
Ember: No-Code Context Enrichment via
Similarity-Based Keyless Joins

Sahaana Suri
Stanford University

sahaana@stanford.edu

Ihab F. Ilyas
University of Waterloo
ilyas@uwaterloo.ca

Christopher Ré
Stanford University

chrismre@cs.stanford.edu

Theodoros Rekatsinas
UW-Madison

thodrek@cs.wisc.edu

ABSTRACT

Structured data, or data that adheres to a pre-defined schema, can
suffer from fragmented context: information describing a single
entity can be scattered across multiple datasets or tables tailored
for specific business needs, with no explicit linking keys. Context
enrichment, or rebuilding fragmented context, using keyless joins is
an implicit or explicit step in machine learning (ML) pipelines over
structured data sources. This process is tedious, domain-specific,
and lacks support in now-prevalent no-code ML systems that let
users createML pipelines using just input data and high-level config-
uration files. In response, we propose Ember, a system that abstracts
and automates keyless joins to generalize context enrichment. Our
key insight is that Ember can enable a general keyless join operator
by constructing an index populated with task-specific embeddings.
Ember learns these embeddings by leveraging Transformer-based
representation learning techniques. We describe our architectural
principles and operators when developing Ember, and empirically
demonstrate that Ember allows users to develop no-code context
enrichment pipelines for five domains, including search, recom-
mendation and question answering, and can exceed alternatives by
up to 39% recall, with as little as a single line configuration change.

PVLDB Reference Format:

Sahaana Suri, Ihab F. Ilyas, Christopher Ré, Theodoros Rekatsinas. Ember:
No-Code Context Enrichment via Similarity-Based Keyless Joins. PVLDB,
15(3): 699 - 712, 2022.
doi:10.14778/3494124.3494149

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/sahaana/ember.

1 INTRODUCTION

Machine learning (ML) systems that extract semantic context from
unstructured data have revolutionized domains spanning computer
vision [47] and natural language processing [24, 66]. Unfortunately,
applying these systems to structured and semi-structured datasets
with pre-defined schemas is challenging as their context is often

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494149

(A) Goal: Downstream ML

 ITEM is a joinable key,

 Make == Brand,

 Description →

{Make, Color},

 {Brand, Model}

Input

Supervision

 Auxiliary Data

Product Catalog C, Shoes “R” Us

ITEM ID ID Description

A81 3 For the first time the Pegasus li...

A82 4 The blue Asics Gel-Nimbus 22...

Product Catalog A, Shoe Mart

ITEM ID ID Color Brand Sizes

A78 4 Black Asics 13

Product Catalog B, Shoe Shoppe

Model ID Brand ITEM ID

Scorch Runner 3 Puma A79

Gel-Nimbus 21 9 Asics A80

Base Table (aggregated user ratings)

AVG(Rating) COUNT(USER) ITEM ID

8.5/10 5 A80

0 0 A82

Normalized User Ratings Table

USER ITEM ID Rating

U888 A80 8/10

Base Data

Normalized User Metadata Table

USER Age Gender State

U888 42 F HI

Base Data

 Auxiliary Data

Output

Retrieve Related

Base Data

Supervision

 Auxiliary Data

D
ow

nstream

Tasks

 EMBER
preprocessing

representation
learning

joining

(C) Existing Approach: Manual Joins

No-Code Context Enrichment

encoder

 EMBER

 KFK Join. Keyless Join.

Normalized Ratings Table

USER ITEM Rating
U888 A80 8/10
??? A82 ???

ShoeShop, Ext Catalog B

ID Brand Model
P5 Puma UltraRide
P8 Asics GT-1000 8

ShoeMart, Ext Catalog C

ITEM Size Make Color
A79 7 Puma Black
A80 8 Asics Blue

Given Catalogs A, B, C

Domain-specific analyses to join A, B, C Enriched Data

(D)EMBER: replace & automate

Predict

Recommend

Recommend

(B) Challenge: Info scattered across three catalogs

Proprietary Catalog A

ITEM Description
A81 The newest Pegasus...
A82 Blue Asics GT-1000 9...

Figure 1: An end-to-end task requiring context enrichment.

Predicting the rating of and recommending a new product

(A82), requires relating the Asics products (highlighted in

dark gray) via a keyless join (top). This process is manual

due to data heterogeneity—we aim to automate it (bottom).

fragmented: they scatter information regarding a data record across
domain-specific datasets with unique schemas. For instance, in
Figure 1B, information about Asics shoes is scattered across three
catalogs with unique schemas. These schemas are optimized for
task-specific querying and often lack explicit linking keys, such as
primary key-foreign key (KFK) relationships. This constrains users
to a single view of an entity, specialized for a specific business need.

Associating these fragmented data contexts is critical to enable
ML-powered applications—a preprocessing procedure we denote as
context enrichment—yet is a heavily manual endeavor due to task
and dataset heterogeneity. Engineers develop solutions for context
enrichment tailored to their task, such as similarity-based blocking
in data integration [62], retrievermodels in question answering [91],
or retrieval functions in search [71] (see Section 2). Constructing
these independent solutions is repetitive, time-consuming, and
results in a complicated landscape of overlapping, domain-specific
methods. For instance, consider the scenario depicted in Figure 1:
An e-commerce company has a proprietary product catalog, and ag-
gregates product information from several external vendors to perform
market analysis. Each vendor uses a unique product catalog, each with
unique product representations (i.e., schema) ranging from free-form
text to tabular product descriptions; products may overlap and evolve

699

https://doi.org/10.14778/3494124.3494149
https://github.com/sahaana/ember
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494149
https://www.acm.org/publications/policies/artifact-review-and-badging-current

(Figure 1B). Given normalized tables containing user and rating data,
an engineer wishes to estimate the rating for a candidate new product
(A82) and identify users to recommend the product to (Figure 1A).

The engineer must first perform context enrichment by joining
information across tables to extract features that capture similarities
between the new (A82) and existing (A80, P8) products. They can
then estimate the product rating, and recommend the new product
to users based on how they rated related products.

The classic datamanagement approach is to denormalize datasets
using KFK joins. This fails to solve the problem due to two reasons.
First, not all tables can be joined when relying on only KFK rela-
tionships (e.g., there is no KFK relationship between Catalog B and
Catalogs A or C). Second, even when KFK relationships exist, as
between Catalogs A and C (ITEM), relying on only KFK semantics
fails to capture the similarity between A82 and A80.

Alternatively, the engineer can rely on similarity-based join tech-
niques, as in data blocking [62], built to avoid exhaustive, pairwise
comparison of potentially joinable records. However, as we show in
Section 9.3, the optimal choice of join operator to maximize recall
of relevant records is task-dependent, and may not scale at query
time when new records arrive. The engineer must first note that the
Description column in Catalog A relates to the Brand and Model
columns in Catalog B and the Size, Make, and Color columns in
Catalog C. They can then select a custom join based on table prop-
erties: for matching primarily short, structured data records, they
may want to join based on Jaccard similarity, whereas BM25 may
be better suited for purely textual records (see Table 3). As database
semantics do not natively support these keyless joins, joining arbi-
trary catalogs remains heavily manual—even large companies rely
on vendors to categorize listings, resulting in duplicate listings.1

To counter this manual process, we draw from recent no-code
ML systems such as Ludwig [57], H20.ai [4], and Data Robot [3]
that provide higher-level configuration-based abstractions for de-
velopingML applications. Despite their success, these systems leave
context enrichment as a user-performed step.2 In this paper, we
evaluate how to bring no-code semantics to context enrichment.

No out-of-the-box query interface surfaces the relatedness be-
tween A80, A82, and P8 (all Asics, two GT-1000, and two blue)
with minimal intervention. The challenge in developing a system to
enable this is in constructing an architecture that is simultaneously:

(1) General: Applicable to a wide variety of tasks and domains.
(2) Extensible: Customizable for domain or downstream needs.
(3) Low Effort: Usable with minimal configuration.
Our key insight is to simplify context enrichment by abstract-

ing an interface for a new class of join: a learned keyless join that
operates over record-level similarity. We formalize keyless joins as
an abstraction layer for context enrichment, as traditional database
joins are for combining data sources given KFK relationships.

We then propose Ember: a no-code context enrichment frame-
work that implements a keyless join abstraction layer. Ember cre-
ates an index populated with task-specific embeddings that can
be quickly retrieved at query time, and can operate over arbi-
trary semi-structured datasets with unique but fixed schema. To

1https://sell.amazon.com/sell.html
2https://cloud.google.com/automl-tables/docs/prepare

-
-

-

+
+

-

Input Output

Retrieve Related

Base Data

Supervision

 Auxiliary Data

Downstream

Models

D
o

w
nstream

 M
od

els

 EMBER
preprocessing

representation
learning

joining

Figure 2: Ember’s interface for context enrichment.

provide generality, Ember relies on Transformers [79] for embed-
ding generation, as they have demonstrated success capturing se-
mantic information across textual, semi-structured and structured
data [24, 55, 66, 77, 86]. To provide extensibility, Ember is composed
of a modular architecture with configurable operators. To provide
ease of use, Ember is configurable via a json-based configuration
or SQL-style interface, with general default options.

As input, users provide: (1) a base data source, (2) an auxiliary
data source, (3) a set of examples of related records across the
sources. For each base data record, Ember returns related auxiliary
data records as characterized by the examples, which can be post-
processed for downstream tasks. We now present Ember’s three-
step architecture that enables index construction and related record
retrieval via Transformer-based embeddings (Figure 2):
Preprocessing. Ember transforms records across all data sources
to a common representation, allowing us to apply the samemethods
across tasks. By default, Ember uses operators that convert each
record to a natural language sentence for input to a Transformer-
based encoder, which we optionally pretrain using self-supervision.
Representation Learning. Ember tunes the preprocessed repre-
sentations to identify contextually similar records (characterized
by the supervised examples) via a contrastive triplet loss [81]. To
evaluate the dependence on labeled data, we examine what fraction
of the provided examples Ember needs to match the performance
of using all examples, and find that at times, just 1% is sufficient.
Joining. Ember retrieves related records using the tuned represen-
tations. Ember populates an index with the embeddings learned
to capture record similarity, and uses optimized maximum inner
product search (MIPS) to identify a record’s nearest neighbors. We
show that Embermeets or exceeds the performance of ten similarity
join baselines with respect to recall and query runtime.

In the case of the running example from Figure 1, the engineer
can replace the manual procedure to collect related information for
new product A82 with keyless joins using Ember’s SQL-style API.
First, the engineer must collect examples of relevant record pairs
that they wish to automatically recover across each data source pair
as supervision. They can then use the following query to retrieve
the closest record in Catalog B to each record in Catalog A, which
would associate product P8 in Catalog B with A82 in Catalog A:
catalog_A INNER KEYLESS JOIN catalog_B USING supervision_B;

Given this query, Ember first converts each record in Catalogs
A and B into a sentence-based representation. Ember then uses

700

the provided supervision to learn a vector representation that
encourages clustering of relevant sentences, and transforms all sen-
tences to this representation. Finally, Ember indexes and retrieves
the most relevant record from Catalog B for each record in Catalog
A based on distance in the learned embedding space.

In this paper, we report on our experience in deploying Ember
to perform context enrichment for five tasks: fuzzy joining, entity
matching, question answering, search, and recommendation. In
summary, we present the following contributions:

• We propose keyless joins with a specification to serve as an
abstraction layer for context enrichment. To our knowledge,
this is the first work to generalize similarity-based data pro-
cessing across data integration, natural language processing,
search, and recommendation as a data management problem.

• We design and develop Ember, the first no-code framework
for context enrichment that implements keyless joins, and
provides an API for extending and optimizing keyless joins.

• We empirically demonstrate that Ember generalizes to five
workloads by meeting or exceeding the recall of baselines
while using 6 or fewer configuration line changes, and eval-
uate the modular design of Ember’s default architecture.

2 CONTEXT ENRICHMENT

In this section, we define context enrichment, and provide example
workloads that can be framed as a form of context enrichment.

2.1 Problem Statement

Structured data, or data that adheres to a fixed schema formatted in
rows and columns, suffers from context fragmentation. We define
structured data to include semi-structured and textual data sources
that may be stored and keyed in data management systems, such as
content from Wikipedia articles or web search results. Structured
data follows a scattered format that is efficient to store, query, and
manipulate for specific business needs. Thismay be in the form of an
e-commerce company storing datasets cataloging products and user
reviews (Figure 1). To use these fragmented datasets for downstream
ML, practitioners unify them to construct discriminative features.

We refer to this preprocessing join procedure as context enrich-
ment, which we now define: given a base dataset in tabular form,𝐷0,
context enrichment aligns 𝐷0 with context derived from auxiliary
data sources, 𝐷 = {𝐷1, ..., 𝐷𝑀 }, to solve a task 𝑇 . We focus on a
text-based, two-dataset case (|𝐷 | = 1), but propose non-text and
multi-dataset extensions in Section 8 as future work. We explore
context enrichment in regimes with abundant and limited labeled
relevant pairs 𝑌 to learn source alignment.

We represent each dataset𝐷𝑖 as an ni×di matrix of ni data points
(or records) and di columns. We denote 𝐶𝑖𝑟 as the 𝑟𝑡ℎ column in
dataset 𝑖 . We denote 𝑑𝑖 𝑗 as the 𝑗𝑡ℎ row in dataset 𝑖 . Columns are
numeric or textual, and we refer to the domain of 𝑑𝑖 𝑗 as Di.

Our goal is to enrich, or identify all context for, each 𝑑0𝑗 in 𝐷0:
auxiliary records 𝑑𝑙𝑚 (𝑙 ≠ 0) that are related to 𝑑0𝑗 , as per task 𝑇 .

2.2 Motivating Applications

Context enrichment is a key retrieval and processing component in
many domains. A general context enrichment framework that can

be extended according to domain-specific advances would reduce
the developer time needed to bootstrap custom ML pipelines. We
now describe five such domains (evaluated in Section 9). Additional
domains include entity linkage [61, 73], nearest neighbor machine
translation [40], and nearest neighbor language modeling [41].
Entity Matching (EM) and Deduplication. EM identifies data
points that refer to the same entity across two different collections
of entity mentions [46]. An entity denotes any distinct real-world
object such as a person or organization, while its mention is a
reference in a dataset. Entity deduplication is a special case of EM,
where both collections of entity mentions are the same.
We use context enrichment for entity matching as follows: 𝐷0
and 𝐷1 represent the two collections of entity mentions. Context
enrichment aligns entities 𝑑1𝑚 in the auxiliary dataset𝐷1 with each
entity 𝑑0𝑗 in the base dataset 𝐷0. In entity deduplication, 𝐷0 = 𝐷1.
The downstream task 𝑇 is a binary classifier over the retrieved
relevant records, as the aim is to identify matching entities.
Fuzzy Joining. A fuzzy join identifies data point pairs that are
similar to one another across two database tables, where similar
records may be identified with respect to a similarity function and
threshold [20, 80] defined over a subset of key columns.
We use context enrichment for fuzzy joining as follows: 𝐷0 and 𝐷1
represent the two database tables. We let 𝐶0 and 𝐶1 denote the set
of key columns used for joining. Records 𝑑0𝑗 and 𝑑1𝑚 are joined if
their values in columns 𝐶0 and 𝐶1 are similar, to some threshold
quantity. This is equivalent to a generic context enrichment task
with a limited number of features used. The downstream task 𝑇 is
a top-k query, as the aim is to identify similar entities.
Recommendation. A recommender system predicts the rating
that a user would give an item, typically for use in content recom-
mendation or filtering [56]. We also consider the broader problem
of determining a global item rating, as in the e-commerce example
in Figure 1, as a form of recommendation problem—the global score
may be predicted by aggregating per-user results.
We use context enrichment for recommendation as follows: 𝐷0
represents all information regarding the entity to be ranked (e.g., a
base product table, or new candidate products), and 𝐷1 represents
the information of the rankers, or other auxiliary data (e.g., catalogs
of previously ranked products). Context enrichment aligns rankers
𝑑1𝑚 in the auxiliary dataset 𝐷1 with those that are related to each
entity to be ranked 𝑑0𝑗 in the base dataset 𝐷0. The downstream
task 𝑇 is to return the top-1 query, or to perform aggregation or
train an ML model over the returned top-k entries.
Search. An enterprise search engine returns information relevant
to a user query issued over internal databases, documentation, files,
or web pages [34, 59]. A general web retrieval system displays
information relevant to a given search query [15, 28]. Both rely
on information retrieval techniques and relevance-based ranking
over an underlying document corpus as building blocks to develop
complex, personalized pipelines, or for retrospective analyses [13].
We use context enrichment for retrieval and ranking in search as
follows: 𝐷0 represents the set of user queries, and 𝐷1 represents
the underlying document corpus. Context enrichment aligns docu-
ments 𝑑1𝑚 in the auxiliary dataset 𝐷1 that map to each query 𝑑0𝑗 in

701

the base dataset 𝐷0. The downstream task 𝑇 is to return the top-k
documents for each query, sorted by their query relatedness.
Question Answering. Question answering systems answer nat-
ural language questions given a corresponding passage (e.g., in
reading comprehension tasks) or existing knowledge source (e.g.,
in open domain question answering) [67, 70]. Multi-hop question
answering generalizes this setting, where the system must traverse
a series of passages to uncover the answer [85]. For instance, the
question "what color is the ocean?" may be provided the statements
"the sky is blue" and "the ocean is the same color as the sky."
We use context enrichment for the retriever component [91] of a
classic retriever-reader model in open domain question answering.
Our task is to identify the candidate text spans in the provided
passages that contain the question’s answer (the retriever com-
ponent), and a downstream reader task can formulate the answer
to the question. We let dataset 𝐷0 represent the set of questions,
and 𝐷1 represent the provided passages or knowledge source, split
into spans. Context enrichment aligns spans 𝑑1𝑚 in the auxiliary
dataset 𝐷1 that contain the answer to each question 𝑑0𝑗 in the base
dataset 𝐷0. Multi-hop question answering requires an extra round
of context enrichment for each hop required. Each round selects a
different passage’s spans as the base table 𝐷0; to identify context
relevant to the question, the user can traverse the related spans
extracted from each passage. The downstream task 𝑇 is to learn a
reader model to answer questions using the enriched data sources.

3 LEARNED KEYLESS JOINS

While the applications in Section 2 perform the same context en-
richment, many state-of-the-art systems for these tasks rediscover
primitives (e.g., contrastive learning [81], and optimized index-
ing [38]) in domains spanning ML, databases, information retrieval,
and natural language processing [41, 42, 53, 76]. We now propose
learned keyless joins as a vehicle towards no-code enrichment.

3.1 Keyless Joins: Definition and Objective

We propose learned keyless joins as an abstraction to retrieve related
records without primary key-foreign key (KFK) relationships—i.e.,
facilitate context enrichment. The goal of a keyless join is to quan-
tify and leverage record-level similarity across different datasets.

A keyless join must learn a common embedding space X for all
records 𝑑𝑖 𝑗 across datasets 𝐷0 ∪𝐷 that reflects entity similarity. For
each Di, a keyless join learns a function 𝐹𝑖 : Di → X that maps ele-
ments of 𝐷𝑖 to the space X. We denote each transformed data point
𝐹𝑖 (𝑑𝑖 𝑗) as 𝑥𝑖 𝑗 . This mappingmust be optimized such that related val-
ues map to similar feature vectors in X and unrelated values map to
distant feature vectors in X: 𝑠𝑖𝑚(𝑥𝑖 𝑗 , 𝑥𝑘𝑙) > 𝑠𝑖𝑚(𝑥𝑖 𝑗 , 𝑥𝑚𝑛) implies
that the 𝑗𝑡ℎ entity in the 𝑖𝑡ℎ dataset is more closely related to the 𝑙𝑡ℎ
entity in the𝑘𝑡ℎ dataset than the𝑛𝑡ℎ entity in the𝑚𝑡ℎ dataset. For in-
stance, if we define similarity with respect to an ℓ𝑝 -norm, the above
condition is equal to optimizing for ∥𝑥𝑖 𝑗 − 𝑥𝑘𝑙 ∥𝑝 < ∥𝑥𝑖 𝑗 − 𝑥𝑚𝑛 ∥𝑝 .

3.2 Join Specification for Context Enrichment

We propose a minimal join specification for our applications using
keyless joins as a building block (Listing 1). Given a pair of data
sources to join (base_table_ref, aux_table_ref), and examples

base_table_ref [join_type] "KEYLESS JOIN" aux_table_ref
"LEFT SIZE" integer "RIGHT SIZE" integer
"USING" supervision ;

join_type = "INNER" | "LEFT" | "RIGHT" | "FULL" ;

Listing 1: Keyless join specification (inner join default).

of similar records across them (supervision), users first specify the
join type: an inner join to only return enriched records, or outer
join (left, right, full) to return enriched and unenriched records.
Users then specify the join size: how many records from one
data source joins to a single record in the other data source to
indicate one-to-one, one-to-many, or many-to-many semantics.

As output, joined tuples (matches) between the two tables are the
most similar records across them as learned using the keyless join
objective. Results are ranked in order of greatest entity similarity,
and the top k results are returned based on join size.

For instance, an entity matching application is written as fol-
lows to retrieve a single matching record between each data source:
entity_mentions_A INNER KEYLESS JOIN entity_mentions_B
LEFT SIZE 1 RIGHT SIZE 1 USING matching_mentions;

A search application is written as follows to retrieve 10 docu-
ments for each search query, else return the unenriched query:
query_corpus LEFT KEYLESS JOIN document_corpus
LEFT SIZE 1 RIGHT SIZE 10 USING relevant_docs_for_query;

In the remainder of paper, we describe our prototype system
that implements this keyless join abstraction layer for enrichment.

3.3 Background: Transformers and EM

Prior work shows that deep learning models with attention mecha-
nisms can replicate manually-generated rules to perform tasks such
as EM in under a day of training, saving months of expert time [58].
As such, we use Transformers [79] to optimize for the objective in
Section 3.1, which rely on attention mechanisms to better capture
domain-specific semantic information for representation learning.

Transformers have demonstrated wide success across structured,
semi-structured, and unstructured domains [24, 55, 66, 77, 86]:
Neural Databases utilize Transformers for OLAP over natural lan-
guage [77]; TaBERT focuses on natural language understanding to
answer text queries over tabular data [86]; PicketNet addresses tabu-
lar data corruption [55], while TabNet aims to provide interpretable
ML models for prediction and regression over tabular data [11].
Just as these methods use Transformers to capture semantic infor-
mation in structured datasets, we propose a context enrichment
architecture powered by Transformers. As we focus on primarily
textual datasets, Ember uses BERT-based embeddings [24].

As noted in Section 2.2, context enrichment is prevalent across
many domains. Recent work in EM such as AutoBlock [90], BERT-
ER [49], DeepBlocker [51], BLINK [83], and DeepER [27] is most
related to ours. These methods share primitives such as hierarchi-
cal encoding structures [51, 90], attention mechanisms tailored for
alignment of tabular attributes [17, 58, 83, 90], hashing or nearest-
neighbor retrieval [27, 49, 51, 90], and EM-specific feature engineer-
ing and supervision [51, 53]. Unfortunately, isolating and reusing
enrichment operators (e.g., blockers) from these systems is challeng-
ing due to their end-to-end focus (see Section 9.3). Thus, we propose

702

Training Data Curation (B; §4)

Representation Learning (B; §6)

D0 (Base)

anchor
+ positive +

- negative -

anchor
+ positive +

- negative -

anchor
+ positive +

- negative -

anchor
+ positive +

- negative -

dij (record)

Brand = Nike;

Model = Winflo

D1 (Auxiliary)

preparer’s sentence

sij = “[CLS] Brand Nike

[SEP] Model Winflo [SEP]”

Self-Supervision

BM25-based retrieval,

embedding similarity, etc.

Pretraining

Masked Language

Modeling

Fine-tune encoder using input supervision

as a labeler (e.g. [sij , skl] → positive) and

sampler to find hard negatives.

loss

Triplet loss
embeddings retrieved based

on join size and type

represented via retriever

Data Preparing (A.1) Optional Self-Supervised Pretraining (A.2) Fully-Supervised Contrastive Learning Indexing, Query Retrieval, Processing

Joining (C; §7)Preprocessing (A; §5)Input Data

index

query

-
-

-

+
+

-

Input

Supervision

encoder encoder

right size: 3

left join

left size: 1

Figure 3: Ember system architecture.

Table 1: Ember data types and operators used in each step

Data Types

record
sentence
embedding

Dict[str, Union[str, int, float]]
str
List[float]

Operators Step

preparer
labeler
sampler
loss

encoder
retriever

record → sentence
Tuple[record, record] → bool
List[Generic[T]] → Generic[T]
Tuple[emb., Union[emb.,

Tuple[emb., emb.]]] → float
sentence → embedding
List[emb.] → List[Tuple[record, emb.]]

1
1, 2
2
1, 2

1, 2
3

an extensible framework to reproduce these methods with mini-
mal overhead: developing a new method should only require the
construction of new EM-specific operators (as defined in Table 1).

4 EMBER

We develop Ember,3 an open-source system for no-code context
enrichment. Ember implements a keyless join abstraction layer that
meets the specification in Section 3.2. Ember first represents input
records using transformer-based embeddings directly optimized
for the condition in Section 3.1. Ember then populates a reusable
index with these embeddings based on the join type, and config-
ures index retrieval based on the join sizes. We now provide an
overview of Ember’s usage, API and architecture; data types and
operators are in Table 1, with an architecture overview in Figure 3.

4.1 Usage

As input, Ember requires: a base data source 𝐷0 ("left"), auxiliary
data sources 𝐷 = {𝐷1, ..., 𝐷𝑀 } ("right"), labeled examples of related
data points, join type, and join sizes. Labeled examples are
provided in one of two forms: pairs of related records, one from
each table, or a triple where a record from 𝐷0 is linked to a related
and unrelated record from each 𝐷𝑖 . That is, unrelated examples
are optional, but related ones are required. Recall that we focus on
the 𝑀 = 1 case (see Section 8 for extensions). As output, Ember
retrieves enriched records based on the join type and join sizes
as a list of tuples. Users can either configure Ember using a json
configuration file or a SQL-like API (see Sections 3.2 and 9.6).

3https://github.com/sahaana/ember

4.2 Architecture and Operator Overview

We propose a modular system with three architectural elements to
enable general keyless: data preprocessing, representation learning,
and data joining. Ember consists of dataflow operators that trans-
form inputs into the formats required for each step (see Table 1).

Ember represents input data records 𝑑𝑖 𝑗 as records in key-
value pairs. Supervision is represented via labelers. An Ember
pipeline consists of preparers, encoders, samplers, losses, and
retrievers. Ember uses preparers to transform records into
sentences. Ember uses encoders to transform sentences into
embeddings that are optimized per a provided loss; samplers mine
negative examples if the provided supervision only provides ex-
amples of related records. The trained embeddings are stored in
an index, and are retrieved using a retriever. We provide an API
over these operators in the form of a high-level configuration file
(see Sections 3.2 and 9.6). Users may use Ember’s pre-configured de-
faults (described below) or implement custom preparer, encoder,
sampler, or retriever operators as needed (e.g., as in Section 8).
Preprocessing (Figure 3A, §5). Ember ingests any text or nu-
meric data source with a pre-defined schema, and converts its
records to a common representation. By default, Ember converts
records to sentences using sentence preparer modules, which
are fed as input to the pipeline’s encoders. Ember optionally pre-
trains the encoders in this step via self-supervision, without labels.
Representation Learning (Figure 3B, §6). Ember learns a map-
ping for each input data source’s records such that the transformed
data is clustered by relatedness. To learn this mapping, Ember’s
encoders are fine-tuned with the input supervision (in the form of
a labeler) and loss. Ember applies the learned mapping to each
of the sentences to generate embeddings passed to the final step.
Joining (Figure 3C §7). Ember populates an indexwith the learned
embeddings using Faiss [38]. A keyless join can be completed by is-
suing a similarity search query given an input record (transformed
to an embedding) against this index. The dataset that is indexed
is determined by the join type. Ember uses a k-NN retriever
module to retrieve as many records specified by the join sizes.

5 PREPROCESSING

We describe the first step of Ember’s pipeline: preprocessing. Em-
ber processes the base and auxiliary input datasets so all records
are represented in a comparable format. Ember then optionally
pretrains the encoders for the representation learning step.

703

Normalized metadata table: nile.com

USER AGE GENDER STATE

U888 42 F HI

U993 38 F HI

Base Table

Avg Rating ITEM ID

7.5/10 A80

??? A82

Normalized Metadata Table

USER AGE GENDER STATE

U888 42 F HI

U993 38 F HI

Normalized User Ratings

USER ITEM ID RATING

U888 A80 7/10

U993 A80 8/10

Product Catalog A

ITEM Description
A82 Blue Asics GT-1000 9 now...

Product Catalog B

ID Brand Model
P8 Asics GT-1000 8

sentence A: “Description Blue Asics GT-1000...”
sentence B: “Brand Asics [SEP] Model GT-1000 8”

MLM: “[CLS] Description Blue Asics GT-1000 9 now
[SEP] Brand Asics [SEP] Model [MASK] 8 [SEP] ”

sentence preparer Pretrain encoder

Figure 4: Examples of the data preparing and pretraining

phases of the preprocessing architecture step.

Data Preparing (Figure 3A.1). This phase converts each record
𝑑𝑖 𝑗 into a format that can be used for downstream Transformer-
based encoders regardless of schema. Ember’s default pipeline
uses a sentence preparer 𝑃 to convert input records 𝑑𝑖 𝑗 into
sentences 𝑃 (𝑑𝑖 𝑗) = 𝑠𝑖 𝑗 . Each key-value pair in 𝑑𝑖 𝑗 is converted to
a string and separated by the encoder’s separator token as “key_1
value_1 [SEP] key_2 value_2 [SEP]..." (Figure 4).
Optional Pretraining (Figure 3A.2). An out-of-the-box BERT-
based encoder is pretrained over natural language corpora (Book-
Corpus and Wikipedia [9, 92]). As structured data is often domain-
specific, and of a different distribution than these corpora, we find
that bootstrapping Ember’s encoders via additional self-supervised
pretraining improves performance by up to 2.08×. Ember provides
and enables a pretraining configuration option by default.

With this option, users can pretrain the pipeline’s encoders via
BM25-based self-supervision that does not use any user-provided
labels (option enabled by default). We add a standard Masked Lan-
guage Modeling (MLM) head to each pipeline encoder, and pre-
train it following the original BERT pretraining procedure that fits a
reconstruction loss. To encourage the spread of contextual informa-
tion across the two tables, we concatenate one sentence from each
table to one other as pretraining input as “𝑠𝑖 𝑗 [SEP] 𝑠𝑘𝑙" (Figure 4).
We select sentence pairs that are likely to share information in an
unsupervised manner via BM25, a bag-of-words relevance ranking
function [71], though any domain-specific unsupervised similarity
join can be used, such as from Magellan [45] or AutoFJ [52].

6 REPRESENTATION LEARNING

We describe the second step of Ember’s pipeline: representation
learning. Given the sentences and pretrained encoders from the
first step, Ember uses labeled supervision to fine-tune the encoders
such that embeddings from related records are close in embedding
space. These embeddings are passed to the final step.
Encoder configuration. Ember either trains several encoders
independently for each data source, or a single encoder common
to all data sources. We found that using a single encoder always
performs best, and is Ember’s default configuration. We observe
that using separate encoders perturbs the representations such that
exact matches no longer share a representation—thus, encoders
must relearn correspondences, and often fail to (see Section 9.4).
Encoder architecture. Ember lets users configure each encoder’s
base architecture and the size of the learned embeddings. Users can
choose BERTbase or DistilBERTbase as the core architecture; Em-
ber’s default is the 40% smaller, and 60% faster DistilBERT model.
We use models from HuggingFace Transformers [82]; thus, inte-
grating new architectures requires few additional lines of code.

We remove the MLM head used for optional pretraining, and
replace it with a fully connected layer that transforms BERT’s out-
put to a user-specified embedding dimension, 𝑑 (default: 200). The
output of the fully connected layer is a 𝑑-dimensional embedding
for each input token. Users can choose one of two aggregation
methods that will return a single 𝑑-dimensional output per input
sentence: averaging all of the embeddings, or using the embedding
of BERT’s leading CLS token (default: CLS-based aggregation).
Encoder training. The encoders’ goal is to learn a representation
(embedding), for the data sources such that sentences that refer to
similar entities are grouped in the underlying embedding space. Re-
call that to perform a keyless join under an ℓ𝑝 -norm, each encoder
must learn a function that maps elements of 𝐷𝑖 to the space X, such
that ∥𝑥𝑖 𝑗 − 𝑥𝑘𝑙 ∥𝑝 < ∥𝑥𝑖 𝑗 − 𝑥𝑚𝑛 ∥𝑝 when the 𝑗𝑡ℎ entity in the 𝑖𝑡ℎ

dataset is more closely related to the 𝑙𝑡ℎ entity in the 𝑘𝑡ℎ dataset
than the 𝑛𝑡ℎ entity in the𝑚𝑡ℎ dataset. We directly optimize for this
objective function by training encoders using a contrastive, triplet
loss together with user-provided examples of related records.

Given an anchor record𝑑0a from𝐷0, and records𝑑1p and𝑑1n in
𝐷1 that are related and unrelated to 𝑑0a, respectively, let 𝐹0 (𝑑0a) =
𝑥0a, 𝐹1 (𝑑1p) = 𝑥1p, and 𝐹1 (𝑑1n) = 𝑥1n be their embeddings follow-
ing the composition of the sentence preparer 𝑃 and encoder 𝐸𝑖
operators (𝐹𝑖 = 𝐸𝑖 ◦ 𝑃). We minimize the triplet loss, defined as:

L(𝑥0a, 𝑥1p, 𝑥1n) = max{∥𝑥0a − 𝑥1p∥𝑝 , ∥𝑥0a − 𝑥1n∥𝑝 + 𝛼, 0}
where𝛼 is a hyperparameter controlling themargin between related
and unrelated embeddings. Users could use an alternative loss
function: a cosine similarity loss would provide representations
that similarly encourage related points to be close and unrelated
points to be far, and a standard binary cross-entropy loss may be
used as well, where the final layer in the trained encoder would
be the end embeddings. However, they do not explicitly optimize
for relative distances between related and unrelated records.

Users often have examples of related pairs, but not triples with
unrelated examples: in our tasks, only the search workload provides
triples. Thus, we provide negative sampler operators to convert
labelers that operate over pairs to triples. If the user-provided
labeler contains a related and unrelated example for a record, we
form a triple using these examples. Otherwise, for each record 𝑑0𝑗
in 𝐷0 with a labeled related record, we use a random or stratified
hard negative sampler. The random sampler selects an unlabeled
record at random as an example unrelated record. The strati-
fied sampler weights the degree of relatedness for the negative
examples—users can specify a region of hard examples to sample
from. We provide a default stratified sampler with a single tier of
relatedness defined via BM25 or Jaccard similarity.

7 JOINING

We describe the last step of Ember’s pipeline: joining. Given the
embeddings output by the trained encoders and user-provided
join type and join sizes, Ember executes the keyless join by
identifying related points across the input datasets, and processing
them for downstream use. Ember indexes the learned embeddings
and queries this index to find candidate related records
Indexing and Query Retrieval. Given two records, Ember com-
putes their embedding similarity to determine if they are related.

704

Traditional solutions to our motivating applications perform such
pairwise checks across all possible pairs either naïvely or with
blocking [58, 60, 62] to identify related records. However, the oper-
ator choice both domain-specific, and scales quadratically at query
time with the dataset size and blocking mechanisms used (see Sec-
tion 9.3). We eliminate the need for pairwise checking by indexing
our embeddings to cluster related records, and relying on efficient
libraries for maximum inner product search (MIPS) [38]—the index-
ing mechanism used can be optimized based on downstream needs,
and impacts both speed and accuracy, as evaluated in Section 9.4.

For a LEFT or RIGHT OUTER JOIN, Ember constructs an index
over the base or auxiliary dataset, respectively. Ember then queries
the index with each embedding of the remaining dataset, and re-
turns the record and embedding corresponding to the most similar
records using a retriever operator. For a FULL OUTER or INNER
JOIN, Ember may jointly index and query both datasets to identify
related entries in either direction. By default, Ember only indexes
the larger dataset—an optimization that improves query runtime
by up to 2.81× (see Section 9.4). Ember’s default configuration is
an INNER JOIN, which we justify via user study in Section 9.6.
Post-Processing. The user-provided join size configures the
retriever to return the top-𝑘 records with the closest embeddings
in the indexed dataset. Ember additionally supports threshold-based
retrieval. The former is useful for applications such as search, where
a downstream task may be to display the top-𝑘 search results to
a user in sorted order. The latter is useful for applications where
there may not be related records for each record in the base dataset.

8 EXTENSIONS AND LIMITATIONS

In this section, we discuss extensions and limitations of Ember.
labeler Extension. Representation learning requires labeled ex-
amples of related pairs. For many complex, real-world tasks, la-
beling teams typically require extensive domain expertise to accu-
rately label data points [68]. However, such expertise may already
be present in the form of existing employees or organizational re-
sources [75] such as click logs, purchase history, and conversion
rates—as was used to generate the MS Marco dataset [13]—or can
be obtained from an initial unsupervised method [51].

When passive supervision is unavailable, labelers that allow
users to write heuristic rules (based on embedding similarity or
attribute values) is a powerful first step to identify candidate pairs
prior to manual identification [75], or to use directly as weak su-
pervision [68]. These rules need not perfectly capture all positive
examples, else rule creation would be equivalent to the task.
encoder Extension. Ember defaults to a single encoder architec-
ture. Users can implement source-specific encoders to extend to
additional domains where Transformers have demonstrated suc-
cess, including images [26, 63], video [30, 43, 74], audio [23, 35, 89],
and cross-modal settings [36, 37, 65]. Beyond this, developing sys-
tems that jointly optimize for keyless joins over such attributes
with traditional SQL workloads is an exciting area of future work.
Multi-Dataset Extension. There are two common multi-dataset
scenarios: (1) a base table 𝐷0 must be augmented with several
auxiliary data sources 𝐷𝑖 as in Figure 1, or (2) data sources must be
aligned in sequence, as described in Section 2.2 for multi-hop QA.

In either case, the sentence preprocessing step remains un-
changed. Depending on the encoder configuration, BM25-based
pretraining will be applied to all sentences across all datasets at
once (anchored from the base table), or each dataset pairwise.

For encoder training, in the first case, each encoder can be
trained pairwise for 𝐷0 and each 𝐷𝑖 . In the second, a user can
(1) sequentially apply Ember over a manually-constructed data
DAG, or (2) traverse the space of possible keyless joins using data
discovery methods [21] or record cardinality, in ascending order.

For the joining step, in the first case, each data source 𝐷𝑖 is
indexed, and the retrieval phase will query each index to return
candidate related records for each pairwise interaction. In the sec-
ond case, Ember must chain routines by querying the next index
with the records retrieved by the previous routine; we provide an
example of this scenario in Section 9.5 under Recommendation.
Limitations. Ember requires sufficient context across data sources
to learn record relatedness—either directly, or sequentially in a
multi-dataset setting. A first scenario is where information is dense,
but not explicitly correlated with one other (i.e., even a human
would struggle to identify related records). A second is where infor-
mation is extremely sparse: related fields are either rarely present
or consist of a few categorical values drawn from a high cardinality
space. Examples of the first scenario include many pairs of the New
York City public datasets [7] that lack join keys; in these cases, Em-
ber will often cluster records by borough, year, or other spurious
correlations present in the fields—which may reveal interesting
trends to data analysts. An example of the second scenario is to
join Yelp’s public dataset [10] with another dataset while requiring
rarely present business attributes or categories—Ember will heavily
weight common attributes, and underrepresent tail attributes.

9 EVALUATION

In this section, we demonstrate that Ember and its operators are:
(1) General: Ember enables context enrichment for effective

preprocessing across five domains, while meeting or exceed-
ing similarity join baseline recall (Section 9.3).

(2) Extensible: Ember provides a modular architecture, where
each component affects performance (Section 9.4). Ember
enables task-specific pipelines for various similarity-based
queries, and provides task performance that can be fine-
tuned by state-of-the-art systems (Section 9.5).

(3) Low Effort: Ember requires no more than five configuration
changes (Table 2) from its default, and does not always re-
quire large amounts of hand-labeled examples (Section 9.6).

9.1 Evaluation Metric and Applications

EvaluationMetric. A context enrichment system does not seek to
achieve state-of-the-art performance on end-to-end ML workloads,
but must identify all related records across a base and auxiliary
dataset. This is equivalent to maximizing record-level recall, or the
fraction of records for which we recover all related records. While
naïvely optimizing for recall would return all records as being
related to one another, a precision metric greatly drops when we
retrieve multiple records. Thus, our evaluation metric is recall@k,
for small join size (k) to minimize downstream processing cost.

705

Table 2: Data source record count, related pair (supervision)

count, and number of configuration lines changed for the

best recall@k, and for each downstream task in parentheses.

Task Dataset # base # aux # + train # + test # LoC

FJ IMDb 50000 10000 40000 10000 1
FJ IMDb-hard 50000 10000 40000 10000 1
QA SQuAD 92695 64549 86668 6472 2
S MS MARCO 508213 8.8M 418010 7437 1
R IMDb-wiki 47813 47813 38250 9563 1 (6)

EM-T Abt-Buy 1081 1092 616 206 2
EM-T Company 28200 28200 16859 5640 2
EM-S BeerAdvo-RateBeer 4345 3000 40 14 1
EM-S iTunes-Amazon 6907 55923 78 27 1
EM-S Fodors-Zagat 533 331 66 22 1
EM-S DBLP-ACM 2616 2294 1332 444 1
EM-S Amazon-Google 1363 3226 699 234 1
EM-S DBLP-Scholar 2616 64263 3207 1070 1
EM-S Walmart-Amazon 2554 22074 576 193 1
EM-D DBLP-ACM 2616 2294 1332 444 1
EM-D DBLP-Scholar 2616 64263 3207 1070 1
EM-D iTunes-Amazon 6907 55923 78 27 1
EM-D Walmart-Amazon 2554 22074 576 193 1

Applications. We evaluate Ember against workloads from the
five application domains summarized in Table 2 and described in
detail below. All of the datasets used are publicly available online.

9.1.1 Fuzzy Join (FJ). We construct two workloads using a dataset
and generation procedure from a 2019 scalable fuzzy join VLDB
paper [20]. The base dataset consists of the Title, Year, and Genre
columns from IMDb [5]. The auxiliary dataset is generated by per-
turbing each row in the first by applying a combination of token
insertion, token deletion, and token replacement. The task 𝑇 , is to
join each perturbed row with the row that generated it. We gener-
ate two workload versions: 5 perturbations per row (IMDb) and 15
perturbations per row (IMDb-hard), up to 25% of the record length.
We randomly sample 10,000 movies and generate 5 perturbed rows
for each. We hold out 20% of records as the test set; no records from
the same unperturbed record are in both the train and test sets.

9.1.2 Entity Matching (EM). We use all 13 benchmark datasets [1]
released with DeepMatcher [58], spanning structured (EM-S), tex-
tual (EM-T), and dirty (EM-D) entity matching. The base and aux-
iliary datasets share the same schema. In EM-T, all data records
are raw text entries or descriptions. In EM-S, each table follows a
pre-defined schema, where text-based column values are restricted
in length. In EM-D, records are similar to EM-S, but some column
values are injected into the incorrect column. The task𝑇 is to label a
record pair as representing the same entity or not. Train, validation,
and test supervision are lists of unrelated, and related pairs—we
only use the related pairs for training Ember, as we identified misla-
beled entries (false negatives) when using Ember to explore results.

9.1.3 Search (S). We use the MS MARCO passage retrieval bench-
mark [13]. MS MARCO consists of a collection of passages from
web pages that were gathered by sampling and anonymizing Bing
logs from real queries [13]. The task𝑇 is to rank the passage(s) that
are relevant to a given query as highly as possible. Supervision is a
set of 397M triples, with 1 relevant and up to 999 irrelevant passages
for most queries. Irrelevant passages are retrieved via BM25. We
report results over the publicly available labeled development set.

9.1.4 Question Answering (QA). We modify the Stanford Question
Answering Dataset (SQuAD) [67]. SQuAD consists of Wikipedia
passages and questions corresponding to each passage. The task𝑇 is
to identify the beginning of the text span containing the answer to
each question. As described in Section 2, a retriever module, used in
retriever-reader models for QA [91], performs context enrichment.
We modify SQuAD by splitting each each passage at the sentence-
level, and combining these sentences to form a new dataset. The
modified task is to recover the sentence containing the answer.

9.1.5 Recommendation (R). We construct a workload using IMDb
and Wikipedia to mimic the e-commerce example in Figure 1.
For the base dataset, we denormalize four IMDb tables that pro-
vide movie title, cast/crew, and rating: title.basics, title.principals,
name.basics, and title.ratings [5]. For the auxiliary dataset, we query
the latestWikipedia snapshot for each IMDbmovie’s summary para-
graphs; we extract 47813 overlapping records [9]. We remove the
join key (IMDb ID) to induce a need for keyless joins. This workload
enables two applications. In Application A, we show that Ember
can join datasets with dramatically different schema. In Applica-
tion B, we show Ember can perform similarity-based analyses to
estimate the rating for a new movie. Supervision is provided as
exact matches and movie ratings with an 80-20 train-test set split.

9.2 Experimental Setup

Baselines. We first evaluate all workloads compared to ten sim-
ilarity join baselines with respect to recall@1 and recall@10 in
Section 9.3. For EM and search, whose downstream task can be sat-
isfied with Ember’s output, we compare downstream performance
with existing benchmark solutions [6, 27, 53, 58, 60]. The remainder
of our workloads were constructed to isolate context enrichment
from the downstream task, and do not have standard baselines.
EmberDefault Configuration. Tasks use a sentence preparer,
and perform 20 epochs of self-supervised pretraining. Ember uses
a single DistilBERTbase encoder trained with a triplet loss and
stratified hard negative sampler. Self-supervision and the sampler
use BM25 to identify similar sentences to concatenate from each
data source, and to mark as hard negatives, respectively. The output
embedding size is 200, and models are trained with a batch size of
8 using an ADAM optimizer [44] with initial learning rate of 1e−5.
The default join sizes are 1 and 10. Results are five-trial averages.
Implementation. We use two Intel Xeon Gold 6132 CPUs (56
threads) with 504GB of RAM, and four Titan V GPUs with 12GB of
memory. We implement Ember in Python and PyTorch [64] using
HuggingFace Transformers [82]. For exact (default) and approx-
imate MIPS indexing, we use Faiss [38]. We use Magellan [45],
rank-BM25 [8] and AutoFJ [52] for similarity join baselines, and
BERT-ER [49] code from the authors, with our custom processing.
We implement DeepBlocker [51] with FastText [39] and Faiss [38].

9.3 Generalizability

We show that Ember’s recall and runtime meets or outperforms
that of the following similarity join baselines in nearly all tasks:
Levenshtein-Distance (LD). LD is the number of character edits
needed to convert one string to another. This join returns the closest

706

Table 3: Baseline comparison, where we highlight all methods within 1% of the best for each task in blue. No single baseline

dominates others, but Ember (emb) is competitive with or better than alternatives in nearly all tasks with respect to Recall@k.

Recall@1 Recall@10

Task Dataset LD J-2g JK-2g JK-ws J-ws BM25 agg emb LD J-2g JK-2g JK-ws J-ws BM25 agg emb

FJ IMDb 99.32 100.00 99.42 71.54 91.61 91.81 82.77 97.86 99.99 100.00 99.96 96.13 96.30 96.33 89.83 99.79

FJ IMDb-hard 95.54 98.87 95.02 33.42 52.29 54.58 31.88 88.92 99.04 99.82 98.26 42.68 64.34 65.82 46.62 98.37
QA SQuAD 1.37 34.70 41.26 29.47 27.26 49.17 11.37 52.91 1.50 52.82 61.18 44.79 43.18 67.08 27.03 78.85

S MS MARCO 0.26 1.66 1.66 1.15 1.15 2.31 0.10 16.34 0.96 7.38 7.38 5.11 5.11 4.10 0.19 46.98

R IMDb-wiki 58.96 11.01 82.57 86.08 18.30 63.25 0.22 97.02 64.62 18.80 93.12 91.93 18.30 96.25 0.86 98.89

EM-T Average 18.20 20.06 36.56 36.90 37.21 61.09 6.88 71.93 25.73 37.57 49.00 56.15 53.11 71.90 21.45 83.29

EM-S Average 52.26 73.50 72.30 69.25 72.71 76.59 38.98 77.20 70.26 94.41 97.90 93.51 93.33 95.19 55.88 97.58

EM-D Average 18.70 64.69 52.05 53.41 61.94 65.47 30.61 66.56 24.60 90.86 80.92 79.41 89.85 92.31 43.92 97.83

records with respect to single-character edits over provided key
columns. We filter and only return results under a 30 edit threshold.
Jaccard-Similarity, Specified Key (JK-WS, JK-2G). Defining a
Jaccard-similarity based join over textual inputs requires tokenizer
selection. We consider a whitespace tokenizer (WS) and a 2-gram
tokenizer (2G) to capture different granularities. JK-WS and JK-2G
return the closest records with respect to Jaccard similarity over
provided key columns using aWS or 2G tokenizer. We set a filtering
threshold to return results with at least 0.3 Jaccard similarity.
Jaccard-Similarity, Unspecified Key (J-WS, J-2G). J-WS and
J-2G return the closest records with respect to Jaccard similarity
using a WS or 2G tokenizer, after a sentence preparer. We set a
filtering threshold to return results with over 0.3 Jaccard similarity.
BM25 (BM25). BM25 is a bag-of-words ranking function used in
retrieval [71]. This join returns the closest records with respect to
the Okapi BM25 score using default parameters k1=1.5 and b=0.75.
Pretrained-Embedding (BERT). BERT generates embeddings
for each prepared sentence via a pretrained DistilBERTbase model,
and returns the closest records based on the ℓ2-norm between them.
Auto-FuzzyJoin [52] (AutoFJ). AutoFJ automatically identifies
join functions for unsupervised similarity joins. Users must align
matching columns, which do not always exist in our tasks (e.g.,
IMDb-wiki): in such cases, we preprocess records with a sentence
preparer. AutoFJ optimizes for a precision target, and does not
expose join sizes: we set a low precision target of 0.5, and find
that a single result is typically returned per record. AutoFJ assumes
one input is a "reference table" with few duplicates, which does not
always hold in our tasks. Precision estimation may break down if
duplicates are present, or if reference table records are clustered
(Ember trivially accounts for these cases). As AutoFJ exhaustively
computes record similarities for each considered join configuration,
we discuss workloads that completed in 1.5 days on our machines.
This means we omit results for MS MARCO, EM-T Company, EM-S
BeerAdvo-RateBeer, and others with large text spans.
DeepBlocker [51] (agg). DeepBlocker evaluates self-supervised
deep-learning-based blocking methods tailored for EM, and outper-
forms AutoBlock [90] and DeepER [27]. DeepBlocker tokenizes and
generates FastText word embeddings [39], then aggregates them
into tuple embeddings prior to a joining step. As basic methods like
SIF [12] outperformDeepER, the authors do not include comparison
to it, and show that their Hybrid and AutoEncoder methods outper-
form AutoBlock. Consequently, we implement the Average, SIF, and

AutoEncoder methods by following the descriptions in their paper.
While they provide self-supervised methods with higher model
capacity, these methods rely on EM-specific semantics that do not
apply to general enrichment. As BERT similarly performs tuple-
level aggregation and indexing, we refer to the best performing
method across Average, SIF, AutoEncoder, and BERT as agg.
BERT-ER [49]. BERT-ER tackles end-to-end EM by jointly train-
ing a BERT-based blocker and matcher via multi-task learning. We
implement and evaluate BERT-ER, but find that the blocker in isola-
tion performs worse than alternatives, and do not report our results.

For multi-column datasets, we provide a plausible key column if
the method requires. In FJ, EM, and R, this is a title or name column.

We now show that Ember is competitive with or exceeds alterna-
tives with respect to Recall@1 and Recall@10. In Table 3, we high-
light the methods that are within 1% of the top performing method.
No baseline dominates the others across the different workloads.
Broadly, character-based joins (LD, JK-2G, J-2G) tend to perform
well in scenarios where a join key exists but may be perturbed
(FJ, EM-S, EM-D); word-based joins (J-WS, BM25) tend to perform
well in scenarios with word-level join keys (EM-S), or where a join
key does not exist but common phrases still link the two datasets
(R, EM-D). Neither performs well otherwise (S, EM-T). We find
that unsupervised tuple-aggregation methods (agg) cannot tune
attribute weights for a specific domain or task, so underperform
naive yet exhaustive baselines. As noted in [51], their performance
increases significantly as join size (k) increases by 2-10×, but
this is not our target operating regime. However, they terminate
orders of magnitude faster that alternatives—even MS Marco with
8.8M records required on the order of minutes, not hours (see Sec-
tion 9.4.8). Ember most consistently outperforms or is comparable
with alternatives across the tasks: a learned approach is necessary
for generalization. The exception is with the synthetic FJ workload
that is, by construction, suited for character-based joins.

We do not report AutoFJ in Table 3 due to incompleteness. AutoFJ
is tailored for the EM and FJ: many-to-one joins with identical
schema. Of those completed, Ember is sometimes outperformed by
up to 8% recall@1 (Amazon-Google), but is otherwise comparable
or far exceeds AutoFJ when considering recall@10. AutoFJ’s recall
is 37.9% for QA, and 38.5% for R. As AutoFJ over the Wikipedia
summary (task R) did not terminate, we only use the title column.

Ember’s strong performance is due to the Transformer-based
encoders’ ability to capture semantic meaning across the input ta-
bles [16, 78], trained via contrastive learning. Prior work in general

707

and automated similarity joins relies on static similarity and dis-
tance measures [45, 52], or are tailored to EMworkloads [49, 51, 90].
Thus, Ember is able to extend to notions of fuzziness or similar-
ity that are beyond the classically evaluated typos, matching key
phrases or terms, or missing or out-of-order attributes [51–53].

9.4 Extensibility: Architecture Lesion

We demonstrate modularity and justify our architecture by evaluat-
ing Ember’s performance when modifying each system component
as follows. Each requires a single line configuration change:

(1) Replacing MLM pretraining and representation learning (RL)
with a pretrained encoder.

(2) Removing RL, leaving only MLM pretraining.
(3) Replacing the fine-tuned Transformer model with a frozen

pretrained embedding and a learned dense layer.
(4) Removing MLM pretraining.
(5) Random negatives compared to hard negative sampling
(6) Using an encoder for each dataset versus a single encoder.
(7) Removing the joining index-query optimization.
(8) Replacing MIPS-based indexing routines in the joining step.

9.4.1 Pretrained encoder (Figure 5, -mlm, rl). We eliminate all
domain-specific training by replacing MLM pretraining and RL
with a pretrained DistilBERTbase encoder—the same as BERT in
Section 9.3. Ember’s performance dramatically declines, by up to
three orders of magnitude (e.g., recall dropped to 0.04 in R). This
approach is only feasible when both datasets’ contents are near
identical, as in certain EM-S and EM-D tasks, and FJ-IMDb.

9.4.2 Removing Representation Learning (Figure 5, -rl). We elimi-
nate all fully supervised learning by only pretraining an encoder
using the self-supervised BM25-based procedure from Section 5,
with no subsequent RL step. Ember’s performance declines by up
to an order of magnitude, though it outperforms -mlm, rl on tasks
whose datasets do not match the original natural text Wikipedia
corpus (e.g., EM-S, FJ). Primarily textual datasets do not see as large
an improvement over -mlm, rl, and for QA, where the corpus is
derived from Wikipedia, -rl performs slightly worse.

9.4.3 Remove Transformer fine-tuning (Figure 5, -ft). We eliminate
fine-tuning of our Transformer-based encoders. We replace RL
with frozen pretrained embeddings, followed by a learned fully-
connected layer (i.e., we add and train a fully-connected layer on top
of -rl). This method slightly outperforms using a fully pretrained
encoder (-rl) in text-heavy workloads (QA, S, R, EM-T), as the
pretrained encoder provides some semantic information out-of-the-
box, which the learned final layer can reweight. Although we do
not perform an exhaustive comparison of pretrained embeddings
or non-Transformer-based architectures, this demonstrates that
Ember captures semantic information to provide a strong baseline.

9.4.4 Remove MLM Pretraining (Figure 5, -mlm). We eliminate self-
supervised encoder bootstrapping by removing MLM pretraining
from the pipeline. We find that Ember meets or exceeds this setting
in all but QA, by a significantly smaller margin than previous exper-
iments (up to 20.5% in IMDb-hard). MLM pretraining is ineffective
for QA as the corpus is drawn fromWikipedia—one of BERT’s train-
ing corpora—and both base and auxiliary datasets consist of the

same, primarily textual vocabulary. In such cases, users may wish to
disable MLM pretraining, although performance is not significantly
impacted. In contrast, of the non-EM tasks, MLM pretraining is
most helpful for FJ IMDb-hard, where random perturbations result
in many records with words that are not in the original vocabulary.

9.4.5 No Negative Sampling (Figure 5, -NS). We replace hard neg-
ative sampling with random sampling of unrelated records. Hard
negative sampling tends to improve performance by a similar mar-
gin as MLM pretraining, and only negatively impacted the EM-T
Company dataset (by up to 8.72% absolute recall). We find larger
improvements when the join condition is more ambiguous than
recovering a potentially obfuscated join key, as in tasks S (30%
R@1), QA (15% R@1), and EM-D (15% R@1). We use BM25-based
sampling for all but FJ and QA, where we have prior knowledge,
and develop custom samplers based on Jaccard similarity, and sen-
tence origin, respectively. This improved performance over the
BM25-based sampler by 1% absolute recall for FJ, and 8.7% and 5.6%
absolute recall@1 and recall@10, respectively, for QA.

9.4.6 encoder Configuration (Figure 5, te). We use two encoders,
one for each dataset, instead of our default single encoder configu-
ration. We find that using two encoders performs up to two orders
of magnitude worse than using a single encoder, especially for
strictly structured datasets. We observe that through the course of
the encoder training procedure, the performance of using two iden-
tically initialized encoders often degrades—inspecting the resulting
embeddings when running Ember with identical tables shows that
the same terms diverge from one another while training.

9.4.7 Index Optimization. For INNER and FULL OUTER JOINs, we
optimize for join execution time by indexing the larger dataset to
reduce the number of queries made by the system. We evaluate this
optimization by running the joining step while indexing the larger
dataset, and then the smaller dataset for all tasks. On average, this
optimization reduces join time by 1.76×, and up to 2.81×. However,
this optimization is only meaningful at large scale, as in the MS
MARCO workload, where we save 2.7 minutes.

9.4.8 Indexing Alternatives. Optimized MIPS improves joining run-
time (after model training) by up to two orders of magnitude. Even
with CPU-only Faiss, Ember takes 7.24s on average for the joining
step. MS MARCO had the longest MIPS runtime of 1.97m when
indexing all 8.8M records; excluding it reduces the average to 0.31s.
Embedding the query table prior to indexing takes 24.52s on aver-
age. Excluding the slowest dataset (EM-T Company, 3.96m), reduces
the average to 11.19s. The fastest non-MIPS baseline (JK-WS), took
5.02m on average; excluding MS MARCO (79.73m) reduces the av-
erage to 21.18s. The slowest method (LD), took 23.64m on average,
with EM-T Company (the most expensive) requiring 321.98m.

We use Faiss with exhaustive search due to small query sizes.
To evaluate the loss in recall from a more scalable approximate
indexing algorithm, we apply Faiss’ optimized approximate cell-
probemethod that indexes based on product quantization codes [38]
to our largest workload, MS MARCO, with the suggested parameter
settings. Query time is 691× faster (0.13s), with an extra 169s (18×)
indexing overhead in exchange for an 8.62 and 27.8 point decrease
in recall@1 and recall@10, respectively. Extending Ember as per
Section 9.5 and optimizing parameters as in [42] can improve recall.

708

0.0

0.5

1.0

N
or

m
al

iz
ed

Re
ca

ll@
1

All -MLM,RL -RL -FT -MLM -NS TE

FJ: IMDb FJ: IMDb-hard QA: SQuAD S: MS MARCO R: IMDb-wiki EM-T: Avg EM-S: Avg EM-D: Avg
0.0

0.5

1.0

N
or

m
al

iz
ed

Re
ca

ll@
10

Figure 5: Architecture lesion displaying recall@k normalized to the default seen in Table 3 (All) for: a pretrained

DistilBERT
base

model with no representation learning (-mlm,rl), MLM pretraining with no RL (-rl), RL with no Transformer

fine tuning (-ft), RL with no MLM pretraining (-mlm), no hard negative sampling (-ns), and one encoder per dataset (te).

9.5 Extensibility: End-to-End Workloads

We show how to extend Ember in an end-to-end context. For tasks
whose downstream task (𝑇) can be directly solved with Ember’s out-
puts, we a provide comparison to state-of-the-art. We then demon-
strate how to use Ember for more complex downstream tasks.
Entity Matching. EM systems focus on matcher performance in
a two-part (i.e., blocker and matcher) end-to-end EM pipeline [27,
53, 58]: a matcher identifies if a given pair of candidate records
correspond to the same entity, and is evaluated on model F1 score.
To perform context enrichment to efficiently assist with end-to-
end EM, Ember must retrieve candidate blocks with a low false
negative rate so it can be followed by matchers; we verify this in
Table 4 (Recall@10). Perhaps surprisingly, treating Ember results
from a top-1 query as binary classifier achieves performance that
is comparable to or better than previous, custom-built states-of-
the-art with respect to F1 score (Table 4). As Ember is a general
enrichment framework, implementing EM-specific operators for
data augmentation and domain knowledge integration as in current
state-of-the-art like Ditto [53] will allow Ember to bridge this gap.
Search. In MS MARCO passage ranking, results are ranked in
relevance order, and rankings are evaluated via mean reciprocal
rank (MRR) of the top 10 results. We rank Ember results based
on their query distance, and compare MRR@10 with existing MS
MARCO baselines. We obtain MRR@10 of 0.266 on the dev set after
just 2.5M training examples, outperforming the official Anserini
BM25 baseline solution of 0.167. Our results exceed K-NRM, a kernel
based neural model, with a dev set MRR@10 of 0.218 [84], and is
slightly below the state-of-the-art from the time, IRNet, with 0.278
MRR@10 [6]. For comparison, the first state-of-the-art BERT-based
model uses BERTlarge to achieve MRR@10 of 0.365 after training
with 12.8M examples [60], and current state-of-the-art is 0.439 [25].
By developing an additional joining operator, Ember can implement
ColBERT [42], a previous state-of-the-art method that achieves
0.384 MRR@10 in MS MARCO document ranking that operates
on larger input passages: we must remove the pooling step from
Ember’s encoder (1 line config change), and develop a retriever
that indexes and retrieves bags of embeddings for each record.
Recommendation. In Application B of task R, we estimate the
IMDb ratings of movies in the test set given a training dataset and

Table 4: Recall@10 for Ember (R@10) and F1 Scores for

the EM workloads using Ember with join size = 1 (emb)

compared to deep-learning-based EM solutions from Deep-

Matcher (DM∗) and Ditto. Ember meets or exceeds (high-

lighted) at least one recent, state-of-the-art classifier inmost

workloads. Ember has a low false negative rate (1 - R@10),

and can be used with these methods to increase precision

R@10 F1 score

Task Dataset emb emb DMRNN DMatt DM
hyb

Ditto

EM-T Abt-Buy 96.70 85.05 39.40 56.80 62.80 89.33
EM-T Company 69.89 74.31 85.60 89.80 92.70 93.85
EM-S Beer 92.86 91.58 72.20 64.00 78.80 94.37
EM-S iTunes-Amzn 100 84.92 88.50 80.80 91.20 97.06
EM-S Fodors-Zagat 100 88.76 100 82.10 100 100
EM-S DBLP-ACM 100 98.05 98.30 98.40 98.45 98.99
EM-S Amazon-Google 98.94 70.43 59.90 61.10 70.70 75.58
EM-S DBLP-Scholar 96.29 57.88 93.00 93.30 94.70 95.60
EM-S Walmart-Amzn 94.97 69.60 67.60 50.00 73.60 86.76
EM-D DBLP-ACM 99.96 97.58 97.50 97.40 98.10 99.03
EM-D DBLP-Scholar 95.99 58.08 93.00 92.70 93.80 95.75
EM-D iTunes-Amazon 100 64.65 79.40 63.60 79.40 95.65
EM-D Walmart-Amzn 95.39 67.43 39.60 53.80 53.80 85.69

Wikipedia corpus.We report themean squared error (MSE) between
the rating estimates and the true rating. The task is easy: predicting
the average training rating returns 1.19MSE, and a gradient-boosted
decision tree (GBDT) over the joined data returns 0.82 MSE. We
aim to show extensibility while meeting GBDT performance.

There are two approaches to enable this analysis with Ember:
similarity defined in a single hop in terms of the labeled training
data, or by first going through the Wikipedia data in two hops.

In the former, users configure Ember to index labeled IMDb
training data (with ratings) and retrieve records related to the test
data (without ratings) via an INNER JOIN. Users then average the
returned records’ labels. In the latter, users require two LEFT JOINs
that index theWikipedia training data against the IMDb test dataset,
and the IMDb train dataset against the Wikipedia training data.
Users retrieve the closest Wikipedia summary to each test IMDb
record, and then retrieve the closest labeled IMDb instances to each
retrieved Wikipedia summary, whose scores are averaged.

Both approaches reuse the pretrained encoder from the IMDb-
wiki task, and require at most 6 configuration changes and a 7-
line post-processing module. We report results when aggregating

709

" data_dir " : "IMDb−wiki " ,
" join_type " : "INNER" , # or "LEFT" , "RIGHT" , "FULL"
" le f t_s i ze " : 1 ,
" right_size " : 1 ,

Listing 2: Core configuration lines annotated with options.

with a join size of 1, 10, 20, and 30; both approaches improve
performance as the number of neighbors increase, until a plateau
is reached. The two-hop approach attains MSE of 1.69, 0.92, 0.89,
and 0.89 for join size 1, 10, 20, and 30, respectively, while the
one-hop approach performs better with 1.59, 0.89, 0.86, and 0.85.

9.6 Low Development Effort

To showcase ease of use, we discuss Ember’s configuration, our
usability study, and the amount of labeled data required for training.

9.6.1 Configuration. Perhaps surprisingly, we found that exposing
only join specification parameters (Listing 2) is a strong out-of-the-
box baseline. We require input datasets and supervision to follow
a fixed naming convention, under which obtaining the results in
Table 3 relies on a default set of configurations options, where only
the data directory must be changed. In Table 2, we list how many
config changes are required for the best results from Figure 5.

9.6.2 Usability User Study. To understand the amount of domain
expertise required to determine the keyless join parameters (i.e.,
join size and type), we conducted a user study with 15 graduate
students in Computer Science. We provided participants with an
introduction to database joins, described context enrichment and
our proposed keyless join specification, and displayed EM and rec-
ommendation examples similar to those in Section 4.1. We then
described search and QA workloads, and asked participants to (1)
explain and estimate how long constructing a context enrichment
pipeline would take without Ember, and (2) provide type and size
parameters for a keyless join query. All users estimated that con-
structing a pipeline would take several hours to multiple days, but
provided a keyless join specification in minutes, often quicker than
describing the alternative All users provided correct join sizes. Two
incorrectly selected an inner instead of left join, and one erred in
the opposite direction. In follow-up interviews, the former asserted
that basic postprocessing would admit unmatched results, so an ex-
plicit left join would be unnecessary sans additional architectural
constraints—validating our inner join default. The latter misread
the survey setup, and revised upon further clarification.

9.6.3 Dependence on Labeled Data. With the exception of MS
MARCO, we use all available labeled examples of relevant pairs
in Table 3 and Figure 5. In MS MARCO, we use 2.5M of the 397M
provided labeled triples (just 0.63%). For the remainder, we compute
how many labeled examples are required to match our reported
performance. We found that 9 of the 17 datasets required all of the
examples. The remaining required 54.4% of labeled relevant data on
average to meet Recall@1 performance, and 44.5% for Recall@10.
In the best case (EM-S DBLP-ACM), only 30% and 1% of the data is
required to achieve the same Recall@1 and Recall@10, respectively.
Consequently, issuing repeated Ember queries and filtering results
can help incrementally improve labeled data quality and quantity.

10 RELATED WORK

Similarity Joins. Similarity-based joins often focus on the un-
supervised setting [20, 80, 87]. State-of-the art systems such as
AutoFJ [52] are tailored for the case where tables can be joined
using exact keys or shared phrases that do not differ greatly (e.g.,
our EM tasks)—not complex context enrichment.
Automated Machine Learning. Automated Machine Learning
(AML) systems aim to empower users to develop high-performance
ML pipelines minimal intervention or manual tuning. They support
various types of data preprocessing, feature engineering, model
training and monitoring modules. Examples of AML tools include
Ludwig [57], Overton [69], Google CloudAutoML [2], andH20.ai [4].
However, these platforms do not focus on context enrichment, leav-
ing it as an exercise for users to perform prior to data ingestion.
Relational Data Augmentation. Relational data augmentation
systems seek to find new features for a downstream predictive
task by deciding whether or not to perform standard database joins
across a base table and several auxiliary tables [21, 48, 72]. Similar to
context enrichment, these systems aim to augment a base table for
a downstream ML workload. However, they assume the existence
of KFK relationships that simply must be uncovered.
Data Discovery. Data discovery systems find datasets that may be
joinable with or related to a base dataset, and to uncover relation-
ships between different datasets using dataset schema, samples, and
metadata [14, 18, 19, 22, 29, 31, 32]. These systems typically surface
KFK relationships without tuning for downstream ML workloads.
NLP and Data Management. A recurring aim in data manage-
ment is to issue natural language commands to interface with struc-
tured data [33, 50]. Related to work noted in Section 3.3 are systems
that leverage advances in NLP to provide additional domain-specific
functionality, such as converting text to SQL [54, 88] or automating
data preparation [76]. We focus on the broader problem of context
enrichment for downstream tasks as, to our knowledge, most prior
work assumes entity information has been resolved [77].

11 CONCLUSION

We demonstrate how entity-level data retrieval and preprocess-
ing, which are components of end-to-end pipelines for a variety
of tasks, can be abstracted as context enrichment problems. We
propose keyless joins as a unifying abstraction that can power a
system for general context enrichment, which allows us to view
context enrichment as a data management problem. Consequently,
we developed such a system that serves as a vehicle for no-code
context enrichment via keyless joins: Ember. We evaluate how de-
veloping a keyless join enrichment layer empowers Ember to assist
five downstream applications, with no ML code written by the user.

ACKNOWLEDGMENTS

We thank Peter Bailis, Laurel Orr, Vineet Gupta, and the participants of our user study
for their insight. This research was supported in part by affiliate members of Stanford
DAWN—Ant Financial, Facebook, Google, and VMware—as well as Toyota Research
Institute (TRI), and NSF CAREER grant CNS-1651570. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science Foundation. TRI
provided funds to assist the authors with their research but this article solely reflects
the opinions and conclusions of its authors and not TRI or any other Toyota entity.

710

REFERENCES

[1] 2018. Datasets for DeepMatcher paper. https://github.com/anhaidgroup/
deepmatcher/blob/master/Datasets.md

[2] 2021. Cloud AutoML. https://cloud.google.com/automl
[3] 2021. Data Robot. https://www.datarobot.com/platform/automated-machine-

learning/
[4] 2021. h20.ai. https://www.h2o.ai/
[5] 2021. IMDb Datasets. https://datasets.imdbws.com/
[6] 2021. MS MARCO. https://microsoft.github.io/msmarco/
[7] 2021. NYC Open Data. https://opendata.cityofnewyork.us/data/
[8] 2021. rank-bm25. https://pypi.org/project/rank-bm25/
[9] 2021. Wikimedia Downloads. https://dumps.wikimedia.org/
[10] 2021. Yelp Open Data. https://www.yelp.com/dataset/documentation/main
[11] Sercan O Arik and Tomas Pfister. 2019. Tabnet: Attentive interpretable tabular

learning. arXiv preprint arXiv:1908.07442 (2019).
[12] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. 2016. A simple but tough-to-beat

baseline for sentence embeddings. (2016).
[13] Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng, Jianfeng Gao, Xiaodong

Liu, Rangan Majumder, Andrew McNamara, Bhaskar Mitra, Tri Nguyen, et al.
2016. MS MARCO: A human generated machine reading comprehension dataset.
arXiv preprint arXiv:1611.09268 (2016).

[14] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande, Aaron J
Elmore, Samuel Madden, and Aditya G Parameswaran. 2014. Datahub: Col-
laborative data science & dataset version management at scale. arXiv preprint
arXiv:1409.0798 (2014).

[15] Andrei Broder. 2002. A taxonomy of web search. In ACM Sigir forum, Vol. 36.
ACM New York, NY, USA, 3–10.

[16] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. NeurIPS (2020).

[17] Ursin Brunner and Kurt Stockinger. 2020. Entity matching with transformer
architectures-a step forward in data integration. In International Conference on
Extending Database Technology, Copenhagen, 30 March-2 April 2020. OpenPro-
ceedings.

[18] Michael J Cafarella, Alon Halevy, and Nodira Khoussainova. 2009. Data inte-
gration for the relational web. Proceedings of the VLDB Endowment 2, 1 (2009),
1090–1101.

[19] Raul Castro Fernandez, Dong Deng, Essam Mansour, Abdulhakim A Qahtan,
Wenbo Tao, Ziawasch Abedjan, Ahmed Elmagarmid, Ihab F Ilyas, Samuel Madden,
Mourad Ouzzani, et al. 2017. A demo of the data civilizer system. In Proceedings
of the 2017 ACM International Conference on Management of Data. 1639–1642.

[20] Zhimin Chen, Yue Wang, Vivek Narasayya, and Surajit Chaudhuri. 2019. Cus-
tomizable and scalable fuzzy join for big data. Proceedings of the VLDB Endowment
12, 12 (2019), 2106–2117.

[21] Nadiia Chepurko, Ryan Marcus, Emanuel Zgraggen, Raul Castro Fernandez, Tim
Kraska, and David Karger. 2020. ARDA: Automatic Relational Data Augmentation
for Machine Learning. Proceedings of the VLDB Endowment 13, 9 (2020).

[22] Fernando Chirigati, Rémi Rampin, Aécio Santos, Aline Bessa, and Juliana Freire.
2021. Auctus: A Dataset Search Engine for Data Augmentation. arXiv preprint
arXiv:2102.05716 (2021).

[23] Kristy Choi, Curtis Hawthorne, Ian Simon, Monica Dinculescu, and Jesse Engel.
2020. Encoding musical style with transformer autoencoders. In International
Conference on Machine Learning. PMLR, 1899–1908.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
Association for Computational Linguistics, Minneapolis, Minnesota, 4171–4186.
https://www.aclweb.org/anthology/N19-1423

[25] Yingqi Qu Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Xin Zhao, Daxiang Dong,
Hua Wu, and Haifeng Wang. 2020. RocketQA: An Optimized Training Approach
to Dense Passage Retrieval for Open-Domain Question Answering. arXiv preprint
arXiv:2010.08191 (2020).

[26] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xi-
aohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg
Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers
for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

[27] Muhammad Ebraheem, Saravanan Thirumuruganathan, Shafiq Joty, Mourad
Ouzzani, and Nan Tang. 2018. Distributed Representations of Tuples for Entity
Resolution. VLDB (2018).

[28] Christos Faloutsos and Douglas W Oard. 1998. A survey of information retrieval
and filtering methods. Technical Report.

[29] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system. In 2018
IEEE 34th International Conference on Data Engineering (ICDE). IEEE, 1001–1012.

[30] Rohit Girdhar, Joao Carreira, Carl Doersch, and Andrew Zisserman. 2019. Video
action transformer network. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition. 244–253.

[31] Hector Gonzalez, Alon Halevy, Christian S Jensen, Anno Langen, Jayant Mad-
havan, Rebecca Shapley, and Warren Shen. 2010. Google fusion tables: data
management, integration and collaboration in the cloud. In Proceedings of the 1st
ACM symposium on Cloud computing. 175–180.

[32] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Polyzotis,
Sudip Roy, and Steven EuijongWhang. 2016. Goods: Organizing google’s datasets.
In Proceedings of the 2016 International Conference on Management of Data. 795–
806.

[33] Alon Y Halevy, Oren Etzioni, AnHai Doan, Zachary G Ives, Jayant Madhavan,
Luke K McDowell, and Igor Tatarinov. 2003. Crossing the Structure Chasm.
CIDR.

[34] David Hawking. 2004. Challenges in Enterprise Search.. In ADC, Vol. 4. Citeseer,
15–24.

[35] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Ian Si-
mon, Curtis Hawthorne, AndrewMDai, MatthewDHoffman,Monica Dinculescu,
and Douglas Eck. 2018. Music transformer. arXiv preprint arXiv:1809.04281 (2018).

[36] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin
Ionescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shel-
hamer, et al. 2021. Perceiver IO: A General Architecture for Structured Inputs &
Outputs. arXiv preprint arXiv:2107.14795 (2021).

[37] Andrew Jaegle, Felix Gimeno, Andrew Brock, Andrew Zisserman, Oriol Vinyals,
and Joao Carreira. 2021. Perceiver: General perception with iterative attention.
ICML (2021).

[38] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017. Billion-scale similarity
search with GPUs. arXiv preprint arXiv:1702.08734 (2017).

[39] Armand Joulin, Edouard Grave, Piotr Bojanowski, Matthijs Douze, Hérve Jégou,
and Tomas Mikolov. 2016. Fasttext. zip: Compressing text classification models.
arXiv preprint arXiv:1612.03651 (2016).

[40] Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and
Mike Lewis. 2020. Nearest neighbor machine translation. arXiv preprint
arXiv:2010.00710 (2020).

[41] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. 2019. Generalization through memorization: Nearest neighbor language
models. arXiv preprint arXiv:1911.00172 (2019).

[42] Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 39–48.

[43] Tae Hyun Kim, Mehdi SM Sajjadi, Michael Hirsch, and Bernhard Scholkopf. 2018.
Spatio-temporal transformer network for video restoration. In Proceedings of the
European Conference on Computer Vision (ECCV). 106–122.

[44] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[45] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan, Jef-
frey R Ballard, Han Li, Fatemah Panahi, Haojun Zhang, Jeff Naughton, et al. 2016.
Magellan: Toward building entity matching management systems. Proceedings of
the VLDB Endowment 9, 12 (2016), 1197–1208.

[46] Hanna Köpcke and Erhard Rahm. 2010. Frameworks for entity matching: A
comparison. Data & Knowledge Engineering 69, 2 (2010), 197–210.

[47] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012), 1097–1105.

[48] Arun Kumar, Jeffrey Naughton, Jignesh M Patel, and Xiaojin Zhu. 2016. To join
or not to join? Thinking twice about joins before feature selection. In Proceedings
of the 2016 International Conference on Management of Data. 19–34.

[49] Bing Li, Yukai Miao, Yaoshu Wang, Yifang Sun, and Wei Wang. 2021. Improving
the Efficiency and Effectiveness for BERT-based Entity Resolution. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 35. 13226–13233.

[50] Fei Li and HV Jagadish. 2014. Constructing an interactive natural language
interface for relational databases. Proceedings of the VLDB Endowment 8, 1 (2014),
73–84.

[51] Han Li, Nan Tang, Mourad Ouzzani, Yash Govind, Derek Paulsen, Glenn Fung,
and AnHai Doan. 2021. Deep Learning for Blocking in Entity Matching: A Design
Space Exploration. Proceedings of the VLDB Endowment 14, 11 (2021).

[52] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-
FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples.
SIGMOD (2021).

[53] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep entity matching with pre-trained language models. arXiv preprint
arXiv:2004.00584 (2020).

[54] Xi Victoria Lin, Richard Socher, and Caiming Xiong. 2020. Bridging Textual and
Tabular Data for Cross-Domain Text-to-SQL Semantic Parsing. arXiv preprint
arXiv:2012.12627 (2020).

[55] Zifan Liu, Zhechun Zhou, and Theodoros Rekatsinas. 2020. Picket: Self-supervised
Data Diagnostics for ML Pipelines. arXiv preprint arXiv:2006.04730 (2020).

[56] Jie Lu, Dianshuang Wu, Mingsong Mao, Wei Wang, and Guangquan Zhang. 2015.
Recommender system application developments: a survey. Decision Support
Systems 74 (2015), 12–32.

711

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
https://cloud.google.com/automl
https://www.datarobot.com/platform/automated-machine-learning/
https://www.datarobot.com/platform/automated-machine-learning/
https://www.h2o.ai/
https://datasets.imdbws.com/
https://microsoft.github.io/msmarco/
https://opendata.cityofnewyork.us/data/
https://pypi.org/project/rank-bm25/
https://dumps.wikimedia.org/
https://www.yelp.com/dataset/documentation/main
https://www.aclweb.org/anthology/N19-1423

[57] Piero Molino, Yaroslav Dudin, and Sai Sumanth Miryala. 2019. Ludwig: a type-
based declarative deep learning toolbox. arXiv preprint arXiv:1909.07930 (2019).

[58] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,
Ganesh Krishnan, Rohit Deep, Esteban Arcaute, and Vijay Raghavendra. 2018.
Deep learning for entity matching: A design space exploration. In Proceedings of
the 2018 International Conference on Management of Data. 19–34.

[59] Rajat Mukherjee and Jianchang Mao. 2004. Enterprise Search: Tough Stuff: Why
is it that searching an intranet is so much harder than searching the Web? Queue
2, 2 (2004), 36–46.

[60] Rodrigo Nogueira and Kyunghyun Cho. 2019. Passage Re-ranking with BERT.
arXiv preprint arXiv:1901.04085 (2019).

[61] Laurel Orr, Megan Leszczynski, Simran Arora, Sen Wu, Neel Guha, Xiao Ling,
and Christopher Re. 2020. Bootleg: Chasing the Tail with Self-Supervised Named
Entity Disambiguation. arXiv preprint arXiv:2010.10363 (2020).

[62] George Papadakis, Dimitrios Skoutas, Emmanouil Thanos, and Themis Palpanas.
2020. Blocking and filtering techniques for entity resolution: A survey. ACM
Computing Surveys (CSUR) 53, 2 (2020), 1–42.

[63] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,
Alexander Ku, and Dustin Tran. 2018. Image transformer. In International Con-
ference on Machine Learning. PMLR, 4055–4064.

[64] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703 (2019).

[65] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
arXiv preprint arXiv:2103.00020 (2021).

[66] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language models are unsupervised multitask learners. OpenAI
blog 1, 8 (2019), 9.

[67] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
Squad: 100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250 (2016).

[68] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and
Christopher Ré. 2017. Snorkel: Rapid training data creationwithweak supervision.
In Proceedings of the VLDB Endowment. International Conference on Very Large
Data Bases, Vol. 11. NIH Public Access, 269.

[69] Christopher Ré, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. 2019.
Overton: A data system for monitoring and improving machine-learned products.
arXiv preprint arXiv:1909.05372 (2019).

[70] Matthew Richardson, Christopher JC Burges, and Erin Renshaw. 2013. Mctest: A
challenge dataset for the open-domain machine comprehension of text. In Pro-
ceedings of the 2013 conference on empirical methods in natural language processing.
193–203.

[71] Stephen Robertson and Hugo Zaragoza. 2009. The probabilistic relevance frame-
work: BM25 and beyond. Now Publishers Inc.

[72] Vraj Shah, Arun Kumar, and Xiaojin Zhu. 2017. Are Key-Foreign Key Joins Safe
to Avoid when Learning High-Capacity Classifiers? Proceedings of the VLDB
Endowment 11, 3 (2017).

[73] Wei Shen, JianyongWang, and Jiawei Han. 2014. Entity linking with a knowledge
base: Issues, techniques, and solutions. IEEE Transactions on Knowledge and Data
Engineering 27, 2 (2014), 443–460.

[74] Chen Sun, Fabien Baradel, Kevin Murphy, and Cordelia Schmid. 2019. Learning
video representations using contrastive bidirectional transformer. arXiv preprint
arXiv:1906.05743 (2019).

[75] Sahaana Suri, Raghuveer Chanda, Neslihan Bulut, Pradyumna Narayana, Yemao
Zeng, Peter Bailis, Sugato Basu, Girija Narlikar, Christopher Ré, and Abishek

Sethi. 2020. Leveraging Organizational Resources to Adapt Models to New Data
Modalities. Proceedings of the VLDB Endowment 13, 12 (2020).

[76] Nan Tang, Ju Fan, Fangyi Li, Jianhong Tu, Xiaoyong Du, Guoliang Li, Sam
Madden, and Mourad Ouzzani. 2020. Relational Pretrained Transformers towards
Democratizing Data Preparation [Vision]. arXiv preprint arXiv:2012.02469 (2020).

[77] James Thorne, Majid Yazdani, Marzieh Saeidi, Fabrizio Silvestri, Sebastian Riedel,
and Alon Halevy. 2020. Neural Databases. arXiv preprint arXiv:2010.06973 (2020).

[78] Yao-HungHubert Tsai, Shaojie Bai, Makoto Yamada, Louis-PhilippeMorency, and
Ruslan Salakhutdinov. 2019. Transformer Dissection: A Unified Understanding
of Transformer’s Attention via the Lens of Kernel. EMNLP (2019).

[79] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS.

[80] Jiannan Wang, Guoliang Li, and Jianhua Fe. 2011. Fast-join: An efficient method
for fuzzy token matching based string similarity join. In 2011 IEEE 27th Interna-
tional Conference on Data Engineering. IEEE, 458–469.

[81] Kilian Q Weinberger and Lawrence K Saul. 2009. Distance metric learning for
large margin nearest neighbor classification. Journal of machine learning research
10, 2 (2009).

[82] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. HuggingFace’s Transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

[83] LedellWu, Fabio Petroni, Martin Josifoski, Sebastian Riedel, and Luke Zettlemoyer.
2019. Scalable zero-shot entity linking with dense entity retrieval. arXiv preprint
arXiv:1911.03814 (2019).

[84] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR conference on research and development in information
retrieval. 55–64.

[85] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan
Salakhutdinov, and Christopher DManning. 2018. Hotpotqa: A dataset for diverse,
explainablemulti-hop question answering. arXiv preprint arXiv:1809.09600 (2018).

[86] Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Sebastian Riedel. 2020.
TaBERT: Pretraining for Joint Understanding of Textual and Tabular Data. In
Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. 8413–8426.

[87] Minghe Yu, Guoliang Li, Dong Deng, and Jianhua Feng. 2016. String similarity
search and join: a survey. Frontiers of Computer Science 10, 3 (2016), 399–417.

[88] Jichuan Zeng, Xi Victoria Lin, Caiming Xiong, Richard Socher, Michael R Lyu,
Irwin King, and Steven CH Hoi. 2020. Photon: A Robust Cross-Domain Text-to-
SQL System. arXiv preprint arXiv:2007.15280 (2020).

[89] Qian Zhang, Han Lu, Hasim Sak, Anshuman Tripathi, Erik McDermott, Stephen
Koo, and Shankar Kumar. 2020. Transformer transducer: A streamable speech
recognition model with transformer encoders and rnn-t loss. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 7829–7833.

[90] Wei Zhang, Hao Wei, Bunyamin Sisman, Xin Luna Dong, Christos Faloutsos,
and Davd Page. 2020. AutoBlock: A hands-off blocking framework for entity
matching. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 744–752.

[91] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and
Tat-Seng Chua. 2021. Retrieving and Reading: A Comprehensive Survey on
Open-domain Question Answering. arXiv preprint arXiv:2101.00774 (2021).

[92] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies and reading books. In Proceed-
ings of the IEEE international conference on computer vision. 19–27.

712

