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ABSTRACT
Predicting the popularity of social media content in real time re-
quires approaches that e�ciently operate at global scale. Popularity
prediction is important for many applications, including detection
of harmful viral content to enable timely content moderation. The
prediction task is di�cult because views result from interactions
between user interests, content features, resharing, feed ranking,
and network structure. We consider the problem of accurately pre-
dicting popularity both at any given prediction time since a content
item’s creation and for arbitrary time horizons into the future. In
order to achieve high accuracy for di�erent prediction time hori-
zons, it is essential for models to use static features (of content and
user) as well as observed popularity growth up to prediction time.

We propose a feature-based approach based on a self-excited
Hawkes point process model, which involves prediction of the con-
tent’s popularity at one or more reference horizons in tandem with
a point predictor of an e�ective growth parameter that re�ects the
timescale of popularity growth. This results in a highly scalable
method for popularity prediction over arbitrary prediction time
horizons that also achieves a high degree of accuracy, compared
to several leading baselines, on a dataset of public page content on
Facebook over a two-month period, covering billions of content
views and hundreds of thousands of distinct content items. The
model has shown competitive prediction accuracy against a strong
baseline that consists of separately trained models for speci�c pre-
diction time horizons.
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1 INTRODUCTION
Popularity prediction can be a useful system component for man-
agement of user-generated content in online platforms. For example,
in content moderation platforms, such as the one used by Facebook
[46], potentially harmful content items are �agged either by users
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or machine learning �lters. These �agged content items are exam-
ined either automatically or are placed into a queue for manual
review. To make sure that the most important posts are seen �rst
by the reviewers, a content moderation platform may take into
account their virality. Other applications of popularity prediction
include optimizing content distribution, e.g. for video streaming
[44]. In these applications, popularity prediction is used to prioritize
content item processing with the goal to improve the quality of
user experience. These applications require accurate and scalable
methods for popularity prediction.

State of the art popularity prediction algorithms are accurate but
mostly do not scale to handle large-scale social media content work-
load because they typically have per-content-item computation cost
that increases linearly with the number of observed events (see
discussion in Sec. 4). While di�erent popularity prediction methods
have been proposed, e.g., [10, 12, 39, 51], they do not satisfy at
least one of the following design considerations for application at
a planetary scale: (a) prediction of the number of views acquired
up to a future time horizon, not just a classi�cation of virality, (b)
prediction method has a low computation and memory complexity,
(c) prediction method can generate accurate predictions for any
given time horizon, or (d) prediction method leverages both static
features (e.g. content author and content item features) and tempo-
ral features (observed up to given prediction time). We discuss this
further as follows.

First, some work in the information cascades literature adopts
a classi�cation-based approach to de�ning virality (e.g., cascades
smaller/larger than a given size; cascades doubling in a given time
frame), these have limited use for applications that require compar-
ison or prioritization among likely popular items. We focus here
on approaches that provide real number predictions of popularity.

Second, while low computational costs and memory constraints
may not be prohibitive for o�ine or adhoc demonstration, scalabil-
ity of this sort can be especially relevant when making predictions
in real time. This is particularly true when evaluating large num-
bers of content items in parallel. To the best of our knowledge, only
some previous work focused on the design of popularity prediction
methods with the scalability as the main design goal for applica-
tions in large-scale online platforms. Speci�cally, [44] proposed a
method for video popularity prediction that uses a constant state
per content item. Some prediction methods, e.g., Reinforced Poisson
Process model [40] and SEISMIC [51], may be deemed to be compu-
tationally simple, but they still do not satisfy our target scalability
constraints (see Sec. 4 for details). Other methods, such as HIP [39],
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have scalability issues at prediction time and do not address the
requirement of combining static and temporal features.

Third, �exibility in prediction time and the prediction time hori-
zon are desirable. A simple approach to popularity prediction might
involve a point-based prediction of growth up to a �xed content
age based on features observable at a single point in time (e.g.,
content creation), but that model would not update in response to
new information about the content (e.g., temporal features) and is
limited in being able to predict for a �xed time horizon. Supporting
multiple time horizons by using one model per horizon disallows
predictions for previously unseen horizons. Alternatively, many
recent approaches to popularity prediction aim to provide estimates
of total cascade size (at in�nite time), limiting their utility for fore-
casting the “urgency” of cascade growth. Once again considering
the content moderation application, queries about expected popu-
larity may be made at multiple points in the content lifecycle from
creation onward. In cases where content is removed—by platforms
or by users themselves—cascades are truncated, making the eval-
uation of prediction accuracy for only a �xed prediction horizon
di�cult or impossible. Such truncated cascades are also unusable
as training data in �xed or in�nite horizon models.

Finally, the last consideration — to leverage both static and tem-
poral features — is important to ensure high prediction accuracy
throughout the content lifecycle. Content views can result from
complex interactions between content resharing and engagement,
time zone use patterns, feed ranking algorithms, and organic fea-
tures of the content and social network structure, so predictions
bene�t from insight into as much of this information as possible to
the extent that the signals can be e�ciently incorporated into the
model. Clearly, any approach that relies only on event histories are
likely to be inaccurate or unusable at early content ages. Similarly,
approaches that rely only on static features will not adapt to new
information provided by content engagement, resharing, and views.

In this paper, we propose a new popularity prediction model that
(a) provides real number predictions, (b) has constant computation
complexity and uses a small space per content item, (c) can produce
predictions for any given prediction time horizon speci�ed at any
given prediction time, and (d) leverages both static and temporal
features. The model is based on a self-excited Hawkes point pro-
cess model with exponentially decaying intensity, combined with
prediction of model parameters by using both static and temporal
features. This combination allows us to reduce the computation
complexity of making predictions to constant time for any cascade
size, but bene�t from the analytically tractable estimators of the
popularity over arbitrary future time horizons.

Speci�cally, our basic prediction model uses only two point pre-
dictors, one for prediction of the number of points over a �xed
reference time horizon (this is a hyper-parameter of the model) and
one for the e�ective growth exponent which re�ects the point pro-
cess growth rate over time. This allows to use any point predictor
developed and trained for making predictions for a speci�c time
horizon, and then generalize this to support predictions for any
given prediction time horizon by adding one extra point predic-
tor. We also propose an extension that allows combining several
point predictors of content view counts at di�erent reference time
horizons, increasing prediction accuracy while still using only a
constant space per content item.

We demonstrate the accuracy and feasibility of our prediction
method using a large-scale dataset of public Facebook posts over a
two-month period. Our results demonstrate that high prediction
accuracy can be achieved over di�erent prediction time horizons,
by using a few point predictors and that our models achieve per-
formance that is comparable or better than a strong baseline that
consists of using predictors designed and trained for speci�c pre-
diction time horizons.

In Section 2 we discuss related work. Section 3 lies down a frame-
work for making predictions using self-excited point process mod-
els. Section 3.2 de�nes our prediction models. Section 4 provides
a discussion of our results. Experimental results are presented in
Section 5. In Section 6, we provide concluding remarks. Appendix
is provided in the companion technical report [23].

2 RELATEDWORK
Early work on predicting the popularity of online content consid-
ered various classi�cation and regression models for �xed predic-
tion time horizons using di�erent types of features [12, 43]. Much
work has been devoted to understanding how information spreads
in online social networks [1, 21, 34, 48] and the role of social net-
works for information di�usion [5, 14]. We refer the reader to
surveys on web content popularity prediction [37] and information
cascade analysis [52]. Models have been proposed for both popular-
ity prediction (shares, views) and prediction of the number of users
reached in an information cascade. We distinguish feature based
models, generative models, and deep learning models, which we
discuss in turn.

Feature based methods. Feature based prediction models use dif-
ferent types of features, including temporal features (observation
time, creation time, �rst view time), structural features (cascade
graph), user-item features, and content features. Several works con-
sidered prediction of an information cascade size by using informa-
tion observed over an initial time period [2, 6, 7, 15, 22, 28, 33, 45].
Classi�cation models [12, 16, 24, 25, 28] and regression models
[4, 28, 43, 45] have been studied for prediction of information cas-
cade sizes and prediction of occurrence of activity bursts [13, 42, 47].
Temporal features have been found to be important for prediction
of content popularity and information sharing [3, 12, 43]. Using
network structural features is often not considered scalable [42].

Generative models. Generative models assume events are gener-
ated according to a stochastic point process, which includes simple
Poisson processes, survival analysis models, Hawkes point pro-
cesses, and epidemic models. Di�erent self-excited point process
models have been used, including cascades of Poisson processes
[41], reinforced Poisson processes [40], and Hawkes point processes
and their variations [26, 36, 39, 51]. Another class of models are
multi-dimensional Hawkes processes, which allow to model dif-
ferent types of events and their mutual excitation [31, 49, 53, 54].
Finally, epidemic models have also been used for modelling informa-
tion di�usions [27, 38]. Most similarly, Hawkes point processes with
exponentially decaying intensity were used for feature generation
fed into a neural network predictor for predicting in�nite-horizon
watch time of Facebook videos [44]. Our work has similarities with
these previous works in using a generative model and di�ers in
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emphasizing both scalability and making popularity predictions for
arbitrary time horizons as the main design goals.

Deep learning models. Deep learning models use neural networks
as prediction models or for learning numerical vector representa-
tion (embeddings) of temporal or structural features for popular-
ity prediction. Several works extended self-excited point process
models with neural networks, including DeepHawkes [8], Neural-
Hawkes [35], and SIR-Hawkes [38]. Neural networks have been
used for representations of event histories [19], incidence curves
[50], information di�usion networks [29, 30], fusion of content and
temporal features [32], representations of structural and temporal
information [11], and social network interactions [9]. Deep learning
based models for popularity prediction are not scalable for our in-
tended scenarios, as they typically require inputs that grow linearly
in the number of past events and are complex or expensive to use
for making predictions over arbitrary time horizons.

3 METHODOLOGY
In this section, we �rst present some results on self-excited point
processes in Section 3.1, which are used to de�ne our prediction
method in Section 3.2.

3.1 Self-excited point processes
3.1.1 Background. We consider generative models de�ned as point
processes, with points representing occurrance times of view events
of a content item. A realization of a point process on IR+ is a sequence
of points 0  )1  )2  · · · that can be equivalently represented
by a counting variable # (C) de�ned as the number of points in
[0, C), i.e. # (C) = Õ

8�1 1{0)8<C } , for any C 2 IR+. A stochastic point
process has the stochastic intensity function de�ned by

_(C) = lim
n#0

IE[# (C + n) � # (C) | FC ]
n

,

where FC is the history of the point process up to time C . Intuitively,
we can think of _(C) as the conditional probability that there is a
point in [C, C + n), conditional on the history FC , for small n .

A Hawkes point process is de�ned by the stochastic intensity
function

_(C) = _0 (C) +
1’
8=1

q.8 (C �)8 )1{0)8<C },

where _0 and q~ are given functions and ~ 2 IR+. Here .0,.1, . . .
are assumed to be independent and identically distributed random
variables (referred to as marks) according to distribution �. , which
are independent of the points )1,)2, . . .. Following standard de�ni-
tion, we assume that q~ (G) is of the form q~ (G) = ~q (G), where
q (G) is a kernel function. Under this assumption, .8 is the size of a
jump in the stochastic intensity function.

Let ` be the expected contribution of a point to the value of the
stochastic intensity function de�ned by ` = IE.⇠�.

hØ 1
0 q. (C)3C

i
.

We assume that ` < 1, which ensures stability of the point process.
The framework of self-excited point processes accommodates

di�erent instances of stochastic point processes. Here we consider
two notable examples.

Exponentially decaying kernel. The Hawkes point process with
exponentially decaying intensity is de�ned by the kernel function

q (G) = 4�VG , (1)

where V > 0 is a parameter and assuming that _0 (C) = _(0)q (C),
for some initial value _(0) > 0. In this case, we have

_(C) = _(0)4�VC +
1’
8=1

.84
�V (C�)8 )1{0)8<C } .

We will use the change of variable such that .8 = V/8 for a
random variable /8 with distribution ⌧ . We may interpret /8 as
a population size (neighbors of a node in a social network) and
V as a rate parameter (rate of interactions between nodes in a
social network). Let dA denote the A -th moment of /8 , i.e. dA =Ø 1
0 IA3⌧ (I). Note that IE[.1] = Vd1 and ` = d1.
We will later discuss that Hawkes point processes with expo-

nentially decaying intensity have certain desirable properties for
scalable popularity prediction over arbitrary time horizons.

Power-law decaying kernel. Another commonly used kernel func-
tion is the power-law kernel de�ned as

q (G) =
⇢
q (0) if 0  G  g,

q (0)
� g
G

�1+\ if G > g,
(2)

where q (0) > 0, g > 0 and \ > 0 are parameters. For instance, this
kernel was used in [51] and [39] to model information cascades.

The framework presented in this section has the following inter-
pretation in the context of popularity prediction of content items.
We may interpret each point as a content view event that excites
subsequent content view events. For the Hawkes point process
with exponentially decaying kernel, the random variable /8 can be
interpreted as the number of potential users that can be reached
resulting from the content view event at time )8 . The parameter V
is the rate at which users consume content. The parameter ` is the
expected number of subsequent content view events triggered by a
content view event. The kernel function models the time-decay of
the stochastic intensity function components triggered by content
view events, capturing their diminishing in�uence over time.

3.1.2 Counts over future time horizons. For popularity prediction
for a content item, we are interested in predicting the number of
content view events over a given time horizon at a given prediction
time, having observed the history of the content views up to the pre-
diction time. Using the framework introduced in previous section,
given a prediction time B and a time horizon up to time instance
C > B , we are interested in predicting the value of # (C) � # (B),
having observed the history FB .

In�nite time horizon. For any stable Hawkes point process, the
conditional expected number of points over an in�nite time horizon
originating at a time instance B � 0, conditional on the history FB ,
is given as

lim
C!1

IE[# (C) � # (B) | FB ] =
1

1 � `
lim
C!1

⇤(B, C) (3)

where

⇤(B, C) = ⇤0 (C) � ⇤0 (B) +
’
8�1

~8 (�(C �)8 ) � �(B �)8 )) 1{0)8<B },
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and ⇤0 and � are the primitive functions of _0 and q , respectively,
i.e. ⇤0 (G) :=

Ø G
0 _0 (D)3D and �(G) :=

Ø G
0 q (D)3D. Here ⇤(B, C) is

the conditional expected number of points in [B, C], induced by the
intensity function _0 and the intensity function components excited
by points in [0, B], conditional on the history FB .

For the Hawkes point process with exponentially decaying in-
tensity, the expression in (3) boils down to

lim
C!1

IE[# (C) � # (B) | FB ] =
1
U
_(B) (4)

where U = V (1 � d1). For the reasons explained shortly, we refer to
U as the e�ective growth exponent. Note that (4) is a function only
of the intensity _(B) and the e�ective growth exponent U .

Arbitrary time horizons. It is not tractable to have an explicit
formula for the conditional expected count over an arbitrary time
horizon—which is our objective—for all Hawkes point processes.
However, we o�er the following bounds.

P���������� 3.1. For any stable Hawkes point process, for every
0  B  C , we have

⇤(B, C)  IE[# (C) � # (B) | FB ] 
1

1 � `
⇤(B, C).

Proof of this proposition is given in Appendix A.5 [23]. Note
that for any �xed value of ` < 1, IE[# (C) � # (B) | FB ] is within a
constant factor of ⇤(B, C). Intuitively, the bounds in Proposition 3.1
are tighter the nearer the value of ` is to zero (small expected
number of points excited by a point).

Arbitrary time horizons for exponential kernel. For the Hawkes
point process with exponentially decaying intensity, we can charac-
terize the conditional expected number of points over an arbitrary
time horizon, conditional on the observed history up to a time
instance, as stated in the following proposition. This is a key propo-
sition for de�ning our prediction model in Section 3.2.

P���������� 3.2. For the Hawkes point process with exponentially
decaying intensity, for every 0  B  C , we have

IE[# (C) � # (B) | FB ] =
1
U

⇣
1 � 4�U (C�B)

⌘
_(B) . (5)

Proof is given in Appendix A.4 [23]. From (5), observe that the
conditional expected count of points converges exponentially to its
limit value with rate U , which provides a justi�cation for referring
to U as the e�ective growth exponent.

The e�ective growth exponent U admits the following intuitive
interpretation. Note that we can write (5) as

IE[# (C) � # (B) | FB ] = IE[# (+1) � # (B) | FB ] (1 � 4�U (C�B) ).
For any given W 2 (0, 1), let gW be the length of the time horizon
at which the conditional expected count is equal to factor W of its
limit value. It is easy to derive that

gW = 2W
1
U
, (6)

with constant 2W = log(1/(1 � W)). Hence, we can interpret the
reciprocal value of U as a characteristic time.

A notable property of Hawkes point processeswith exponentially
decaying intensity is that ⇤(B, C) and IE[# (C) � # (B) | FB ] depend
on the history FB only through the value of the stochastic intensity
_(B) at time instance B . This can be leveraged for making scalable
predictions by using low-complexity estimators of _(B). This stands
in contrast to other Hawkes point processes, which require using
more expensive computations.

3.2 Prediction method
In this section we present our model for predicting popularity of
social media items over arbitrary time horizons. The model is de-
signed with scalability as the main design requirement. The idea
behind our approach is to use a Hawkes model with parameters
determined by a learned mapping between a vector representation
of the content features and point process parameters. This approach
allows us to reduce the computation complexity of making predic-
tions to constant time with respect to the observed events in the
cascade # (B), and bene�t from the analytically tractable estimators
of the popularity over arbitrary future time horizons.

3.2.1 Prediction model. The model is based on the following ex-
pression for the conditional expected number of points up to future
time B + X , for given prediction time B and prediction time horizon
X � 0, and an arbitrarily �xed reference horizon X⇤ > 0,

IE[# (B + X) | FB ] = # (B) + 1 � 4�UX

1 � 4�UX⇤
�
IE

⇥
# (B + X⇤)

��FB ⇤ � # (B)
�

which follows from Proposition 3.2.
The expression above has two unknown parameters: (a) the

conditional expected number of points at the reference time horizon,
IE[# (B + X⇤) | FB ], and (b) the e�ective growth exponent U . These
unknown parameters need to be inferred for any given features of
a content item by using training data.

Let #̂ (X ; B) denote the predictor of # (B + X) given history FB
and Û denote the predictor of U . Let us also use a logarithmic
transformation of the prediction variable by de�ning . (X ; B) =
log(#̂ (X ; B) � # (B)). Then, we can write

. (X ; B) = . (X⇤; B) + log

 
1 � 4�ÛX

1 � 4�ÛX⇤

!
(7)

with . (X⇤; B) and Û being values of two predictors de�ned as
follows. The �rst predictor is for the log-transformed number of
points over the reference time horizon,

. (X⇤; B) = 5 (G, g (FB );\ ), (8)

where G is the vector of static features and g (FB ) is the vector of
temporal features derived from FB of the content item, and \ is
the regression model parameter. The second predictor is for the
e�ective growth exponent:

Û = 6(G, g (FB );\ 0), (9)

where \ 0 is the regression model parameter. We use temporal fea-
tures g (FB ) that can be computed in constant time, which is required
by our scalability requirement.

In summary, our prediction method amounts to predicting pop-
ularity of a content item at time B + X , at prediction time B , and any
given prediction time horizon X , by using equation (7) with . (X⇤; B)
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and Û de�ned by functions of the static feature vector G and the
temporal feature vector g (FB ) as given in (8) and (9), respectively.

3.2.2 Training details. Functions 5 and6, in (8) and (9) respectively,
can be implemented by using standardmachine learning algorithms.
In our evaluations in Section 5 we used gradient boosted decision
trees, trained independently for 5 and 6. For training parameters
of 5 , we use (G8 ,~8 ) as training examples where G8 is the vector of
static and temporal features and~8 is the number of points observed
over the reference time horizon for training example 8 . Similarly,
for training parameters of 6, we use (G8 ,~8 ) as training examples
with G8 de�ned as before and ~8 de�ned to be an estimate of the
e�ective growth exponent for content item 8 . We discuss estimators
of the e�ective growth exponent in Section 3.2.4.

A notable property of our prediction model is that it requires
using only two point predictors, while allowing for making pre-
dictions for any given prediction time horizon. With scalability in
mind, we consider point predictors which can be computed in con-
stant time with respect to the observed history of cascade. Notice
that the predicted value for the length of prediction horizon X = X⇤

is equal to . (X⇤; B). In this case, our predictor is guaranteed to be as
accurate as the predictor optimized for the reference time horizon
X⇤. For X < X⇤, the predictor may have a worse accuracy than a
predictor optimized for the time horizon X . We will evaluate this em-
pirically in Section 5, where we will see that the proposed method
can achieve competitive performance to predictors optimized for
speci�c prediction time horizons.

3.2.3 Combining multiple point predictors. We can extend our pre-
diction method to using one or more point predictors, which may in-
crease prediction accuracy. Let #̂ (X⇤1 ; B), . . ., #̂ (X⇤< ; B) be point pre-
dictors for given values of reference horizons X⇤1 < X⇤2 < · · · < X⇤< ,
for some given< � 1. The prediction method is de�ned by com-
bining outputs of these point predictors.

We consider two di�erent predictors that combine outputs of
point predictors by using di�erent combining functions.

Arithmetic mean aggregation. The �rst predictor combines out-
puts of di�erent point predictors (#̂ (X⇤1 ; B), . . . , #̂ (X⇤< ; B)) by using
the arithmetic mean aggregation, which amounts to the following
predictor for the log-transformed prediction variable:

. (X ; B) = log

 
1
<

<’
8=1

1
1 � 4�ÛX

⇤
8
4. (X⇤8 ;B)

!
+ log

⇣
1 � 4�ÛX

⌘
.

Geometric mean aggregation. The second predictor combines
outputs of point predictors (#̂ (X⇤1 ; B), . . . , #̂ (X⇤< ; B)) by using the
geometric mean aggregation, which amounts to the following pre-
dictor for the log-transformed prediction variable:

. (X ; B) = 1
<

<’
8=1

. (X⇤8 ; B) + log
©≠≠
´

1 � 4�ÛX⇣Œ<
8=1

⇣
1 � 4�ÛX

⇤
8

⌘⌘1/<
™ÆÆ
¨
. (10)

We will evaluate the accuracy of prediction models with one or
more point predictors in Section 5.

3.2.4 Estimating the e�ective growth exponent. To train the pre-
dictor of the e�ective growth exponent in equation (9), we need
training examples with the response variable corresponding to

the e�ective growth exponent. One way to compute the e�ective
growth exponent is to use MLE for given observed data. This is
computationally expensive so we discuss two simpler estimators.

Mean value based estimator. By Proposition 3.2, for every C � 0,

IE[# (+1) � # (C) | FC ] =
_(C)
U

.

We can show that

IE
 π 1

B
(# (+1) � # (C))3C

����FB
�
=

1
U
IE[# (+1) � # (B) | FB ]

which follows from derivations in Appendix A.9. [23] This leads us
to de�ne the following estimator

Û =
# (+1) � # (B)Ø 1

B (# (+1) � # (D))3D
.

Suppose B = 0 and # (B) = 0 and let )1,)2, . . . ,)= denote the
observed points. It can be shown thatπ 1

0
(= � # (C))3C =

=’
8=1

)8

which follows by some simple calculations provided in Appen-
dix A.9 [23]. Hence, we have

Û =
1

1
=

Õ=
8=1)8

.

This shows that Û is the reciprocal of the mean point time.

Quantile value based estimator. An alternative estimator can be
de�ned based on computing a quantile value as described next. For
any �xed value W 2 (0, 1), let

)W = inf{C > 0 : # (C) � W# (+1)}.
Notice that if W = 1/2, then we can interpret )1/2 as the median
value of the observed point times. Intuitively, we may think of)W as
of an estimator of gW , de�ned by IE

⇥
# (gW )

��F0⇤ = W IE[# (+1) | F0].
We already noted in (6) that gW = log(1/(1 � W))/U . Hence, this
leads us to de�ne Û = 1/)W , provided that )W > 0.

In Appendix A.10 [23], we provide a theoretical bound on the bias
of the quantile value based estimator. In Section 5, we empirically
compare the two estimators on real-world data.

4 DISCUSSION
In this section we discuss the computation complexity of some
previously proposed methods based on point process models as
well as of our prediction method presented in Section 3.2.

In order to make predictions by using expressions for IE[# (C) �
# (B) | FB ] or ⇤(B, C) discussed in Section 3.1 for di�erent point
process models, we need to compute these values which has cer-
tain computation cost. This computation cost is incurred both at
training time (for computing values of prediction variables used
for supervised learning) and at prediction time. Moreover, addi-
tional computation cost is incurred for estimating unknown model
parameters at training time.

For general Hawkes point processes, the computation of IE[# (C)�
# (B) | FB ] or ⇤(B, C) can be prohibitively expensive for implemen-
tation in large-scale online platforms. Evaluation of these quantities
have ⌦(# (B)) computation complexity, i.e. it is at least linear in the
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number of points in the observed history. For popularity prediction
in social media platforms, this number can be large, in the order of
millions and possibly even larger.

We next discuss computation complexity of these evaluations for
several well-known methods (namely, Reinforced Poisson Process,
SEISMIC, Hawkes Intensity Process, and Hawkes with exponential
kernel). We do not discuss computation complexity of deep learning
extensions of these models as they have same or higher complexity.

Reinforced Poisson Processes. RPP model [40] has the stochastic
intensity function _(C) = ? 5 (C)# (C) where ? is a positive-valued
infection-rate parameter and 5 (C) is a probability density function.
Themodel assumes 5 to be a log-normal density function, which has
two parameters. This model does not exactly fall in the framework
of Hawkes point processes, but it is a self-excited point process
model. The conditional expected number of points over an arbitrary
time horizon is given by

IE[# (C) � # (B) | FB ] = # (B)
⇣
4? (� (C )�� (B)) � 1

⌘
.

The model requires to track the total number of points observed by
any given time, which can be e�ciently tracked in a streaming com-
putation setting. However, the model is computationally expensive
as it requires to �t model parameters for each content item using
a Maximum Likelihood Estimator (MLE), which requires using an
iterative optimization method. Speci�cally, the time complexity
of this approach ⌦(" ⇥ # (B)) is proportional to the number of
iterations" of the optimization method (which can be considerably
large in practice) times the number of points in the history # (B).

SEISMIC. This model [51] is a Hawkes point process model with
a power-law kernel ?q (G) where q (G) is given in (2). The model is
de�ned by letting marks .8 be the degrees 38 of nodes re-sharing
information in an online social network. The two parameters of the
function q (G) are assumed to be hyper-parameters, and an MLE
is used to estimate parameter ? by using the observed part of a
cascade. This estimator can be expressed in a closed form as

?̂ =
# (B)Õ# (B)

8=1 38�(B �)8 )
.

The paper [51] uses a variant of this estimator that involves some
smoothing. Clearly, the computation complexity for evaluating the
value of estimator ?̂ is ⌦(# (B)).

Hawkes Intensity Process. TheHIPmethod [39] assumes aHawkes
point process with a power-law kernel function and is based on
estimating the model parameters by �tting the expected value of
the stochastic intensity function to observed data at �xed time in-
stances. For general Hawkes point processes, the expected value of
the stochastic intensity function obeys a convolutional equation,
which is leveraged by the proposed approach. This approach still
requires using an iterative optimization method and has the time
complexity comparable to RPP.

Hawkes with exponential kernel. For the Hawkes point process
model with exponentially decaying intensity, by Proposition 3.2,
we need to evaluate the value of the stochastic intensity _(B) in
order to compute the value of IE[# (C) � # (B) | FB ]. The stochastic

intensity _(B) can be approximated by a velocity statistic which
measures the local rate of points at time B . For instance, we may
de�ne the velocity as the rate of points observed over [B � 3, B]
for some �xed value 3 > 0. Velocity can be e�ciently tracked and
queried in constant time by using a sliding-window algorithm over
the stream of observed points [18]. For estimating the other two
parameters of the model, namely d1 and V , one may use an MLE
optimization method. This approach, as in the methods mentioned
above, may induce signi�cant computation costs. An alternative
approach is to use an estimator for the e�ective growth exponent
U . This parameter is both su�cient for prediction purposes (see
Proposition (3.2)) and an estimator of this parameter be e�ciently
computed (see Section 3.2.4).

5 EXPERIMENTAL RESULTS
In this section we present our numerical results. We �rst provide
basic information about datasets that we used for training and eval-
uation, the models we chose for comparison and our evaluation
metrics. We then provide results on the accuracy of predictions
over in�nite and then varied time horizons. Our choice of baseline
models includes previously proposed popularity prediction models
based on self-excited point processes, and separately trained ma-
chine learning models for speci�c prediction time horizons. Overall
our results show that our proposed method can provide more ac-
curate predictions than other self-excited point process models,
and that our method achieves competitive performance to models
trained for speci�c prediction horizons.

5.1 Datasets, models and evaluation metrics
Datasets. For our experiments, we used datasets containing de-

identi�ed public Facebook posts created by pages (Facebook ac-
counts of companies, brands, celebrities, and other public entities)
and collected over di�erent time periods. These datasets cover a
large number of view and reshare events – in the order of billions –
and hundreds of thousands of posts. Speci�cally, we used a dataset
containing 100 thousand public page posts which were reviewed
by moderators but deemed to not violate Facebook Community
Standards. These posts were created within 2 weeks in October
2020; we tracked their reshares and views for up to 2 months after
creation. The number of views recorded on these posts is in the
order of hundreds of billions. We also used a second dataset con-
taining 200 thousand randomly sampled public page posts created
within 1 week in November 2019, and also tracked their reshares
and views for up to 2 months after creation, collecting timestamps
of several billions of such events. We used the �rst dataset to eval-
uate prediction accuracy of di�erent models for in�nite horizons.
For validating performance on the varied prediction horizons we
used both datasets and obtained similar results. Hence, for varied
prediction horizons we only present results on the second dataset.
We believe that datasets we use are typical and hence the claims
made in this section would generalize to other datasets.

Our prediction model. The Hawkes model we propose is de�ned
in Section 3.2. We use gradient boosted decision trees from the
scikit-learn library [20] for point predictors of the view counts for
given reference horizons and the e�ective growth parameters. We
use a set of 1889 features, which could be categorized into content
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Table 1: Prediction performance for the proposed Hawkes
model vs. SEISMIC-CF, overall, and conditional on content
popularity (Low, High) or prediction time (Early, Late).

Dataset Hawkes SEISMIC-CF
MAPE g RMSE MAPE g RMSE

Overall 0.565 0.821 2.0e6 0.698 0.769 6.5e6
Low 0.651 0.713 9.8e4 0.802 0.633 1.6e7
High 0.552 0.796 2.2e6 0.685 0.744 2.4e7
Early 0.451 0.824 1.4e6 0.667 0.752 9.9e7
Late 0.573 0.821 2.3e6 0.737 0.762 2.8e7

features (properties of the post), page features (properties of the
account that created the post), and engagement features (patterns
of users’ interactions with the post and the page). Appendix A.16
[23] provides details on these groups of features and their cumu-
lative importance for both regressors. As expected, engagement
features have the highest importance scores for both regressors.
However, the long term patterns of a cascade’s growth – as indi-
cated in the case of predicting e�ective growth exponent U – are
better explained by the characteristics of the page and the page-level
engagement features. In contrast, the content engagement features
are by far the most important for popularity prediction over shorter
horizons.

Baselines. We compare prediction accuracy of our model against
several carefully chosen baselines drawn from relevant literature.
Our �rst set of baselines are taken from the class of generative mod-
els based on self-excited point processes. In particular, we compare
against a variant of SEISMIC [51] adapted for predicting popular-
ity of Facebook posts following [44] and the RPP model [40]. We
used the source code of SEISMIC model from the original paper 1.
For RPP, we have not found the original source code of the model
and opted for reproducing it in Python. These baseline models are
representative of the family of generative models based on self-
excited point processes, and their computation complexity is not so
high as to make them unusable on our data (in contrast with other
more complex models like those that combine deep learning with
self-excited processes). Our second set of baselines consists of pre-
diction models separately trained for speci�c reference prediction
horizons (hereafter “PB”), and a prediction model that uses the the
horizon as the feature (hereafter “HF”). We will provide some more
discussion about the baseline models in the following sections.

Evaluation metrics. Following [51], we evaluated prediction ac-
curacy using Median Absolute Percentage Error (MAPE) and g
Rank Correlation; we also added some evaluation results using
Root Mean Squared Error (RMSE).

5.2 Predictions for in�nite horizons
In this section we present our numerical results on the prediction
accuracy of our model and compare with two baselines, namely,
a variant of SEISMIC and RPP models, which we introduced in
Section 4. The presented numerical results demonstrate that our

1http://snap.stanford.edu/seismic/

Figure 1: Prediction performance for di�erent horizons: (left)
median absolute prediction error and (right) rank correlation.
The results are for the proposed Hawkes models with one
reference time horizon (HWK (1d)), two reference time hori-
zons (HWK (6h,4d)) and three reference time horizons (HWK
(6h,1d,4d)), point-based models (PB), and horizon-as-feature
models, one trained on all considered horizons between 1
hour and 7 days (HF (1h-7d)) and another one trained only
on a subset of them (HF (1h,6h,1d,4d)).

model can achieve superior prediction accuracy than these baseline
models, by leveraging static features, and that this can be achieved
at a much smaller computation time cost.

We compare our approach against a SEISMIC-CF variant of the
model proposed for Facebook cascades in [44]. We used default val-
ues for the constant node degree parameter proposed for SEISMIC-
CF and for the kernel function parameters. We have explored vari-
ous other settings of parameter values and obtained similar results.
As it can be seen in Table 1, our model outperforms SEISMIC-CF on
both Median APE and Rank Correlation by a margin of 13% and 5%,
respectively. This also holds true across di�erent splits we tested
on – namely, low vs. high popularity items (less or more than 1000
views) and early vs. late predictions with respect to content age at
prediction time (less or more than 24 hours since content creation).
The performance gap is especially striking when comparing predic-
tions by using the RMSEmetric, where for low popularity items and
early predictions, our model is orders of magnitudes more accurate
than SEISMIC-CF.

We have also conducted experiments to compare against RPP,
which we introduced in Section 4. As discussed in Section 4, the
computation complexity of �tting RPP model for each content item
is proportional to the product of the number of steps of the MLE
optimization algorithm and the number points in the observed
history. In out settings, this was in the order of minutes for high
popularity content items in comparison to less than a second for
our proposed model. We managed to evaluate RPP on a small subset
of content items in our dataset and achieved a MAPE of 4.1, which
is signi�cantly worse than for our model.

5.3 Predictions over arbitrary horizons
In this section we compare prediction performance of our model
against two di�erent baseline models, including models that are
separately trained for speci�c prediction time horizons and models
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Figure 2: Computation cost of Hawkes and SEISMIC-CF mod-
els as a function of the normalised observed cascade size.

that use the prediction time horizon as the input feature. More
speci�cally, we consider: (a) Point-based (PB)models that are trained
separately for every given prediction time horizon. Although in
practice it might not be feasible to maintain a family of models
for potentially in�nite horizons of interest, this approach provides
a good estimate for upper bound performance when a dedicated
model is trained for each horizon. (b)Horizon-as-feature (HF)models
for popularity prediction that use the prediction time horizon as
the input feature. This requires training examples sampled at a
multitude of horizons X , i.e. . (X ; B) = ⌘(X, G, g (FB );\ ), which has
an additional independent variable X .

The PB models may be regarded as a strong baseline for compari-
son of prediction performance for speci�c prediction time horizons,
as they are trained for these speci�c prediction time horizons. The
HF models may be regarded as a natural class of prediction models.

For training HF models, we sample prediction time horizons in
the range between 1h and 7d for each content item, hence syn-
thetically increasing the size of the training set by the number of
considered horizons, i.e., eight-fold for a model variant trained on
all considered horizons in the range (HF (1h-7d)) and four-fold for
a model variant trained only on a subset of them (HF (1h,6h,1d,4d)).

We compare the performance of our model against the afore-
mentioned baselines for di�erent reference time horizons of our
model. We denote our model as HWK(X⇤1 , . . . , X

⇤
<) for given refer-

ence prediction time horizons X⇤1 , . . . , X
⇤
< .

As seen in Figure 1, all considered Hawkes models outperform
the HF baselines on longer horizons (X > 24h) with the best one
(HWK (6h,1d,4d)) having an average decrease of 7% in Median APE
and an average increase of 2% in Rank Correlation. Evidently, the
HF model struggles to generalize beyond the horizons it has been
trained on, as seen from the sharp drops of the HF (1h,6h,1d,4d)’s
performance for X = 3h, 12h, 2d in comparison to the HF (1h-7d)
variant trained on all horizons in the range. Last but not least, our
model also reaches a parity in performance with PB models for
X > 24h, suggesting its good generalization capability for long
prediction horizons.

We further discuss tuning of the reference horizon parameters
X and performance of the models on cascades of di�erent sizes in
Appendix A.17 and Appendix A.18 [23], respectively.

5.4 Computation cost of di�erent methods
We evaluate computation cost of di�erent methods by measuring
the clock time for the computation required to predict the �nal

cascade size on the testing set. We ran these experiments on a
sever with 24 Intel Core Processor (Broadwell) CPUs and 114GB of
RAM. In Figure 2 we report the mean clock time in milliseconds
for generating predictions on cascades of di�erent observed sizes
(normalized by the average value) in SEISMIC-CF and Hawkes
models.

As anticipated in Section 4, the computational cost for SEISMIC-
CF scales linearly with the observed cascade size # (B). Indeed, it
can vary 4000x between predictions on cascades with a handful of
observed events and cascades with millions of observed events. This
is because SEISMIC-CF model requires a pass through all events
in the history of the cascade to yield a prediction. As discussed
in Sec 4, other considered models require multiple passes through
the observed history of a cascade to produce a prediction for each
content item and hence their computation complexity will increase
even faster.

In contrast, our proposed Hawkes model has a constant compu-
tation time for making predictions of any observed cascade size.
This is because it only requires an inference from few gradient
boosted decision tree models. The static and temporal features we
use in the model (discussed in detailes in Appendix A.16 [23]) can
be computed e�ciently at prediction time. For instance, the tempo-
ral features in our model constitute simple counters of events in
the observed history of a cascade. These counters can be tracked
e�ciently with a dedicated data structure and fetched in constant
time with respect to the cascade history size [18].

This result con�rms our theoretical �ndings and suggests that
our proposed model can e�ectively operate at Facebook scale.

6 CONCLUSION
We proposed a model for popularity prediction of social media
items that satis�es a set of design considerations that arise in large-
scale online platforms. These considerations include providing accu-
rate predictions for any given prediction time and horizon, having
a constant-time computation complexity at prediction time, and
leveraging both static and temporal features to ensure accurate
predictions. The model requires combining only a few point predic-
tors, including prediction of the view count acquired up to one or
more �xed reference time horizons and a predictor of the e�ective
popularity growth rate. The prediction accuracy is shown to be
competitive to separately trained models for speci�c prediction
time horizons, using a large collection of post sharing on Facebook.

Future work may further explore the space of scalable popularity
prediction methods, and study the trade-o� between computation
complexity and prediction accuracy.
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