
Cardinality Estimation in DBMS: A Comprehensive
Benchmark Evaluation

Yuxing Han1,#, Ziniu Wu1,#, Peizhi Wu2, Rong Zhu1,∗, Jingyi Yang2, Liang Wei Tan2, Kai Zeng1,Gao
Cong2, Yanzhao Qin1,3, Andreas Pfadler1, Zhengping Qian1, Jingren Zhou1, Jiangneng Li1, Bin Cui3

1Alibaba Group, 2Nanyang Technological University, 3Peking University
1red.zr@alibaba-inc.com, 2gaocong@ntu.edu.sg, 3bin.cui@pku.edu.cn

ABSTRACT
Cardinality estimation (CardEst) plays a significant role in gener-
ating high-quality query plans for a query optimizer in DBMS. In
the last decade, an increasing number of advanced CardEst meth-
ods (especially ML-based) have been proposed with outstanding
estimation accuracy and inference latency. However, there exists
no study that systematically evaluates the quality of these meth-
ods and answer the fundamental problem: to what extent can these
methods improve the performance of query optimizer in real-world
settings, which is the ultimate goal of a CardEst method.

In this paper, we comprehensively and systematically compare
the effectiveness of CardEst methods in a real DBMS. We establish
a new benchmark for CardEst, which contains a new complex real-
world dataset STATS and a diverse query workload STATS-CEB.
We integrate multiple most representative CardEst methods into
an open-source DBMS PostgreSQL, and comprehensively evaluate
their true effectiveness in improving query plan quality, and other
important aspects affecting their applicability. We obtain a number
of key findings under different data and query settings. Further-
more, we find that the widely used estimation accuracy metric
(Q-Error) cannot distinguish the importance of different sub-plan
queries during query optimization and thus cannot truly reflect the
generated query plan quality. Therefore, we propose a new metric
P-Error to evaluate the performance of CardEst methods, which
overcomes the limitation of Q-Error and is able to reflect the overall
end-to-end performance of CardEst methods. It could serve as a
better optimization objective for future CardEst methods.

PVLDB Reference Format:
Yuxing Han, Ziniu Wu, Peizhi Wu, Rong Zhu, Jingyi Yang, Liang Wei Tan,
Kai Zeng, Gao Cong, Yanzhao Qin, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, Jiangneng Li, Bin Cui. Cardinality Estimation in DBMS: A
Comprehensive Benchmark Evaluation. PVLDB, 15(4): 752-765, 2022.
doi:10.14778/3503585.3503586

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/Nathaniel-Han/End-to-End-CardEst-Benchmark.

The first two authors contribute equally to this paper.
∗ Rong Zhu is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view
a copy of this license. For any use beyond those covered by this license, obtain
permission by emailing info@vldb.org. Copyright is held by the owner/author(s).
Publication rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.
doi:10.14778/3503585.3503586

1 INTRODUCTION
The query optimizer is an integral component in modern DBMSs.
It is responsible for generating high-quality execution plans for the
input SQL queries. Cardinality estimation(CardEst) plays a signif-
icant role in query optimization. It aims at estimating the result
size of all sub-plans of each query and guiding the optimizer to
select the optimal join operations. The performance of CardEst has
a critical impact on the quality of the generated query plans.
Background:Due to its important role in DBMS, CardEst has been
extensively studied, by both academic and industrial communities.
Current open-source and commercial DBMSs mainly use two tradi-
tional CardEst methods, namely histogram [1, 10, 18, 38, 50, 59] in
PostgreSQL[11] and SQL Server[34] and sampling [22, 27, 30, 31, 72]
in MySQL [49] and MariaDB [51]. The core task of CardEst is
to build a compact model capturing data and/or query informa-
tion. With the prosperity of machine learning (ML), we witness
a proliferation of learned methods for CardEst in the last three
years [12, 21, 24, 28, 55, 63, 66, 69, 70, 75]. These methods could be
categorized into two classes, namely query-driven and data-driven.
Query-drivenCardEstmethods [12, 28] build discriminative models
mapping featurized queries to their cardinalities while data-driven
CardEst methods [16, 24, 58, 66, 69, 70, 75] directly model the joint
distribution of all attributes. In comparison with the traditional
methods, their estimation accuracy stands out as their models are
more sophisticated and fine-grained [24, 66, 70, 75].
Motivation: Despite the recent advance of the CardEst methods,
we notice that a fundamental problem has not yet been answered,
which is “to what extent can these advancedCardEstmethods improve
the performance of query optimizers in real-world settings?” Although
existing studies have conducted extensive experiments, they suffer
from the following shortcomings:

1. The data and query workloads used for evaluation may not well
represent the real-world scenarios. The widely adopted JOB-LIGHT
query workload on IMDB benchmark data [29] touches at most 8
numerical or categorical attributes within six tables, whose schema
forms a star-join. The recent benchmark work [60] only evaluate
these methods in a single table scenario. Therefore, the existing
works are not sufficient to reflect the behavior of CardEst methods
on complex real-world data with high skewness and correlations
and multi-table queries with various join forms and conditions.

2. Most of the evaluations do not exhibit the end-to-end improve-
ment of CardEst methods on the query optimizer. Existing works
usually evaluate CardEst methods on the algorithm-level metrics,
such as estimation accuracy and inference latency. These metrics
only evaluate the quality of the CardEst algorithm itself, but cannot

752

https://doi.org/10.14778/3503585.3503586
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503586
https://www.acm.org/publications/policies/artifact-review-and-badging-current

reflect how these methods behave in a real DBMS due to two rea-
sons. First, the estimation accuracy does not directly equal to the
query plan quality. As different sub-plan queries matters differently
to the query plan [4, 46, 57], a more accurate method may produce
a much worse query plan if they mistake a few very important esti-
mations [42]. Second, the actual query time is affected by multiple
factors, including both query plan quality and CardEst inference
cost. Therefore, the “gold standard” to examine a CardEst method
is to integrate it into the query optimizer of a real DBMS and record
the end-to-end query time, including both query plan generation
time and execution time. Unfortunately, this end-to-end evaluation
has been ignored in most existing works.

To address these two problems, the DBMS community needs
1) new benchmark datasets and query workloads that can represent
the real-world settings and 2) an in-depth end-to-end evaluation to
analyze performance of CardEst methods.
Contributions and Findings: In this paper, we provide a system-
atic evaluation on representative CardEst methods and make the
following contributions:

1.We establish a new benchmark for CardEst that can represent
real-world settings. Our benchmark includes a real-world dataset
STATS and a hand-picked query workload STATS-CEB. STATS has
complex properties and STATS-CEB contains a number of diverse
multi-table join queries. This benchmark pose challenges to better
reveal the advantages and drawbacks of existing CardEst methods
in real-world settings. (in Section 3)

2. We provide an end-to-end evaluation platform for CardEst and
present a comprehensive evaluation and analysis of the representative
CardEst methods. We provide an approach that could integrate any
CardEst method in the built-in query optimizer of PostgreSQL, a
well-known open-source DBMS. Based on this, we evaluate the
performance of both traditional and ML-based CardEst methods
in terms of the end-to-end query time and other important aspects
affecting their applicability, including inference latency, model size,
training time, update efficiency, and update accuracy. From the
results, we make a dozen of key observations (O). Some key take-
away findings are listed as follows (in Sections 4–6):

K1. Improvement (O1): On numerical and categorical query
workloads, the ML-based data-driven CardEstmethods can achieve
remarkable performance, whereas most of the other methods can
hardly improve the PostgreSQL baseline.

K2. Method (O3, O8-10): Among the data-driven methods,
probabilistic graphical models outperform deep models in terms of
both end-to-end query time and other practicality aspects and are
more applicable to deploy in real-world DBMS.

K3. Accuracy (O5-6, O11-13): Accurate estimation of some im-
portant queries, e.g., with large cardinality, is crucial to the overall
query performance. The widely used accuracy metric Q-Error [37]
cannot reflect a method’s end-to-end query performance.

K4. Latency (O7): The inference latency of CardEst has a non-
trivial impact on the end-to-end query time on OLTP workload.

3. We propose a new metric that can indicate the overall quality of
CardEstmethods. Previous CardEst quality metrics, such as Q-Error,
can only reflect the estimation accuracy of each (sub-plan) query
but not the overall end-to-end performance of CardEst methods.
Therefore, inspired by the recent work [41, 42], we propose a new

metric called P-Error, which directly relates the estimation accuracy
of (sub-plan) queries to the ultimate query execution plan quality
of the CardEst methods. Based on our analysis, P-Error is highly
correlated with the end-to-end query time improvement. Thus,
it could serve as a potential substitute for Q-Error and a better
optimization objective for learned CardEst methods. (in Section 7)

4. We point out some future research directions for CardEst meth-
ods. On the application scope, future ML-based CardEst methods
should enhance the ML models to support more types of queries.
Moreover, it is also helpful to unify different approaches and/or
models to adjust CardEst for different setting, i.e., OLTP and OLAP.
On designing principles, we should optimize ML models towards
the end-to-end performance metrics instead of purely accuracy
metrics, with an emphasis on multi-table join queries. (in Section 8)

2 PRELIMINARIES AND BACKGROUND
In this section, we introduce some preliminaries and background,
including a formal definition of the cardinality estimation (CardEst)
problem, a brief review on representative CardEst algorithms and
a short analysis on existing CardEst benchmarks.
CardEst Problem: In the literature, CardEst is usually defined
as a statistical problem. Let T be a table with k attributes A =
{A1,A2, . . . ,Ak }. T could either represent a single relational table
or a joined table. In this paper, we assume each attributeAi for each
1 ≤ i ≤ k to be either categorical (whose values can bemapped to in-
tegers) or continuous, whose domain (all unique values) is denoted
as Di . Thereafter, any selection queryQ onT can be represented in
a canonical form:Q = {A1 ∈ R1 ∧A2 ∈ R2 ∧ · · · ∧An ∈ Rn }, where
Ri ⊆ Di is the constraint region specified by Q over attribute Ai
(i.e. filter predicates). Without loss of generality, we have Ri = Di
if Q has no constraint on Ai . Let Card(T ,Q) denote the cardinality,
i.e., the exact number of records in T satisfying all constraints in Q .
The CardEst problem requires estimating Card(T ,Q) as accurately
as possible without executing Q on T .

In this paper, we concentrate on evaluating these selection queries
on numerical/categorical (n./c.) attributes.We do not consider ‘LIKE”
(or pattern matching) queries on string attributes due to two rea-
sons: 1) practical CardEst methods for “LIKE” queries in DBMS
often use magic numbers [11, 34, 49, 51], which are not meaning-
ful to evaluate; and 2) CardEst solutions for n./c. queries mainly
consider how to build statistical models summarizing attribute
and/or query distribution information. Whereas, CardEst methods
for “LIKE” queries [36, 52, 55] concern on applying NLP techniques
to summarize semantic information in strings. Thus, they tackle
with different technical challenges and are not comparable. Statisti-
cal CardEst methods can not well support “LIKE” queries.
CardEst Algorithms: There exist many CardEst methods in the
literature, which can be classified into three classes as follows:

Traditional CardEst methods, such as histogram [50] and sam-
pling [22, 27, 30], are widely applied in DBMS and generally based
on simplified assumptions and heuristics. Lots of variants are pro-
posed later to enhance their performance. Examples on histogram
routine include multi-dimensional histogram based methods [10,
17, 18, 38, 48, 59], correcting and self-tuning histograms with query
feedbacks [1, 13, 26, 53] and updating statistical summaries in
DBMS [54, 61]. Examples on sampling routine include query-driven

753

kernel-based methods [22, 27], index based methods [30] and ran-
dom walk based methods [31, 72]. Some other work, such as the
sketch based method [3], explores a new routine for CardEst.

ML-based query-driven CardEst methods try to learn a model to
map each featurized query Q to its cardinality Card(T ,Q) directly.
Some ML-enhanced methods improve the performance of CardEst
methods by using more complex models such as DNNs [28] or
gradient boosted trees [12].

ML-based data-driven CardEst methods are independent of the
queries. They regard each tuple in T as a point sampled according
to the joint distribution PT (A) = PT (A1,A2, . . . ,An). Let PT (Q) =
PT (A1 ∈ R1,A2 ∈ R2, · · · ,An ∈ Rn) be the probability specified by
the region ofQ . Then, we have Card(T ,Q) = PT (Q) · |T | so CardEst
problem could be reduced to model the probability density function
(PDF) PT (A) of table T . A variety of ML-based models have been
used in existing work to represent PT (A), the most representative of
which includes deep auto-regression model [69, 71] and probabilis-
tic graphical models such as Bayesian networks (BN) [16, 58, 66],
SPN [24], and FSPN [75]. They use different techniques to balance
the estimation accuracy, inference efficiency, and model size.
CardEst Benchmark: Literatureworks have proposed some bench-
mark datasets and query workloads for CardEst evaluation. We
analyze their pros and cons as follows:

1) The synthetic benchmarks such as TPC-H [8] and TPC-DS [7]
and Star Schema benchmarks (SSB) [43] contain real-world data
schemas and synthetic generated tuples. They are mainly used
for evaluating query engines but not suitable for CardEst because
their data generator makes oversimplified assumptions on the joint
PDF of attributes, such as uniform distribution and independence.
However, real-world datasets are often highly skewed and corre-
lated [29], which are more difficult for CardEst.

2) IMDB dataset with its JOB workload [29] is a well-recognized
benchmark, containing complex data and string “LIKE” queries. To
evaluate statisticalCardEstmethods, most of the existing works [23,
28, 69, 71, 75] fetch the query workload subset JOB-LIGHT con-
taining 70 realistic selection queries with varied number of joining
tables. However, these selection queries touch only 8 n./c. attributes
within six tables of IMDB and the join queries between these ta-
bles are only star joins centered at one table. Thus, this simplified
IMDB dataset and its workload cannot comprehensively evaluate
the performance of nowadays CardEst algorithms on more complex
real-world data and varied join settings. On the other hand, some
works [41, 69] generate queries on the IMDB dataset including
“LIKE” queries which are not supported by most of recent statistical
methods.

Apart from these well-established and general-purpose bench-
marks, there also exist other benchmarks with specific purposes.
For example, Wang [60] presents a series of real-world datasets
to analyze whether existing CardEst algorithms are suitable to be
deployed into real-world DBMS. However, it is only conducted on
single-table datasets, which can not reflect the behavior of these
models in more practical multi-table settings.
Summary:A surge of CardEst algorithms built on top of statistical
models has been proposed in the literature, especially in the last
decade. However, existing CardEst benchmarks are not sufficient
to comprehensively evaluate their performance.

comments badges

posts users

tags

postHistorypostLinks votes

t.PostId=p.Id c.P
os
tId
=p
.Id

c.UserId=u.Id

b.
Us
er
Id
=u
.Id

pl.
Po
stI
d=
p.
Id ph.PostId=p.Id ph

.Us
erI
d=
u.I
dv.PostId=p.Id

v.UserId=u.Id

pl
.R
ela

te
dP
os
tId

=p
.Id

pl.OwnerUserId=u.Id

pl.EditorUserId=u.Id
posts users

Figure 1: Join relations between tables in STATS.

3 OUR NEW BENCHMARK
In this section, we design a new benchmark with complex real-
world data and diverse multi-table join query workload for eval-
uating CardEst algorithms. To simulate practical scenarios, the
benchmark should attain the following properties:

1) Large scale with enough tables, attributes, and tuples in the
full outer join;

2) Complex distribution with skewed and correlated attributes
whose joint distribution can not be easily modeled;

3) Rich join schema containing joins of various number of tables
and diverse join forms (e.g. star and chain);

4) Diverse workload with queries covering a wide range of true
cardinalities and different number of filtering and join predicates.

To this end, we establish our benchmark on a new real-world
dataset with a hand-picked query workload. It overcomes the draw-
backs of existing CardEst benchmarks and fully fulfills the proper-
ties listed above.
Data Setting: We adopt the real-world dataset STATS1 in our
benchmark. It is an anonymized dump of user-contributed con-
tent on the Stats Stack Exchange network. STATS consumes 658MB
storage space with 8 tables and 71 n./c. attributes on users, posts,
comments, tags, and their relations. A comparison of the statisti-
cal information between STATS and IMDB (the simplified subset
supporting JOB-LIGHT) is shown in Table 1. We argue that STATS
more suitable for CardEst benchmark as follows:

1) Larger scale: STATS has more data tables and a larger number
of n./c. attributes than the simplified IMDB. Moreover, its full outer
join size is four orders of magnitude larger.

2) More complex data distribution: The distribution skewness of
STATS and attribute correlation is more significant than the simpli-
fied IMDB. Moreover, STATS has 3× more attributes with a larger
domain size, suggesting its PDF is much harder to model.

3) Larger query space: Each table in STATS has 1 to 8 n./c. at-
tributes to be filtered while the simplified IMDB contains at most
two in each table. Moreover, STATS’s full outer join size is much
larger than the simplified IMDB. These two aspects provide STATS
a larger query space varying in cardinality and predicate numbers.
1https://relational.fit.cvut.cz/dataset/Stats

754

https://relational.fit.cvut.cz/dataset/Stats

Table 1: Comparison of benchmark dataset.

Criteria Item IMDB STATS

Scale

of tables 6 8
of n./c. attributes 8 23

of n./c. attributes per table 1–2 1–8
full outer join size 2 · 1012 3 · 1016

Data
total attribute domain size 369, 563 578, 341

average distribution skewness 9.159 21.798
average pairwise correlation 0.149 0.221

Schema join forms star star/chain/mixed
of join relations 5 12

4) Richer join settings: The join relations between all tables in
STATS are shown in Figure 1. The simplified IMDB contains only
star joins between primary key and foreign keys (i.e. 5 join relations).
Whereas, STATS has richer and more diverse join types varying in
the number of joined tables (from 2 to 8), join forms (chain, star,
and mixture of these two), and join keys (PK-FK and FK-FK).
Query Workload Setting:We generate and then carefully hand-
pick a query workload STATS-CEB on STATS to fulfill both practi-
cality and diversity. The generation process is done in two phases.

In the first phase, we generate 70 representative join templates
based on the join schema in Figure 1, each of which specifies a
distinct join pattern covering a set of tables. For these join templates,
we do not consider: 1) cyclic joins as most of the ML-based CardEst
algorithms [24, 66, 69, 75] do not support them; and 2) non-equal
joins as they rarely occur in practice and many CardEst algorithms
process them in the same way as many-to-many joins. We manually
check and retain each join template if it has occurred in the log
data of StackExchangeor has its real-world semantics. To reduce
redundancy, we also ensure that these join templates are not very
similar (e.g. only differ in inner or outer join conditions).

In the second phrase after deriving these 70 join templates, we
generate 146 queries with 1 − 4 queries for each template as the
testing query workload STATS-CEB. We make sure all the gener-
ated filter predicates reflect real-world semantics and diversify in
multiple perspectives. In comparison to JOB-LIGHT (illustrated in
Table 2), we find the following advantages of STATS-CEB:

1) More diverse queries: STATS-CEB contains twice queries as
JOB-LIGHT with 3× more join templates covering a wider range of
the number of joined tables.

2) Richer join types: Unlike JOB-LIGHT benchmark with only
star joins, STATS-CEB contains queries with chain joins and com-
plex mixed join forms. Moreover, JOB-LIGHT only contains queries
with one-to-many PK-FK joins, whereas STATS-CEB includes queries
with many-to-many FK-FK joins.

3) More filter predicates: STATS-CEB contains queries with up to
16 distinct filter predicates, which is 4× larger than JOB-LIGHT.

4) Wider range of true cardinality: The cardinality range of STATS-
CEB is an order of magnitude larger than JOB-LIGHT. The largest
query in STATS-CEB has true cardinality of 20 billion, which is 3×
larger than that of the JOB-LIGHT benchmark.
Summary: Our new benchmark with STATS dataset and STATS-
CEB query workload are very comprehensive with more complex
data, more skewed distribution, more diverse queries and more
complicated join settings.

Table 2: Comparison of benchmark query workload.

Item JOB-LIGHT STATS-CEB
of queries 70 146

of joined tables 2–5 2–8
of join templates 23 70

of filtering n./c. predicates 1–4 1–16
join type PK-FK PK-FK/FK-FK

true cardinality range 9 — 9 · 109 200 — 2 · 1010

4 EVALUATION PLAN
We aim to evaluate how CardEst algorithms behave in a real DBMS,
including the end-to-end improvement on optimizing query plans
and other practicality aspects, on our new benchmark. This section
introduces the detailed evaluation plan. Section 4.1 presents all
baseline CardEst algorithms chosen to be evaluated, Section 4.2
describes our implementation method and system settings, and
Section 4.3 lists the evaluation metrics of our interests.

4.1 CardEst Algorithms
We identify and choose twelve representative CardEst algorithms
across the three classes (traditional, ML-based query-driven, and
ML-based data-driven) reviewed in Section 2. The selection princi-
ples and details of algorithms in each class are elaborated as follows.
Traditional CardEst Algorithms: In this class, we choose five
algorithms along the technical directions: 1) for histogram-based
methods, we evaluate PostgreSQL andMultiHist, which applies the
one-dimensional and multi-dimensional histograms for CardEst;
2) for sampling-based methods, we evaluate the uniformly random
sampling UniSample method and the more advanced WJSample
method for join sampling; and 3) for other methods, we evaluate
PessEst, a recent proposed method that exhibit state-of-the-art
performance in some aspects. The details are as follows:

1)PostgreSQL [11] refers to the histogram-basedCardEstmethod
used in the well-known DBMS PostgreSQL. It assumes that all at-
tributes are mutually independent and maintains a 1-D (cumulative)
histogram to represent PT (Ai) for each attribute Ai . The probabil-
ity PT (Q) can then be easily obtained by multiplying all PT (Ri)
together. In addition, optimization strategies such as collecting the
most common value and industrial implementation are used to
enhance the performance.

2)MultiHist [48] identifies subsets of correlated attributes and
model them as multi-dimensional histograms. We use the imple-
mentation provided in the repository [71]. We do not compare with
the variant methods DBHist [10], GenHist [17, 18] and VIHist [59]
over [48] since their improvements are not very significant and
their open-sourced implementations are not provided.

3)UniSample [30, 72]makes no assumption but randomly fetches
records from T on-the-fly according to PT (A) to estimate the prob-
ability PT (Q). It is also widely used in DBMS such as MySQL [49]
and MariaDB [51]. We set the sampling size to 104.

4)WJSample [31] designs a random walk based method called
wander join to sample tuples from multiple tables. It has been
integrated into DBMSs [32] and exhibits favorable performance in
a recent study [44]. We use the implementation in [74] provided
by authors in their XDB system and also set the sampling size to

755

104 for comparison. The method [72] then improves from biased to
unbiased sampling. We do not compare with it to avoid redundancy.

5) PessEst [3] leverages randomized hashing and data sketching
to tighten the bound for multi-join queries. It is a new class of
estimator as it never underestimates the cardinality. Meanwhile,
it has been verified to perform well in real world DBMS [44]. We
use the implementation provided by authors in [2] to generate
the sketches and partition the data with 4096 buckets. Different
from [44], we apply the same setting as [2] to populate the bound
sketches for queries with selection predicates, whichwould improve
the estimation accuracy and generate better plans.

We do not compare with the other variants of traditional meth-
ods [1, 13, 22, 26, 27, 30, 53, 54, 61] as they do not exhibit signifi-
cantly better performance or provide open-source implementation.
ML-Based CardEst Algorithms: In our evaluation, we choose
four query-driven (MSCN, LW-XGB, LW-NN and UAE-Q) and four
data-driven (NeuroCard, BayesCard, DeepDB and FLAT) CardEst
methods. They are representative as they apply different statistical
models, and exhibit state-of-the-art performance using each model.
Specifically, for query-driven methods,MSCN, LW-XGB/LW-NN
and UAE-Q use deep neural networks, classic lightweight regres-
sion models and deep auto-regression models to learn the mapping
functions, respectively. For the data-driven methods, they build the
data distribution utilizing deep auto-regression models and three
probabilistic graphical models: BN, SPN, and FSPN, respectively.
They use different techniques to balance estimation accuracy, infer-
ence efficiency, and model size. Besides, we also evaluate UAE, an
extension of UAE-Q using both query and data information. The
details are as follows:

6)MSCN [28] is a deep learning method built upon the multi-set
convolutional network model. The features of attributes in table T ,
join relations in query Q , and predicates of query Q are firstly fed
into three separate modules, where each is comprised of a two-layer
neural network. Then, their outputs are averaged, concatenated,
and fed into a final neural network for estimation. We use the
implementation provided in the repository [71].

7) LW-XGB and 8) LW-NN [12] formulate the CardEst map-
ping function as a regression problem and apply gradient boosted
trees and neural networks for regression, respectively. Specifically,
LW-XGB applies the XGBoost [5] as it attains equal or better ac-
curacy and estimation time than both LightGBM [25] and random
forests [56] for a given model size. As the original models only
support single table queries, we extend them to support joins with
an additional neural network to combine single-table information.
We implement them by ourselves since they are not open-sourced.

9) UAE-Q [67] applies the deep auto regression models to learn
the mapping function. It proposes differentiable progressive sam-
pling via the Gumbel-Sotfmax trick to enables deep auto-regression
models to learn from queries.

For above query-driven CardEst methods, we automatically gen-
erate 105 queries as the training examples to train these models.

10) NeuroCard [69], the multi-table extension of Naru [70], is
built upon a deep auto-regression model. It decomposes the joint
PDF PT (A) = PT (A1) ·

∏k
i=2 PT (Ai |A1,A2, . . . ,Ai−1) according to

the chain rule and model each (conditional) PDF parametrically
by a 4-layer DNN (4 × 128 neuron units). All tables can be learned

together using a single masked auto-encoder [15]. Meanwhile, a
progressive sampling technique [33] is provided to sample points
from the region of query Q to estimate its probability. We set the
sampling size to 8, 000. We omit a very similar method in [20] as it
has slightly worse performance than NeuroCard. Worth noticing
that the original NeuroCard method is only designed for datasets
with tree-structured join schema. On our STATS benchmark with
cyclic join schema, we partition the schema into multiple tree-
structured join schemas and build one NeuroCard model for each
schema. To avoid ambiguity, we denote this extension method as
NeuroCardE in the following content. We use the implementation
provided by authors in the repository [35].

11) BayesCard [66] is fundamentally based on BN, which models
the dependence relations among all attributes as a directed acyclic
graph. Each attribute Ai is assumed to be conditionally indepen-
dent of the remaining ones given its parent attributes Apa(i) so
the joint PDF PrT (A) =

∏k
i=1 PrT (Ai |Apa(i)). BayesCard revitalizes

BN using probabilistic programming to improve its inference and
model construction speed (i.e., learning the dependence graph and
the corresponding probability parameters). Moreover, it adopts the
advanced ML techniques to process the multi-table join queries,
which significantly increases its estimation accuracy over previous
BN-based CardEst methods [16, 19, 58], which will not be evalu-
ated in this paper. We use the Chow-Liu Tree [6] based method to
build the structure of BayesCard and apply the complied variable
elimination algorithm for inference. We use the implementation
provided by authors in the repository [64].

12) DeepDB [24], based on sum-product networks (SPN) [9, 47],
approximates PT (A) by recursively decomposing it into local and
simpler PDFs. Specifically, the tree-structured SPN contains sum
node to split PT (A) to multiple PT ′(A) on tuple subset T ′ ⊆ T ,
product node to decompose PT (A) to

∏
S PT (S) for independent

set of attributes S and leaf node if PT (A) is a univariate PDF. The
SPN structure can be learned by splitting table T in a top-down
manner. Meanwhile, the probability of PrT (Q) can be obtained in a
bottom-up manner with time cost linear in the SPN’s node size.

13) FLAT [75], based on factorize-split-sum-product networks
(FSPN) [68], improves over SPN by adaptively decomposing PT (A)
according to the attribute dependence level. It adds the factorize
node to split PT as PT (W) · PT (H |W) where H andW are highly
and weakly correlated attributes in T . PT (W) is modeled in the
same way as SPN. PT (H |W) is decomposed into small PDFs by the
split nodes untilH is locally independent ofW . Then, the multi-leaf
node is used to model the multivariate PDF PT (H) directly. Similar
to SPN, the FSPN structure and query probability can be recursively
obtained in a top-down and bottom-up fashion, respectively.

For both DeepDB and FLAT, we set the RDC thresholds to 0.3
and 0.7 for filtering independent and highly correlated attributes,
respectively. Meanwhile, we do not split a node when it contains
less than 1% of the input data. We use the implementations provided
by authors in the repository [23] and [65], respectively.

14)UAE [67] extends theUAE-Q method by unifiying both query
and data information using the auto-regression model. It is a repre-
sentative work aiming at closing the gap between data-driven and
query-driven CardEst methods. Both UAE and UAE-Q are imple-
mented by authors in the repository [62].

756

Remarks: For other hyper-parameters, if they are known to be
a trade-off of some metrics, we choose the default values recom-
mended in the original paper. Otherwise, we run a grid search to
explore the combination of value that largely improves the end-
to-end performance on a validation set of queries. For algorithms
with randomness (UniSample,WJSample, NeuroCardE and UAE-
Q/UAE), we ran each test 10 times and report the average results.
Notice that, there have also been proposed some CardEst mod-
ules [55, 67] that are optimized together with other components in
a query optimizer in an end-to-end manner. We do not compare
with them as they do not fit our evaluation framework.

4.2 Implementation and System Settings
To make our evaluation more realistic and convincing, we integrate
eachCardEst algorithm into the query optimizer of PostgreSQL [11],
a well-recognized open-source DBMS. Then, the quality of each
CardEst method can be directly reflected by the end-to-end query
runtime with their injected cardinality estimation.

Before introducing the details of our integration strategy, we
introduce an important concept called sub-plan query. For each SQL
query Q , each sub-plan query is a query touching only a subset
of tables in Q . The set of all these queries is called sub-plan query
space. For the example query A ▷◁ B ▷◁ C , its sub-plan query space
contains queries on A ▷◁ B, A ▷◁ C , B ▷◁ C , A, B, and C with the
corresponding filtering predicates. The built-in planner in DBMS
will generate the sub-plan query space, estimate their cardinalities,
and determine the optimal execution plan. For example, the sub-
plan queries A, B, and C only touch a single table, their CardEst
results may affect the selection of table-scan methods, i.e. index-
scan or seq-scan. The sub-plan queries A ▷◁ B, A ▷◁ C , and B ▷◁ C
touch two tables. Their cardinalities may affect the join order, i.e.
joining A ▷◁ B with C or A ▷◁ C with B, and the join method, i.e.
nested-loop-join, merge-join, or hash-join. Therefore, the effects
of a CardEst method on the final query execution plan are entirely
decided by its estimation results over the sub-plan query space.

To this end, in our implementation, we overwrite the function
“calc_joinrel_size_estimate” in the planner of PostgreSQL to derive
the sub-plan query space for each query in the workload. Specif-
ically, every time the planner needs a cardinality estimation of a
sub-plan query, the modified function “calc_joinrel_size_estimate”
will immediately capture it. Then, we call each CardEst method
to estimate the cardinalities of the sub-plan queries and inject the
estimations back into PostgreSQL. Afterward, we run the compiler
of PostgreSQL on Q to generate the plan. It will directly read the
injected cardinalities produced by each method. Finally, we execute
the query with the generated plan. In this way, we can support any
CardEst method without a large modification on the source code
of PostgreSQL. We can report the total time (except the sub-plan
space generation time) as the end-to-end time cost of running a
SQL query using any CardEst method.

For the environment, we run all of our experiments in two differ-
ent Linux Servers. The first one with 32 Intel(R) Xeon(R) Platinum
8163 CPUs @ 2.50GHz, one Tesla V100 SXM2 GPU and 64 GB avail-
able memory is used for model training. The other one with 64
Intel(R) Xeon(R) E5-2682 CPUs @ 2.50GHz is used for the end-to-
end evaluation on PostgreSQL.

4.3 Evaluation Metrics
Our evaluation mainly focuses on quantitative metrics that directly
reflect the performance of CardEst algorithms from different as-
pects. We list them as follows:

1) End-to-end time of the query workload, including both the
query plan generation time and physical plan execution time. It
serves as the “gold-standard” for CardEst algorithm, since improv-
ing the end-to-end time is the ultimate goal for optimizing CardEst
in query optimizers. We report the end-to-end time of TrueCard,
which injects the true cardinalities of all sub-plan queries into Post-
greSQL. Ideally if the cost model is very accurate, TrueCard can
obtain the optimal plan with shortest time. For a fixed PostgreSQL
cost model, we find TrueCard can obtain the optimal query plan
for most of the time. Thus, this could serve as a good baseline.

2) Inference latency reflects the time cost for CardEst, which
directly relates to the query plan generation time. It is crucial as
CardEst needs to be done numerous times in optimizing the plan
of each query. Specifically, an accurate CardEst method may be
very time-costly in inference. Despite the fast execution time of the
plans generated by this method, the end-to-end query performance
can be poor because of its long plan generation time.

3) Space cost refers to the CardEst model size. A lightweight
model is also desired as it is convenient to transfer and deploy.

4) Training cost refers to the models’ offline training time.
5) Updating speed reflects the time cost for CardEst models up-

date to fit the data changes. For real-world settings, this metric
plays an important role as its underlying data always updates with
tuples insertions and deletions.

Besides these metrics, [60] proposed some qualitative metrics re-
lated to the stability, usage, and deployment of CardEst algorithms
and made a comprehensive analysis. Thus, we do not consider them
in this paper. In the following, we first evaluate the overall end-
to-end performance of all methods in Section 5. Then, we analyze
the other practicality aspects in Section 6. At last, we point out the
drawbacks of existing evaluation metric and propose a new metric
as its potential substitution in Section 7.

5 HOW GOOD ARE CARDEST METHODS?
In this section, we first thoroughly investigate the true effectiveness
of the aforementioned CardEst methods in improving query plan
quality. Our evaluation focuses on a static environment where data
in the system has read-only access. This setting is ubiquitous and
critical for commercial DBMS, especially in OLAPworkloads of data
warehouses[14, 39, 45, 73]. We organize the experimental results as
follows: Section 5.1 reports the overall evaluation results, Section 5.2
provides detailed analysis of the method’s performance on various
query types and an in-depth case study on the performance of some
representative methods.

5.1 Overall End-to-End Performance
We evaluate the end-to-end performance (query execution time
plus planning time) on both JOB-LIGHT and STATS-CEB bench-
marks for all CardEst methods including two baselines PostgreSQL
and TrueCard shown in Table 3. We also report their relative im-
provement over the PostgreSQL baseline as an indicator of their
end-to-end performance. In the following, we will first summarize

757

Table 3: Overall performance of CardEst algorithms.

Data / Workload
Category Method IMDB / JOB-LIGHT STATS / STATS-CEB

End-to-End Time Exec. + Plan Time Improvement End-to-End Time Exec. + Plan Time Improvement

Baseline PostgreSQL 3.67h 3.67h + 3s 0.0% 11.34h 11.34h + 25s 0.0%
TrueCard 3.15h 3.15h + 3s 14.2% 5.69h 5.69h + 25s 49.8%

Traditional

MultiHist 3.92h 3.92h + 30s −6.8% 14.55h 14.53h + 79s −28.3%
UniSample 4.87h 4.84h + 96s −32.6% > 25h −− −−

WJSample 4.15h 4.15h + 23s −13.1% 19.86h 19.85h + 45s −75.0%
PessEst 3.47h 3.38h + 324s 5.4% 6.42h 6.10h + 1,135s 43.4%

Query-driven

MSCN 3.50h 3.50h + 12s 4.6% 8.13h 8.11h + 46s 28.3%
LW-XGB 4.31h 4.31h + 8s −17.4% > 25h −− −−

LW-NN 3.63h 3.63h + 9s 1.1% 11.33h 11.33h + 34s 0.0%
UAE-Q 3.65h 3.55h+356s −1.9% 11.21h 11.03h+645s 1.1%

Data-driven

NeuroCardE 3.41h 3.29h + 423s 6.8% 12.05h 11.85h + 709s −6.2%
BayesCard 3.18h 3.18h + 10s 13.3% 7.16h 7.15h + 35s 36.9%
DeepDB 3.29h 3.28h + 33s 10.3% 6.51h 6.46h + 168s 42.6%
FLAT 3.21h 3.21h + 15s 12.9% 5.92h 5.80h + 437s 47.8%

Query + Data UAE 3.71h 3.60h + 412s −2.7% 11.65h 11.46h + 710s −0.02%

several overall observations (O) regarding Table 3, and then provide
detailed analysis w.r.t. each of these CardEst methods.

O1: Most of the ML-based data-driven CardEstmethods can
achieve remarkable performance, whereasmost of the tradi-
tional and ML-based query-driven CardEst methods do not
have much improvement over PostgreSQL. The astonishing
performance of these ML-based data-driven CardEst methods
(BayesCard, DeepDB, and FLAT) come from their accurate char-
acterization of data distributions and reasonable independence as-
sumption over joined tables. Traditional histogram and sampling
based methods (MultiHist, UniSample, and WJSample) have worse
performance than PostgreSQL whereas the new traditional ap-
proach (PessEst) is significantly better. The query-driven CardEst
methods’ performance is not stable. They rely on a large amount of
executed queries as training data and the testing query workload
should follow the same distribution as the training workload to
produce an accurate estimation [24].

O2: The differences among the CardEst methods’ improve-
ments over PostgreSQL are much more drastic on datasets
with more complicated data distributions and join schemas.
We observe that the execution time forCardEstmethod that can out-
perform PostgreSQL (PessEst, NeuroCardE , BayesCard, DeepDB,
and FLAT) on JOB-LIGHT are all roughly 3.2h, which is very close
to the minimal execution time of TrueCard(3.15h). As explained in
Section 3, the data distributions in the simplified IMDB dataset and
the JOB-LIGHT queries are relatively simple. Specifically, the table
title in the IMDB dataset plays a central role in the join schema
that other tables are all joined with its primary key, so the joint
distribution could be easily learned. However, their performance
differences on STATS are very drastic because the STATS dataset is
much more challenging with high attribute correlations and various
join types. Therefore, the STATS-CEB benchmark can help expose
the advantages and drawbacks of these methods.
Analysis of Traditional CardEst Methods:Histogram and sam-
pling based methods perform significantly worse than PostgreSQL
on both benchmarks because of their inaccurate estimation. Multi-
Hist and UniSample use the join uniformity assumption to estimate

join queries, whose estimation error grows rapidly for queries join-
ing more tables. WJSample makes a random walk based sample
across the join of multiple tables. However, as the cardinality in-
creases with the number of joined tables, the relatively small sample
size can not effectively capture the data distribution, leading to large
estimation error. These queries joining larger number of tables are
generally more important in determining a good execution join
order [29]. Therefore, these methods tend to yield poor join orders
and long-running query plans. The PostgreSQL produces more
accurate estimations because of its high-quality implementation
and fine-grained optimizations on join queries. The new traditional
method PessEst has a significant improvement over the PostgreSQL
because it can compute the upper bound on estimated cardinalities
to avoid expensive physical join plans. Notice that, we observe
that PessEst is more effective than WJSample, which is different
from [44]. This is because our bound sketches in PessEst are built
with selection predicates while [44] builds them on rough plain join
schema. As a result, the estimation accuracy, so as the execution
time, of PessEst largely improves. However, the plan (inference)
time of PessEst with sketch construction is much longer than oth-
ers, sometimes even longer than the execution time of OLTP queries.
This degrades the practicality of PessEst.
Analysis of ML-based Query-driven CardEst Methods: Over-
all the query-driven methods have comparable performance to the
PostgreSQL baseline. Specifically, MSCN can slightly outperform
the PostgreSQL (4.6% faster runtime on JOB-LIGHT and 19.7% faster
on STATS-CEB), LW-XGB has much slower query runtime, and LW-
NN has comparable performance. The unsatisfactory performance
of these methods could be due to the following reasons.

• These methods are essentially trying to fit the probability
distributions of all possible joins in the schema, which has super-
exponential complexity. Specifically, there can exist an exponential
number possible joins in a schema, and for each joining table, the
complexity of its distribution is exponential w.r.t. its attribute num-
ber and domain size [66]. Thus, these models themselves are not
complex enough to fully understand all these distributions.

• Similarly, these methods would require an enormous amount
of executed queries as training data to accurately characterize these

758

Table 4: End-to-end time improvement ratio of CardEst al-
gorithms on queries with different number of join tables.

tables # queries PessEst MSCN BayesCard DeepDB FLAT TrueCard
2 − 3 38 2.62% 2.04% 2.07% 1.98% 2.48% 3.66%
4 50 53.1% −12.3% 55.8% 48.0% 55.7% 55.9%
5 28 31.7% 29.8% 36.55% 32.90% 35.4% 37.0%

6 − 8 34 29.6% −4.06% 2.51% 26.3% 32.0% 34.6%

complex distributions. In our experiment, our computing resources
can only afford to generate 105 queries (executing 146 queries in
STATS-CEB takes 10 hours), which may not be enough for this task.
Besides, it is unreasonable to assume that a CardEst method can
have access to this amount of executed queries in reality.

• The well-known workload shift issue states that query-driven
methods trained one query workload will not likely produce an
accurate prediction on a different workload [24]. In our experiment,
the training query workload is automatically generated whereas the
JOB-LIGHT and STATS-CEB testing query workload is hand-picked.
Therefore, the training and testing workload of these methods have
different distributions.
Analysis of ML-based Data-driven Methods: Data-driven ML
methods (BayesCard, NeuroCardE , DeepDB, and FLAT), do consis-
tently outperform PostgreSQL by 7−13% on JOB-LIGHT. Except for
NeuroCardE , the other three improve the PostgreSQL by 37−48% on
STATS-CEB.Their performance indicates that data-driven methods
could serve as a practical counterpart of the PostgreSQL CardEst
component. Through detailed analysis of NeuroCardE method, we
derive the following observation:
O3: Learning one model on the (sample of) full outer join of
all tables in a DBmay lead to poor scalability.We conjecture
that an effective CardEst method should make appropriate
independent assumptions for large datasets. The advantages
of NeuroCardE over PostgreSQL disappear when shifting from
JOB-LIGHT to STATS-CEB benchmark for the following reasons.
First, the STATS dataset contains significantly more attributes with
larger domain size, which can be detrimental to NeuroCardE ’s
underlying deep auto-regressive models [60, 66]. Second, the full
outer join size of STATS is significantly larger than the simplified
IMDB,making the sampling procedure of NeuroCardE less effective.
Specifically, the full outer join size can get up to 3 × 1016 and an
affordable training data sample size would be no larger than 3× 108.
Therefore, the NeuroCardE model trained on this sample only
contains 1 × 10−8 of the information as the original dataset. Third,
the join keys in STATS dataset have very skewed distribution. E.g.
there exist key values of a table that can match with zero or one
as well as hundreds of tuples in another table. This complicated
distribution of join keys makesNeuroCardE ’s full outer join sample
less effective. Therefore,NeuroCardE can hardly capture the correct
data distributions especially for join tables with small cardinalities.
Specifically, we find that for queries on the joins of a small set
of tables, NeuroCardE ’s prediction deviates significantly from the
true cardinality because its training sample does not contain much
not-null tuples for this particular set of join tables.

All other three data-driven CardEst methods can significantly
outperform the PostgreSQL baseline because their models are not
constructed on the full outer join of all tables. Specifically, they all

use the “divide and conquer” idea to divide the large join schema
into several smaller subsets with each representing a join ofmultiple
tables. In this way, they can capture the rich correlation within each
subset of tables; simultaneously, they avoid constructing the full
outer join of all tables by assuming some independence between
tables with low correlations. Then, BayesCard, DeepDB, and FLAT
build a model (BN, SPN, and FSPN respectively) to represent the
distribution of the corresponding small part. This approach solves
the drawback of NeuroCardE , yields relatively accurate estimation,
and produces effective query execution plans. Among them, FLAT
achieves the best performance (47.8% improvement), which is very
close to the improvement 49.8% for TrueCard. It can outperform
DeepDB mostly because the STATS dataset is highly correlated, so
the FSPN in FLAT has a more accurate representation of the data
distribution than the SPN inDeepDB. On the other hand,BayesCard
has an even more accurate representation of data distribution and
yields the best end-to-end time for most queries in STATS-CEB. It
does not outperform FLAT most because of one extremely long-run
query, which we will study in detail in Section 5.2.

5.2 Analysis of Different Query Settings
In this section, we further examine to what extent the CardEst
methods improve over PostgreSQL on various query types, i.e. dif-
ferent number of join tables (#tables) and different intervals of true
cardinalities. Since JOB-LIGHT workload does not contain queries
with very diverse types and the ML-based data-driven methods do
not show significant difference on these queries, we only investigate
queries on STATS-CEB. Worth noticing that we only examine the
methods with clear improvements over PostgreSQL on STATS-CEB:
MSCN, BayesCard, DeepDB, and FLAT.
Number of Join Tables:Table 4 shows performance improvement
of different ML-based methods over the PostgreSQL baseline and
we derive the following observation:
O4: The improvement gaps between these methods and the
performance of TrueCard increase with the number of join
tables. Specifically, the BayesCard achieves near-optimal improve-
ment for queries joining no more than 5 tables, but it barely has
much improvement for queries joining 6 tables and more. This
observation suggests that the estimation qualities of these SOTA
methods decline for queries joining more tables. In fact, the fanout
join estimation approach adopted by all these methods sacrifices
accuracy for efficiency by assuming some tables are independent
of others. This estimation error may accumulate for queries joining
a large number of tables, leading to sub-optimal query plans.
Size of Cardinality:We choose Q57 (in Figure 2) of STATS-CEB
as a representative query to study the effect of estimation accuracy
w.r.t. different cardinalities and investigate when a CardEstmethod
could go wrong. The execution time of Q57 for TrueCard and FLAT
is 1.90h and 1.92h, while the time for BayesCard is 3.23h. We derive
two important observations from this query, which are verified to
be generalizable to other queries in JOB-LIGHT and STATS-CEB.
O5: Accurate estimation of (sub-plan) queries with large car-
dinalities is sometimes more important than the small ones.
When choosing the join method in the root node of execution plans
for Q57, BayesCard underestimates the final join size and chooses
the “merge join” physical operation. Alternatively, FLAT produces

759

Hash join
b.UserId=u.I
d 69401

Hash join
u.Id=p.UserId
43,398,701,580

Seq
Scan: b

Seq
Scan: u

Nested loop join
ph.UserId=p.User
Id 352054

Index
Scan: ph

Merge join
v.Userid=p.UserI
d 231

Index
Scan: v

Merge join
pl.Postid=p.id
11037

Index
Scan: pl

Index
Scan: p

FLAT Plan

Merge join
b.UserId=v.UserI
d 1052150

Ops: Hash join
Cond: b.UserId=u.Id

Est_Card:
17,849,233,970

Index
Scan: u

Index
Scan: v

Hash join
ph.Userid=u.i
d. 352054

Seq
Scan: ph

Hash join
p.Userid=u.id
8909

Seq
Scan: u

Merge join
pl.Postid=p.id
10959

Index
Scan: pl

Index
Scan: p

TrueCard Plan

Query
Execution
Time:
1.92h

Query
Execution
Time:
1.96h

Merge join
b.UserId=v.UserI
d 1137586

Merge join
b.UserId=u.Id
2,470,172,302

Index
Scan: u

Index
Scan: v

Hash join
ph.Userid=u.i
d 347520

Seq
Scan: ph

Hash join
p.Userid=u.id
10082

Seq
Scan: u

Merge join
pl.Postid=p.id
10962

Index
Scan: pl

Index
Scan: p

BayesCard Plan

Query
Execution
Time:
3.23h

Figure 2: Case study of STATS Q57.

a more accurate estimation for the final join size and chooses the
“hash join” operation, which is twice as faster as the “merge join”.
Since the final join operation takes up 99% of the total execution
time, FLAT significantly outperforms BayesCard on this query.

Generally, the (sub-plan) query with larger true cardinality re-
quires a longer time to execute. It is very common that the join
size of two intermediate tables is much larger than both of them.
Therefore, some sub-plans can take a significantly longer time to
execute than other sub-plans. A bad estimation on these large sub-
plan queries can have a detrimental result on the overall runtime,
whereas a series of good estimations on small sub-plan queries will
not influence the runtime as much. Therefore, the estimation accu-
racy of sub-plan queries with very large true cardinalities dominate
the overall quality of the query plan.

O6: Choosing the correct physical operations sometimes is
more important than selecting the optimal join order. As
shown in Figure 2 BayesCard can generate the optimal join or-
der of Q57 because of its near-perfect estimation of all sub-plan
queries except for the one at the root node. The join order selected
by FLAT is very different from the optimal one. Surprisingly, FLAT’s
plan is roughly twice faster to execute than BayesCard’s plan due
to the dominant large sub-plan query at the root node. For Q57, a
sub-optimal query plan is only 1% slower to execute but only one
sub-optimal physical operation is 68% slower.

These aforementioned two observations also hold for other
queries in these two benchmarks, so we conjecture that they might
be generalizable to all queries.

6 WHAT OTHER ASPECTS OF CARDEST
METHODS MATTER?

In addition to CardEst’s improvement in execution time, we discuss
model practicality aspects in this section: inference latency (in
Section 6.1), model size and training time (in Section 6.2), and
model update speed and accuracy (in Section 6.3). We only compare
the recently proposed CardEst methods, which have been proved
to significantly improve the PostgreSQL baseline, namely PessEst,
MSCN, NeuroCardE , BayesCard, DeepDB, and FLAT.

Table 5: OLTP/OLAP Performance on STATS-CEB.

Methods TP E2E Time TP Plan Time AP E2E Time AP Plan Time
PostgreSQL 49.5s 4.8s (9.7%) 11.33h 20.3s (0.05%)
TrueCard 13s 4.8s (36.9%) 5.69h 20.3s (0.1%)
PessEst 27.7s 8.4s (30.3%) 6.10h 35.4s (0.16%)
MSCN 23.9s 8.2s (34.3%) 8.12h 38.0s (0.13%)

NeuroCardE 99.3s 73s (73.5%) 11.94h 350s (0.81%)
BayesCard 18s 7.3s (40.6%) 7.16h 27.4s (0.11%)
DeepDB 45.1s 33.6s (74.5%) 6.50h 135s (0.58%)
FLAT 55.8s 41.5s (74.4%) 5.91h 396s (1.86%)

6.1 Inference Latency
The end-to-end query time is comprised of query execution and
planning time, the latter of which is determined by the CardEst
method’s inference latency. Commercial DBMS normally has a
negligible planning time due to their simplified cardinality estimator
and engineering effort to accelerate the inference speed. However,
the inference latency of some ML-based data-driven methods can
approach one second per sub-plan query, which slows down the end-
to-end query execution time. To further illustrate the importance
of inference latency, we divide the STATS-CEB queries into OLTP
and OLAP two workloads based on the query execution time. We
report the results in Table 5 and derive the following observation.
O7: Inference latency can have a significant impact on the
OLTP workload but a trivial impact on the OLAP workload.
On OLTP workload of STATS-CEB, we observe that the planning
time composes a large proportion of total end-to-end time. Specifi-
cally, some ML-based methods’ (NeuroCardE , DeepDB, and FLAT)
inference speeds are relatively slow. Although their execution time
on OLTP workload is faster than PostgreSQL, they have worse end-
to-end performance because of the long planning time. For OLAP
workload of STATS-CEB, the CardEst methods’ planning time is
much shorter than their execution time because OLAP workload
contains extremely long-run queries. In this case, the quality of
the generated query plans overshadows the slow inference latency.
Therefore, we believe that CardEst methods targeting different
workloads should fulfill different objectives. For OLTP workload,
a desirable method should have fast inference speed, whereas the
methods targeting OLAP workload can have high inference latency
as long as they can produce high-quality query plans.

760

PessEst MSCN NeuroCardE NeuroCardE (GPU)
BayesCard DeepDB FLAT

Inference latency (ms) Model size (mb) Training time (min)

JOB-LIGHT STATS-CEB JOB-LIGHTSTATS-CEB JOB-LIGHTSTATS-CEB

Figure 3: Practicality aspects of CardEst algorithms.

Table 6: Update performance of CardEst algorithms.

Criteria NeuroCardE BayesCard DeepDB FLAT

Update time 5,569s 12s 248s 360s
Original E2E time 11.85h 7.16h 6.46h 5.80h

E2E time after update 13.94h 7.16h 6.72h 7.04h

Figure 3 reports the average inference latencies of all sub-queries
in the workload for each method. Their inference speed can be
ranked as BayesCard > NeuroCardE (GPU) > FLAT/DeepDB >>
NeuroCardE . The newly proposed inference algorithms on BN
provide BayesCard with a very fast and stable inference speed
on both benchmarks. However, the inference speeds of FLAT and
DeepDB are not as stable because they tend to build much larger
models with more computation circuits for the more complicated
database STATS. The inference process of NeuroCard requires a
large number of progressive samples and its underlying DNN is
computationally demanding on CPUs. Therefore, we observe that
the inference speed is greatly improved by running it on GPUs.

6.2 Model Deployment
Figure 3 reports the model size and training time of all aforemen-
tioned methods. Based on the results of STATS-CEB query, we
derive the following observation.
O8: BN-based CardEst approach is very friendly for system
deployment. First of all, the BN-based approaches, such as
BayesCard, are generally interpretable and predictable, thus easy
to debug for DBMS analytics. More importantly, a CardEst method
friendly for system deployment should have faster training time and
lightweight model size and BayesCard has the dominant advantage
over the other ML-based data-driven methods in these two aspects
because of its underlying Bayesian model. Specifically, from both
training time and model size aspects, these methods can be ranked
as BayesCard << FLAT/DeepDB < NeuroCardE . We provide the
detailed reasoning as follows.

BayesCard proposes an accelerated model construction process
of BN using probabilistic programming. Its model training time is
roughly 100 times faster than the other three methods. Moreover,
the BNs in BayesCard, which utilize the attribute conditional inde-
pendence to reduce the model redundancy, are naturally compact
and lightweight.

FLAT and DeepDB recursively learn the underlying FSPN and
SPN models. Their training time is less stable and varies greatly
with the number of highly correlated attributes in the datasets.

Thus, we observe a much longer training time on STATS than on
the IMDB dataset for these two methods. The SPNs in DeepDB
iteratively split the datasets into small regions, aiming to find local
independence between attributes within each region. However,
in presence of highly correlated attributes (e.g. STATS), the SPNs
tend to generate a long chain of dataset splitting operation, leading
to long training time and a very large model size. The FSPNs in
FLAT effectively address this drawback of SPNs by introducing the
factorize operation but their training time and model size suffer
greatly for datasets with a large number of attributes (e.g. STATS)
because of the recursive factorize operations.

The training of NeuroCardE is particularly long and its size is
also the largest on STATS because its join schema does not form
a tree. As mentioned in Section 4.1, the original NeuroCard only
supports tree-structured schemas. Thus, NeuroCardE extracts 16
tree sub-structures from STATS schema graph and train one model
for each tree. Therefore, we argue that extending NeuroCard for
non-tree-structured schemas can greatly improve its practicality.

6.3 Model Update
Model update is a crucial aspect when deploying a CardEstmethod
in OLTP databases. Frequent data updates in these DBs require
the underlying CardEst method to swiftly update itself and adjust
to the new data accurately. In the following, we first provide our
observation regarding the updatability of ML-based query-driven
methods and then provide the update experimental settings and
results for ML-based data-driven methods on the STATS dataset.
O9: Existing query-driven CardEst methods are impractical
for dynamicDBs.The query-drivenmodels require a large amount
of executed queries to train their model, which might be unavail-
able for a new DB and very time-consuming to generate (e.g. 146
STATS-CEB queries take more than ten hours to execute). More im-
portantly, they need to recollect and execute the queries whenever
datasets change or query workload shifts. Therefore, they can not
keep up with the frequent data update in dynamic DBs.
Experimental Settings: To simulate a practical dynamic environ-
ment, we split the STATS data into two parts based on the times-
tamps of tuples. We first train a stale model for each method on
the data created before 2014 (roughly 50%) and insert the rest of
the data to update these models. We only test the data insertion
scenario since some methods (NeuroCardE and DeepDB) do not
support data deletion. We use the update algorithm in these meth-
ods’ publicly available source code.
Experimental Results: As shown in Table 6, we record the time
these methods take to update their stale models and evaluate the
end-to-end query performance of the updated models on STATS-
CEB queries. We also cite the original model performance from
Table 3 as comparison baselines. We first summarize the most im-
portant observation based on this table and then provide detailed
reasoning from the update speed and accuracy perspectives.
O10:Data-drivenCardEstmethods have the potential to keep
up with fast data update and can be applied in dynamic DBs.
Specifically, BayesCard takes 12s to update itself for an insertion
of millions of tuples on multiple tables in the DB. More important,
its end-to-end performance is unaffected by this massive update,
thus very suitable for dynamic DBs.

761

Update speed of these methods can be ranked as BayesCard
>> DeepDB > FLAT > NeuroCardE . BayesCard preserves its un-
derlying BN’s structure and only incrementally updates the model
parameters. Since its model size is relatively small, the update speed
is more than 20 times faster than others. DeepDB and FLAT also
preserves their underlying structure of SPN and FSPN but as their
structures are significantly larger, the incrementally updating their
model parameters still take a large amount of time.

Update accuracy can be ranked as BayesCard > DeepDB >
FLAT > NeuroCardE . BayesCard’s underlying BN’s structure cap-
tures the inherent causality, which is unlikely to change when data
changes. Therefore, BayesCard can preserve its original accuracy
after model update (i.e. same as its comparison baseline). The struc-
tures of SPN inDeepDB and FSPN in FLAT are learned to fit the data
before the update and cannot extrapolate well to the newly inserted
data. Therefore, only updating the model parameters will cause
modeling inaccuracy (i.e. we observe a drop in their end-to-end
performance when compared with their baselines).

7 IS CURRENT METRIC GOOD ENOUGH?
Most of the existing works [12, 24, 28, 69, 75] use Q-Error [37]
to evaluate the quality of their CardEst methods. However, the
ultimate goal of CardEst is to generate query plans with faster
execution time. Therefore, we explore whether Q-Error is a good
metric to fulfill this goal in this section. We first analyze the corre-
lations between Q-Error and query execution time in Section 7.1.
The results show that smaller Q-Error does not necessarily lead to
shorter execution time. Thus, we identify the limitations of Q-Error
and propose another metric called P-Error in Section 7.2. We show
that P-Error has better correspondence to query execution time
and advocate it to be a potential substitution of Q-Error.

7.1 Problems with Q-Error
Q-Error is a well-known metric to evaluate the quality of different
CardEst methods. It measures the relative multiplicative error of
the estimated cardinality from the actual one as:

Q-Error = max(
Estimated Cardinality

True Cardinality
,

True Cardinality
Estimated Cardinality

).

Q-Error penalizes both overestimation and underestimation of the
true cardinality. However, existing works have not investigated
whether Q-Error is good evaluation metric for CardEst. I.e, would
CardEst methods with smaller Q-Errors definitely generate query
plans with shorter execution time and vice versa? To answer this
question, we revisit the experimental results. Table 7 reports the
distributions (50%, 90% and 99% percentiles) of all sub-plan queries’
Q-Errors generated by different CardEst methods on both JOB-
LIGHT and STATS-CEB benchmarks. Please note that we report all
but the PessEst method because it is a bound-based method whose
Q-Error is not fairly comparable with other methods. We sort all
CardEst methods in a descending order of their execution time.
From a first glance, we derive the following observation:
O11: TheQ-Errormetric can not serve as a good indicator for
query execution performance. This observation is supported by
a large amount of evidence from Table 7. We list three typical
examples on STATS-CEB as follows: 1) NeuroCardE has the worst
Q-Errors in all methods, but its execution time is comparable to

Table 7: Comparison between Q-Error and P-Error.

Method Execution Time Q-Error P-Error

(Descending Order) 50% 90% 99% 50% 90% 99%
UniSample > 25h 3.259 135.4 6 · 104 1.000 1.345 3.593
LW-XGB > 25h 5.652 453.2 3 · 105 1.742 6.627 526.2
WJSample 19.86h 3.452 351.4 8 · 104 1.103 4.954 501.6
NeuroCard 11.85h 951.4 9 · 105 6 · 108 1.193 2.844 1 · 103

UAE 11.46h 3.239 130.8 1.1 · 104 1.187 2.420 7.873
PostgreSQL 11.34h 1.439 11.08 2 · 103 1.000 1.595 12.35

LW-NN 11.33h 15.73 832.9 2 · 104 1.159 4.651 18.02
UAE-Q 11.03h 2.875 20.613 1 · 104 1.145 4.001 13.14
MSCN 8.11h 20.92 392.3 1 · 104 1.138 4.031 11.11

BayesCard 7.16h 1.182 50.40 156.4 1.000 1.582 6.843
DeepDB 6.46h 2.451 22.37 1 · 103 1.030 1.833 6.819
FLAT 5.80h 1.675 10.44 768.8 1.000 1.346 5.546

PostgreSQL and much better than histogram and sampling based
methods and LW-XGB; 2) BayesCard has the best Q-Errors, yet
execution time is 1.4h slower than FLAT; and 3) the Q-Errors of
MSCN are significantly worse than PostgreSQL, but the execution
time of MSCN largely outperforms it.

Next, we analyze the underlying reasons behind O11. This is
particularly important as the DB communities have made great
efforts in purely optimizing the Q-Error of CardEst methods, but
sometimes neglect the ultimate goal of CardEst in DBMS. As shown
in Section 4.2, the CardEst method would be invoked for multiple
sub-plan queries to decide the query plan. The estimation errors of
different sub-plan query have different impact on the final query
plan performance. However, the Q-Error metric could not distin-
guish this difference and regard the estimation errors of all queries
equally. This would cause the phenomenon that a more accurate
estimation measured by Q-Error may lead to a worse query execu-
tion plan in reality. We list two typical scenarios in the benchmark
where Q-Error fails to distinguish the difference as follow:
O12: Q-Error does not distinguish queries with small and
large cardinality that have the same Q-Error value but mat-
ter differently to the query plan. For Q-Error, an estimation 1
for true cardinality of 10 has the same Q-Error as an estimation 1011
for true cardinality 1012. The previous case may barely affect the
overall query plan, whereas the latter one can be catastrophic since
the (sub-plan) queries with large cardinalities dominate the overall
effectiveness of the query plan (shown in O5). For example, in Fig-
ure 2, the overall Q-Error of BayesCard over all sub-plan queries
of Q57 is better than FLAT. However, only for the root query which
matters most importantly to the query execution time, BayesCard
fails to correctly estimate and leads to a much slower plan.
O13: Q-Error can not distinguish between query underesti-
mation andoverestimation that have the sameQ-Error value
but matter differently to the query plan. For Q-Error, an un-
derestimation 109 for true cardinality 1010 is the same as an over-
estimation of 1011. These two estimations are very likely to lead
to different plans with drastically different execution time. Recall
the Q57 example, BayesCard underestimates the cardinality of the
root query by 7× and selects a “merge join” operation. We test this
query but injecting a 7× overestimation for this sub-plan query,
and it then selects the “hash join” operation with twice faster time.

As a result, Q-Error does not consider the importance of different
sub-plan queries and may mislead the query plan generation..

762

7.2 An Alternative Metric: P-Error
Obviously, the best way to evaluate the quality of a CardEstmethod
is to directly record its query execution time on some benchmark
datasets and query workloads (e.g. JOB-LIGHT and STATS-CEB).
However, this is time consuming and not suitable for the situations
where fast evaluation is needed, e.g., hyper-parameter tuning. A
desirable metric should be fast to compute and simultaneously
correlated with the query execution time. In the following, we
propose the P-Error metric to fulfill this goal and quantitatively
demonstrate that P-Error can be a possible substitute for Q-Error.
P-Error metric for CardEst:Although obtaining the actual query
execution time is expensive, we could approximate it using the built-
in component in DBMS. Note that, given a query plan, the cost
model of a DBMS could output an estimated cost, which is designed
to directly reflect the actual execution time. Inspired by the recent
research [41], we believe that the estimated cost could serve as a
good metric for evaluating the CardEst methods.

Specifically, given a queryQ and a CardEstmethodA, letCT and
CE denote the set of true and estimated cardinality of all sub-plan
queries of Q . When CE is fed into the query optimizer, it would
generate a query plan P(CE) of Q . During the actual execution of
this query plan, the true cardinalities of all sub-plan queries along
this plan will be instantiated. Therefore, to estimate the execution
cost of P(CE), we inject the true cardinality of sub-plan queries
CT into the DBMS. The DBMS will output an estimated cost based
on this query plan, which is highly correlated to the actual time
for an accurate cost model. Following prior work [41], we choose
PostgreSQL to calculate this estimated cost, which is denoted as
PPC(P(CE),CT). Ideally, if the cost model is accurate, the query
plan P(CT) found by the true cardinality CT should be optimal, i.e.
PPC(P(CT),CT) = minC PPC(P(C),CT). Therefore, we define

P-Error = PPC(P(CE),CT)/PPC(P(CT),CT)

as our CardEst metric. The P-Error for an existing workload of
queries can be computed instantaneously using the modified plugin
pg_hint_plan provided in [40] as long as we pre-compute and store
the true cardinalities of all sub-plan queries.

In P-Error, the effectiveness of a CardEst method’s estimation
CE is measured on the plan cost level. The impact on the estima-
tion error of each sub-plan query is reflected by its importance
in generating the query plan P(CE) (e.g. small or large cardinality,
underestimation or overestimation, etc.).

Notice that, in real-world DBMS, the cost model can sometimes
be inaccurate [29], which may lead to worse query plans with better
estimated cost, i.e., PPC(P(CT),CT) may be not the minimal cost
over all query plans. However, this is not an issue as PPC(P(CT),CT)
is identical to different CardEstmethods, we could always compare
their relative performance using P-Error no matter P(CT) is optimal
or not. Meanwhile, we find that P(CT) is optimal in most cases.
On our STATS benchmark, the query plan generated by the true
cardinality is optimal on more than 98% queries using the default
cost model of PostgreSQL.
Advantages of P-Error Metric: In Table 7, we report the P-Error
distributions (50%, 90%, 99% percentiles) over the STATS-CEB work-
load of all CardEst methods and derive the following observation:

O14: P-Error is more highly correlated to the query execu-
tion time than Q-Error. We can roughly see that methods with
better runtime tend to have smaller P-Error (e.g. FLAT has the best
P-Error). We also compute the correlation coefficients between the
query execution time and Q-Error/P-Error. On the STATS-CEB
query workload, the value between 50% and 90% percentiles of
Q-Error distribution w.r.t. query time is 0.036 and 0.037. Whereas,
the value between 50% and 90% percentiles of P-Error distribution
w.r.t. query time is 0.810 and 0.838. This indicates that P-Error is a
better correspondence to the query execution time than Q-Error.

In addition, P-Error is more convenient as it outputs a single
value on the plan cost level whereas Q-Error outputs a value for
each sub-plan query of Q . Therefore, P-Error makes an attempt
to overcome the limitations of Q-Error and is shown to be more
suitable to measure the actual performance of CardEst methods.

8 DISCUSSIONS AND CONCLUSIONS
In this paper, we establish a new benchmark for CardEst, which
contains the complex real-world dataset STATS and the diverse
query workload STATS-CEB. This new benchmark helps to clearly
identify the pros and cons of different CardEstmethods. In addition,
we propose the new metric P-Error as a potential substitute for the
well-knownQ-Error. Based on the exhaustive experimental analysis,
we derive a series of important observations that will provide the
DBMS community with a holistic view of the CardEst problem and
help researchers design more effective and efficient CardEst meth-
ods. At last, we summarize the following key takeaway messages
and future research opportunities:

• Overall performance: ML-based data-driven CardEst meth-
ods can achieve near-optimal performance, whereas the other meth-
ods barely have any improvement over PostgreSQL. Admittedly, the
query-driven methods are more general because they can handle
complex string “LIKE” queries.

• Importance of different queries: Accurate estimation of
queries with large cardinalities is much important than the small
ones. Therefore, researchers should develop CardEst methods that
can produce accurate estimation for queries with large cardinalities
instead of fine-grained estimation on extremely small ones.

•Estimation ofmulti-table join queries:TheML-basedmeth-
ods exhibit degrading performance for queries with an increasing
number of join tables. Since learning one large data-driven model
on the (sample of) full outer join of all tables has poor scalability, we
believe an effective CardEst method should make appropriate inde-
pendent assumptions and advocate researchers follow and improve
the fanout methods first proposed by DeepDB [24].

• Practicality aspects: The inference latency of CardEst meth-
ods has a non-trivial impact on the end-to-end query time. Existing
ML-based query-driven methods are inherently impractical for
dynamic DBs with frequent data updates. Therefore, designing
CardEst methods with fast inference speed and effective update
algorithms is also very important.

• Problems of Q-Error: The well-recognized Q-Error metric
does not reflect a CardEst method’s end-to-end query performance.
Alternatively, the newly proposed P-Error metric has better corre-
spondence to the query performance and could serve as a better
optimization objective for future researches.

763

REFERENCES
[1] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. 2001. STHoles: a multidi-

mensional workload-aware histogram. In SIGMOD. 211–222.
[2] Walter Cai. 2021. Github repository: pqo-open source. https://github.com/waltercai

(2021).
[3] Walter Cai, Magdalena Balazinska, and Dan Suciu. 2019. Pessimistic cardinality

estimation: Tighter upper bounds for intermediate join cardinalities. In SIGMOD.
18–35.

[4] Surajit Chaudhuri, Vivek Narasayya, and Ravi Ramamurthy. 2009. Exact cardinal-
ity query optimization for optimizer testing. Proceedings of the VLDB Endowment
2, 1 (2009), 994–1005.

[5] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[6] C. Chow and Cong Liu. 1968. Approximating discrete probability distributions
with dependence trees. IEEE transactions on Information Theory 14, 3 (1968),
462–467.

[7] Transaction Processing Performance Council(TPC). 2021. TPC-DS Vesion 2 and
Version 3. http://www.tpc.org/tpcds/ (2021).

[8] Transaction Processing Performance Council(TPC). 2021. TPC-H Vesion 2 and
Version 3. http://www.tpc.org/tpch/ (2021).

[9] Mattia Desana and Christoph Schnörr. 2020. Sum-product graphical models.
Machine Learning 109, 1 (2020), 135–173.

[10] Amol Deshpande, Minos Garofalakis, and Rajeev Rastogi. 2001. Independence is
good: Dependency-based histogram synopses for high-dimensional data. ACM
SIGMOD Record 30, 2 (2001), 199–210.

[11] Postgresql Documentation 12. 2020. Chapter 70.1. Row Estimation Examples.
https://www.postgresql.org/docs/current/row-estimation-examples.html (2020).

[12] Anshuman Dutt, Chi Wang, Azade Nazi, Srikanth Kandula, Vivek Narasayya,
and Surajit Chaudhuri. 2019. Selectivity estimation for range predicates using
lightweight models. PVLDB 12, 9 (2019), 1044–1057.

[13] Dennis Fuchs, Zhen He, and Byung Suk Lee. 2007. Compressed histograms with
arbitrary bucket layouts for selectivity estimation. Information Sciences 177, 3
(2007), 680–702.

[14] Hector Garcia-Molina and Gio Wiederhold. 1982. Read-only transactions in a
distributed database. ACM Transactions on Database Systems (TODS) 7, 2 (1982),
209–234.

[15] Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. 2015. MADE:
Masked autoencoder for distribution estimation. International Conference on
Machine Learning (2015), 881–889.

[16] Lise Getoor, Benjamin Taskar, and Daphne Koller. 2001. Selectivity estimation
using probabilistic models. In SIGMOD. 461–472.

[17] Dimitrios Gunopulos, George Kollios, Vassilis J Tsotras, and Carlotta Domeni-
coni. 2000. Approximating multi-dimensional aggregate range queries over real
attributes. In SIGMOD. 463–474.

[18] Dimitrios Gunopulos, George Kollios, Vassilis J Tsotras, and Carlotta Domeni-
coni. 2005. Selectivity estimators for multidimensional range queries over real
attributes. The VLDB Journal 14, 2 (2005), 137–154.

[19] Max Halford, Philippe Saint-Pierre, and Franck Morvan. 2019. An approach based
on bayesian networks for query selectivity estimation. DASFAA 2 (2019).

[20] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2019. Multi-attribute selectivity estimation using deep learning.
In SIGMOD.

[21] Shohedul Hasan, Saravanan Thirumuruganathan, Jees Augustine, Nick Koudas,
and Gautam Das. 2020. Deep Learning Models for Selectivity Estimation of
Multi-Attribute Queries. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1035–1050.

[22] Max Heimel, Martin Kiefer, and Volker Markl. 2015. Self-tuning, gpu-accelerated
kernel density models for multidimensional selectivity estimation. In SIGMOD.
1477–1492.

[23] Benjamin Hilprecht. 2019. Github repository: deepdb public.
https://github.com/DataManagementLab/deepdb-public (2019).

[24] BenjaminHilprecht, Andreas Schmidt, Moritz Kulessa, AlejandroMolina, Kristian
Kersting, and Carsten Binnig. 2019. DeepDB: learn from data, not from queries!.
In PVLDB.

[25] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm: A highly efficient gradient boosting
decision tree. Advances in neural information processing systems 30 (2017), 3146–
3154.

[26] Andranik Khachatryan, Emmanuel Müller, Christian Stier, and Klemens Böhm.
2015. Improving accuracy and robustness of self-tuning histograms by subspace
clustering. IEEE TKDE 27, 9 (2015), 2377–2389.

[27] Martin Kiefer, Max Heimel, Sebastian Breß, and Volker Markl. 2017. Estimating
join selectivities using bandwidth-optimized kernel density models. PVLDB 10,
13 (2017), 2085–2096.

[28] Andreas Kipf, Thomas Kipf, Bernhard Radke, Viktor Leis, Peter Boncz, and
Alfons Kemper. 2019. Learned cardinalities: Estimating correlated joins with

deep learning. In CIDR.
[29] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How good are query optimizers, really? PVLDB 9, 3
(2015), 204–215.

[30] Viktor Leis, Bernhard Radke, Andrey Gubichev, Alfons Kemper, and Thomas
Neumann. 2017. Cardinality Estimation Done Right: Index-Based Join Sampling.
In CIDR.

[31] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander join: Online aggrega-
tion via random walks. In SIGMOD. 615–629.

[32] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2019. Wander join and XDB: online
aggregation via random walks. ACM Transactions on Database Systems 44, 1
(2019), 1–41.

[33] Eric Liang, Zongheng Yang, Ion Stoica, Pieter Abbeel, Yan Duan, and Peter Chen.
2020. Variable Skipping for Autoregressive Range Density Estimation. In ICML.
6040–6049.

[34] Pedro Lopes, Craig Guyer, and Milener Gene. 2019. Sql docs: cardinality
estimation (SQL Server). https://docs.microsoft.com/en-us/sql/relational-
databases/performance/cardinality-estimation-sql-server?view=sql-server-ver15
(2019).

[35] Frank Luan, Amog Kamsetty, Eric Liang, and Zongheng Yang. 2020. Github
repository: neurocard project. https://github.com/neurocard/neurocard (2020).

[36] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013.
Distributed representations of words and phrases and their compositionality.
NIPS (2013).

[37] Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. 2009. Preventing bad
plans by bounding the impact of cardinality estimation errors. Proceedings of the
VLDB Endowment 2, 1 (2009), 982–993.

[38] M Muralikrishna and David J DeWitt. 1988. Equi-depth multidimensional his-
tograms. In Proceedings of the 1988 ACM SIGMOD international conference on
Management of data. 28–36.

[39] Yoon-Min Nam Nam, Donghyoung Han Han, and Min-Soo Kim Kim. 2020.
SPRINTER: a fast n-ary join query processing method for complex OLAP queries.
In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 2055–2070.

[40] Parimarjan Negi. 2021. Github repository: pg_hint_plan.
https://github.com/parimarjan/pg_hint_plan (2021).

[41] Parimarjan Negi, Ryan Marcus, Andreas Kipf, Hongzi Mao, Nesime Tatbul, Tim
Kraska, and Mohammad Alizadeh. 2021. Flow-Loss: Learning Cardinality Esti-
mates That Matter. arXiv preprint arXiv:2101.04964 (2021).

[42] Parimarjan Negi, Ryan Marcus, Hongzi Mao, Nesime Tatbul, Tim Kraska, and
Mohammad Alizadeh. 2020. Cost-guided cardinality estimation: Focus where it
matters. In 2020 IEEE 36th International Conference on Data EngineeringWorkshops
(ICDEW). IEEE, 154–157.

[43] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. 2009.
The star schema benchmark and augmented fact table indexing. In Technology
Conference on Performance Evaluation and Benchmarking. Springer, 237–252.

[44] Yeonsu Park, Seongyun Ko, Sourav S Bhowmick, Kyoungmin Kim, Kijae Hong,
and Wook-Shin Han. 2020. G-CARE: A framework for performance benchmark-
ing of cardinality estimation techniques for subgraph matching. In SIGMOD.
1099–1114.

[45] Pedro Pedreira, Yinghai Lu, Sergey Pershin, Amit Dutta, and Chris Croswhite.
2018. Rethinking concurrency control for in-memory OLAP dbmss. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE, 1453–1464.

[46] Matthew Perron, Zeyuan Shang, Tim Kraska, and Michael Stonebraker. 2019.
How I learned to stop worrying and love re-optimization. In ICDE. 1758–1761.

[47] Hoifung Poon and Pedro Domingos. 2011. Sum-product networks: A new deep
architecture. In ICCV Workshops. 689–690.

[48] Viswanath Poosala and Yannis E Ioannidis. 1997. Selectivity estimation without
the attribute value independence assumption. In VLDB, Vol. 97. 486–495.

[49] MySQL 8.0 ReferenceManual. 2020. Chapter 15.8.10.2 ConfiguringNon-Persistent
Optimizer Statistics Parameters. https://dev.mysql.com/doc/refman/8.0/en/innodb-
statistics-estimation.html (2020).

[50] P Griffiths Selinger, Morton M Astrahan, Donald D Chamberlin, Raymond A
Lorie, and Thomas G Price. 1979. Access path selection in a relational database
management system. In SIGMOD. 23–34.

[51] MariaDB Server Documentation. 2020. Statistics for optimizing queries: InnoDB
persistent statistics. https://mariadb.com/kb/en/innodb-persistent-statistics/ (2020).

[52] Suraj Shetiya, Saravanan Thirumuruganathan, Nick Koudas, and Gautam Das.
2020. Astrid: accurate selectivity estimation for string predicates using deep
learning. Proceedings of the VLDB Endowment 14, 4 (2020), 471–484.

[53] Utkarsh Srivastava, Peter J Haas, Volker Markl, Marcel Kutsch, and Tam Minh
Tran. 2006. Isomer: Consistent histogram construction using query feedback. In
ICDE. 39–39.

[54] Michael Stillger, Guy M Lohman, Volker Markl, and Mokhtar Kandil. 2001. LEO-
DB2’s learning optimizer. In PVLDB, Vol. 1. 19–28.

[55] Ji Sun and Guoliang Li. 2019. An end-to-end learning-based cost estimator. VLDB
(2019).

764

[56] Vladimir Svetnik, Andy Liaw, Christopher Tong, J Christopher Culberson,
Robert P Sheridan, and Bradley P Feuston. 2003. Random forest: a classification
and regression tool for compound classification and QSAR modeling. Journal of
chemical information and computer sciences 43, 6 (2003), 1947–1958.

[57] Immanuel Trummer. 2019. Exact cardinality query optimization with bounded
execution cost. In Proceedings of the 2019 International Conference on Management
of Data. 2–17.

[58] Kostas Tzoumas, Amol Deshpande, and Christian S Jensen. 2011. Lightweight
graphical models for selectivity estimation without independence assumptions.
PVLDB 4, 11 (2011), 852–863.

[59] Hai Wang and Kenneth C Sevcik. 2003. A multi-dimensional histogram for
selectivity estimation and fast approximate query answering. In Proceedings of
the 2003 conference of the Centre for Advanced Studies on Collaborative research.
328–342.

[60] Xiaoying Wang, Changbo Qu, Weiyuan Wu, Jiannan Wang, and Qingqing Zhou.
2021. Are We Ready For Learned Cardinality Estimation? VLDB 14, 9 (2021),
1640–1654.

[61] Chenggang Wu, Alekh Jindal, Saeed Amizadeh, Hiren Patel, Wangchao Le, Shi
Qiao, and Sriram Rao. 2018. Towards a learning optimizer for shared clouds.
PVLDB 12, 3 (2018), 210–222.

[62] Peizhi Wu. 2021. Github repository: UAE/UEA-Q.
https://github.com/pagegitss/UAE (2021).

[63] Peizhi Wu and Gao Cong. 2021. A Unified Deep Model of Learning from both
Data and Queries for Cardinality Estimation. In Proceedings of the 2021 ACM
SIGMOD International Conference on Management of Data.

[64] Ziniu Wu. 2021. Github repository: BayesCard.
https://github.com/wuziniu/BayesCard (2021).

[65] Ziniu Wu. 2021. Github repository: FSPN. https://github.com/wuziniu/FSPN
(2021).

[66] Ziniu Wu and Amir Shaikhha. 2020. BayesCard: A Unified Bayesian Framework
for Cardinality Estimation. arXiv preprint arXiv:2012.14743 (2020).

[67] Ziniu Wu, Peilun Yang, Pei Yu, Rong Zhu, Yuxing Han, Yaliang Li, Defu Lian, Kai
Zeng, and Jingren Zhou. 2021. A Unified Transferable Model for ML-Enhanced
DBMS. arXiv preprint arXiv:2105.02418 (2021).

[68] Ziniu Wu, Rong Zhu, Andreas Pfadler, Yuxing Han, Jiangneng Li, Zhengping
Qian, Kai Zeng, and Jingren Zhou. 2020. FSPN: A New Class of Probabilistic
Graphical Model. arXiv preprint arXiv:2011.09020 (2020).

[69] Zongheng Yang, Amog Kamsetty, Sifei Luan, Eric Liang, Yan Duan, Xi Chen, and
Ion Stoica. 2021. NeuroCard: One Cardinality Estimator for All Tables. PVLDB
14, 1 (2021), 61–73.

[70] Zongheng Yang, Eric Liang, Amog Kamsetty, ChenggangWu, Yan Duan, Xi Chen,
Pieter Abbeel, Joseph M Hellerstein, Sanjay Krishnan, and Ion Stoica. 2019. Deep
unsupervised cardinality estimation. PVLDB (2019).

[71] Zongheng Yang and Chenggang Wu. 2019. Github repository: naru project.
https://github.com/naru-project/naru (2019).

[72] Zhuoyue Zhao, Robert Christensen, Feifei Li, Xiao Hu, and Ke Yi. 2018. Random
sampling over joins revisited. In SIGMOD. 1525–1539.

[73] Zhuoyue Zhao, Feifei Li, and Yuxi Liu. 2020. Efficient join synopsis mainte-
nance for data warehouse. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2027–2042.

[74] Zhuoyue Zhao, Bin Wu, Feifei Li, and Ke Yi. 2021. Github repository: InitialDL-
Lab/XDB. https://github.com/InitialDLab/XDB (2021).

[75] Rong Zhu, Ziniu Wu, Yuxing Han, Kai Zeng, Andreas Pfadler, Zhengping Qian,
Jingren Zhou, and Bin Cui. 2021. FLAT: Fast, Lightweight and Accurate Method
for Cardinality Estimation. VLDB 14, 9 (2021), 1489–1502.

765

