
Fast Neural Ranking on Bipartite Graph Indices
Shulong Tan

Cognitive Computing Lab
Baidu Research

shulongtan@baidu.com

Weijie Zhao
Cognitive Computing Lab

Baidu Research
weijiezhao@baidu.com

Ping Li
Cognitive Computing Lab

Baidu Research
liping11@baidu.com

ABSTRACT
Neural network based ranking has been widely adopted owing to
its powerful capacity in modeling complex relationships (e.g., users
and items, questions and answers). Online neural network ranking,
i.e., the so called fast neural ranking, is considered a challenging
task because neural network measures are in general non-convex
and asymmetric. Traditional approximate near neighbor (ANN)
search which typically focuses on metric ranking measures, is not
applicable to these complex measures. To tackle this challenge, in
this paper, we propose to construct BipartitE Graph INdices (BE-
GIN) for fast neural ranking. BEGIN contains two types of nodes:
base/searching objects and sampled queries. The edges connect-
ing these types of nodes are constructed via the neural network
ranking measure. The proposed algorithm is a natural extension
from traditional search on graph methods and is more suitable for
fast neural ranking. Experiments demonstrate the effectiveness and
efficiency of the proposed method.

PVLDB Reference Format:
Shulong Tan, Weijie Zhao, and Ping Li. Fast Neural Ranking on Bipartite
Graph Indices. PVLDB, 15(4): 794 - 803, 2022.
doi:10.14778/3503585.3503589

1 INTRODUCTION
In recent years, neural network based ranking models play more
andmore vital roles in information retrieval, recommendation, ques-
tion answering, i.e., [2, 4, 5, 9, 15, 16, 18, 47]. Figure 1 presents a
typical example of neural network ranking measure – given a query
and a base/searching object, the neural network style measure re-
turns a ranking score. Neural networks are flexible in modeling
complex relationships among different types of objects, such as
queries and documents, users and items, or questions and answers.
They are however often too time-consuming to be deployed for
online ranking applications. Thus, neural network based ranking
models are usually used in offline ranking or re-ranking on pre-
produced small subsets [2, 4, 5]. Directly deploying neural network
based measures for online ranking services (on large base sets)
requires highly efficient searching indices, like approximate near
neighbor (ANN) search methods [12, 20, 25, 33, 40, 50]. Fast and
approximate ranking by neural network measures—so called fast
neural ranking [35]—is considered challenging since these rank-
ing measures are complex, usually non-convex and asymmetric.
Traditional ANNmethods are designed for simple rankingmeasures,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503589

Ranking Score

Query Vector Base Vector

Figure 1: An example of neural network ranking measures.

such as ℓ2-distance, cosine similarity, inner product, or generalized
min-max (GMM) kernel [28, 29], etc. It is oten not straightforward
to extend ANN search methods for fast neural ranking scenarios.

Recently, [42] extends the definition of traditional ANN search
to a generic setting, Optimal Binary Function Search (OBFS):
Let 𝑋 and 𝑌 be subsets of Euclidean spaces, given a dataset 𝑆 =

{𝑥1, . . . , 𝑥𝑛} ⊂ 𝑋 and a continuous binary function, 𝑓 : 𝑋 ×𝑌 → R,
given 𝑞 ∈ 𝑌 , OBFS aims to find: argmax𝑥𝑖 ∈𝑆 𝑓 (𝑥𝑖 , 𝑞). In this defini-
tion, ranking measures are considered as binary functions. There
are no strong assumptions for the search function: metric or non-
metric, linear or non-linear, convex or non-convex, symmetric or
asymmetric. Beyond the definition, they also provide a solution
for fast OBFS, called “Search on L2 Graph” (SL2G). They extend
traditional graph based fast vector searching algorithms by con-
structing graph indices in ℓ2-distance but searching according to
the focused binary function. Although SL2G works well for some
binary functions, as shown in the paper, we find that it is prob-
lematic to approximate relationships among base data (e.g., item
vectors) by ℓ2-distance. As defined in OBFS, we only have the rank-
ing measure definition between base vectors (from 𝑋) and queries
(from 𝑌). There are usually no definitions for distances between
base vectors (i.e., (𝑥𝑖 , 𝑥 𝑗)), nor for distances between query vectors
(i.e., (𝑞𝑖 , 𝑞 𝑗)). It is not proper to model relationships among base
data by ℓ2-distance. Figure 2 (a) and (b) present the challenges of
OBFS and the SL2G solution. Besides, we design a baseline in the
experiment, Sample-Ave (Section 4.2), which estimates zbase data
distances by the average of 𝑓 value difference with a query sample
set. It statistically estimates the relationships of base vectors. How-
ever, its performance is similar to SL2G and far from optimal. This
is another evidence that shows estimated base data distances (i.e.,
(𝑥𝑖 , 𝑥 𝑗)) cannot solve the OBFS problem well.

To solve fast OBFS in a better way, in this paper, we propose
BipartitE Graph INdices (BEGIN). Two types of nodes in the
bipartite graph are sampled queries (i.e., 𝑞) and base data (i.e., 𝑥).
The edges, which connect these two kinds of nodes, are constructed

794

https://doi.org/10.14778/3503585.3503589
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503589

Base Data (Movies)

Query (User)

f(xi , q)

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

ℓ2

(b) SL2G (c) BEGIN

f(xi , q)

f(qi , qj)

f(xi , xj)

(a) Binary Function Search

f(xi , q)

f(xi , q)

Query (User)

Sampled Queries

Figure 2: An example of the OBFS problem and solutions: we have collections of users and movies, and a binary function
𝑓 (𝑥𝑖 , 𝑞) learned on historical user-movie preference pairs. Given a user 𝑞 and a movie 𝑥𝑖 , the binary function 𝑓 (𝑥𝑖 , 𝑞) predicts
the ranking score of this pair—how the user may like the movie. (a) Challenges in adapting ANN algorithms to the fast OBFS
problem. The binary function is defined on movie-user pairs—no user-user nor movie-movie distance/similarity is defined.
However, traditional ANN methods, e.g., proximity graph, require the distance between base data vectors to construct an
index. (b) SL2G exploits ℓ2-graph to approximate the binary function search space. (c) Our proposed solution–BEGIN–builds a
bipartite graph that leverages users to bridge relations among movies. This allows us to apply graph-based search algorithms
on fast OBFS without knowing the distance between users 𝑓 (𝑞𝑖 , 𝑞 𝑗) or the relationship between movies 𝑓 (𝑥𝑖 , 𝑥 𝑗).

based on the ranking measure (i.e., 𝑓 (𝑥, 𝑞)). Intuitively, the ranking
tasks, such as recommendation, naturally pose bipartite graphs. The
two types of nodes correspond to users and items, respectively. The
edges are constructed based on the interactions between users and
items. Figure 2(c) shows an example of BEGIN. The graph construc-
tion procedure does not require to estimate distances between base
vectors (as in SL2G) or between queries. Traditional graph indices
(containing uni-type nodes), such as HNSW [33] and NSG [10] are
designed for ranking according to metric measures. BEGIN is a
natural extension of previous algorithms but for ranking by generic
binary functions. To obtain better performance on the trade-off be-
tween searching efficiency and effectiveness, we propose a two-hop
edge selection criterion and a fast search algorithm. In the experi-
ments, we evaluate BEGIN on both synthetic and learned neural
network measures. Our contributions are summarized as below:

• We introduce BEGIN–a novel graph indexing and searching
algorithm–that bridges the gap between generic binary func-
tion search and common metric ranking on graph-based indices.
• We present a two-hop edge selection criterion to ensure that
restricted number of edges in BEGIN are chosen effectively.
• We propose a fast searching algorithm that heuristically prunes
out “bad” candidates, to optimize the query execution on the
bipartite graph index.
• We investigate 4 methods to generate query samples when the
known queries are not enough.
• We experimentally evaluate BEGIN on 2 synthetic measures and
3 recommendation neural networks, over 3 real-world recom-
mendation datasets. Experiments show that BEGIN outperforms
SL2G in most cases, under various evaluation measures.

2 RELATEDWORK
In this section, we will first connect the generic ranking problem–
Optimal Binary Function Search (OBFS)–with traditional approxi-
mate nearest neighbor (ANN) search and introduce some applica-
tions of OBFS. Then, in the methodology level, we will explain why
previous fast search algorithms–designed for ANN search–are not
applicable to the generic OBFS problem.

2.1 Fast Top-𝐾 Search
Fast top-𝐾 search has wide applications in modern information
systems, such as top-𝐾 recommender systems for e-commerce and
link prediction for social networks. For online services, the search
efficiency is as important as search effectiveness. Fast search algo-
rithms try to construct some kind of index structures beforehand
to speed up the online searching. Traditional fast search problems
restrict the searching measures as metric measures (e.g., cosine
similarity or ℓ2 distance) or some simple non-metric measures, such
as inner product widely exploited in recommender systems. Fast
search via metric measures is usually referred as approximate near
neighbor (ANN) search [12, 20, 25, 33, 40, 50].

Optimal Binary Function Search (OBFS) is a generic definition
for fast top-𝐾 search. Theoretically, an OBFS task can choose any
binary function as the search measure, linear or non-linear, metric
or non-metric, convex or non-convex, symmetric and asymmetric.
Traditional ANN search is a special instance of OBFS. Neural net-
work based ranking measures [2, 8, 15, 32] are also examples of
searching binary functions. Setting a user vector and an item vector
as inputs, one can design any neural network structures as ranking
measures. Parameters of the network are learned on training data
but not fixed beforehand. These kinds of neural network based
searching functions are usually non-convex, which are not studied
by traditional ANN search work. These are lots of real cases of
neural networks based searching measures, such as Multi-Layer
Perceptron (MLP) and BERT-style ones [8, 18, 39, 44], which has
wide applications in recommendation, ads ranking and retrieve
based question answering [2, 4, 5, 9, 15, 16, 18, 47]. In this paper, we
focus on the generic fast OBFS problem, especially how to speed
up the searching process under neural network based measures, or
called fast neural ranking.

2.2 Existing Fast Search Methods
There have been many algorithms for fast near neighbor search,
such as hashing based methods [3, 12, 20, 30, 38, 40], quantization
based methods [11, 24, 25, 30, 45], graph based indices [17, 22, 23,
33, 41, 46, 49, 50] and tree based methods [1, 6, 7]. For all those
methods, each given query is compared with a subset instead of the

795

whole dataset or comparing by shorter codes, significantly reducing
the time complexity while hopefully retaining high search recalls.

Most of these methodologies are designed for traditional ANN
search. For example, one particular LSH algorithm is usually de-
signed for one specific measure, such as “Gaussian random projec-
tions” for cosine similarity [3, 13, 30], “random Fourier features” for
radial basis function kernel similarity [28, 31, 37], and “consistent
weighted sampling” for min-max kernel similarity [21, 29, 34], etc.

They are infeasible to be extended for neural network based
measures. Search on graph methods often claim that there are no
constraints on searchingmeasures (actually must be symmetric) [17,
33], most existing search on graph methods, however, mainly focus
on searching bymetric distances, with a few exceptions, e.g., [33, 36].
Although graph based indices for traditional ANN search are proved
great superiority in the trade-off between search efficiency and
effectiveness. It was shown that the performance is dramatically
bad when applying them to generic ranking problems [42]. The
reason is that these methods require the definition between base
data to construct a proximity graph, which are not well defined
under the setting of fast neural ranking.

[26] proposes CANTOR, which utilizes user coresets (like cen-
troids of clusters) to improve the performance of traditional ANN
search. User coresets are used as “short-cuts” in CANTOR: results
for users/queries in coresets are recorded and will be returned
directly as results for queries similar with them. Query samples
in our method are exploited differently from the user corsets in
CANTOR. We use query samples as “bridges” to connect base data.
CANTOR works well on ANN search, based on the assumption:
similar queries (in metric spaces) will have similar retrieval results.
This assumption may not hold for the neural ranking problems:
distances between queries are not well defined.

2.3 Why not SL2G?
As analyzed above, most previous fast vector ranking work focuses
on simple ranking measures – mainly in metric measures and inner
product– and is difficult to be extended for generic ranking mea-
sures. The exception is SL2G [42], which is designed for the generic
fast OBFS problem. The basic idea of SL2G is:

(i) Nomatter what the given binary function 𝑓 is, they construct
a Delaunay graph (or an approximate one) with respect to
ℓ2 distance (which is defined on searching/base data 𝑋 and
independent of queries) in the indexing step.

(ii) Then SL2G performs the greedy search on this graph by the
binary function 𝑓 in the searching step.

The theoretical basis of SL2G is that, the performance of greedy
search on ℓ2 graph is similar to optimizing OBFS by “coordinate”
descent in Euclidean space. If the 𝑓 is smooth and the data are dense
enough, SL2G will reach an approximate local optimum. The fast
ranking problem is always a trade-off between effectiveness and
efficiency. The theoretical analysis of SL2G guarantees the effec-
tiveness but not the efficiency. Besides, SL2G utilizes ℓ2 distance to
approximate the relationships among base data, which are unde-
fined, as shown in Figure 2 (a) and (b). Neural network models only
learn the relevance/distance function between queries and base
data. We cannot determine relationships between two base data

points. Consider base data points are movies in the recommenda-
tion system and queries are individual users. Some users may think
the two movies are closely related because they are directed by the
same director while another user may do not agree for they are
in two different categories. Therefore, constructing graph indices
based on estimated base data distances is problematic.

In this paper, we extend previous graph-based indices and pro-
pose bipartite graph indices for generic OBFS problems, with two
types of vertices – base data and sample queries. With the proposed
fast ranking algorithm, lots of generic searching measures can be
applied for online ranking services, say those neural network based
measures [8, 18, 39, 44, 47]. More advanced semantic information
will be captured in the ranking/searching procedure and the user
experience would be improved greatly.

Although the proposed algorithm is in sub-linear complexity, it
is still not applicable to very complicated ranking measures on large
data. For example, it is time consuming to go through the BERT-style
models [2, 9], even if hundreds of times. Possible improvements are:
(i) take advantage of GPU to accelerate the computations further [27,
49]; (ii) compress the neural network based measures by knowledge
distillation techniques [19, 43, 48].

3 BIPARTITE GRAPH INDICES
3.1 Index Construction
Different from SL2G, we try to construct a graph index only based
on the ranking binary function and bypass estimating the distance
between base data. Specifically, we build the index as a bipartite
graph as illustrated in Figure 2 (c), namely BipartitE Graph IN-
dices (BEGIN). Besides base data points, we exploit a set of query
samples (will be introduced later) as the other kinds of nodes. Edges
in the graph connect these two kinds of nodes, query samples and
base data points. Taking the example in recommendation systems,
each item (base data) will connect to users (queries) who rate this
item in higher scores. Each user will connect to her favorite items.

The algorithm of BEGIN construction can be found in Algo-
rithm 1. BEGIN is constructed iteratively. The nodes of base data
and queries are inserted alternately. The graph is initialized as an
empty graph. The first node will not find any neighbors, so it will
be inserted as an isolated node. Later, for the following nodes, they
will find at least one neighbor by the search algorithm. Note that,
there are two respective greedy search algorithms for base data
search and query search, as shown in Algorithm 2 and Algorithm 3.
For base search, a candidate set of queries will be returned while
for query search, a candidate set of base nodes will be returned.
Most of the two algorithms are the same, except for the starting
point selection (line 2 of Algorithm 2 and 3) and the way we call
the binary function 𝑓 (line 7 of Algorithms 2 and 3).

3.2 Two-Hop Edge Selection
Graph-based ANNmethods commonly employ some edge selection
algorithm which restricts node degrees to improve the searching
efficiency. Prior studies [10, 33] show that a carefully designed
edge selection method is vital for the searching effectiveness with
restricted degrees.

796

Algorithm 1 BEGIN Construction

1: input: Base vector set 𝑆 , sample query vector set𝑄 , maximum vertex
degree𝑀𝑥 for base data, maximum vertex degree𝑀𝑞 for queries, prior-
ity queue size 𝑘 for searching neighbors and ranking measure 𝑓 (𝑥,𝑞) .

2: Initialize graph𝐺 = ∅
3: for each 𝑥 in 𝑆 do
4: Create a node for 𝑥 in G.
5: Search 𝑘 vertices {𝑝𝑖 } on 𝐺 by 𝑆𝑒𝑎𝑟𝑐ℎ𝐵 (𝑥,𝐺, 𝑘, 𝑓) that have

largest values with 𝑥 in 𝑓 (𝑥, 𝑝𝑖) , place them in descending order.
6: 𝐶 ← ∅. 𝐻 ← ∅.
7: for i← 1 to 𝑘 do
8: if 𝑝𝑖 not in 𝐻 then
9: 𝐶 ← 𝐶 ∪ {𝑝𝑖 }
10: Add all neighbors’ neighbors of 𝑝𝑖 to 𝐻 .
11: Add an edge from 𝑥 to 𝑝𝑖 in𝐺 .
12: if |𝐶 | = 𝑀𝑥 then
13: break
14: for each 𝑞 in𝑄 do
15: Create a node for 𝑞 in G.
16: Search 𝑘 vertices {𝑝𝑖 } on 𝐺 by 𝑆𝑒𝑎𝑟𝑐ℎ𝑄 (𝑞,𝐺,𝑘, 𝑓) that have

largest values with 𝑞 in 𝑓 (𝑝𝑖 , 𝑞) , place them in descending order.
17: 𝐶 ← ∅. 𝐻 ← ∅.
18: for i← 1 to 𝑘 do
19: if 𝑝𝑖 not in 𝐻 then
20: 𝐶 ← 𝐶 ∪ {𝑝𝑖 }
21: Add all neighbors’ neighbors of 𝑝𝑖 to 𝐻 .
22: Add an edge from 𝑞 to 𝑝𝑖 in𝐺 .
23: if |𝐶 | = 𝑀𝑞 then
24: break
25: output: index graph𝐺

Algorithm 2 Base Data Search on BEGIN 𝑆𝑒𝑎𝑟𝑐ℎ𝐵 (𝑥,𝐺, 𝑘, 𝑓)
1: Input: the base data point 𝑥 , the bipartite graph𝐺 = (𝑉𝑞,𝑉𝑥 , 𝐸) , the

priority queue size 𝑘 and the similarity measure 𝑓 (𝑥,𝑞) .
2: Randomly choose a vertex 𝑝 ∈ 𝑉𝑞 as the start point and initialize the

priority queue 𝐴← {< 𝑓 (𝑥, 𝑝), 𝑝 >}.
3: Set 𝑝 as checked and the rest of vertices as unchecked.
4: while 𝐴 does not converge do //Not converge: 𝐴 is still updated with

further greedy search.
5: Add unchecked neighbors’ neighbors of the top element in 𝐴 to

𝐴. // Neighbors’ neighbors of a query are queries.
6: Set vertices in 𝐴 as checked.
7: 𝐴← top-𝑘 elements of 𝑣 ∈ 𝐴 in descending order of 𝑓 (𝑥, 𝑣) .
8: Output: 𝐴.

Algorithm 3 Query Search on BEGIN 𝑆𝑒𝑎𝑟𝑐ℎ𝑄 (𝑞,𝐺,𝑘, 𝑓)
1: Input: the query element 𝑞, the bipartite graph 𝐺 = (𝑉𝑞,𝑉𝑥 , 𝐸) , the

priority queue size 𝑘 and the similarity measure 𝑓 (𝑥,𝑞) .
2: Randomly choose a vertex 𝑝 ∈ 𝑉𝑥 as the start point and initialize the

priority queue 𝐴← {< 𝑓 (𝑝,𝑞), 𝑝 >}.
3: Set 𝑝 as checked and the rest of vertices as unchecked.
4: while 𝐴 does not converge do
5: Add unchecked neighbors’ neighbors of the top element in 𝐴 to

𝐴. //Base data’s neighbors’ neighbors are base data again.
6: Set vertices in 𝐴 as checked.
7: 𝐴← top-𝑘 elements of 𝑣 ∈ 𝐴 in descending order of 𝑓 (𝑣, 𝑞) .
8: Output: 𝐴.

Queries Base Data
(a)

Rank 3

Rank 1

Rank 2

Inserting
Node

Queries Base Data
(b)

Node 1

Node 2

Node 3

Figure 3: Illustrations for edge selection methods: (a) con-
nect to top 𝑀 candidates. (b) connect to diverse candidates
by two-hop edge selection.

For BEGIN, we design a two-hop edge selection method for the
bipartite graph structure, as shown in Figure 3 (a) and (b). Say we
are inserting a base data point (the colored inserting node) now.
We first utilize the base data greedy search (i.e., Algorithm 2) to
get top query candidates, labeled as Rank 1, 2 and 3. Figure 3 (a)
represents the native non-selection method: the top𝑀𝑥 (𝑀𝑥 = 2 in
the figure) candidates are connected. This non-selection method
would connect too many similar candidates.

To diversify the connection, a two-hop selection method is pro-
posed as shown in Figure 3 (b). It works as follows: The top 1
candidate (i.e., the Rank 1 one) will be connected first. For other
candidates, we will check whether they can be reached from any
selected candidates in two hops. For example, in Figure 3 (b), the
Rank 2 candidate can be reached from the Rank 1 candidate via
Node 3. So the Rank 2 candidate will not be selected while the Rank
3 candidate will be connected since it can not be accessed via the
Rank 1 candidate in two hops. The example is taken in inserting
base data. Edge selection for inserting sample queries is similar.
Algorithm details for the two-hop edge selection can be found in
Algorithm 1 Line 5-12 and Line 15-22.

To ensure the constructed graph is connected, we preserve one
outgoing edge to a randomly picked node, for each inserting data
point. Other edges are constructed by the two-hop edge selection
algorithm. The idea is similar to the long-range edge in HNSW [33].
In this way, isolated clusters would be connected.

3.3 Random Query Generation
BEGIN requires query vector samples to construct bipartite graphs.
These query vectors can be generated in model training. For ex-
ample, when training models for question answering, we will get
some intermediate embedding vectors for questions (queries) in
the training dataset. If the existing queries are not enough, we can
generate query samples randomly based on existing query samples
as the following methods.
• Uniform. We scan all the existing query vectors to obtain the
minimum and maximum values on each dimension. Then we
generate vectors such that the values on each dimension are
uniformly distributed in [𝑚𝑖𝑛,𝑚𝑎𝑥].
• Normal. Similar to the uniform case, we compute the sample
mean and standard deviation of the existing query vectors. Vec-
tors are generated from a Normal distribution according to the
sample mean and standard deviation for each dimension.

797

• Duplicate. To generate a query vector, we randomly select an
existing query vector and add a random noise (±1%) to each
dimension independently.
• Midpoint. For each generated query, an existing query 𝑞1 is
randomly selected. Then we randomly choose 100 vectors from
the existing queries, in which we find the furthest one from 𝑞1,
noted as 𝑞2. The generated query is the middle point of 𝑞1 and
𝑞2, i.e., (𝑞1 + 𝑞2) × 0.5. The intuition is: we anticipate that those
midpoints compensate the gap between different sample query
clusters so that the query vector space is filled well.

It is unclear how to theoretically determine which random query
sample generation method might perform the best. We compare
these alternatives experimentally in Section 4.5. Note that query
samples used in bipartite graph construction or random query
generation are separated from testing queries, for fair comparisons.

3.4 Fast Search on BEGIN
The online query search is a greedy search on the constructed
bipartite graph. Basically, we can directly employ the query search
in Algorithm 3. However, this algorithm is inefficient. In each step,
we need to check all neighbors’ neighbors of the current base data
point 𝑥 as shown in Figure 4 (a). It is𝑀𝑥 ∗𝑀𝑞 in total. As depicted
in the figure, the current node 𝑥 has two query neighbors and each
query neighbor has three base data neighbors. We need to check
the six candidates (i.e., 𝑥 ’s, in blue) by evaluating 𝑓 (𝑥, 𝑞). And then
the next best base data 𝑥 will be chosen from these six candidates.

(a) (b)
Figure 4: Illustrations for online query search algorithms: (a)
check all neighbors’ neighbors of the current base data point
𝑥 . (b) Fast Search: only check top neighbor’s (𝑞) neighbors.

To improve the ranking performance, we designed a fast search
algorithm as represented in Algorithm 4 and Figure 4 (b). As shown
in the figure by blue arrows, we will first find the top two-hop
neighbor 𝑥 by only checking each one-hop neighbor’s first neighbor
(neighbors are stored in order). And then we get the corresponding
one-hop neighbor 𝑞. All other (unchecked) neighbors of 𝑞 will
be checked then. As can be seen, we only need to check at most
𝑀𝑥 +𝑀𝑞 − 1 nodes in this fast search algorithm (blue colored in
Figure 4 (b)). In real implementations,𝑀𝑥 and𝑀𝑞 would be larger
than those in the figure, say 16 or 32. Then the superiority of fast
search will be more obvious (i.e.,𝑀𝑥 ∗𝑀𝑞 vs.𝑀𝑥 +𝑀𝑞 − 1).

Algorithm 4 Fast Query Search on BEGIN 𝐹𝑎𝑠𝑡𝑆𝑒𝑎𝑟𝑐ℎ (𝑞,𝐺,𝑘, 𝑓)
1: Input: the query element 𝑞, the bipartite graph 𝐺 = (𝑉𝑞,𝑉𝑥 , 𝐸) , the

priority queue size 𝑘 and the similarity measure 𝑓 (𝑥,𝑞) .
2: Randomly choose a vertex 𝑝 ∈ 𝑉𝑥 as the start point and initialize the

priority queue 𝐴← {< 𝑓 (𝑝,𝑞), 𝑝 >}.
3: Set 𝑝 as checked and the rest of vertices as unchecked.
4: while 𝐴 does not converge do
5: Get the top element �̃� of A.
6: Check �̃� ’s neighbors’ first unchecked elements (�̃� ’s two-hop

neighbors) and find max�̂� 𝑓 (𝑥,𝑞) . Record the corresponding �̃� ’s one-
hop neighbor 𝑞. //See Figure 4 (b).

7: Add unchecked neighbors of 𝑞 to 𝐴.
8: Set vertices in 𝐴 as checked.
9: 𝐴← top-𝑘 elements of 𝑣 ∈ 𝐴 in order of 𝑓 (𝑣,𝑞) .
10: Output: 𝐴.

4 EXPERIMENTS
We evaluate the proposed BEGIN with 5 ranking measures, includ-
ing 2 synthetic measures and 3 neural network based measures.

1. All-Element-Sum: 𝑓𝐴𝑙𝑙−𝐸𝑙𝑒𝑚𝑒𝑛𝑡−𝑆𝑢𝑚 (𝑥, 𝑞) =
∑
𝑖 𝑥𝑖 +

∑
𝑗 𝑞 𝑗 .

This measure accumulates all elements of the base vector and the
query vector, then returns the sum.

2. Round-Sum. This function re-processes the All-Element-Sum
result and produces a more complex and non-convex measure:
𝑓𝑅𝑜𝑢𝑛𝑑−𝑆𝑢𝑚 (𝑥, 𝑞) = 𝑟𝑜𝑢𝑛𝑑

((∑
𝑖 𝑥𝑖 +

∑
𝑗 𝑞 𝑗

)
× 10000

)
mod 100.

3. MLP-Concate. The third measure is a neural network. It is
based on a state-of-the-art neural network based recommendation
method, MLP, which was introduced in [18]. The MLP model first
concatenates user latent vectors and item latent vectors before
going through the Multi-Layer Perceptron network.

4. MLP-Em-Sum. The fourth measure is introduced in [42],
which transforms two kinds of vectors into a common space by an
additional embedding layer and conducts element-wise sum opera-
tion before going through the MLP network. The vector dimensions
of MLP-Concate and MLP-Em-Sum are set as 32 for users and items.

5. DeepFM. DeepFM was proposed in [14], which combines the
power of factorization machines for recommendation and deep
learning for feature learning in a new neural network architecture.
We set the factorization part dimension as 8 and deep learning part
as 32. The total dimension for users and items is both 40.

Table 1: Dataset Statistics.

Datasets # Index Vec # Queries # Dim
Yelp 25,815 25,677 32
MovieLens 209,172 162,542 40
Yelp-1m 1,058,415 25,677 32
Amazon 3,826,085 182,032 40

Table 1 summarizes the datasets in our study.1 We train MLP-
Concate and MLP-Em-Sum on Yelp. DeepFM is trained on Movie-
Lens25M (MovieLens) and Amazon Movies & TV (Amazon). We
also include the simulation dataset used in [42]:Yelp-1m, which
was generated based on MLP-Concate trained on Yelp: randomly
generating 40 simulation data points by Gaussian distribution with
1https://www.yelp.com/dataset/challenge. http://jmcauley.ucsd.edu/data/amazon.
https://grouplens.org/datasets/\movielens/25m.

798

https://www.yelp.com/dataset/challenge
http://jmcauley.ucsd.edu/data/amazon
https://grouplens.org/datasets/\movielens/25m

the original data as mean and 0.1 as the standard deviation. The two
measures All-Element-Sum and Round-Sum can be tested on any
randomly generated vectors, and here we use vectors generated
by MLP-Concate on Yelp. For each dataset, we use 1000 queries as
searching queries and the rest for random query generation.

4.1 Baselines
To the best of our knowledge, few previous methods focus on
the OBFS problem. SL2G [42] is considered as the first solution.
Additionally, we design another baseline based on sample queries.

SL2G. As introduced in Section 2, SL2G constructs ℓ2 graph only
on based data and conducts a greedy search on the graph by the
focused ranking measure 𝑓 .

Sample-Ave. As we argued, constructing a graph index by dis-
tance/relevance between base data (e.g., in SL2G) is problematic,
for complex ranking measures. To verify our argumentation, we
design another method based on estimating base data distances:
(i) Generate a query sample set 𝑄 , such as 1, 000 query vectors,

separately from the final test set.
(ii) Approximate the distance between two base data points, 𝑥𝑖 and

𝑥 𝑗 by: 𝐷𝑖𝑠 (𝑥𝑖 , 𝑥 𝑗) =
∑

𝑞∈𝑄 |𝑓 (𝑥𝑖 ,𝑞)−𝑓 (𝑥 𝑗 ,𝑞) |
|𝑄 | .

The graph construction of this method is time-consuming—we
need to call the neural network 2, 000 (i.e., 2 ∗ |𝑄 |) times to compute
one base-to-base (𝑥𝑖 , 𝑥 𝑗) distance. The estimated distance of Sample-
Ave should be more proper than the one estimated by ℓ2 distance.

Note that we do not compare with other traditional ANN search
algorithms (e.g., ANNOY(https://github.com/spotify/annoy) and
HNSW [33]) since most of them are not designed for the generic
ranking problem, OBFS or specifically fast neural ranking. It was
demonstrated that these methods are dramatically worse than SL2G
when applying them on fast neural ranking [42].

4.2 Experimental Settings
To generate labels, we calculate most relevant base data points for
each query by each corresponding binary function 𝑓 . Experiments
on top-1 and 10 labels are recorded. Note that for neural network
based ranking measures, one binary function 𝑓 corresponds to one
network structure (e.g., MLP-Concate) trained on one dataset.

For evaluation measures, we use Recall vs. Time (queries per
second) and Recall vs. Computations (percentage of pairwise
computations) to evaluate the searching performance of different
algorithms. Recall vs. Time reports howmany queries the algorithm
can process per second at each recall level. Recall vs. Computations
reports the amount/percentage of pair-wise computations that the
search algorithm costs at each recall level. We will show both of
these perspectives in the following experiments for a comprehen-
sive evaluation. Recall is |𝐴∩𝐵 ||𝐵 | , where 𝐴 is the return item set and
𝐵 is the ground truth set. Both 𝐴 and 𝐵 have 𝑁 items for Top-𝑁
Recall. Note that we always return 𝑁 items for the Top-𝑁 case, so
Recall@𝑁 = Precision@𝑁 here.

The three method, SL2G, Sample-Ave and BEGIN have three
common parameters:𝑀 (i.e.,𝑀𝑥 in BEGIN), 𝑘construction and 𝑘search,
which control the degrees of vertices and the number of search
attempts. BEGIN has one more parameter 𝑀𝑞 for the degree of
query points. To make a fair comparison, we vary these parameters
over a fine grid. For each algorithm in each experiment, we will

have multiple points scattered on the plane. To plot curves, we first
find out the best recall number, max-recall. Then 100 buckets are
produced by splitting the range from 0 tomax-recall evenly. For each
bucket, the best result along the other axis (e.g., the highest queries
per second or the lowest percentage of pair-wise computations) is
chosen. In other words, we select the parameters that maximize the
performance in a given recall range.

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
4

10
5

10
6

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

All-Element-Sum Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
3

10
4

10
5

10
6

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

All-Element-Sum Top-10

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
4

10
6

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Round-Sum Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
4

10
6

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Round-Sum Top-10

BEGIN

SL2G

Sample-Ave

Figure 5: Experimental results for synthetic measures –All-
Element-Sum and Round-Sum– in Recall vs. Time. The best
results are in the upper right corner.

4.3 Results for Synthetic Measures
We first show experimental results on synthetic ranking measures.
Figure 5 shows results in Recall vs. Time. Each row is for each rank-
ingmeasure, All-Element-Sum or Round-Sum. Results for Top-1 and
Top-10 labels are represented by the two columns. Correspondingly,
Figure 6 represents results via the view of Recall vs. Computations.

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.005

0.01

0.015

0.02

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s

All-Element-Sum Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.005

0.01

0.015

0.02

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s

All-Element-Sum Top-10

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.025

0.05

0.075

0.1

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s

Round-Sum Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

0.025

0.05

0.075

0.1

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s

Round-Sum Top-10

BEGIN

SL2G

Sample-Ave

Figure 6: Experimental results for synthetic measures in Re-
call vs. (percentage of pairwise) Computations. The best re-
sults are in the lower right corner.

799

Both of the two evaluation metrics tell similar trends in compari-
son. The designed baseline Sample-Ave works better than previous
state-of-the-art, SL2G. As introduced above, Sample-Ave estimates
the distance between base data by sampled queries. That will make
more sense than estimating the distance by ℓ2 distance. Although
Sample-Ave shows superiority over SL2G, it is difficult to apply
it in real systems. Sample-Ave requires multiple times of 𝑓 (𝑥, 𝑞)
computations (i.e., the size of query sample set), for each pair of
base data points. It will take a long time to construct indices for

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Yelp MLP-Concate Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Yelp MLP-Concate top-10

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Yelp MLP-Em-Sum Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Yelp MLP-Em-Sum Top-10

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d MovieLens DeepFM Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d MovieLens DeepFM Top-10

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Yelp-1m MLP-Concate Top-1

BEGIN

SL2G

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Yelp1m MLP-Concate Top-10

BEGIN

SL2G

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
1

10
2

10
3

10
4

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d

Amazon DeepFM Top-1

BEGIN

SL2G

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
1

10
2

10
3

10
4

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Amazon DeepFM Top-10

BEGIN

SL2G

Figure 7: Experimental results for the neural network mea-
sures from the view of Recall vs. Time. The best results are
in the upper right corner.

large datasets. The proposed BEGIN works significantly better than
the two baselines. No matter the ranking measure is a simple func-
tion (i.e., All-Element-Sum) or a complex non-convex function (i.e.,
Round-Sum), BEGIN works consistently well. The reason is that BE-
GIN does not estimate the distance between base data but explore
ranking function directly. As analyzed above, distances between
base data are not well-defined, recalling the example of recommen-
dation in Section 2.3. An estimated distance between base data may
be good for some queries but may hurt the ranking performance
for other queries. Bypassing estimating the distance, the proposed
bipartite graph represents relationships between base data in the
neighbor intersection, which is more flexible for different queries.

4.4 Results Neural Network Measures
In this section, we introduce experimental results for neural net-
work based ranking measures. Experimental results by the two
evaluation metrics are shown in Figure 7 and Figure 8. Results via
the view of Recall vs. Computations are only shown for partial
datasets due to the limited space. Other results have similar trends.
Note that results for Sample-Ave are not reported on the last two
larger datasets since Sample-Ave is too time-consuming in index
construction for these sizes of datasets. As can be seen, the pro-
posed method works better than baselines, especially for Top-1
recalls. On these neural network ranking measures, Sample-Ave
works similarly with SL2G, not better than SL2G as on synthetic
ranking measures. The reason is that neural network based rank-
ing measures are much more complicated than synthetic ranking

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

5

10

15

20

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s 10

-3

Yelp MLP-Concate Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

5

10

15

20

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s 10

-3

Yelp MLP-Concate Top-10

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

2

4

6

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s 10

-3

MovieLens DeepFM Top-1

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

2

4

6

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s 10

-3

MovieLens DeepFM Top-10

BEGIN

SL2G

Sample-Ave

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

1

2

3

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s 10

-3

Amazon DeepFM Top-1

BEGIN

SL2G

0 0.2 0.4 0.6 0.8 1

Avg. Recall

0

1

2

3

%
 P

a
ir
w

is
e

 C
o

m
p

u
ta

ti
o

n
s 10

-3

Amazon DeepFM Top-10

BEGIN

SL2G

Figure 8: Experimental results for the neural network mea-
sures from the view of Recall vs. Computations. The best
results are in the lower right corner.

800

ones. As we analyzed above, SL2G and Sample-Ave are problematic
in estimating the distance between base data. The issue becomes
more obvious on these complex ranking measures. However, the
proposed BEGIN works consistently well in various cases. The
superiority of the bipartite graph structure is demonstrated.

Scalability of BEGIN. The last two datasets, Yelp-1m and Ama-
zon, are much larger, with more than 1 million and 3 millions base
vectors. As can be seen, the gap between BEGIN and SL2G is even
larger on these larger datasets. For example, on the Amazon dataset,
to achieve 80% Top-1 recall, SL2G can deal with 57 queries per sec-
ond. To get the same recall level, BEGIN can process 4,366 queries
per second: 76 times faster than SL2G. It is clear that BEGIN poses a
better performance in scalability. That is vital for real applications.

4.5 Evaluation of Query Generation Methods
As introduced in Section 3.3, there are multiple methods to generate
query vectors. In this section, we study the performance of gen-
erating methods. The performance results of different generating
methods are shown in Figure 9. Due to the limited space, we only
show results for Yelp MLP-Concate.

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Yelp MLP-Concate Top-1

BEGIN-Duplicate

BEGIN-Uniform

BEGIN-Normal

BEGIN-Midpoint

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Yelp MLP-Concate Top-10

BEGIN-Duplicate

BEGIN-Uniform

BEGIN-Normal

BEGIN-Midpoint

Figure 9: Experimental results for different query sample
generation method, introduced in Section 3.3.

As shown in Figure 9, among the four methods, Duplicate shows
superiority in the ranking performance. The second good method
is Midpoint. Normal works worst in the four. The results tell that
the original distribution of query data matters in bipartite graph
construction. Duplicate works best since it keeps the original data
distribution well. Midpoint has similar distribution with the original
data too. Normal generates the set in completely new distribution,
that would be very different from the original distribution. That is
why it is even worse than Uniform. We use the method, Duplicate
in other experiments.

We also study the performance in different amounts of generated
query samples. Results for Duplicate onAmazonDeepFM are shown
in Figure 10. The number of base vectors in Amazon dataset is

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Amazon DeepFM Top-1

BEGIN-Duplicate-1m

BEGIN-Duplicate-2m

BEGIN-Duplicate-4m

BEGIN-Duplicate-8m

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Amazon DeepFM Top-10

BEGIN-Duplicate-1m

BEGIN-Duplicate-2m

BEGIN-Duplicate-4m

BEGIN-Duplicate-8m

Figure 10: Experimental results for different amounts of
generated query samples.

about 3.8m. The result of BEGIN-Duplicate-4m is a little better
than others. In other experiments, we generated similar amounts
of query samples as base vectors by the method of Duplicate. As
can be seen, the performance of BEGIN is not sensitive to the query
sample size. Generally, we recommend the size is comparable to
the base vector size (i.e., 0.5 − 2 times of base vectors). The reason
is degrees of nodes are restricted in the bipartite graph. If one kind
of nodes (query samples or base vectors) is extremely less than the
other, it may cause the graph unconnected.

4.6 Evaluation of Search Algorithms
After constructing the bipartite graph indices, we design algorithms
to conduct online/fast query search, as represented in Algorithm 3
and Algorithm 4 respectively. We show the performance compar-
ison of these two algorithms in Figure 11. Only results on MLP-
Concate are reported due to the limited space. As can be seen,
the FastSearch algorithm is much more efficient than the native
QuerySearch. As discussed in Section 3.4, FastSearch reduces the
comparison amount from𝑀𝑥 ∗𝑀𝑞 to𝑀𝑥+𝑀𝑞−1 (i.e., from𝑂 (𝑁 2) to
𝑂 (𝑁), where𝑁 is the degree of nodes).We enable this optimization–
FastSearch–in all comparisons with SL2G.

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Yelp MLP-Concate Top-1

BEGIN-FastSearch

BEGIN-QuerySearch

0 0.2 0.4 0.6 0.8 1

Avg. Recall

10
2

10
3

10
4

10
5

Q
u

e
ri
e

s
 P

e
r

S
e

c
o

n
d Yelp MLP-Concate Top-10

BEGIN-FastSearch

BEGIN-QuerySearch

Figure 11: Results for the two search algorithms: Query-
Search (i.e., Algorithm 3) and FastSearch (i.e., Algorithm 4).

5 CONCLUSIONS
Neural networks are more powerful to model complex relationships
between vectors than simple vector distances such as ℓ2 distance,
cosine similarity and inner product. However, it is hard to effi-
ciently rank vectors according to neural network measures—neural
network measures are computation-intensive. The complexities of
these measures bring challenges in constructing indices for fast
vector retrieval. Previous work extends traditional approximate
near neighbor search and defines the fast neural ranking problem
formally as, Optimal Binary Function Search (OBFS) and also pro-
vide a simple solution, SL2G. While SL2G is problematic since it
tries to estimate distances between base data, which is undefined.
In this paper, we propose bipartite graph indices (BEGIN) for the
problem. BEGIN bypasses estimating distances among base data
and constructs indices only by the given ranking measure 𝑓 . Based
on bipartite graph indices, a FastSearch algorithm is introduced. In
experiments, we evaluate the proposed algorithm on 2 synthetic
ranking measures and 3 neural network measures. Experimental
results show that the ranking performance of the proposed BEGIN
is significantly better than the previous state-of-the-art method.

801

REFERENCES
[1] Lawrence Cayton. 2008. Fast nearest neighbor retrieval for bregman divergences.

In Proceedings of the Twenty-Fifth International Conference on Machine learning
(ICML). Helsinki, Finland, 112–119.

[2] Wei-Cheng Chang, Felix X Yu, Yin-Wen Chang, Yiming Yang, and Sanjiv Kumar.
2020. Pre-training Tasks for Embedding-based Large-scale Retrieval. In Proceed-
ings of the 8th International Conference on Learning Representations (ICLR). Addis
Ababa.

[3] Moses S. Charikar. 2002. Similarity estimation techniques from rounding algo-
rithms. In Proceedings on 34th Annual ACM Symposium on Theory of Computing
(STOC). Montreal, Canada, 380–388.

[4] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. 2017. Reading
Wikipedia to Answer Open-Domain Questions. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (ACL). Vancouver, Canada,
1870–1879.

[5] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks
for YouTube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems (RecSys). Boston, MA, 191–198.

[6] Ryan R Curtin and Parikshit Ram. 2014. Dual-tree fast exact max-kernel search.
Statistical Analysis and Data Mining: The ASA Data Science Journal 7, 4 (2014),
229–253.

[7] Ryan R Curtin, Parikshit Ram, and Alexander G Gray. 2013. Fast exact max-kernel
search. In Proceedings of the 13th SIAM International Conference on Data Mining
(SDM). Austin,TX, 1–9.

[8] Mostafa Dehghani, Hamed Zamani, Aliaksei Severyn, Jaap Kamps, and W. Bruce
Croft. 2017. Neural Ranking Models with Weak Supervision. In Proceedings of
the 40th International ACM SIGIR Conference on Research and Development in
Information Retrieval (SIGIR). Shinjuku, Tokyo, 65–74.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies (NAACL-HLT).
Minneapolis, MN, 4171–4186.

[10] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate
nearest neighbor search with the navigating spreading-out graph. Proceedings of
the VLDB Endowment 12, 5 (2019), 461–474.

[11] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized Product
Quantization for Approximate Nearest Neighbor Search. In Proceedings of the
2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Portland,
OR, 2946–2953.

[12] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In Proceedings of 25th International Conference on
Very Large Data Bases (VLDB). Edinburgh, Scotland, UK, 518–529.

[13] Michel X. Goemans and David P. Williamson. 1995. Improved Approximation
Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite
Programming. J. ACM 42, 6 (1995), 1115–1145.

[14] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-Machine based Neural Network for CTR Prediction.
In Proceedings of the Twenty-Sixth International Joint Conference on Artificial
Intelligence (IJCAI). Melbourne, Australia, 1725–1731.

[15] Jiafeng Guo, Yixing Fan, Qingyao Ai, andW. Bruce Croft. 2016. A Deep Relevance
MatchingModel for Ad-hoc Retrieval. In Proceedings of the 25th ACM International
Conference on Information and Knowledge Management (CIKM). Indianapolis, IN,
55–64.

[16] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen
Wu, W. Bruce Croft, and Xueqi Cheng. 2020. A Deep Look into neural ranking
models for information retrieval. Inf. Process. Manag. 57, 6 (2020), 102067.

[17] Kiana Hajebi, Yasin Abbasi-Yadkori, Hossein Shahbazi, and Hong Zhang. 2011.
Fast Approximate Nearest-Neighbor Search with k-Nearest Neighbor Graph. In
Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI). Barcelona, CA, 1312–1317.

[18] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW). Perth, Australia, 173–182.

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[20] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on the Theory of Computing (STOC). Dallas, TX, 604–613.

[21] Sergey Ioffe. 2010. Improved Consistent Sampling, Weighted Minhash and L1
Sketching. In Proceedings of the 10th IEEE International Conference on Data Mining
(ICDM). Sydney, Australia, 246–255.

[22] Masajiro Iwasaki. 2016. Pruned Bi-directed K-nearest Neighbor Graph for Proxim-
ity Search. In Proceedings of the 9th International Conference on Similarity Search
and Applications (SISAP), Vol. 9939. Tokyo, Japan, 20–33.

[23] Masajiro Iwasaki and Daisuke Miyazaki. 2018. Optimization of indexing based on
k-nearest neighbor graph for proximity search in high-dimensional data. arXiv
preprint arXiv:1810.07355 (2018).

[24] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2008. Hamming Embedding
and Weak Geometric Consistency for Large Scale Image Search. In Proceedings
of the 10th European Conference on Computer Vision (ECCV), Part I. Marseille,
France, 304–317.

[25] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1 (2011),
117–128.

[26] Jyun-Yu Jiang, Patrick H. Chen, Cho-Jui Hsieh, and Wei Wang. 2020. Clustering
and Constructing User Coresets to Accelerate Large-scale Top-K Recommender
Systems. In Proceedings of the Web Conference (WWW). Taipei, 2177–2187.

[27] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similarity
Search with GPUs. IEEE Trans. Big Data 7, 3 (2021), 535–547.

[28] Ping Li. 2017. Linearized GMMKernels and Normalized Random Fourier Features.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). Halifax, Canada, 315–324.

[29] Ping Li, Xiaoyun Li, Gennady Samorodnitsky, and Weijie Zhao. 2021. Consis-
tent Sampling Through Extremal Process. In Proceedings of the Web Conference
(WWW). Virtual Event / Ljubljana, Slovenia, 1317–1327.

[30] Ping Li, Michael Mitzenmacher, and Anshumali Shrivastava. 2014. Coding for
Random Projections. In Proceedings of the 31th International Conference on Ma-
chine Learning (ICML). Beijing, China, 676–684.

[31] Xiaoyun Li and Ping Li. 2021. One-Sketch-for-All: Non-linear Random Features
from Compressed Linear Measurements. In Proceedings of the 24th International
Conference on Artificial Intelligence and Statistics (AISTATS). Virtual Event, 2647–
2655.

[32] Zhengdong Lu and Hang Li. 2013. A Deep Architecture for Matching Short Texts.
In Advances in Neural Information Processing Systems (NIPS). Lake Tahoe, NV,
1367–1375.

[33] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs. IEEE
Trans. Pattern Anal. Mach. Intell. 42, 4 (2020), 824–836.

[34] Mark Manasse, Frank McSherry, and Kunal Talwar. 2010. Consistent Weighted
Sampling. Technical Report MSR-TR-2010-73. Microsoft Research.

[35] Bhaskar Mitra and Nick Craswell. 2018. An introduction to neural information
retrieval. Foundations and Trends® in Information Retrieval (2018).

[36] Stanislav Morozov and Artem Babenko. 2018. Non-metric Similarity Graphs for
Maximum Inner Product Search. In Advances in Neural Information Processing
Systems (NeurIPS). Montreal, Canada, 4726–4735.

[37] Ali Rahimi and Benjamin Recht. 2007. Random Features for Large-Scale Kernel
Machines. InAdvances in Neural Information Processing Systems (NIPS). Vancouver,
Canada, 1177–1184.

[38] Anand Rajaraman and Jeffrey David Ullman. 2011. Mining of massive datasets.
Cambridge University Press.

[39] Aliaksei Severyn and Alessandro Moschitti. 2015. Learning to Rank Short Text
Pairs with Convolutional Deep Neural Networks. In Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). Santiago, Chile, 373–382.

[40] Anshumali Shrivastava and Ping Li. 2012. Fast Near Neighbor Search in High-
Dimensional Binary Data. In Proceedings of European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD). Bristol, UK, 474–
489.

[41] Shulong Tan, Zhaozhuo Xu, Weijie Zhao, Hongliang Fei, Zhixin Zhou, and Ping
Li. 2021. Norm Adjusted Proximity Graph for Fast Inner Product Retrieval. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (KDD). Virtual Event, Singapore, 1552–1560.

[42] Shulong Tan, Zhixin Zhou, Zhaozhuo Xu, and Ping Li. 2020. Fast item ranking
under neural network based measures. In Proceedings of the 13th International
Conference on Web Search and Data Mining (WSDM). 591–599.

[43] Jiaxi Tang and Ke Wang. 2018. Ranking Distillation: Learning Compact Ranking
Models With High Performance for Recommender System. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD). London, UK, 2289–2298.

[44] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent Relational Metric
Learning via Memory-based Attention for Collaborative Ranking. In Proceedings
of the 2018 World Wide Web Conference onWorld Wide Web (WWW). Lyon, France,
729–739.

[45] Xiang Wu, Ruiqi Guo, Ananda Theertha Suresh, Sanjiv Kumar, Daniel N.
Holtmann-Rice, David Simcha, and Felix X. Yu. 2017. Multiscale Quantization
for Fast Similarity Search. In Advances in Neural Information Processing Systems
(NIPS). Long Beach, CA, 5745–5755.

[46] Yubao Wu, Ruoming Jin, and Xiang Zhang. 2014. Fast and unified local search
for random walk based k-nearest-neighbor query in large graphs. In Proceedings
of the International Conference on Management of Data (SIGMOD). Snowbird, UT,
1139–1150.

[47] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). Shinjuku, Tokyo, 55–64.

802

[48] Ying Zhang, Tao Xiang, Timothy M. Hospedales, and Huchuan Lu. 2018. Deep
Mutual Learning. In Proceedings of the 2018 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Salt Lake City, UT, 4320–4328.

[49] Weijie Zhao, Shulong Tan, and Ping Li. 2020. SONG: Approximate Nearest
Neighbor Search on GPU. In Proceedings of the 36th IEEE International Conference

on Data Engineering (ICDE). Dallas, TX, 1033–1044.
[50] Zhixin Zhou, Shulong Tan, Zhaozhuo Xu, and Ping Li. 2019. Möbius Transforma-

tion for Fast Inner Product Search on Graph. In Advances in Neural Information
Processing Systems (NeurIPS). Vancouver, Canada, 8216–8227.

803

