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ABSTRACT
Spatial-temporal kernel density visualization (STKDV) has been ex-

tensively used in a wide range of applications, e.g., disease outbreak

analysis, traffic accident hotspot detection, and crime hotspot detec-

tion. While STKDV can provide accurate and comprehensive data

visualization, computing STKDV is time-consuming, which is not

scalable to large-scale datasets. To address this issue, we develop

a new sliding-window-based solution (SWS), which theoretically

reduces the time complexity for generating STKDV, without in-

creasing the space complexity. Moreover, we incorporate SWS with

the progressive visualization framework, which can continuously

output partial visualization results to users (from coarse to fine), un-

til users satisfy the visualization. Our experimental studies on five

large-scale datasets show that SWS achieves 1.71x to 24x speedup

compared with the state-of-the-art methods.
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1 INTRODUCTION
Data visualization [22, 52, 57] is an important tool for understand-

ing a dataset. Among most of the data visualization tools, kernel-

density-estimation-based visualization (or kernel density visualiza-

tion (KDV)) [14, 52] has been extensively used in a wide range of ap-

plications, including disease outbreak analysis [4, 17, 24, 30, 51, 65],

traffic accident hotspot detection [32, 37, 38, 61], crime hotspot

detection [12, 13, 29, 31, 35, 40, 66], health informatics [33, 60],

and resource management [70, 71]. Therefore, different types of

scientific/ geographical software, including QGIS [9], ArcGIS [1],

CrimeStat [2], KDV-Explorer [17], and Scikit-learn [42], can also
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support this operation. Figure 1 illustrates an example usage of

KDV for visualizing the density distribution of the COVID-19 cases

in Hong Kong from February 2020 to February 2021.

Figure 1: A hotspot map (generated by KDV) for the den-
sity distribution of COVID-19 cases inHongKong (from [3]),
where the red color denotes the high density region.

To generate the hotspot map (cf. Figure 1), existing studies in

KDV [14, 16, 20, 21, 25, 29, 61, 67] utilize the following kernel den-

sity function FP (q) (cf. Equation 1) to determine the color of each

pixel q, where P ,w and K(q, p) denote the set of two dimensional

spatial data points (e.g., latitude and longitude values of COVID-19

cases), the positive weight value (i.e., normalization constant) and

the kernel function (e.g., Epanechnikov kernel), respectively.

FP (q) =
∑
p∈P

w · K(q, p) (1)

11/7/2020 14:00

13/7/2020 09:31

12/7/2020 15:22

28/1/2020 15:31

13/3/2020 11:0511/6/2020 10:03
q1

q2

longitude

latitude

Figure 2: A simplified example of COVID-19 cases over time.
However, one major drawback for using KDV is that this method

does not incorporate the occurrence time of data points, which may

generate misleading visualization to the domain experts (e.g., geo-

graphical users). Using Figure 2 as a simplified example of COVID-

19 cases over time, we can observe that the data points near q2 have
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Table 1: Commonly-used spatial and temporal kernel functions.
Kernel Kspace(q, p) Ktime(tq, tp) Representative application(s)

Triangular

{
1 − γsdist (q, p) if dist (q, p) ≤ 1

γs
0 otherwise

{
1 − γtdist (tq, tp) if dist (tq, tp) ≤ 1

γt
0 otherwise

Resource management [70]

Epanechnikov

{
1 − γ 2

s dist (q, p)2 if dist (q, p) ≤ 1

γs
0 otherwise

{
1 − γ 2

t dist (tq, tp)
2

if dist (tq, tp) ≤ 1

γt
0 otherwise

Disease outbreak analysis [24, 65]

Traffic accident hotspot detection [32]

Health informatics [60]

Quartic

{
(1 − γ 2

s dist (q, p)2)2 if dist (q, p) ≤ 1

γs
0 otherwise

{
(1 − γ 2

t dist (tq, tp)
2)2 if dist (tq, tp) ≤ 1

γt
0 otherwise

Crime hotspot detection [12, 35]

similar time, which indicates a community outbreak, while the time

gap of those data points near q1 is large, which only indicates the

sporadic cases. Therefore, the position q2 in July should require

the attention of epidemiologists rather than q1. However, based on

Equation 1, since both the pixels q1 and q2 are surrounded by the

same number of (i.e., three) data points with similar distances, both

q1 and q2 would have the similar density values (or color).

In addition to the above example, many recent studies in different

applications (e.g., crime hotspot detection [31], disease outbreak

analysis [24], and traffic accident hotspot detection [37]) also point

out the same drawback, i.e., ignoring the time of each data point

for using KDV, which are quoted as follows.

• “Ignoring the temporal component of crime deprives researchers
and practitioners of the opportunity to target specific time
periods with elevated crime risks." [31]
• “... ignoring the temporal aspect (or considering it secondary
to the geographic component) would undermine our ability
to analyze the underlying dynamics and/or to visualize the
likelihood of re-occurrence of the disease...” [24]
• “... the STKDE space-time cube made it easier to detect the
spatio-temporal patterns of traffic violations than did the tra-
ditional hotspots map.” [37]

Due to the importance for incorporating the time component

into KDV, many existing studies [24, 31, 32, 37, 40, 65, 71] propose

to adopt spatial-temporal kernel density visualization (STKDV),

in which they aim to visualize the colored space-time cube (cf.

Figure 3c), instead of the hotspot map (like Figure 1). In practice,

we display the space-time cube as the time-evolving hotspot map

to users. For details, please refer to Section 6.5.
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(a) Data points (b) Space-time cube (c) STKDV

Figure 3: Generate STKDV for a set of (blue) data points,
where red, orange and white colors denote the high, middle
and low density values of each voxel, respectively.

In order to generate STKDV, we need to first divide the cube

into a set of voxels (i.e., small cubes in Figure 3b), denoted as (q, tq),
where q and tq represent the two-dimensional spatial position and

the time of the voxel, respectively. Then, we color each voxel based

on the spatial-temporal kernel density function [30, 37, 40] (cf.

Equation 2), given a set P̂ of spatial-temporal data points (p, tp).

FP̂ (q, tq) =
∑
(p,tp)∈P̂

w · Kspace(q, p) · Ktime(tq, tp) (2)

where Kspace(q, p) and Ktime(tq, tp) denote the spatial kernel and
temporal kernel, respectively. Table 1 summarizes different types of

commonly-used kernel functions for STKDV, which are supported

in the famous QGIS and ArcGIS software packages.

Even though STKDV has been extensively used in different do-

mains, computing STKDV is very time-consuming. Using the space-

time cube with size 128×128×128 and the New York traffic accident

dataset [6] (with nearly 1.5 million data points) as an example, gen-

erating STKDV for this dataset takes 9.43 trillion operations in

the worst case. As such, this operation cannot scale well to han-

dle large-scale datasets with high visualization quality (i.e., large

number of voxels), especially for the usage of the exploratory anal-

ysis [24, 30, 40]. Many existing studies also complain about this

inefficiency issue for computing STKDV.

• “... on computing the first step of the visualization pipeline,
space-time kernel density estimation (STKDE), which is most
computationally expensive.” [51]
• ‘The temporal extension of the KDE is known as the space-
time kernel density estimation (STKDE) and essentially maps
a volume of disease intensity along the space-time domain
(Nakaya and Yano, 2010). However, the above methods are
computationally intensive..." [30]
• “Expanding the KDE algorithm to integrate the temporal di-
mension is computationally demanding...” [24]

In this paper, we develop an efficient sliding-window-based so-

lution (SWS), which, to the best of our knowledge, is the first
solution that theoretically reduces the time complexity for
generating STKDV,without increasing the space complexity.
In addition, we further develop a general progressive visualization

framework, which can continuously output partial STKDV (from

coarse to fine) to users. Experimental results show that our method

SWS achieves 1.71x-24x speedup compared with the state-of-

the-art methods.

The rest of the paper is organized as follows. We first discuss

the background in Section 2. Then, we present our method SWS

in Section 3. Next, we extend SWS to other kernel functions in

Section 4. After that, we illustrate the progressive visualization

framework for STKDV in Section 5. Later, we show our experi-

mental results in Section 6. Then, we discuss the related work in

Section 7. Lastly, we conclude our paper in Section 8. The appendix

of proofs, pseudocode and implementation details can be found in

Section 9.
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2 PRELIMINARIES
In this section, we formally define our problem for STKDV in Sec-

tion 2.1. Then, we illustrate how to adapt the range-query-based

solution (RQS) as the baseline method in Section 2.2.

2.1 Problem Statement for STKDV
Recall from Section 1, we need to determine the color of each voxel,

using the spatial-temporal kernel density function (cf. Equation 2),

in the 3D cube (cf. Figure 3b) with size X ×Y ×T , where X , Y andT
are the numbers of voxels in x-axis, y-axis and t-axis, respectively.

Problem 1. Given a cube, with size X × Y × T , of voxels and a
dataset P̂ = {(p1, tp1 ), (p2, tp2 ), ..., (pn, tpn )} with n spatial-temporal
data points, we compute the kernel density value FP̂ (q, tq) (cf. Equa-
tion 2) for each voxel (q, tq).

Observe from Equation 2, the kernel density function FP̂ (q, tq)
depends on both the spatial kernel Kspace(q, p) and the temporal

kernel Ktime(tq, tp). Since most of the existing studies (cf. Table 1)

mainly utilize either the triangular, Epanechnikov or quartic kernels

to generate the STKDV (especially for Epanechnikov kernel), we

specifically focus on these kernel functions in this paper.

2.2 Range-Query-based Solution (RQS)
Different types of scientific and geographical software, e.g., Scikit-

learn [42], QGIS [47], and ArcGIS [1], implement the range-query-

based solution (RQS) to boost the efficiency for generating KDV.

Here, we illustrate how to extend RQS for generating STKDV, i.e.,

solving Problem 1. Observe from Table 1, we find that only those

data points (p, tp) with dist(q, p) ≤ 1

γs and dist(tq, tp) ≤
1

γt can

contribute to FP̂ (q, tq) (cf. Equation 2) for a given voxel (q, tq).
Therefore, we can first obtain the reduced set Rq of data points (cf.

Equation 3), which can be cast as the range query problem, and

then evaluate the kernel density function FP̂ (q, tq) (cf. Equation 4),

based on the reduced set Rq.

Rq =
{
(p, tp) ∈ P̂

��� dist(q, p) ≤ 1

γs
and dist(tq, tp) ≤

1

γt

}
(3)

FP̂ (q, tq) =
∑

(p,tp)∈Rq

w · Kspace(q, p) · Ktime(tq, tp) (4)

In existing work [23, 28, 42], different types of index approaches,

e.g., kd-tree and ball-tree, can be used to boost the efficiency for

obtaining Rq, which are summarized in Table 2.

Table 2: Worst case time and space complexity for finding
the reduced set Rq, i.e., solving range query, using different
types of index structures.

Index structure Time complexity Space complexity

kd-tree [23, 42] O (n
2

3 + |Rq |) O (n)
ball-tree [28, 42] O (n + |Rq |) O (n)

Even though RQS can be possible to improve the efficiency for

generating STKDV, the response time can still be long once the

size of set Rq is large, i.e., large values for
1

γs and
1

γt in Equation 3.

Theoretically, once γs → 0 and γt → 0, the size |Rq | → n. In
this case, the time complexity for generating STKDV remains the

same as the basic approach (i.e., scan without filtering), which is

O(XYTn).

Since the size of the cube is X × Y × T and both kd-tree and

ball-tree take O(n) space, the space complexity of the method RQS

is O(XYT + n).

3 SLIDING-WINDOW-BASED SOLUTION
(SWS)

Even though the method RQS can improve the efficiency for calcu-

lating FP̂ (q, tq), RQS cannot reduce the time complexity for gen-

erating STKDV (cf. Problem 1), which remains in O(XYTn) time.

In this section, we propose a sliding-window-based solution (SWS)

that only takes O(XY (T + n)) time to generate STKDV, using the

commonly-used Epanechnikov kernel for Ktime(tq, tp). Here, we do
not assume any kernel type for Kspace(q, p).

3.1 Sliding Window for Temporal Dimension
In our method SWS, the core idea is to maintain the sliding window

in the temporal dimension (cf. Figure 4) around the voxel (q, tq).
Here, we sort the data points in P̂ such that tp1 ≤ tp2 ≤ ... ≤ tpn .
Observe that this sliding windowW (tq) needs to cover the data

points (p, tp) such that dist(tq, tp) ≤
1

γt , i.e., Ktime(tq, tp) > 0 (cf.

Table 1), where:

W (tq) =
{
(p, tp) ∈ P̂

��� dist(tq, tp) ≤ 1

γt

}

t
(p1,tp1

)

(p2,tp2
)

(p5,tp5
)(q,tq)

W(tq)

1

𝛾𝑡

1

𝛾𝑡

(p3,tp3
)

(p6,tp6
)

(p7,tp7
)

(p4,tp4
)

Figure 4: The sliding windowW (tq) for the voxel (q, tq).

Since we can ensure that those data points in W (tq) should
have Ktime(tq, tp) > 0 (we use Epanechnikov kernel here), we can

conclude that:

FP̂ (q, tq) =
∑

(p,tp)∈W (tq)

w · Kspace(q, p) · (1 − γt 2dist(tq, tp)2)

By adopting some simple algebraic operations, we can express

FP̂ (q, tq) as:

FP̂ (q, tq) = w(1−γt
2t2q)·S

(0)

W (tq)
(q)+2wγt 2tq·S

(1)

W (tq)
(q)−wγt 2·S

(2)

W (tq)
(q)
(5)

where:

S
(i)
W (tq)

(q) =
∑

(p,tp)∈W (tq)

t ip · Kspace(q, p) (6)

The slidingwindowW (tq)maintains/stores these three statistical

terms S
(i)
W (tq)

(q), where i = 0, 1, 2.

3.2 SWS: An Incremental Algorithm
After we have illustrated the concept of sliding window, we propose

an efficient incremental algorithm, namely SWS, for improving the

efficiency to evaluate the kernel density function FP̂ (q, tqn ) for the
next voxel (q, tqn ) in the temporal dimension, i.e., fixing the spatial

position q and change the temporal coordinate from tq to tqn .
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(p1,tp1
)

(p2,tp2
) (p3,tp3

)

(p4,tp4
) (p5,tp5

) (p6,tp6
)

(p7,tp7
)(q,tqn

)

W(tqn
)D(W(tq),W(tqn

))

(q,tq)

I(W(tq),W(tqn
))W(tq)

t

Figure 5: Movement of the sliding window fromW (tq) (red
dashed window) to W (tqn ) (blue window), after we change
from the voxel (q, tq) to (q, tqn ). Green and yellow points de-
note the newly inserted and deleted points, respectively.

Observe from Figure 5, once we shift from the voxel (q, tq) to
(q, tqn ), we need to insert the green point (p5, tp5 ) and delete the

yellow points (p1, tp1 ) and (p2, tp2 ) in order to update to the next

windowW (tqn ) (i.e., blue window). Here, we denote these two sets

of points as I (W (tq),W (tqn )) (cf. Equation 7) and D(W (tq),W (tqn ))
(cf. Equation 8), where:

I (W (tq),W (tqn )) = W (tqn ) \W (tq) (7)

D(W (tq),W (tqn )) = W (tq) \W (tqn ) (8)

Recall from Section 3.1, each sliding windowW (tq) needs to

maintain the statistical terms S
(0)

W (tq)
(q), S(1)W (tq)(q) and S

(2)

W (tq)
(q)

(cf. Equation 6). Therefore, we also need to update these terms to

S
(0)

W (tqn )
(q), S(1)W (tqn )

(q) and S
(2)

W (tqn )
(q), once we have updated the

window fromW (tq) toW (tqn ). Lemma 1 shows how we can incre-

mentally obtain S
(i)
W (tqn )

(q), given the statistical terms S
(i)
W (tq)

(q),
with i = 0, 1, 2.

Lemma 1. Given two windowsW (tq) andW (tqn ) for the voxels

(q, tq) and (q, tqn ), respectively, and the statistical terms S(i)W (tq)(q),

where i = 0, 1, 2, for the windowW (tq), we can represent S(i)W (tqn )
(q)

with the following equation.

S
(i)
W (tqn )

(q) = S
(i)
W (tq)

(q) −
∑

(p,tp)∈D(W (tq),W (tqn ))

t ip · Kspace(q, p)

+
∑

(p,tp)∈I (W (tq),W (tqn ))

t ip · Kspace(q, p) (9)

Observe from Equation 9, once we update the statistical

terms S
(i)
W (tqn )

(q) of the window W (tqn ), we only need to

scan additional data points in I (W (tq),W (tqn )) and remove

those points in D(W (tq),W (tqn )) (cf. Figure 5), which only take

O(|I (W (tq),W (tqn ))|+ |D(W (tq),W (tqn ))|) time. Therefore, we can

also obtain the kernel density value FP̂ (q, tqn ) (cf. Equation 5, re-

place tq by tqn ) inO(|I (W (tq),W (tqn ))| + |D(W (tq),W (tqn ))|) time

(cf. Lemma 2).

Lemma 2. Given two windowsW (tq) andW (tqn ) for the voxels

(q, tq) and (q, tqn ), respectively, and the statistical terms S(i)W (tq)(q),
where i = 0, 1, 2, for the window W (tq), we can compute the
kernel density function FP̂ (q, tqn ) for the voxel (q, tqn ) and up-

date the statistical terms S(i)W (tqn )
(q) for the window W (tqn ) with

O(|I (W (tq),W (tqn ))| + |D(W (tq),W (tqn ))|) time.

With the above concepts, we discuss how to efficiently compute

all the kernel density values FP̂ (q, tq) (cf. Equation 5) for all voxels

which are along the time-axis (or t-axis) with the same spatial

position q (cf. Figure 6), in which we denote these T voxels as

(q, tq1 ), (q, tq2 ),..., (q, tqT ).

x

y

t

(q,tq1
)

(q,tq2
)

…
…

(q,tqT
)

Figure 6: Compute the kernel density values for all yellow
voxels that are along the time axis (or t-axis) with the same
spatial position q.

Figure 7 illustrates multiple sliding windows along the t-axis
which correspond to different voxels. Suppose that we have com-

puted the density value FP̂ (q, tq1 ) for the voxel (q, tq1 ) and also

maintained the statistical terms S
(i)
W (tq

1
)
(q) (cf. Equation 6) for the

red window Wtq
1

, which take O(|Wtq
1

|) time, we can then up-

date the statistical terms of the consecutive window Wtq
2

, i.e.,

S
(i)
W (tq

2
)
(q) and compute FP̂ (q, tq2 ) with O(|I (W (tq1 ),W (tq2 ))| +

|D(W (tq1 ),W (tq2 ))|) time, based on Lemma 2. By adopting the same

approach for other windows (e.g., pink and black windows), we can

conclude that the time complexity for obtaining the density values

for all voxels with the same spatial position along the time axis, i.e.,

all yellow voxels in Figure 6, is
1
:

O
(
|Wtq

1

|+

T−1∑
i=1
|I (W (tqi ),W (tqi+1 ))|+

T−1∑
i=1
|D(W (tqi ),W (tqi+1 ))|+T

)
(10)

D(W(tq1
),W(tq2

))

(q,tq1
)

D(W(tq2
),W(tq3

))

(q,tq2
)

I(W(tq1
),W(tq2

))

I(W(tq2
),W(tq3

))

……
(q,tq3

)

D(W(tq3
),W(tq4

))

(q,tq4
)

I(W(tq3
),W(tq4

))

t

Figure 7: Illustration of multiple sliding windows, i.e., red,
blue, pink, and black, with the voxels (q, tq1 ), (q, tq2 ), (q, tq3 )
and (q, tq4 ), respectively.

In Lemma 3, we state that this time complexity (cf. Equation 10)

for computing the density values of all yellow voxels is O(T + n).
We include the formal proof of this lemma in the appendix (cf.

Section 9.1).

Lemma 3. The time complexity (i.e., Equation 10) for computing
the density values of allT voxels (q, tq1 ), (q, tq2 ),..., (q, tqT ) isO(T +n).

Once we can useO(T +n) time to obtain all density values for all

voxels along the t-axis with the same spatial position, we can also

conclude that the method SWS only takes O(XY (T + n)) time to

1
The +T term is the access cost of the T voxels.
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generate STKDV, as there areXY two-dimensional spatial positions

in the visualization, as stated in Theorem 1.

Theorem 1. Sliding-window-based solution (SWS) takes
O(XY (T + n)) time to generate STKDV (cf. Problem 1), using the
Epanechnikov kernel for Ktime(tq, tp).

As a remark, our method SWS only stores one sliding window for

processing all voxels (q, tq1 ), (q, tq2 ),..., (q, tqT ) (i.e., yellow voxels

in Figure 6). This sliding window can be cleared and then reused for

the nextT voxels with another spatial position. Therefore, SWS only

incurs O(n) additional space for maintaining this sliding window

and its statistical terms, which does not increase the worst case

space complexity for generating STKDV, i.e., O(XYT + n) space (cf.
Lemma 4).

Lemma 4. The space complexity of sliding-window-based solution
(SWS) isO(XYT +n) for generating STKDV (cf. Problem 1), using the
Epanechnikov kernel for Ktime(tq, tp).

The pseudocode and the implementation details for SWS can be

found in the appendix (cf. Section 9.4).

4 SWS FOR OTHER TEMPORAL KERNELS
In Section 3, we have illustrated how to utilize SWS to improve

the efficiency for generating STKDV using Epanechnikov kernel as

Ktime(tq, tp). Here, we ask a question, can we extend this method

to other kernel functions in Table 1 with similar time and space

efficiency guarantee (cf. Theorem 1 and Lemma 4, respectively)? In

this section, we give an affirmative answer for this question.

4.1 Quartic kernel
We consider the following kernel density function with quartic

kernel as Ktime(tq, tp).

FP̂ (q, tq) =
∑

(p,tp)∈W (tq)

w · Kspace(q, p) · (1 − γt 2dist(tq, tp)2)2

Observe that we can also decompose this kernel density function

as:

FP̂ (q, tq) = w(1 − 2γ 2t t
2

q + γ
4

t t
4

q) · S
(0)

W (tq)
(q)

+ w(4γ 2t tq − 4γ
4

t t
3

q) · S
(1)

W (tq)
(q)

+ w(6γ 4t t
2

q − 2γ
2

t ) · S
(2)

W (tq)
(q)

− 4wγ 4t tq · S
(3)

W (tq)
(q) +wγ 4t · S

(4)

W (tq)
(q)

Once we maintain the statistical terms S
(i)
W (tq)

(q) (cf. Equation 6),

where 0 ≤ i ≤ 4, in the sliding windowW (tq) for each voxel (q, tq),
using the similar idea in Section 3.2, we can directly extend both

Lemmas 1, 2, 3, 4 and Theorem 1 for quartic kernel, i.e.,O(XY (T+n))
time and O(XYT + n) space for generating STKDV.

4.2 Triangular kernel
We proceed to consider the kernel density function with triangular

kernel as Ktime(tq, tp).

FP̂ (q, tq) =
∑

(p,tp)∈W (tq)

w · Kspace(q, p) · (1 − γtdist(tq, tp))

However, unlike the Epanechnikov and quartic kernels, we can-

not decompose the kernel density function into the linear combi-

nation of the statistical terms (like Equation 5), since we cannot

simply expand the Euclidean distance dist(tq, tp). Nevertheless, we
notice that:

dist(tq, tp) =

{
tq − tp if tq > tp

tp − tq otherwise

Therefore, once we have maintained the left and right sliding

windows,WL(tq) andWR (tq), respectively, for the voxel (q, tq) (cf.
Figure 8), we can obtain:

FP̂ (q, tq) = wS
(0)

W (tq)
(q) −wγt

(
tqS
(0)

WL (tq)
(q) − S(1)WL (tq)

(q)

+ S
(1)

WR (tq)
(q) − tqS

(0)

WR (tq)
(q)

)
(11)

where S
(0)

W (tq)
(q), S

(0)

WL (tq)
(q), S

(1)

WL (tq)
(q), S

(0)

WR (tq)
(q) and

S
(1)

WR (tq)
(q) are the statistical terms (cf. Equation 6) with respect to

eitherW (tq),WL(tq) orWR (tq).

(p1,tp1
)

(p2,tp2
)

(p5,tp5
)(q,tq)

W(tq)

(p3,tp3
)

(p6,tp6
)

(p7,tp7
)

(p4,tp4
)

WL(tq) WR(tq)

t

Figure 8: Left sliding windowWL(tq) and right sliding win-
dowWR (tq) for the voxel (q, tq).

Recall from Section 3.2, we remain to discuss how to efficiently

update these statistical terms for the next voxel (q, tqn ). Here,
we claim that it takes O(|I (W (tq),W (tqn ))| + |D(W (tq),W (tqn ))| +
|C(tq, tqn )|) to obtain all these statistical terms and also the den-

sity value FP̂ (q, tqn ) for the next voxel (q, tqn ) in Lemma 5, where

C(tq, tqn ) denotes the set of points (p, tp) in P̂ with the time tp inside
the interval [tq, tqn ] (cf. Equation 12 and Figure 9), I (W (tq),W (tqn ))
andD(W (tq),W (tqn )) are defined in Equations 7 and 8, respectively.

We leave the proof of Lemma 5 in the appendix (cf. Section 9.2).

C(tq, tqn ) = {(p, tp) ∈ P̂ |tq ≤ tp ≤ tqn } (12)

t
(p1,tp1

)

(p2,tp2
)

(p5,tp5
)(q,tq)

C(tq, tqn
)

(p3,tp3
)

(p6,tp6
)

(p7,tp7
)

(p4,tp4
)

(q,tqn
)

Figure 9: The orange points (p3, tp3 ) and (p4, tp4 ) are inside the
set C(tq, tqn ).

Lemma 5. Given two windowsW (tq) andW (tqn ) for the voxels
(q, tq) and (q, tqn ), respectively, and the statistical terms for the win-
dowW (tq), we can compute the kernel density function FP̂ (q, tqn ),
using the triangular kernel, for the voxel (q, tqn ) and update the
statistical terms for the windowW (tqn ) in O(|I (W (tq),W (tqn ))| +
|D(W (tq),W (tqn ))| + |C(tq, tqn )|) time.

Compared with Lemma 2, even though we need to spend the

additional cost |C(tq, tqn )| for obtaining the density valueFP̂ (q, tqn ),
we claim that we can still use O(T + n) time to compute all the

density values of allT voxels (q, tq1 ), (q, tq2 ),..., (q, tqT ) (cf. Figure 6)
in Lemma 6. We leave the proof of this lemma in the appendix (cf.

Section 9.3).
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Lemma 6. The time complexity for evaluating the density values,
using the triangular kernel as Ktime(tq, tp), of all T voxels (q, tq1 ),
(q, tq2 ),..., (q, tqT ) is O(T + n).

Based on Lemma 6, we can extend Theorem 1, i.e.,O(XY (T +n))
time for generating STKDV, to the triangular kernel. In addition,

since themethod SWS only needs tomaintainWL(tq),WR (tq),W (tq)
and their statistical terms, the space complexity of this method

remains in O(XYT + n) (i.e., Lemma 4 holds for the triangular

kernel).

5 PROGRESSIVE VISUALIZATION
FRAMEWORK FOR STKDV

Even though SWS can significantly reduce the time complexity for

generating STKDV (fromO(XYTn) toO(XY (T +n))), SWS can still

be time-consuming, especially for large-scale datasets. Instead of

generating the visualization with all data points, many existing

studies [34, 41, 43, 45, 46, 48, 67–69] adopt the data sampling meth-

ods to further improve the efficiency in different visualization tasks.

In particular, Perrot et al. [43] propose to first divide the dataset

into different subsets (with different sizes) in different levels and

then progressively generate the visualization to users (e.g., data

scientists). The general idea of this method is to first provide a

rough visualization to users and then further refine it until users

are satisfied with the visualization quality. In this section, we extend

this idea for generating progressive STKDV (cf. Figure 10).

x

y

t

x

y

t

x

y

t

Level 1 (50% of all data points) Level 2 (75% of all data points) Level 3 (All data points)

Figure 10: Progressive visualization for STKDV from lower
to higher levels, i.e., smaller to larger subsets of the dataset,
respectively.

One straightforward approach to support progressive STKDV is

to compute the density values of each level from scratch. However,

we observe that each pair of consecutive levels shares many data

points, e.g., level 2 and level 3 in Figure 10 can share six data points.

As such, this approach can waste the density computations of the

previous level. Here, we ask a question, can we reuse the informa-

tion from the previous level to generate STKDV for the next level in

order to further boost the efficiency for progressive visualization?

Here, we let P̂ℓ and P̂ℓ+1 be two sets of data points in the ℓth and

(ℓ + 1)th levels, respectively. Moreover, we denote Iℓ as the set of

new data points that are in P̂ℓ+1 but not in P̂ℓ , i.e., Iℓ = P̂ℓ+1 \ P̂ℓ .
Based on Equation 2, we have

2
:

FP̂ℓ+1
(q, tq) = FP̂ℓ (q, tq) + FIℓ (q, tq) (13)

Suppose that we have already stored the exact result FP̂ℓ
(q, tq)

for each voxel (q, tq) in the ℓth level, we can obtain FP̂ℓ+1
(q, tq),

based on computing FIℓ (q, tq) and then adding the precomputed

2
Kernel density functions (cf. Equation 2) with different sizes of datasets can have differ-

ent weights (constants)w [31]. Here, we omit the details to simplify the presentation.

value FP̂ℓ
(q, tq) for each voxel (q, tq). Therefore, we can use

O(XY (T + |Iℓ |)) time (based on our method SWS) to generate

STKDV for the level ℓ + 1, which can be much faster than gen-

erating STKDV from scratch. Since we only maintain at most two

cubes (for FP̂ℓ
(q, tq) and FIℓ (q, tq)) with size X ×Y ×T and at most

n data points (for P̂1, I2, I3,...), the space complexity remains in

O(XYT +n). As a remark, this progressive visualization framework

can combine with different types of data sampling methods (e.g.,

random sampling [44]).

6 EXPERIMENTAL EVALUATION
In this section, we first introduce the experimental settings in Sec-

tion 6.1. Then, we investigate the efficiency improvement of our

methods against the existing methods in Section 6.2, using the

Epanechnikov kernel. After that, we further compare the efficiency

of all methods in Section 6.3, using other kernel functions. Next, we

demonstrate the efficiency for using the progressive visualization

framework to generate STKDV in Section 6.4. Lastly, we provide

the practical use case in Section 6.5 to visualize the time-evolving

hotspots, by displaying STKDV as the time-evolving hotspot map.

6.1 Experimental Settings
We use five large-scale datasets for conducting the experiments,

which are summarized in Table 3. All these datasets are the open

data from the local governments of different cities/provinces. We

follow [14, 25] and utilize the Scott’s rule [52] to obtain the default

parameters γs and γt . Moreover, we set the default resolution to be

128 × 128 × 128 for generating STKDV.

Table 3: Datasets.

Dataset n Category Ref.

Ontario 560,856 COVID-19 [8]

Seattle 839,504 Crime [10]

Los Angeles 1,255,668 Crime [5]

New York 1,499,928 Traffic accident [6]

New Yorktaxi 13,596,055 Pickup location [7]

In our experiments, we compare our method SWS with different

methods (cf. Table 4). SCAN is the scanning-based approach for gen-

erating STKDV, which does not adopt any type of filtering. RQS
kd

and RQS
ball

are the range-query-based solutions (cf. Section 2.2),

which adopt the kd-tree and ball-tree, respectively. Our method

SWS has a lower worst case time complexity compared with other

methods. We implemented all methods with C++ and conducted

experiments on an Intel i7 3.19GHz PC with 32GB memory. In this

paper, we use the response time (sec) to measure the efficiency of

all methods and only report the response time which is smaller

than 14400 sec (i.e., 4 hours).

Table 4: Methods for generating STKDV.

Method Time complexity Space complexity Ref.

SCAN

O (XYTn)
O (XYT + n)

NIL

RQS
kd

[23, 42]

RQS
ball

[28, 42]

SWS O (XY (T + n)) Sections 3-5
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Figure 11: Response time for computing STKDV, varying the resolution size (from 32 × 32 × 32 to 256 × 256 × 256).

 100

 1000

 10000

 100000

120x80x32

240x160x32

480x320x32

960x640x32

Ti
m

e 
(s

ec
)

Resolution

SCAN
RQSkd

RQSball
SWS

 100

 1000

 10000

 100000

120x80x32

240x160x32

480x320x32

960x640x32

Ti
m

e 
(s

ec
)

Resolution

 100

 1000

 10000

 100000

120x80x32

240x160x32

480x320x32

960x640x32

Ti
m

e 
(s

ec
)

Resolution

 100

 1000

 10000

 100000

120x80x32

240x160x32

480x320x32

960x640x32

Ti
m

e 
(s

ec
)

Resolution

 1000

 10000

 100000

120x80x32

240x160x32

480x320x32

960x640x32

Ti
m

e 
(s

ec
)

Resolution

(a) Ontario (b) Seattle (c) Los Angeles (d) New York (e) New Yorktaxi

Figure 12: Response time for computing STKDV, varying the resolution size (from 120 × 80 × 32 to 960 × 640 × 32).
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Figure 13: Response time for computing STKDVwith default resolution 128×128×128, varying the parameterγs (bymultiplying
the default value with different values of ratio).
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Figure 14: Response time for computing STKDVwith default resolution 128×128×128, varying the parameterγt (bymultiplying
the default value with different values of ratio).
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Figure 15: Response time for computing STKDV with default resolution 128 × 128 × 128, varying the dataset size (by sampling
different percentages of data points in each dataset).
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Figure 16: Space consumption (MB) for computing STKDV with default resolution 128 × 128 × 128, varying the dataset size (by
sampling different percentages of data points in each dataset).
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Figure 17: Response time for computing STKDV in the New York dataset with default resolution 128 × 128 × 128, using the
triangular ((a) and (b)) and quartic ((c) and (d)) kernels, varying the parameters γs ((a) and (c)) and γt ((b) and (d)).
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Figure 18: Cumulative response time for progressively computing STKDV with default resolution 128 × 128 × 128, using a
sequence of subsets of dataset.

6.2 Efficiency Evaluation with Epanechnikov
Kernel

Even though our method SWS is theoretically more efficient than

the existing methods without additional space overhead (cf. Table 4),

it is yet to compare the time and space efficiency of our methods

with these methods in practice. In this section, we conduct the

following experiments to test the time and space efficiency of all

methods.

Varying the resolution size: In the first experiment, we choose

four resolution sizes, which are 32×32×32, 64×64×64, 128×128×128

and 256 × 256 × 256, and measure the response time of different

methods. In Figure 11, we observe that ourmethod SWS consistently

outperforms the existing methods with different resolutions. Since

the (worst case) time complexity of existing methods is O(XYTn)
(cf. Table 4), the response time of these methods can increase by 8

times, once we use the next larger resolution (e.g., from 32× 32× 32

to 64 × 64 × 64). However, since the time complexity of SWS is

O(XY (T + n)), the response time of SWS only increases by 4 times,

using the next larger resolution. As such, the larger the resolution

size, the larger the time gap between SWS and the existing methods

(cf. Figure 11).

In the second experiment, we further choose four resolution

sizes, which are 120 × 80 × 32, 240 × 160 × 32, 480 × 320 × 32 and

960× 640× 32, for testing. Since we only vary the spatial resolution

X × Y and fix the temporal resolution T , the time gap between our

method SWS and the best method RQS
ball

does not significantly

change for using the next larger resolution (e.g., from 120 × 80 × 32

to 240 × 160 × 32). Nevertheless, our method SWS still achieves

at least 1.71x to 2.69x speedup (cf. Figure 12) compared with the

existing methods.

Varying the parameter γs : We proceed to investigate how the

parameter γs affects the response time of all methods. Here, we

adopt the default resolution 128×128×128 and the default parameter

γt (obtained by Scott’s rule). In this experiment, we multiply the

default value of γs by different values of ratio, including 0.25, 0.5,

1, 2 and 4, and measure the response time for generating STKDV.

Recall that the data points that are within
1

γs can have non-zero

values for Kspace(q, p) (cf. Table 1). Therefore, once the value γs
is smaller (i.e., the range

1

γs is larger), all the range-query-based
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Figure 19: Time-evolving hotspot map (based on STKDV) in the Upper Manhattan region with four timestamps, using the New
York traffic accident dataset.

(a) Hong Kong (b) 1st April 2020 (c) 15th May 2020 (d) 30th July 2020 (e) 1st Oct 2020 (f) 10th Dec 2020 
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Figure 20: Time-evolving hotspot map (based on STKDV) in Hong Kong with five timestamps, using the Hong Kong COVID-19
dataset (confirmed cases).

methods RQS
kd

and RQS
ball

need to scan more data points and

index nodes. As such, all these range-query-based methods can

be slower with the smaller value of ratio (cf. Figure 13). Since our

method SWS is not sensitive to γs , our method can be significantly

more efficient than the existing methods, especially for small value

of γs .

Varying the parameter γt :We further conduct the experiment for

measuring the response time of different methods by using different

values of γt (i.e., multiplying the default value by different values

of ratio), while we adopt the default value for γs and the default

resolution size 128 × 128 × 128. In Figure 14, we observe that our

method SWS outperforms the existing methods by a visible margin,

no matter which γt (or ratio) we adopt. Moreover, unlike the range-

query-based methods, SWS is not sensitive to the parameter γt .

Varying the dataset size: In this experiment, we randomly sam-

ple each dataset (in Table 3) with different percentages, including

25%, 50%, 75%, and 100% (original one), and measure the response

time and memory space consumption of each method for each

sampled dataset. In Figure 15, we observe that SWS consistently

outperforms the existing methods by 5x to 16x speedup in different

dataset sizes. On the other hand, since our method SWS has the

same space complexity as the existing methods (cf. Table 4), the

space consumption of all methods are similar (cf. Figure 16).

6.3 Efficiency for Other Kernels
We investigate the response time for generating STKDV with other

kernels. In this experiment, we adopt the New York dataset for

testing and follow the same settings in Section 6.2 for varying

the parameters γs and γt . Figure 17 illustrates that our method

SWS can also consistently outperform the state-of-the-art methods,

regardless of the chosen kernel types. On the other hand, since both

the parameters γs and γt cannot affect the efficiency of our method

SWS for generating STKDV with triangular and quartic kernels, we

observe that the response time of SWS is similar, no matter which

γs and γt we adopt (cf. Figure 17).

6.4 Progressive Visualization Framework
In this section, we proceed to test the efficiency for using the pro-

gressive visualization framework. To conduct this experiment, we

randomly sample each dataset with different levels of subsets (cf.

Figure 10), where the subset at a larger level covers the subset at a

smaller level. Here, we choose a sequence of percentages, which

are 10%, 20%,..., and 100%, to represent the size of subsets in each

level compared with the original dataset. In this experiment, we

measure the cumulative time for generating STKDV, following the

above sequence of levels. Since our method SWS is consistently

more efficient than the previous methods, we only compare the ef-

ficiency of this method with the progressive version of this method

SWSprog in this experiment. In Figure 18, we observe that SWSprog

achieves smaller cumulative time, since this method does not need

to recompute all the density values from scratch.

6.5 Use Case: Display STKDV as Time-Evolving
Hotspot Map

After we generate STKDV for a dataset, we can display this space-

time cube as a time-evolving hotspot map, which can facilitate users

(e.g., geoscientists) to visualize the time-evolving hotspots (based

on STKDV). Here, we show two examples in this section.

Traffic accident hotspot detection: Figure 19 shows the time-

evolving traffic accident hotspot map in the Upper Manhattan re-

gion of New York with four timestamps, using the New York traffic
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accident dataset (cf. Table 3). Observe that the hotspots (with or-

ange color) can change in different timestamps. For example, the

sizes of traffic accident hotspots are larger in May compared with

December and January. This phenomenon indicates that more traf-

fic police officers should be assigned for these two hotspot regions

in May in order to reduce the number of traffic accident events.

Moreover, the transportation experts also need to investigate the

underlying reasons for this phenomenon.

COVID-19 hotspot detection: In the second example, we show

the time-evolving COVID-19 hotspot map in Hong Kong with

five timestamps, using the COVID-19 open dataset [3] from the

Hong Kong government, which stores the location and time of each

COVID-19 confirmed case in Hong Kong. In Figure 20, observe that

the hotspots can significantly change in different timestamps. For

example, there can be no hotspot on 15
th

May 2020 and a large

hotspot on 30
th

July 2020. In addition, this tool can correctly show

different waves in Hong Kong, which are in line with the trend of

COVID-19 confirmed cases in Hong Kong (cf. Figure 21).
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0

50

100

150

200
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Figure 21: The trend of COVID-19 confirmed cases in Hong
Kong (from Google statistics).

For details, please refer to the Github repository https://github.

com/STKDV/STKDV, in which we provide these two time-evolving

hotspot maps (cf. Figures 19 and 20) with 128 timestamps and their

implementation. Moreover, we also discuss the zoom-in operation

to explore the hotspots in different regions and time ranges.

7 RELATEDWORK
Kernel density visualization (KDV) [14, 52] has been extensively

used in different domains, including traffic accident hotspot detec-

tion [61], crime hotspot detection [13, 29, 66], and disease outbreak

analysis [4, 17]. However, KDV only generates the visualization

based on the spatial positions of the geographical events (cf. Equa-

tion 1), which ignores the event time. As such, many recent stud-

ies [24, 31, 37, 71] in different domains also complain about the effec-

tiveness for using KDV. To overcome the weakness of KDV, many

research studies [12, 24, 30–32, 35, 37, 40, 65, 71] utilize the spatial-

temporal kernel density visualization (STKDV), which incorporates

the temporal kernel for estimating the density (cf. Equation 2), to

color the cube (cf. Figure 3). These studies also indicate that STKDV

can achieve superior effectiveness compared with the traditional

visualization tools (e.g., KDV), under different case studies. How-

ever, with the high time complexity, i.e., O(XYTn), for generating
STKDV, existing methods cannot be scalable to large-scale datasets.

To the best of our knowledge, this is the first research work that

theoretically reduces the time complexity for this time-consuming

operation (cf. Table 4). In this section, we summarize five camps

of research studies, which are mostly related to this work. As a

remark, more related studies (e.g., other visualization methods) are

also reviewed in the technical report [15].

Range-query-based methods: Recall from Section 2.2, we can

compute the kernel density function of STKDV FP̂ (q, tq) (cf. Equa-
tion 4), based on obtaining the reduced set Rq (cf. Equation 3).

Therefore, computing STKDV can be also cast as solving the range

query problem for each voxel (q, tq). Range queries [23, 50, 63] have
been extensively studied in the literature. Among most of the exist-

ing methods, kd-tree [11] and ball-tree [39] are the most efficient

and popular methods, which have been widely used for efficiently

solving the range queries in low-dimensional datasets [42]. Even

though range-query-based solutions can improve the efficiency for

generating STKDV, these methods (cf. RQS
kd

and RQS
ball

) cannot

theoretically reduce the time complexity for generating STKDV

(cf. Table 4). As shown in our experiments, these methods are not

scalable to large resolution size (cf. Figure 11), small γs and γt (cf.
Figures 13 and 14, respectively) and large dataset size (cf. Figure 15)

compared with our method SWS.

Sliding-window-based methods: In both database and data min-

ing communities, many efficient sliding-window-based methods

have been developed to support different query processing tasks,

including aggregation (e.g., sum, count, max, min, etc.) [26, 36, 53–

55, 58], skyline [56], and top-k queries [59, 72], over streaming data.

However, none of the existing methods focuses on the complex

spatial-temporal kernel density function FP̂ (q, tq) (cf. Equation 2).

Therefore, existing studies cannot be easily extended to efficiently

compute FP̂ (q, tq).
Function approximation methods: Many researchers have pro-

posed to approximate the kernel density function FP (q) (cf. Equa-
tion 1) in order to improve the efficiency for generating KDV. Raykar

et al. [49] and Yang et al. [62] propose using fast Gauss transform

to efficiently and approximately compute FP (q). On the other hand,

Chan et al. [14, 19, 21], Gan et al. [25] and Gray et al. [28] develop

the lower and upper bound functions to accurately approximate

FP (q) (cf. Equation 1). However, unlike KDV, the kernel density

function for STKDV FP̂ (q, tq) (cf. Equation 2) is more complex,

which involves the multiplication of both spatial kernel Kspace(q, p)
and temporal kernel Ktime(tq, tp). Therefore, it remains unknown

whether these methods can be modified to support the fast compu-

tation of FP̂ (q, tq) with non-trivial approximation guarantee.

Data sampling methods: To efficiently generate KDV, Zheng et

al. [67–69] and Phillips et al. [44–46] have developed advanced

algorithms to first sample the original dataset and then evaluate

the modified kernel density function, based on the reduced dataset.

They further show that this approach can provide the non-trivial

approximation guarantee between the original kernel density func-

tion value FP (q) and their output result for each pixel q. However,
it remains unknown whether this approach can be extended to

support STKDV with non-trivial approximation guarantee. As a

remark, our progressive visualization framework (cf. Section 5) can

combine with different types of data sampling methods.

Parallel/distributed computation and hardware-based meth-
ods: There are also many research studies that utilize the paral-

lel/distributed computation, e.g., MapReduce [67] and hardware-

basedmethods, e.g., GPU [34, 43, 64] and FPGA [27], to further boost
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the efficiency for computing KDV. Recently, Saule et al. [51], Hohl

et al. [30] and Delmelle et al. [24] further adopt the parallel compu-

tation to improve the efficiency for generating STKDV. Due to space

limitations, we focus on single CPU setting in this paper and leave

the combination of SWS with the parallel approach [24, 30, 51] to

the technical report [15].

8 CONCLUSION
In this paper, we study spatial-temporal kernel density visualization

(STKDV), which has been extensively used in different types of

applications, including disease outbreak analysis [30, 65], traffic ac-

cident hotspot detection [32, 37], and crime hotspot detection [31].

However, STKDV is a computational expensive operation (with

O(XYTn) time), which is not scalable to large-scale dataset. To im-

prove the efficiency for computing STKDV, we develop the sliding-

window-based solution (SWS), which can theoretically reduce the

time complexity toO(XY (T +n)), without increasing the space com-

plexity (i.e., O(XYT + n)). By combining SWS with the progressive

visualization framework, we can further reduce the response time

for supporting progressive visualization with different types of data

sampling methods (e.g., random sampling [44]). Our experimental

results show that our method SWS can consistently outperform the

state-of-the-art methods by 2x to 24x.

In the future, we will extend SWS to support NKDV [18] and

other types of kernel functions (e.g., Gaussian kernel). In addition,

we will develop the visualization system for STKDV to support

many data analytics tasks. Furthermore, we will also exploit the

opportunity for combining the hardware-based approach with SWS,

which can further improve the efficiency for generating STKDV.

9 APPENDIX
9.1 Proof of Lemma 3

Proof. In this proof, our goal is to show that |Wtq
1

| +∑T−1
i=1 |I (W (tqi ),W (tqi+1 ))| +

∑T−1
i=1 |D(W (tqi ),W (tqi+1 ))| is O(n) in

Equation 10.

We consider the first term |Wtq
1

|. Since the windowWtq
1

can

be arbitrary large (by setting the value γt of the Epanechnikov

kernel (cf. Table 1) to be as small as possible), we can find that

|Wtq
1

| = O(n) in the worst case theoretically.

In Figure 7, we have:

I (W (tqi ),W (tqi+1 )) ∩ I (W (tqj ),W (tqj+1 )) = ϕ

D(W (tqi ),W (tqi+1 )) ∩ D(W (tqj ),W (tqj+1 )) = ϕ

where 1 ≤ i, j ≤ T − 1 and i , j.
Since the number of points in the dataset is at most n, we can

conclude that:

T−1∑
i=1
|I (W (tqi ),W (tqi+1 ))| ≤ n and

T−1∑
i=1
|D(W (tqi ),W (tqi+1 ))| ≤ n

Hence, we have proved Lemma 3. �

9.2 Proof of Lemma 5
In this proof, we focus on how to update the statistical terms in both

left and right windows
3
, i.e.,WL(tqn ) andWR (tqn ), respectively, for

3
We omit the proof for the fast update for the statistical term S (0)W (tq) in Equation

11, as we can reuse the result in Lemma 2 to infer that the time complexity is

O ( |I (W (tq),W (tqn )) | + |D(W (tq),W (tqn )) |).

the next voxel (q, tqn ). Then, we can compute FP̂ (q, tqn ) in O(1)
time by adopting Equation 11, given the statistical terms. Here, we

need to consider the following three possible cases.

Case 1 tqn − tq ≤
1

γt : In Figure 22, we find that:

WL(tqn ) = (WL(tq) \ D(W (tq),W (tqn ))) ∪C(tq, tqn )

WR (tqn ) = (WR (tq) \C(tq, tqn )) ∪ I (W (tq),W (tqn ))

Therefore, we can update the statistical terms for both left and

right windows of (q, tqn ) using the following equations:

S
(i)
WL (tqn )

(q) = S
(i)
WL (tq)

(q) −
∑

(p,tp)∈D(W (tq),W (tqn ))

t ip · Kspace(q, p)

+
∑

(p,tp)∈C(tq,tqn )

t ip · Kspace(q, p)

S
(i)
WR (tqn )

(q) = S
(i)
WR (tq)

(q) +
∑

(p,tp)∈I (W (tq),W (tqn ))

t ip · Kspace(q, p)

−
∑

(p,tp)∈C(tq,tqn )

t ip · Kspace(q, p)

As such, we can obtain the above statistical terms after

we scan those data points in D(W (tq),W (tqn )), I (W (tq),W (tqn ))
and C(tq, tqn ). Therefore, the time complexity for this case is

O(|I (W (tq),W (tqn ))| + |D(W (tq),W (tqn ))| + |C(tq, tqn )|).

t
(q,tq) (q,tqn

)

D(W(tq),W(tqn
)) I(W(tq),W(tqn

))

WL(tq) WR(tq)

WL(tqn
) WR(tqn

)

C(tq , tqn
)

Figure 22: The case for tqn − tq ≤
1

γt .

Case 2 tqn − tq >
1

γt and tqn − tq ≤
2

γt : In Figure 23, we find

that:

WL(tqn ) = (WR (tq) \ S) ∪A

WR (tqn ) = I (W (tq),W (tqn )) \A

Therefore, we have:

S
(i)
WL (tqn )

(q) = S
(i)
WR (tq)

(q) −
∑
(p,tp)∈S

t ip · Kspace(q, p)

+
∑

(p,tp)∈A

t ip · Kspace(q, p)

S
(i)
WR (tqn )

(q) =
∑

(p,tp)∈I (W (tq),W (tqn ))

t ip · Kspace(q, p)

−
∑

(p,tp)∈A

t ip · Kspace(q, p)

Since both the sets S and A are inside the sets D(W (tq),W (tqn ))
and I (W (tq),W (tqn )), respectively, we can compute these statistical

terms by scanning these two sets, which takeO(|I (W (tq),W (tqn ))|+
|D(W (tq),W (tqn ))|) time.
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(q,tq) (q,tqn
)

D(W(tq),W(tqn
)) I(W(tq),W(tqn

))

WL(tq) WR(tq)

WL(tqn
) WR(tqn

)

S A

t

Figure 23: The case for tqn − tq >
1

γt and tqn − tq ≤
2

γt .

Case 3 tqn − tq >
2

γt : In Figure 24, we only need to scan all data

points from I (W (tq),W (tqn )) in order to obtain both S
(i)
WL (tqn )

(q)

and S
(i)
WR (tqn )

(q), which takes O(|I (W (tq),W (tqn ))|) time. In addi-

tion, we also need to scan the additional data points in the yellow

region, which is at most O(|C(tq, tqn )|) time, in order to determine

the start position of theW (tqn ) (blue window). Therefore, it takes
at most O(|I (W (tq),W (tqn ))| + |C(tq, tqn )|) in this case.

(q,tq) (q,tqn
)

WL(tq) WR(tq) WL(tqn
) WR(tqn

)

D(W(tq),W(tqn
)) I(W(tq),W(tqn

))

t

Figure 24: The case for tqn − tq >
2

γt .
Hence, based on the time complexity for these three cases, we

have proved this lemma.

9.3 Proof of Lemma 6
Since the proof of this lemma follows the same concept in Section 3.2

(just after Lemma 2), we omit the details for this part. Based on the

result of Lemma 5, we can conclude that it takes the following time

complexity to evaluate all voxels (q, tq1 ),(q, tq2 ),...,(q, tqT ):

O
(
|Wtq

1

| +

T−1∑
i=1
|I (W (tqi ),W (tqi+1 )) | +

T−1∑
i=1
|D(W (tqi ),W (tqi+1 )) |

+

T−1∑
i=1
|C(tqi , tqi+1 ) | +T

)
Based on the proof of Lemma 3, we know that |Wtq

1

| +∑T−1
i=1 |I (W (tqi ),W (tqi+1 ))| +

∑T−1
i=1 |D(W (tqi ),W (tqi+1 ))| = O(n).

Here, once we can show that

∑T−1
i=1 |C(tqi , tqi+1 )| = O(n), we can

prove this lemma.

Based on Figure 7 and Equation 12, we can conclude that

C(tqi , tqi+1 ) ∩ C(tqj , tqj+1 ) = ϕ, where 1 ≤ i, j ≤ T − 1 and i , j.
Therefore, we also have:

T−1∑
i=1
|C(tqi , tqi+1 ) | ≤ n = O (n)

9.4 Pseudocode of SWS and Its Implementation
Details

Pseudocode of SWS: Recall from Figure 3b that we have divided

the cube into a set of voxels (i.e., small cubes), where each voxel

can be represented by the spatial and temporal coordinates (q, tq).
Here, we let xs , ys , and ts be the smallest values of x-coordinate,

y-coordinate, and t-coordinate, respectively. Moreover, we also

denote the distance value for shifting to the next voxel with positive

direction along the x-axis, y-axis, and t-axis to be ∆x , ∆y , and
∆t , respectively. Furthermore, we also represent the cube C (cf.

Figure 3b) with X × Y ×T voxels. Based on the above information,

we provide the pseudocode (cf. Algorithm 1) for our method SWS

with the Epanechnikov kernel. In line 12 to line 16 of Algorithm 1,

we adopt the incremental algorithm in Section 3.2 to update the

statistical terms and compute the kernel density function FP̂ (q, tq).
As a remark, this pseudocode can also be extended to support other

kernel functions in Section 4.

Algorithm 1 Sliding-Window-based Solution (with Epanechnikov

kernel)

1: procedure SWS(Point set P̂ , xs , ys , ts , ∆x , ∆y , ∆t , X, Y, T)
2: Define cube C with size X × Y ×T
3: for u ← 1 to X do
4: x ← xs + (u − 1)∆x
5: for v ← 1 to Y do
6: y ← ys + (v − 1)∆y
7: q← (x,y), tq ← ts
8: ObtainW (tq)

9: Obtain S
(i)
W (tq)

(q) (i = 0, 1, 2) ◃ Equation 6

10: C(q, tq) ← FP̂ (q, tq) ◃ Equation 5

11: forw ← 2 to T do
12: tqn ← ts + (w − 1)∆t
13: Obtain I (W (tq),W (tqn )) ◃ Equation 7

14: Obtain D(W (tq),W (tqn )) ◃ Equation 8

15: Obtain S
(i)
W (tqn )

(i = 0, 1, 2) ◃ Equation 9

16: C(q, tqn ) ← FP̂ (q, tqn ) ◃ Equation 5

17: tq ← tqn

18: Return the cube C

Implementation details: In order to efficiently obtain

I (W (tq),W (tqn )) (line 13) and D(W (tq),W (tqn )) (line 14), we

also need to maintain the starting and ending data points for

each sliding window. Using Figure 5 as an example, the red

dashed windowW (tqn ) should store (p1, tp1 ) and (p4, tp4 ) as the
starting and ending data points, respectively. Once we shift to

the next sliding window W (tq) (blue window), we can identify

I (W (tq),W (tqn )) and D(W (tq),W (tqn )) without incurring the

additional costs for finding the positions of these points (green and

yellow points). After we scan these data points, we can then obtain

the starting and ending data points for the next windowW (tqn ),
i.e., (p3, tp3 ) and (p5, tp5 ), respectively for the blue window.

Formore details, please refer to our implementation in the Github

repository https://github.com/STKDV/STKDV.
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