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ABSTRACT
Data encoding has been applied to database systems for decades as
it mitigates bandwidth bottlenecks and reduces storage require-
ments. But even in the presence of these advantages, most in-
memory database systems use data encoding only conservatively
as the negative impact on runtime performance can be severe. Real-
world systems with large parts being infrequently accessed and
cost efficiency constraints in cloud environments require solutions
that automatically and efficiently select encoding techniques, in-
cluding heavy-weight compression. In this paper, we introduce
workload-driven approaches to automaticaly determine memory
budget-constrained encoding configurations using greedy heuris-
tics and linear programming. We show for TPC-H, TPC-DS, and the
Join Order Benchmark that optimized encoding configurations can
reduce the main memory footprint significantly without a loss in
runtime performance over state-of-the-art dictionary encoding. To
yield robust selections, we extend the linear programming-based
approach to incorporate query runtime constraints and mitigate
unexpected performance regressions.
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1 ENCODING IN DATABASE SYSTEMS
Encoding in databasemanagement systems has been studied for sev-
eral decades (cf. [30, 68, 73]). Disk-based database systems employ
encoding to compress data to limit the number of I/O accesses [26].
Ideally, the usage of suitable compression and encoding schemes can
lower costs by reducing storage requirements and at the same time
increase performance, e.g., by mitigating bandwidth bottlenecks or
enabling more efficient processing routines (cf. [74]). Consequently,
an array of research studied encoding schemes [14, 27, 38, 65, 66, 68],
the interplay of query execution and encoding [21, 23, 73, 75], and
the selection of them [1, 4, 41, 67].
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The trend towards cloud-based database deployments empha-
sizes the cost aspect of running database systems, even more so
for main memory-optimized databases that keep most data in rela-
tively scarce and expensive DRAM. The main memory footprint of
such systems can be reduced by various means, e.g., the removal of
auxiliary data structures (e.g., secondary indexes), data tiering, or
data encoding. While removing auxiliary data structures and the
eviction of data to slower secondary storage tiers can significantly
lower the main memory footprint, they also tend to have significant
impacts on the runtime performance. This paper introduces means
to keep data as long as possible main memory-resident by reducing
the memory footprint through data encoding1.
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Figure 1: TPC-H performance (scale factor 10, 30 threads, 20 concur-
rent clients): comparing Hyrise’s budget-constrained solution for
varying memory budgets with DBMS X and MonetDB. The budget-
constrained solution is able to reduce memory consumption and
increase throughput.

Current approaches to automatically select suitable encoding
schemes are usually conservative and do not adapt to the current
workloads. To avoid potentially severe performance degradations,
current approaches neglect heavy-weight compression schemes and
cannot be tuned to yield configurations within a particular memory
budget. We argue that both issues limit the potential of reducing
the footprint in modern database systems. First, every real-world
system exhibits some form of workload skew, e.g., attributes being
more frequently accessed than others, which should be exploited
to use heavier encoding schemes for infrequently accessed data.
Second, the trend towards self-tuning database systems (or simply
better tunable systems for the database administrator) demands
that the database system dynamically applies encoding schemes
adhering to externally given constraints.

1Note on heavy-weight compression vs. data tiering: A recent server with two AMD
EPYC 7F72 CPUs can provide an aggregated LZ4 decompression bandwidth of over
240 GB per second. This bandwidth exceeds the bandwidth of highly tuned SSD-based
systems significantly and is available in most cloud offerings. Latency-wise, for the
later introduced LZ4-encoded columns, decompressing a single 4 KB block is on par
with the access latencies of recent low-latency SSDs.

780

https://doi.org/10.14778/3503585.3503588
https://github.com/hyrise/encoding_selection
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503588
https://www.acm.org/publications/policies/artifact-review-and-badging-current


We introduce a budget-constrained configuration selection for
the relational database system Hyrise [19]. Figure 1 shows the
performance of the proposed budget-constrained approach and
compares it with the default configuration of Hyrise using dictio-
nary encoding, MonetDB, and a commercial in-memory database
system for HTAP workloads (DBMS X) for TPC-H2. The budget-
constrained and workload-driven encoding configurations are able
to balance memory consumption and runtime performance while
improving performance over state-of-the-art dictionary encoding.

For the ability to efficiently determine encoding configurations,
we formulate three essential requirements: (i)While the selection
of suitable encoding configurations is the eventual outcome, ac-
curate estimations of the impact of this selection without upfront
applying encodings are necessary, (ii) the selection process needs to
yield (near-)optimal results for the entire admissible range of mem-
ory budgets, (iii) the selection process needs to be robust against
unexpected performance regressions. We make the following con-
tributions to address these requirements:

• To estimate and predict the performance of various encoding
alternatives, we present our learned cost models. These mod-
els are efficient and accurately predict compression ratios and
query runtimes (Section 3).

• For the selection of encoding configurations, we introduce a
linear integer programming-based (LP) solution that yields
optimal configurations and a greedy hybrid heuristic that is
efficient and scalable (Section 4).

• For TPC-H, TPC-DS, and the Join Order Benchmark, we show
that memory usage can be reduced significantly before im-
pacting the runtime performance negatively (Section 5).

• We show how to yield robust encoding configurations with
query runtime constraints and balanced performance gains by
extending the linear programming-based solution. (Section 6).

2 AUTOMATED SELECTION OF ENCODING
CONFIGURATIONS

Over the past decade, there has been an increasing interest in high-
performance analytics and HTAP database systems. Most of these
systems store the vast majority of their data in main memory to
enable “real-time analytics” [61]. But until today, main memory
remains an expensive and limited resource compared to secondary
storage tiers such as solid-state drives. Most of these modern data-
base systems share an architecture in which data is stored in a
columnar layout and horizontally partitioned tables. This can be
logical partitioning, a separation in write- and read-optimized parti-
tions (e.g., SAP HANA [22]), or fine-grained horizontal partitioning
concepts used in HyPer [23], DuckDB [64], and Quickstep [59]. In
these systems, each column in each horizontal partition can be
encoded individually.

The dominant encoding scheme for these systems is domain/dic-
tionary encoding (cf. [19, 22, 40, 59]). Variants of dictionary en-
coding are a decent trade-off with acceptable compression rates

2We evaluated MonetDB 11.41.5 and the most recent release of DBMS X (Oct. 2021).
Not all systems are equally optimized for parallel OLAP users, nor do all systems
necessarily keep all data in DRAM. The goal of this comparison is to show that
Hyrise’s performance is sufficient for meaningful results, not to establish a ranking.

and high performance. However, encoding alternatives must be
considered as soon as higher compression rates are required (e.g.,
due to limited memory budgets). These alternatives can further
reduce the DRAM requirements but come with processing over-
head [14]. Depending on the frequency and type of access patterns,
even heavy-weight compression such as LZ4 [13] can be viable.

Similar to related physical design optimizations such as index
selection, encoding configurations need to be restrictable. For ex-
ample, they are constrained by a given memory budget or domain
constraints provided by third parties (cf. Section 6). To assess the
quality of the encoding selection, the resulting configuration should
ideally be optimal or allow estimating how far the result is off from
the optimum. Finally, the system should provide the ability to ac-
curately predict the resulting runtime performance without the
requirement to physically modify any data upfront.

Hence, the main objective of encoding selection is to determine
an encoding configuration within a given memory budget whose
runtime and footprint are accurately predicted, and which maxi-
mizes the expected runtime performance.

2.1 Hyrise
We implemented the system for automated encoding selection in the
open-source3 relational database system Hyrise [19]. Hyrise uses a
columnar table layout and stores its data primarily in main memory.
Each table is divided into fixed-size horizontal partitions, called
chunks. The parts of each column within chunks that constitute a
logical table column are called segments.
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Figure 2: Storage layout for a table 𝑇 with three columns and 𝑛

chunks. Segments can be encoded independently.

When the most recent chunk reaches its size limit, it is marked
as immutable, and a new chunk is appended for inserts. Hyrise only
encodes immutable chunks. The segments can be encoded inde-
pendently (see depiction in Figure 2). Modifications always append
to the table, and MVCC is employed for concurrency control [69].
This architecture ensures that segment encoding does not interfere
with running transactions and can be executed concurrently as an
asynchronous process. Segment encoding does not impact data-
modifying queries as these are executed on unencoded partitions
and MVCC information is not compressed in Hyrise.
3Hyrise on GitHub: https://git.io/hyrise
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Hyrise supports dictionary, fixed-size string dictionary, frame-of-
reference (FoR), run-length, fast static symbol table (FSST) [8], and
LZ4 encodings4. Further, segments can also be stored without any
encoding and compression (so-called Unencoded segments). In a cas-
cading manner, several encodings further compress their internal
integer vectors (e.g., delta values in frame-of-reference encoding).
This is done either using the smallest applicable integer type (e.g.,
uint8_t for vectors with values in [0, 256)) or bit-packing.

2.2 Encoding Selection Architecture

Hyrise
Table EncoderExecution Engine

Prediction Model Repository
Encoding Selection Module

ScanScan
Runtime
Model #1 ScanScan

Segment Size 
Model #1

R
1

3

4
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R

Meta Data

Physical
Plan Cache

R

R
SQL Interface Encoding
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Figure 3: Overview of the encoding selection system: 1○ Calibration
queries are executed and recorded. 2○Models for runtime and size
prediction are learned. 3○ The physical query plan cache and meta
data are analyzed. 4○The resulting encoding configuration is applied.
Steps 1○ and 2○ are executed once per machine (FMC notation).

Figure 3 visualizes the architecture of our approach. The encod-
ing selection module is an additional component of Hyrise that can
be optionally used. It first executes a set of calibration queries used
to train models for size and runtime prediction ( 1○). For this paper,
the query set for calibration is the set of queries of all executed
benchmarks (see Section 5.2). The calibration queries are used to
learn regression-based models to predict both runtimes and storage
requirements ( 2○). The module then queries the encoding plugin
(cf. Hyrise’s plugin concept [19]) in Hyrise to parse the database’s
physical query plan cache to obtain the current workload ( 3○). With
that workload information and the trained models, the encoding se-
lection is executed, which determines a configuration that is applied
by the table encoder ( 4○). The model calibration, workload analy-
ses, and the eventual encoding selection can be executed online or
offline on another machine when necessary.

3 PERFORMANCE PREDICTION
Accurate predictions are crucial for physical design optimizations [2,
25, 36]. While it might be feasible to try out several variants of short-
running query plans (cf. [33]), most physical optimizations are too
expensive, both in terms of applying them as well as potential
performance impacts on running systems. Moreover, there are often
too many to enumerate and evaluate them efficiently.

The ability to predict the performance for a given physical de-
sign change is of high value in real-world scenarios. Database ad-
ministrators (DBAs) are often reluctant to use automated design
optimizations because of unpredictable performance outcomes [3].
4For heavy-weight compression, we have chosen LZ4 as it has a high decompression
performance while compressing relatively slow compared to alternative heavy-weight
schemes. We assume segments to be significantly more often read than re-encoded.

Being able to predict the performance for a range of possible config-
urations helps DBAs gain confidence in automated optimizations
of the physical design. Moreover, accurately predicting the per-
formance of arbitrary configurations can increase robustness by
enabling means to avoid SLA-constraint violations (cf. Section 6).

3.1 Learned Cost Models
We use learned cost models for the runtime and size predictions.
These models should be efficiently computable and sufficiently ac-
curate. Efficiency is important as several optimization processes
often enumerate a large array with thousands of alternatives to
evaluate (e.g., the encoding selection module or the query opti-
mizer). The source of our learned cost models is Hyrise’s physical
query plan cache. The cached plan stores execution data such as
input/output cardinalities and runtimes for each operator of the
plan. Further, each operator can store additional information, e.g.,
the ratio of items filtered by Bloom filters in the hash join. This
approach avoids uncertainties such as estimating join cardinalities
but requires that a query has been executed before we can predict
the effects of physical design changes for that particular query.

We use linear regression models and regression trees to estimate
the runtime performance of database operators and sizes of en-
coded segments [37, 60]. While linear regressions are not a good
fit from a theoretical perspective as operator runtimes are usually
not homoscedastic, their efficiency and robustness render them a
suitable choice in our use case. Using more sophisticated models
such as neural networks could probably further improve accuracy
at the expense of decreased interpretability and efficiency. More-
over, while such models can take hours for learning (cf. [53]), the
regression models used in Hyrise take seconds (cf. Section 3.4).

We build runtime models for each operator and size models for
every encoding type. While it is also possible to use two compound
models that estimate runtimes and sizes, we found simple single
models to be easier to tune, debug, and maintain. To estimate the
runtime of a given operation (e.g., a join) and an encoding config-
uration, we gather relevant meta data (e.g., data types, input and
output cardinalities, distinct counts) and pass these parameters to
the regression model for the operator, which returns the estimated
runtime. To estimate the resulting size of an encoded segment,
we again gather relevant meta data (e.g., data type, distinct count,
min/max values; avg. and max string lengths for string columns)
and pass it to the encoding’s regression model, which returns the
estimated memory consumption.

3.2 Feature Engineering
The set of features used for runtime prediction includes (i) features
tracked during Hyrise’s query executions and (ii) offline added
features focussing on access patterns. For some operators, it is
important to differentiate between steps dependent on the encod-
ing and steps that are not. To allow tracking these operator steps,
Hyrise stores staged runtime counters, which later allow analyzing
the runtime of each operator stage (e.g., build and probe phases
in hash join). This way, we can separate encoding-critical paths
(e.g., the materialization of potentially encoded data in the hash
join as part of the radix clustering) from parts that do not access
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encoded data (e.g., the following building and probing on material-
ized data). The second group of features is constructed by analyzing
the query graph. To estimate the runtime costs of accessing block-
based encodings such as LZ4, it is important to recognize sequential
and non-sequential accesses. We analyze the query graph to deter-
mine whether an operator’s input position list (cf. [19]) might be
scrambled (e.g., due to a previous join) or not.

The majority of features reflects the number of items read per
encoding type, data type, and the type of the position list (sequential,
non-sequential but monotonous, or random), resulting in sparse
feature matrices. The feature array may be further extended per
operator, e.g., the hash join model has features for the hash table
sizes of different join types (e.g., inner and semi joins, cf. [19]).

In general, which and how many features are required depends
on the target use case (e.g., OLAP or OLTP) and the workload.
Accurate predictions of LIKE predicates might be less relevant for
TPC-H and TPC-DS, but they are highly relevant for the Join Order
Benchmark. If one wants to build a generalized model, such features
need to be included. For our approach of a model per operator,
we handle every optimization aspect that significantly impacts an
operator’s performance. E.g., the skipping rate of Bloom filters in
the join implementation or optimization for integer-only group-by
aggregations (cf. choke point analysis in [18]). Having specialized
operator models means there is a need to keep features up to date
in case of significant changes to the operator and new models have
to be created for additional operators. This approach has a higher
maintenance overhead than generalized complex models (cf. [54])
or zero-shot models (cf. [34]), which both have many desirable
properties. However, we argue that the much better interpretability
of less complex models as well as their efficiency is a fair trade-off.

3.3 Relative Error Minimization
Most machine learning frameworks provide an efficient implemen-
tation of linear regressions. These models commonly use a squared
error metric (e.g., ordinary least squares, OLS) to minimize. This
objective works well for a broad range of applications. However, the
resulting decisions can be arbitrarily inaccurate when very short-
running OLTP queries are significantly less accurately predicted
than long-running queries (which are outnumbered, depending on
the learning data). It might be more relevant for problems such as
physical database design optimization to have accurate predictions
over the entire range of runtimes. As it is infeasible to build seg-
regated models for classes of runtimes, the high variance needs to
be handled differently. One obvious objective would be the mini-
mization of the absolute runtime. However, this objective still tends
to optimize towards long-running queries and is not efficiently
computable with off-the-shelf linear regression libraries.

For Hyrise, we aim to minimize relative errors. We use least
squares percentage regressions (LSPR) to achieve that for the lin-
ear regression models [70]. In contrast to OLS regressions, LSPR
minimizes squared relative errors. The advantage over comparable
relative approaches, such as MAPE regressions [55], is that efficient
off-the-shelf regressions can be used. LSPR can be implemented effi-
ciently by simply dividing both the dependent variable as well as all
explanatory variables by the dependent variable and disabling the

intercept. Predictions are made using the resulting model without
any further transformations.

3.4 Prediction Accuracy & Runtime Analysis
We executed the calibration queries (cf. Section 2) and trained the
operator models to evaluate operator predictions. We varied the
applied encoding scheme for every executed benchmark to cover
all encoding schemes and data types combinations. Usually, the
whole calibration data set is used for training the models and these
models are then applied on a different traced workload. For better
comparability, if not stated otherwise, the results reported in the
following sections are gathered by holding out 20% of the calibration
data set for testing and using the remainder as the training set.

We evaluated three regression models for various error metrics
to predict operator runtimes. The models include an OLS-optimized
linear regression, the least squares percentage regression (LSPR),
and gradient-boosted regression trees (GBR, we use XGBoost [11]
with 100 trees, a learning rate of 0.2, and a max depth of 7). The
chosen models are widely available, efficient, and have shown to
be good candidates for runtime and size regressions (cf. [10, 51]).
We have also evaluated random regression trees, linear trees, and
Huber regressions, but found them to be either inaccurate or inef-
ficient to train. The error metrics are the average absolute error,
the average relative error, and the root mean squared error (RMSE,
which reflects the default minimization objective for most models),
which are commonly used in the literature (cf. [48, 51, 54]).

Table 1 shows the results for the aggregate operator (evaluated
on a TPC-H run with scale factor (SF) 10). Green denotes the lowest
error per metric and experiment, red the largest. We varied the
hold-out and report the mean errors of 10 runs. To evaluate the
accuracy of predicting short-running executions for approaches
using squared error metrics, we divided the data set into two parts:
one part containing observations with a runtime less than the
median runtime and one part with the remainder. As expected, the
measurements of all observations show that the linear regression
and GBR outperform LSPR for the RMSE metric. Looking at the
shorter running observations shows that LSPR performs best. Even
though GBR minimizes squared errors, it can better predict short
runtimes than the OLS regression due to the use of an ensemble
of decision trees. For longer runtimes, GBR performs best. Overall,
both GBR and LSPR perform well.

The right side of Table 1 shows the relative error for varying
hold-outs (i.e., train/test splits; 100% denotes using the entire data
set for both training and testing). The linear models require less
training data and show more stable results than GBR.

Concerning the model runtimes, Table 2 shows the training and
prediction runtimes for the evaluated regression methods. Both
linear regressions train an order of magnitude faster than GBRs.

3.5 End-to-End Workload Prediction Accuracy
To assess the end-to-end applicability, we ran experiments evalu-
ating end-to-end predictions, analyzing single query predictions,
incomplete training data, and out-of-sample predictions.

Figure 4 shows the prediction errors per query and for the entire
benchmark run for TPC-H. Both LSPR as well as the boosted trees
perform well for estimating the overall workload runtime. However,
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Table 1: Overview of error metrics for analyzed regression models of the aggregate operator and TPC-H (SF 10). Right hand side shows the
average relative error for different hold-outs (i.e., train/test splits).

Errors (20% hold-out): Runtimes < Median Errors (20% hold-out): Runtimes ≥ Median Errors (20% hold-out): All Observations Avg. Rel. Err.: Varying Hold-outs
RMSE Avg. Abs. Err. Avg. Rel. Err. RMSE Avg. Abs. Err. Avg. Rel. Err. RMSE Avg. Abs. Err. Avg. Rel. Err. 100% 20% 50%

Gradient-Boosted Regression Trees 3.03 1.75 9.48 597.10 80.49 0.33 422.22 41.12 4.90 5.40 4.90 4.71
Linear Regression (LSPR) 0.99 0.48 0.44 5 704.10 601.28 0.37 4 033.41 300.88 0.40 0.40 0.40 0.40
Linear Regression (OLS) 39.09 32.98 152.35 1 134.83 421.78 2.64 802.94 227.38 77.50 80.80 77.50 78.76

Table 2: Number of observations and runtimes of training and pre-
diction (calibration data set, 20% hold-out).

# Observations Runtimes (ms)
Training Runtime (ms) Prediction Runtime (ms)

Testing Training GBR LSPR Lin. Regr. GBR LSPR Lin. Regr.

Aggregate 5 796 23 184 5 226.2 239.8 182.3 424.2 54.4 57.2
Join 100 194 400 782 28 253.7 720.5 644.9 2 652.6 80.2 82.0
Projection 3 225 12 903 752.8 19.6 9.5 51.4 8.3 6.6
Table Scan 39 295 157 181 54 119.8 2 223.9 1 930.0 6 068.6 1 062.2 933.7

looking at single query predictions reveals that LSPR yields larger
errors for every single query prediction and achieves the overall
accuracy as under- and overprediction almost equal each other out
in this case. While the largest errors for LSPR are 0.49 and 1.28,
they are 0.94 and 1.23 for the gradient-boosted model.

Prediction Errors per Query Cum.
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Figure 4: Relative error (predicted/actual) per query and cumulative
query runtimes for TPC-H (scale factor 10).

Gradient-Boosted
Regression Trees

0.8 1.0 1.2 1.4

Relative errors (predicted / actual) for randomized TPC-H workloads.

Figure 5: Relative prediction errors of GBR-predicted cumula-
tive workload runtimes (TPC-H SF 10) with random training
sets/workloads (11 of 22 TPC-H queries randomly selected).

We ran an experiment with random workloads to evaluate the
prediction accuracy in case of incomplete workload knowledge.
We created 20 workloads (each with 11 of 22 TPC-H queries ran-
domly selected) for model training and evaluated the prediction
accuracy of a full TPC-H run (SF 10, GBR for prediction). The error
ranges from 0.65 to 1.37. Looking at the queries of each random
workload shows that it is unnecessary to include every query in the
training phase. But particularly long-running queries with rather
unique patterns (e.g., TPC-H Q1’s wide aggregation) can decrease
the accuracy when they are not present in the training data.

Besides the ability to estimate unseen queries, another important
aspect is the ability to estimate workloads significantly larger or
smaller than used for training. Table 3 shows the prediction error for

Table 3: Relative error (predicted / actual) of estimated TPC-H run-
times for different scale factors and regression models.

TPC-H Scale Factor 1 10* 30 100

Least Squares Percentage Regr. 0.803 0.975 0.852 1.074
Gradient-Boosted Regression Trees 2.477 1.053 0.494 0.175
Linear Regression (OLS) 1.805 1.173 1.323 1.124
* Models trained on scale factor 10.

the evaluated models and four different scale factors of TPC-H. As
shown in Figure 4, both GBR and LSPR predict SF 10 well. However,
when predicting workloads of different scale factors, linear models
outperform the GBR. GBRs regress by weighting and aggregating
matching terminal nodes of ensemble trees, which store scalar
values. Such approaches are thus not able to extrapolate to unseen
(out-of-sample) observations.

Concluding, we found there is no single best model. If the goal
is to have a well generalizing model that can be used for systems of
different sizes (e.g., a multi-tenant database systemwhere the model
is trained once for the hardware instance and used for all tenants,
no matter of their size), least squares percentage regressions are
superior to both other models. If it is feasible to create a prediction
model for a given database instance and if accurate predictions of
single queries are of importance (cf. Figure 4, e.g., for query runtime
constraints presented in Section 6), the GBR model is superior.
For the remainder of this paper, we will use the gradient-boosted
regression trees to predict runtimes and segment sizes.

4 ENCODING SELECTION APPROACHES
There is a multitude of approaches to optimize the physical data-
base design. The literature includes reinforcement learning [35, 43],
linear programming [16], greedy heuristics [41, 71], and dynamic
programming [57]. To our best knowledge, there is no adequate ap-
proach for encoding selection in the literature, which automatically
selects encoding schemes for a given workload and memory budget
constraints. This section introduces a linear integer programming-
based model and an efficient greedy heuristic.

4.1 Linear Programming Model Description
The objective is to determine optimal encoding configurations. We
denote the set of tables as 𝑇 . 𝐴𝑡 denotes the set of attributes of a
given table 𝑡, 𝑡 ∈ 𝑇 and 𝑃𝑡 denotes the set of horizontal partitions5
of a given table 𝑡, 𝑡 ∈ 𝑇 . The set of all supported encoding schemes is
denoted as 𝐸 with 𝐸 = {LZ4, FSST, ...}. We precompute twomatrices
R and S with the order of |𝑇 | ×𝑀 ×𝑁 × |𝐸 | with𝑀 =𝑚𝑎𝑥𝑡 ∈𝑇 ( |𝐴𝑡 |)
(i.e., the maximal column count of all tables), 𝑁 = 𝑚𝑎𝑥𝑡 ∈𝑇 ( |𝑃𝑡 |)

5For simplicity, we consider every chunk to be a horizontal partition in this paper. To
handle larger problems, a partition can also cover multiple chunks.
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(i.e., the maximal horizontal partition count of all tables), and |𝐸 |
being the number of selectable encoding schemes. R and S store
aggregated runtimes and encoding sizes for every segment and
encoding. These values can be exhaustively measured, estimated,
or provided by the DBA. In our case, the values are estimated
using regression methods presented in the previous section. We
iterate over all physical query plans in the database’s physical query
plan cache, estimate the runtime for each encoding scheme that
each accessed segment incurs, and store the cumulative estimated
runtimes for the given workload. An encoding configuration is
stored in the matrix C with the same order as R, with each value
𝑐𝑡𝑎𝑝𝑒 ∈ {0, 1} denoting the binary decision variable which signals
whether encoding scheme 𝑒 is used for the segment in table 𝑡 ,
attribute 𝑎, and horizontal partition 𝑝 . As not all encoding schemes
support every data type (e.g., frame-of-reference encoding is limited
to numeric data types), the matrix D with𝑑𝑡𝑎𝑒 ∈ {0, 1} stores binary
decision variables denoting whether a segment encoding 𝑒 supports
the data type of attribute 𝑎 in table 𝑡 (signaled by 1 for supported,
and 0 for unsupported).

We define optimality as the minimal aggregated runtime of all
queries of a given workload in the form of 𝑅 and a given memory
budget 𝐵. We formulate the linear problem as follows:

minimize
∑︁

𝑡 ∈𝑇,𝑎∈𝐴𝑡 ,𝑝∈𝑃𝑡 ,𝑒∈𝐸
𝑐𝑡𝑎𝑝𝑒 · 𝑟𝑡𝑎𝑝𝑒 (1)

subject to
∑︁

𝑡 ∈𝑇,𝑎∈𝐴𝑡 ,𝑝∈𝑃𝑡 ,𝑒∈𝐸
𝑐𝑡𝑎𝑝𝑒 · 𝑠𝑡𝑎𝑝𝑒 <= 𝐵, (2)

𝑐𝑡𝑎𝑝𝑒 · (1 − 𝑑𝑡𝑎𝑒 ) = 0 ∀𝑡∈𝑇, 𝑎∈𝐴𝑡 , 𝑝∈𝑃𝑡 , 𝑒∈𝐸,
(3)∑︁

𝑒∈𝐸
𝑐𝑡𝑎𝑝𝑒 = 1 ∀𝑡∈𝑇, 𝑎∈𝐴𝑡 , 𝑝∈𝑃𝑡 (4)

The objective is to find a configuration with the minimal runtime
(Eq. (1)), constrained by the cumulated size being within the given
memory budget 𝐵 (Eq. (2)), the selected encoding schemes support-
ing the data type (Eq. (3)), and the solution yielding only exactly
one encoding scheme per segment (Eq. (4)).

4.2 Scalability of Solving Runtimes

Table 4: Solving times for variously sized synthetical problems. Eval-
uated solvers include the open-source solver Cbc, SCIP, and the
commercial solver Gurobi (single- and multi-threaded). All solver
runtimes limited to 10 minutes with an optimality gap of 0.01.

Solving Runtime (s)
Single-Threaded Multi-Threaded (#threads)

Columns Chunks Cbc SCIP Gurobi Gurobi (2) Gurobi (4)

128 512 64.6 27.4 18.4 18.3 18.3
128 2048 DNF 126.5 82.1 82.6 81.7
128 8192 DNF 598.2 358.0 357.8 355.4

8 512 1.5 1.5 1.1 1.1 1.1
32 512 7.5 6.1 4.2 4.2 4.2

128 512 64.6 27.4 18.4 18.3 18.3
512 512 DNF 124.7 81.8 82.2 81.8

2048 512 DNF 590.6 350.7 354.2 347.9

A major issue with linear programming – particularly with bi-
nary integer problems – is the scalability for large problems. We

created a series of variably sized synthetical data sets and workloads
and evaluated the solving times of three solvers: the state-of-the-
art commercial solver Gurobi [28], SCIP [24], and the open-source
solver Cbc [49]. For Gurobi, we further measured the impact of
multi-threading. Table 4 summarizes the solving times. Even though
runtimes of minutes are often acceptable, given that the actual ap-
plication of a new encoding configuration takes significantly longer,
the point where solving takes too long can easily be reached.

The formulation of the LP problem is independent of the num-
ber of queries and the queries’ complexity. However, the solving
time increases more than linearly with the number of segments to
handle. Concerning the selection of solvers, the evaluated open-
source solvers are only capable of handling small problem instances.
Gurobi is capable of handling larger instances but does not profit
from multi-threading.

The solving runtimes lead to the question of what problem sizes
need to be handled in real-world systems. Therefore, we analyzed
a large real-world production ERP system to quantify the impact
of the table to consider. Table 5 shows the number of tables for the
ERP system and the TPC-DS benchmark to account for a certain cu-
mulative percentage of the entire system size. Even though TPC-DS
is considered more realistic than previous TPC benchmarks, it still
does not incorporate all characteristics of existing large real-world
systems. Considering the runtimes listed in Table 4, optimizing
the entire ERP system using the LP approach is not feasible. How-
ever, there are effective simplifications that significantly reduce the
problem size. First, as temporal skew on large tables usually does
not differ between neighboring chunks, not every single chunk
has to be considered. Instead, groups of chunks can be considered,
which then share the same encoding configuration. Second, Table 5
shows that only considering 64 tables of the studied ERP system
is sufficient to optimize 50% of the system’s data. One possibility
is to use the LP approach for optimizing the largest tables and use
efficient heuristics (see next section) to handle the long tail. Third,
in case the LP solution is desirable for a very large number of tables
(e.g., due to robustness constraints, cf. Section 6), decomposition
heuristics that split the problem into smaller sets which can then
be solved optimally using linear programming, have shown to yield
near-optimal results for related problems (cf. [29]).

4.3 Greedy Heuristic
While optimal solutions are desirable, linear programming-based
solutionsmight be infeasible in production due to their long runtime
for large problems or the availability of commercial solvers. We
have implemented a greedy heuristic that is efficient and scalable.
We have adapted this heuristic from a related field in physical design
optimization: index selection. The heuristic is an adaption of the
index selection used in IBM DB2. The discussed heuristic weights
candidates by their benefit-to-cost ratio [71].

In contrast to the binary index selection problem (add index or
not), the encoding selection selects exactly one encoding scheme
from a set of schemes per segment. As the initial step, we de-
termine the smallest possible configuration as the start config-
uration, enabling early exits for infeasible small budgets. Then,
for every applicable encoding and every segment of the system,
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we evaluate possible alternatives. For a currently active encod-
ing 𝑒 , we determine the smallest ratio of saved runtime per byte:
𝑎𝑟𝑔𝑚𝑖𝑛𝑒∈𝐸 (𝑟𝑡𝑎𝑝𝑒 − 𝑟𝑡𝑎𝑝𝑒 )𝛼/𝑠𝑡𝑎𝑝𝑒 ,∀𝑡∈𝑇, 𝑎∈𝐴𝑡 , 𝑝∈𝑃𝑡 . We keep the
alternative encodings with the smallest ratio for each segment. The
weighing factor 𝛼 ∈ R+ enables balancing space consumption and
performance. The larger 𝛼 , the higher runtimes are weighted by the
heuristic. In the actual greedy selection, we iteratively substitute
segment encodings with the lowest weighted alternative encoding
that still fits into the remaining memory budget.

Table 5: Minimal number
of tables to cover different
shares of the overall data
footrpint for an SAP ERP sys-
tem of a Forbes 500 company
and the TPC-DS benchmark.

SAP ERP TPC-DS
Data Set Data Set

Size 1,930 GB 1,234 MB
# Tables 135 807 25
50% 64 2
60% 96 3
70% 156 3
80% 252 4
90% 506 5
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Figure 6: Forwards/backwards
greedy heuristic predictions for
JOB. The simple heuristics do not
cover the whole admissible range
of memory budgets.

The quality of the heuristic depends on 𝛼 . With an emphasis on
size, the heuristic tends to yield reasonable solutions for small bud-
gets but is not able to exploit larger budgets. This is shown as the
“Forwards Greedy” solution in Figure 6. As the initial greedy selec-
tion emphasizes size over runtime, no well-performing alternatives
are available when the budget allows them.

As a consequence, we added the “Backwards Greedy” heuristic.
This heuristic starts with the configuration that has the lowest
possible runtime. For a currently active encoding 𝑒 , we determine
the encoding with the smallest ratio of saved bytes per runtime:
𝑎𝑟𝑔𝑚𝑖𝑛𝑒∈𝐸 (𝑠𝑡𝑎𝑝𝑒 −𝑠𝑡𝑎𝑝𝑒 )/𝑟𝑡𝑎𝑝𝑒𝛼 ,∀𝑡∈𝑇, 𝑎∈𝐴𝑡 , 𝑝∈𝑃𝑡 . The results are
shown in Figure 6. The backwards heuristic can determine fast
configurations for large budgets but falls short for small budgets.

Therefore, we combine both heuristics as a hybrid heuristic. For
every budget, we take the heuristic solution with the lower predicted
runtime. For the remainder of this paper, we only show results for
the hybrid greedy heuristic. The hybrid greedy heuristic, which
needs to determine two encoding configurations, is ∼100× faster
than the LP solution for TPC-H with a scale factor of 10.

5 EVALUATION
We evaluate the results for the heuristic, the linear programming
solution, as well as static configurations using TPC-H, TPC-DS6,
and the Join Order Benchmark. Besides the well-known TPC-H
benchmark, we have chosen TPC-DS as it includes both data and
workload skew [62]. The Join Order Benchmark (JOB) is based on
a real-world data set from the internet movie database (imdb.com).
For TPC-H and TPC-DS, we used a scale factor of 10. Unless noted
otherwise, we report the throughput (i.e., the number of sequential
runs of all shuffled benchmark queries per hour).
6As of December 2021, Hyrise supports 47 TPC-DS queries.

All runtime predictions have been made with the initially created
models for the calibration phase of running all three benchmarks.
Please note, to create a fair calibration data set and thus more
generalized models, we generated the runtime and size models
using the complete calibration data and did not create benchmark-
specific ones. All evaluations have been done using another set of
workloads than the ones used for learning. How prediction models
can be efficiently trained with a small set of calibration queries is
ongoing research (cf. [34, 51]).

In addition to the LP solution and the heuristics, we added two
static configurations for reference that do not adhere to a budget.
The first static configuration statically chooses for every segment
the encoding scheme with the lowest runtime-size product (i.e.,
𝑎𝑟𝑔𝑚𝑖𝑛𝑒∈𝐸 (𝑟𝑡𝑎𝑝𝑒 · 𝑠𝑡𝑎𝑝𝑒 ),∀𝑡∈𝑇, 𝑎∈𝐴𝑡 , 𝑝∈𝑃𝑡 ; please note that this
strategy also requires accurate runtime and size predictions). The
second one is Hyrise’s default configuration using dictionary en-
coding. We evaluated various 𝛼 for the greedy heuristic.

5.1 Runtime and Size Prediction
Figure 7 shows the predicted results for TPC-H. The LP-based ap-
proach performs slightly better than the greedy heuristics. For TPC-
H, the default configuration using dictionary encoding uses signifi-
cantly more space than all alternatives while also being slower.
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Figure 7: Predicted results for TPC-H (scale factor 10). Comparing
hybrid greedy heuristics with varying 𝛼 values, two static configura-
tions, and the linear programming-based approach.

5.2 End-to-End Evaluation
In this section, we study how well the predictions translate to
actual results when evaluating TPC-H configurations as well as
configurations for TPC-DS and the Join Order Benchmark. All mea-
surements have been executed on a server equipped with an Intel
Xeon E7-8890 v2 CPU (2.80 GHz, 15 cores, 30 threads). Hyrise has
been compiled with Clang 9.0.0 (-o3). No update streams have been
executed. Unless noted otherwise, we evaluated single-threaded
executions to exclude potential multi-threading and scheduling
overheads which might hide the effects of changing encodings.

Figure 8 shows the results. The predicted runtimes for TPC-H
estimate accurately the actual measured runtimes. The performance
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Figure 8: Results for TPC-H (SF 10), TPC-DS (SF 10), and Join Order Benchmark. Comparing greedy heuristics with varying 𝛼 values, two static
configurations, and linear programming-based approach. The upper row shows the entire spectrum of configurations, lower row zooms into
from the smallest possible configurations up to the budget where the LP solution achieves 90% of the maximum throughput.

order of solutions is well reflected, with the optimal LP solution
slightly ahead of the heuristics in most situations. The observation
that memory consumption can be reduced significantly over a static
default such as dictionary encoding holds for all three benchmarks.
The large string columns of TPC-H, which are infrequently or never
accessed (e.g., l_comment), allow significant reductions when LZ4
or FSST are used, leading to a significant reduction compared to
static dictionary encoding. The TPC-H, all three greedy heuris-
tics perform very well. The LP approach and the greedy heuristics
outperform static dictionary encoding with better runtime per-
formances and smaller footprints for all benchmarks. The static
configuration that minimizes the runtime and size product yields
well performing configurations.

5.2.1 Transactional Workloads. To evaluate the performance of
analytical workloads with concurrent modifying transactions (so-
calledHTAPworkloads), we executed the CH-benCHmark [12]. The
CH-benCHmark is an extension of the TPC-C benchmark, which
runs reformulated TPC-H queries on the TPC-C dataset in parallel.
We hypothesize that transactional processing is significantly less
impacted by encoding. The reason is that the main bottlenecks are
less on the data access path but rather the transaction and conflict
handling. Hyrise uses MVCC to handle concurrent workloads and
versioning, similar to the approach discussed in [69]. The additional
columns to store commit information are never compressed in
Hyrise as they are always mutable.

We evaluated 15 minutes runs. We used ten TPC-C warehouses,
five parallel TPC-C clients, and a single analytical query stream
(scale factor 1.0). Smaller configurations do not impact the trans-
actional throughput for a wide range of budgets. Only for the two
smallest configurations, the throughput degrades. The throughput
is 48% of the optimum for the smallest possible configuration. The
analytical performance is more impacted by smaller budgets and
shows a comparable curve as seen with TPC-H and TPC-DS. Inter-
estingly, the worst throughput is only a 36% drop from the optimum
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Figure 9: Compar-
ison of TPC-H
(scale factor 10)
throughput for
varying memory
budgets and single-
threaded and
multi-threaded
execution (LP
configurations).

(compared to 23% for TPC-H), which we attribute to the schedul-
ing overhead of Hyrise caused by the parallel TPC-C transactions,
hindering better analytical performance.

5.2.2 Parallel Processing. Tomeasure howwell the expected single-
threaded performance maps to parallel execution, we evaluated
TPC-H with two parallel settings: running ten parallel clients on a
Hyrise instance with 15 cores and a 20 clients/30 cores variant. The
results are shown in Figure 9. Due to parallel processing overheads
and increased pressure on the shared caches, the performance drops
compared to single-threaded execution even though each user the-
oretically has 1.5 cores. When all 15 physical cores are used, the
throughput drops by less than 10%, while it drops by ∼40% when all
30 logical cores are used. However, the general performance pattern
remains stable, showing that the encoding selection is applicable
to parallel systems and workloads.

5.2.3 Impact on Running System. Hyrise applies encoding config-
urations asynchronously in the background. Figure 10 shows an
evaluation for TPC-H with 20 clients and the Hyrise server using
30 cores. First, we evaluated the impact of a single encoding job
(for configuration changes #1, #2, and #3). For the first configu-
ration, which applies a configuration with a 2.8 GB budget, the
single sequential encoding job takes over 10 minutes. The reason
for this runtime is the encoding of string columns (e.g., lineitem’s
l_comment) with LZ4. Applying the same configuration again on
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Figure 10: Impact of asynchronous encoding on TPC-H performance (relative runtime (runtime/min(runtime)), smoothed) and DRAM con-
sumption (20 clients). Hyrise uses 30 cores. Plot on top shows the runtime performance of complete TPC-H runs. The next two plots show the
queries that are the least (TPC-H 01 & 09) and the most (TPC-H 02 & 11) affected by different encoding configurations. The setup starts with
dictionary encoding. Using a single encoding job, the smallest (#1) and fastest (#2) LP solutions are applied (encoding duration shaded in gray).
#3 applies dictionary encoding. The same configurations are applied again (#4, #5, and #6) with 20 concurrent encoding jobs.

a dictionary-encoded data set with 20 concurrent encoding jobs
improves the encoding duration from 10 minutes to 46 seconds.

The impact on query performance of concurrently running en-
coding jobs is acceptable as the background jobs are executed with
a low priority. While a single sequential encoding job did not show
a measurable impact on performance, the runtime of applying a
configuration can be very long. The impact of the configurations
on single queries can be significant, as most visible by the impact
of small budgets on query 11. Looking at the resident set size (RSS)
on the bottom of Figure 10 shows that the footprint reductions of
very small memory budgets can increase the RSS under heavy load.
One of the main reasons for the RSS increase is Hyrise’s currently
inefficient handling of non-sequential accesses to LZ4 segments,
where each single row access might decompress another LZ4 block,
which is cached for the lifetime of the segment iterator.

6 ROBUSTNESS
When autonomous decisions are made in a dynamic system, mea-
sures must be taken to lower the chances of unexpected perfor-
mance regressions. With regards to the automatic determination of
encoding configurations, yielded configurations should be robust.
As stated by Haritsa in [31], there is no single definition for robust-
ness. We define robustness as a property of the encoding selection,
which minimizes negative runtime performance effects. We see two
negative impacts that we want to address. First, we want to avoid
unexpected performance degradation for queries with strong per-
formance requirements, which can happen even though the main
objective (i.e., cumulative workload runtime) decreases. Second, we
want to avoid unexpected performance cliffs when the memory
budget changes. Ideally, the relative performance improvements
within a set of queries should not be overly skewed.

6.1 Constraints on Query Runtime Changes
Applied configurations of the LP-based approach – even though
results are optimal with respect to the cumulative workload run-
time objective – can yield surprising query performance results
where certain queries degrade even though the budget is increased.
We talked to several database engineers of commercial database
systems to get their perspectives on automated database encoding.
Two of the most often mentioned aspects have been that vendors
are (i) keen on having the means to compress data further but are
also (ii) reluctant to apply stronger compression since their main
concern are runtime regressions of single queries rather than the
performance degradation of the entire workload. Unexpected sin-
gle query regressions are amongst the major reasons for customer
complaints about autonomous/self-tuning components.
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Figure 11: Query runtime constraints for TPC-H query 18 (empha-
sized in orange, all other queries shown in gray). The very left shows
an unconstrained solution. The other two plots show constraints
for query 18 with ∆ values of 2.0 and 1.0. The dotted line marks the
performance of query 18 for the default dictionary encoding.

While ideally, an autonomous systemwould identify such queries
by itself (even though they are often not recognizable by frequency
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or runtime), we approach this problem by accepting a set of runtime-
constrained queries. A domain expert manually declares queries
as runtime-constrained together with a permitted relative runtime
factor Δ. One of the advantages of the linear programming solution
is that we can directly include such constraints into the model while
ensuring optimal results. However, the resulting minimally possible
memory consumption might increase due to the added constraints.

We denote 𝐶𝑄 as the set of constrained queries and extend R to
R̄ which stores the predicted runtimes further split by queries (i.e.,
𝑟𝑡𝑎𝑝𝑒𝑞 ∈ R |𝑇 |×𝑀×𝑁×|𝐸 |× |𝐶𝑄 |). For each query 𝑞 ∈ 𝐶𝑄 , Δ𝑞 denotes
the factor for the maximum permitted runtime of 𝑞 (Δ𝑞 = 2.0
enforces that query 𝑞’s runtime does not degrade more than by a
factor of two, no matter what the budget is). Coming back to the
problem description in Section 4.1, we add the following constraint:

subject to
∑︁

𝑡 ∈𝑇,𝑎∈𝐴𝑡 ,𝑝∈𝑃𝑡 ,𝑒∈𝐸
𝑟𝑡𝑎𝑝𝑒𝑞 · 𝑐𝑡𝑎𝑝𝑒 ≤ Δ𝑞 ·

∑︁
𝑡 ∈𝑇,𝑎∈𝐴𝑡 ,𝑝∈𝑃𝑡

𝑟𝑡𝑎𝑝𝑒𝑞 ,∀𝑞 ∈ 𝐶𝑄

with 𝑒 denoting the default encoding for data tables (i.e, dictionary
encoding in Hyrise).

The left plot of Figure 11 shows the relative runtime of every
TPC-H query for different memory budgets. Query 18 – shown in
orange – is the slowest query when the smallest possible TPC-H
configuration is applied, with a 40× longer runtime than the de-
fault configuration of Hyrise with dictionary encoding. Let us now
assume that this particular query is of high importance for the data-
base user, and thus query 18’s performance shall be constrained.
We evaluated two different Δ values of 2.0 and 1.0 (middle and right
of Figure 11). Using these Δ settings, the DBA can ensure that the
performance of query 18 is always within the maximum allowed
runtime relative to the runtime when using dictionary encoding
(marked with the dotted line). This constraint is especially impor-
tant for small budgets. Interestingly, for Δ = 2.0, configurations
with budgets between 3.5 and 4.5 GB have the same runtime for
query 18 query as with dictionary encoding, while the performance
degrades for larger budgets. This pattern can be seen with other
queries as well, but less pronounced. For budgets around 4 GB, the
optimal configuration yields good performance for query 18 but
larger budgets allow further reducing the cumulative workload
runtime at the expense of query 18’s performance.

6.2 Equally Distributed Performance Gains
One main objective of our robustness measures is to minimize un-
expected performance degradation that a user might observe when
applying an automated encoding selection. Such an unexpected
situation could be that a slightly increased memory budget has a
significant positive impact on some queries’ performance while
others’ performance remains unchanged. The left plot of Figure 12
shows the normalized query runtimes (relative to each query’s max-
imum runtime over all budgets) for TPC-H. As stated before, we
want to reduce unexpected performance changes that a user might
observe when using an automated encoding selection. Assume a
user starts with the smallest possible configuration and iteratively
increases the budget to observe the runtime effects. For only slightly
increased budgets, the runtime of query 18 decreases significantly,
while budgets larger than 3.5 GB appear to have almost no effect on
query 18 at all. Query 13 on the other hand benefits from budgets
larger than 4.5 GB. Even though these patterns are explainable by

the cumulative runtime performance, they can be counterintuitive
for users and hard to comprehend.

To mitigate such effects, we extend the linear integer problem.
We add two new continuous variables 𝛽 ∈ R+ and 𝑧 ∈ R. 𝛽 is
provided by the user, while 𝑧 is an added variable to the linear
program, resulting in a mixed-integer linear program. With 𝛽 , one
can set a lower and upper runtime bound for all queries 𝑄 . Each
query’s runtime must be within these bounds which are relative to
the queries’ runtimes of the fastest configuration. The variable 𝑧
allows the linear program to move both bounds to accommodate
smaller budgets. The purpose of this adaption is to enforce that all
queries have a similar relative runtime change compared to their
optimal performance. For every query 𝑞 ∈ 𝑄 , 𝑟𝑞 denotes the query’s
runtime for the configuration with the smallest cumulative runtime.
We add the following two constraints to Eqs. (1) to (4):

subject to
1√︁
𝛽
· 𝑧 · 𝑟𝑞 ≤

∑︁
𝑡 ∈𝑇,𝑎∈𝐴𝑡 ,𝑝∈𝑃𝑡 ,𝑒∈𝐸

𝑟𝑡𝑎𝑝𝑒𝑞 · 𝑐𝑡𝑎𝑝𝑒 ,√︁
𝛽 · 𝑧 · 𝑟𝑞 ≥

∑︁
𝑡 ∈𝑇,𝑎∈𝐴𝑡 ,𝑝∈𝑃𝑡 ,𝑒∈𝐸

𝑟𝑡𝑎𝑝𝑒𝑞 · 𝑐𝑡𝑎𝑝𝑒

∀𝑞 ∈ 𝑄. (5)

The middle and right plots of Figure 12 show the effect for an
unconstrained configuration and two configurations with 𝛽 values
1.2 and 1.05. Comparing the results shows that the runtime changes
of queries over the array of memory budgets are less skewed.

No Constraints β = 1.2 β = 1.05

3.0 3.5 4.0 4.5 5.0 5.5 3.0 3.5 4.0 4.5 5.0 5.5 3.0 3.5 4.0 4.5 5.0 5.5

0.00

0.25

0.50

0.75

1.00

Memory Budget [GB]

N
o

rm
. 

Q
u

er
y

 R
u

n
ti

m
e

TPC-H 13

TPC-H 18

Figure 12: Relative performance per query for varying memory bud-
gets and TPC-H (scale factor 10) showing an unconstrained solution
and two constrained solutions with different 𝛽 values.

6.3 Performance and Solving Runtimes
As both added constraints limit the possible solution space, we
evaluated the overall effect on TPC-H. In addition to the constraint
for TPC-H query 18, we added another one that constrains the
three slowest queries of TPC-H in Hyrise with dictionary encoding
(i.e., query 1, 13, and 21) with Δ = 1.0 (i.e., no change over the
default encoding). As shown in Figure 13a, for the constraint on the
three most expensive queries, the smallest possible configuration
increases by 53 MB compared to the unconstrained solution, while
the smallest possible configuration has a 3.6× higher throughput.
For the constraints on query 18, the effect is much larger due to
query 18’s significant performance degradation for small budgets.
The smallest possible budget increases by 162 MB.
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Figure 13: Predicted performance and memory budgets for TPC-H
(scale factor 10) for the two introduced robustness measures.

The effect for constraints of equal performance gains is compa-
rable. For 𝛽 = 1.2, runtime performance is slightly worse than the
unconstrained solution, but the smallest possible budget is larger.
The solution for 𝛽 = 1.05 has a larger impact on both runtime and
memory budgets as the queries are much more constrained.

Another aspect is the solving runtime shown in Table 6 for
TPC-H, TPC-DS, and JOB as well as different constraint times.
All benchmarks are solved in less than ten seconds using Gurobi
without robustness constraints. For Gurobi, using multiple threads
does not improve the runtime and can even be slower. The query-
based constraints add a small overhead. The models constraining
performance gains between queries run significantly slower.

Table 6: Solving times for evaluated benchmarks (Cbc considered
several problems infeasible; scale factor 10 for TPC-H and TPC-DS).

Solving Runtime (s)
Single-Threaded Multi-Threaded (#threads)

Benchmark Columns Chunks SCIP Gurobi Gurobi (2) Gurobi (4)

JOB 108 2027 12.7 5.1 5.1 5.2
TPC-DS 425 1231 10.8 5.5 5.5 5.5
TPC-H 61 1326 19.9 7.2 7.2 7.2
TPC-H (𝛽=1.2) 61 1326 663.7 59.4 41.5 154.4
TPC-H (𝛽=1.6) 61 1326 616.6 35.2 34.6 33.7
TPC-H (𝛽=2.0) 61 1326 617.0 25.7 26.5 26.3
TPC-H (Δ=1.2) 61 1326 17.7 8.3 8.3 8.4
TPC-H (Δ=1.6) 61 1326 21.0 8.3 8.3 8.3
TPC-H (Δ=2.0) 61 1326 20.9 8.2 8.2 8.3

6.4 Robustness-Considerate Application
Solutions that yield robust configurations with runtime constraints
rely on accurate runtime predictions. While we consider prediction
accuracy sufficient to estimate the runtime of entire benchmarks,
single queries can be mispredicted.

We iteratively apply a configurationwhilemonitoring the runtime-
constrained queries for such cases. First, we determine a runtime-
constrained configuration with the minimal possible size. When
applying this configuration, we first apply all changes to segments
that are not accessed by the constrained queries. Then, we itera-
tively apply the remaining changes and monitor the runtime of the
constrained queries. As soon as the constraints are violated, we
reverse the last changes.

7 RELATEDWORK
The topic of encoding in database systems has been studied for
decades. On the one hand, encoding is applied to compress and
lower costs by reducing the storage requirements [65]. On the other
hand, research on encoding has been driven by limiting bandwidths
of the primary storage device, i.e., hard-drive disks [52]. For main
memory-optimized databases, the objective was no longer to reduce
IO accesses as in disk-based database systems but rather to mitigate
the effects of the main memory bottleneck (cf. [6]).

Abadi et al. presented an encoding system for the columnar C-
Store system, which supports various encoding schemes allowing
operations directly on compressed data [1]. The authors also pro-
posed a decision tree to select encoding schemes, which uses both
workload and data properties.

Lemke et al. presented a performance-optimized approach for
TREX, the predecessor to SAP HANA [47]. Compression schemes
are explicitly handled within most database operators at the cost of
code complexity and maintenance efforts, allowing to fully exploit
vectorization and other optimizations.

Damme et al. carried out a comprehensive study of light-weight
integer encoding that strongly influenced this work [15]. The au-
thors found that sophisticated compression techniques can signifi-
cantly impact both performance and compression ratios, but one
must consider multiple dimensions to determine which technique
is best in which scenario. Moreover, the authors introduce a cost
model to select appropriate techniques.

Mosaic is an approach using linear programming for data place-
ment on multiple storage tiers [72]. The runtimes are predicted by
estimating the table scan performance of each storage tier.

Two recent approaches for encoding advisors are CodecDB [39]
and LEA [10]. CodecDB analyzes data characteristics to make en-
coding recommendations. It does not analyze the workload. LEA
uses three prediction models, one for size estimation and two for
estimating scan performance, to recommend encodings based on
size and performance. The authors decided for regression trees and
linear regressions, similar to our findings. Both approaches do not
take memory budgets or robustness considerations into account.

To the best of our knowledge, no commercial database system
uses an encoding selection mechanism that exploits the potential
of automated workload-driven compressions.

8 DISCUSSION
The introduced framework of predicting and determining budget-
constrained encoding configurations opens a wide array of possi-
bilities for further investigations. We want to briefly discuss two
issues related to data encoding and optimizing for a given workload
and formulate recommendations.

8.1 Tiering to Secondary Storage
Several main memory-optimized database systems tier data to sec-
ondary storage to lower their memory footprint instead of encoding
data with higher compression ratios (cf. [17, 20, 46, 56, 58]). Given
the performance of recent solid-state drives, significant parts of the
data can be tiered without severely impacting the runtime.

We argue that compressing data should be considered before
evicting it. Most workloads include large parts of data that are
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rarely accessed and can thus be easily moved to secondary storage.
Nevertheless, the potential of reducing the footprint of even fre-
quently accessed data is often not fully exploited. The gap between
main memory and secondary storage is still significant. The tiering
systemMosaic heavily compresses data using zstd before tiering it
to secondary storage, underlining that current SSD-based systems
still perform worse than main memory and continue to be the ma-
jor bottleneck. Consequently, we argue that both tiering as well
as encoding of main memory-resident data must be considered to
achieve the best ratio of runtime performance and main memory
consumption. How the mentioned aspects translate to the usage of
non-volatile memory (NVM) or disaggregated memory needs to be
evaluated in future research.

8.2 Changing Workloads
The shown approach optimizes for the most recently observed
workload in the form of the physical query plan cache. Conse-
quently, the yielded configurations do not necessarily perform well
for changing workloads. Nevertheless, we do not consider changing
workloads problematic for the following reasons: (i) Rerunning the
entire prediction and selection pipeline is efficient and can be done
within minutes, even for large systems, as no new models need
to be trained. For the LP solution, models are stored and can be
supplied as a starting solution to the new workload. (ii) Changing
the encoding configuration is an asynchronous background job
and is split in many small non-blocking jobs. This allows steadily
adapting the system without downtimes (cf. Section 5.2.3). (iii) It
is possible to incorporate reconfiguration costs into the LP to bal-
ance the runtime gained by a new configuration and the costs of
changing the current configuration (cf. [5]). The ability to forecast
(cf. [50]) and anticipate future workloads is nonetheless desirable.

8.3 Prediction & Selection Considerations
Physical Cost-Based Query Optimization: Hyrise’s optimizer does

not consider encodings when queries are optimized but solely uses
a logical cost model with estimated cardinalities. We exploit this
fact as encoding decisions do not change query plans. The more en-
codings will be integrated into the optimizer, e.g., when predicates
are no longer sorted by selectivity but expected runtimes, the less
accurate the current linear model will reflect the actually executed
queries when encoding configurations change.

Static Encoding Selection: Wehave analyzed the best-performing
configuration for TPC-H and found five general recommendations.
(i) Integer columns that are frequently joined should not be com-
pressed unless (ii) the system can profit from dictionary-encoding
(e.g., l_orderkey in query 18; cf. choke point 1.3 in [7]). (iii) Less
frequently accessed integer columns with high distinctness (e.g.,
primary keys) are best stored using a form of delta encoding. In the
case of dictionary encoding, a high distinctness can lead to large
dictionaries, which can significantly increase the cache miss rates
(cf. [32, 63]). (iv) Strings are best packed in a fixed-width array when
they are small (e.g., l_shipmode). (v) In case none of the former
situations matches, dictionary encoding is a good default encoding,
which also has the best performance for sequential operations.

Dynamic Encoding Selection: The results presented in this paper
show that incorporating workload knowledge into the encoding de-
cision provides significant advantages. Workload knowledge helps
lower the memory footprint of seldomly accessed data, while faster
encodings can be used for frequently accessed data. Whether sim-
pler approaches than the one presented in this paper are sufficient
depends on whether runtime predictions are desirable and if robust-
ness should be considered. For simpler cases, light-weight access
counters as used in Hyrise, SAHARA [9], or [45] can already reveal
sufficient workload information and are comparatively easy to im-
plement. In case such counters are stored per partition, they also
allow incorporating and exploiting temporal skew in the workload.
If memory consumption is less of a concern, static decision trees,
as done by Abadi et al. [1], provide an efficient way to yield a good
performance while being easy to build and maintain.

Heavy-weight compression should only be used when the work-
load is well known. In this case, the footprint reductions can be
significant with no or only small performance penalties. LZ4 can be
a good alternative even for regularly accessed columns as long as
the operations are mostly sequentially. Random accesses, however,
are slow due to LZ4’s block-wise compression.

Automated approaches that select indexes or data tiers (e.g., [42]
and [72]) are already non-trivial. As an increasing number of data-
base components will be automated through some form of machine
learning, optimizing multiple mutually dependent optimizations
will be of increasing importance (cf. [44]).

9 CONCLUSION
We introduced an efficient operator-based prediction system using
regression models, which can accurately predict both the runtime
of a proposed encoding configuration and the resulting memory
footprint without requiring the need to apply any actual encoding
upfront. Using these prediction models, we presented a system that
automatically determines encoding configurations for a given work-
load and memory budget. To find such configurations, we proposed
a scalable and simple greedy heuristic and a linear programming-
based approach that yields optimal configurations and increases
robustness by incorporating query runtime constraints. The greedy
heuristics are efficient and scalable and can yield configurations that
are often on par with the optimal LP solutions. Both the LP-based
solution as well as the greedy heuristic significantly reduce the
memory footprint while at the same time improving performance
compared to state-of-the-art dictionary encoding.

We argue that the automated selection of encoding configura-
tions is an essential aspect of physical database design as it allows
the database system to scale its own size depending on the given
requirements, which can improve efficiency and lower costs.
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