–431. https://doi.org/10.1145/3127479.3132022

[36] Marc Snir, William Gropp, Steve Otto, Steven Huss-Lederman, Jack Dongarra,
and David Walker. 1998. MPI–the Complete Reference: The MPI core. Vol. 1. MIT
press.

[37] V Vasilev, Ph Canal, A Naumann, and P Russo. 2012. Cling – The New Interactive
Interpreter for ROOT 6. Journal of Physics: Conference Series 396, 5 (dec 2012),
052071. https://doi.org/10.1088/1742-6596/396/5/052071

[38] Tudor Alexandru Voicu and Zaid Al-Ars. 2019. SparkJNI: A Toolchain for
Hardware Accelerated Big Data Apache Spark. In 2019 IEEE 4th International
Conference on Big Data Analytics (ICBDA). 152–157. https://doi.org/10.1109/
ICBDA.2019.8713201

[39] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, C.
Zheng, G. Lu, K. Zhan, X. Li, and B. Qiu. 2014. BigDataBench: A big data bench-
mark suite from internet services. In 2014 IEEE 20th International Symposium on
High Performance Computer Architecture (HPCA). 488–499.

884

https://flink.apache.org/
https://hadoop.apache.org/
https://pages.databricks.com/2016-spark-survey.html
https://pages.databricks.com/2016-spark-survey.html
https://github.com/USCiLab/cereal
https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/
https://blog.cloudera.com/how-to-tune-your-apache-spark-jobs-part-2/
https://en.cppreference.com/w/cpp/language/auto
https://en.cppreference.com/w/cpp/language/auto
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://databricks.com/blog/2015/04/28/project-tungsten-bringing-spark-closer-to-bare-metal.html
https://doi.org/10.14778/3090163.3090168
https://doi.org/10.1145/3183713.3190664
https://doi.org/10.1145/2723372.2742797
https://doi.org/10.1109/BigData.2016.7840603
https://doi.org/10.1145/2960414.2960416
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://github.com/deepmind/pg19
https://www.usenix.org/conference/osdi18/presentation/essertel
https://www.usenix.org/conference/osdi18/presentation/essertel
http://yann.lecun.com/exdb/mnist
http://law.di.unimi.it/datasets.php
https://doi.org/10.1145/2694344.2694361
https://doi.org/10.1145/2694344.2694361
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/gonzalez
https://doi.org/10.1145/1272996.1273005
https://doi.org/10.1126/science.aam9744
https://arxiv.org/abs/https://science.sciencemag.org/content/368/6495/eaam9744.full.pdf
https://doi.org/10.14778/2994509.2994513
https://doi.org/10.14778/2994509.2994513
https://doi.org/10.1145/3341301.3359643
https://doi.org/10.1145/3341301.3359643
https://doi.org/10.14778/2002938.2002940
https://doi.org/10.14778/2002938.2002940
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/nguyen
https://doi.org/10.1145/2694344.2694345
https://doi.org/10.1016/j.jksuci.2017.06.001
https://doi.org/10.1016/j.jksuci.2017.06.001
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/ousterhout
http://dl.acm.org/citation.cfm?id=1924943.1924964
http://dl.acm.org/citation.cfm?id=1924943.1924964
https://doi.org/10.1145/3127479.3132022
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1109/ICBDA.2019.8713201
https://doi.org/10.1109/ICBDA.2019.8713201

[40] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra,
Alexey Tumanov, and Ion Stoica. 2019. Lineage stash: fault tolerance off the
critical path. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 338–352.

[41] Fan Yang, Jinfeng Li, and James Cheng. 2016. Husky: Towards a More Efficient
and Expressive Distributed Computing Framework. Proc. VLDB Endow. 9, 5 (Jan.
2016), 420–431. https://doi.org/10.14778/2876473.2876477

[42] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing. In Proceedings of the 9th USENIX Conference on Networked Systems De-
sign and Implementation (San Jose, CA) (NSDI’12). USENIX Association, Berkeley,
CA, USA, 2–2. http://dl.acm.org/citation.cfm?id=2228298.2228301

[43] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized Streams: Fault-Tolerant Streaming Computation at

Scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles (Farminton, Pennsylvania) (SOSP ’13). Association for Computing Ma-
chinery, New York, NY, USA, 423–438. https://doi.org/10.1145/2517349.2522737

[44] Matei Zaharia, Reynold S. Xin, PatrickWendell, Tathagata Das, Michael Armbrust,
Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, JosephGonzalez, Scott Shenker, and Ion Stoica. 2016. Apache
Spark: A Unified Engine for Big Data Processing. Commun. ACM 59, 11 (Oct.
2016), 56–65. https://doi.org/10.1145/2934664

[45] Xiaowei Zhu,Wenguang Chen,Weimin Zheng, and XiaosongMa. 2016. Gemini: A
Computation-Centric Distributed Graph Processing System. In 12th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 16). USENIX As-
sociation, Savannah, GA, 301–316. https://www.usenix.org/conference/osdi16/
technical-sessions/presentation/zhu

885

https://doi.org/10.14778/2876473.2876477
http://dl.acm.org/citation.cfm?id=2228298.2228301
https://doi.org/10.1145/2517349.2522737
https://doi.org/10.1145/2934664
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/zhu

