
Efficient Temporal Pattern Mining in Big Time Series Using
Mutual Information

Van Long Ho
Aalborg University
Aalborg, Denmark
vlh@cs.aau.dk

Nguyen Ho
Aalborg University
Aalborg, Denmark
ntth@cs.aau.dk

Torben Bach Pedersen
Aalborg University
Aalborg, Denmark
tbp@cs.aau.dk

ABSTRACT
Very large time series are increasingly available from an ever wider
range of IoT-enabled sensors deployed in different environments.
Significant insights can be gained by mining temporal patterns
from these time series. Unlike traditional pattern mining, tempo-
ral pattern mining (TPM) adds event time intervals into extracted
patterns, making them more expressive at the expense of increased
time and space complexities. Existing TPM methods either cannot
scale to large datasets, or work only on pre-processed temporal
events rather than on time series. This paper presents our Frequent
Temporal Pattern Mining from Time Series (FTPMfTS) approach
providing: (1) The end-to-end FTPMfTS process taking time series
as input and producing frequent temporal patterns as output. (2) The
efficient Hierarchical Temporal Pattern Graph Mining (HTPGM)
algorithm that uses efficient data structures for fast support and con-
fidence computation, and employs effective pruning techniques for
significantly faster mining. (3) An approximate version of HTPGM
that uses mutual information, a measure of data correlation, to
prune unpromising time series from the search space. (4) An exten-
sive experimental evaluation showing that HTPGM outperforms
the baselines in runtime and memory consumption, and can scale
to big datasets. The approximate HTPGM is up to two orders of
magnitude faster and less memory consuming than the baselines,
while retaining high accuracy.

PVLDB Reference Format:
Van Long Ho, Nguyen Ho, and Torben Bach Pedersen. Efficient Temporal
Pattern Mining in Big Time Series Using Mutual Information. PVLDB,
15(3): 673-685, 2022.
doi:10.14778/3494124.3494147

1 INTRODUCTION
IoT-enabled sensors have enabled the collection of many big time
series, e.g., from smart-meters, -plugs, and -appliances in house-
holds, weather stations, and GPS-enabledmobile devices. Extracting
patterns from these time series can offer new domain insights for
evidence-based decision making and optimization. As an example,
consider Fig. 1 that shows the electricity usage of a water boiler with
a hot water tank collected by a 20 euro wifi-enabled smart-plug,
and accurate CO2 intensity (g/kWh) forecasts of local electricity,
e.g., as supplied by the Danish Transmission System Operator [12].

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494147

Water Boiler
with Tank

CO2
Intensity

00:00

02:00

06:00
07:00
08:00
10:00

13:00

15:00

19:00
21:00

00:00

02:00

06:00
07:00
09:00

13:00
15:00

18:00
20:00
22:00
00:00

Low

Med

High

Med
Low

Med

High

Med

Low

Med

High

Med
Low

Med

High

Med
Low

Off

On

Off

On

Off

Day 1 Day 2

Figure 1: CO2 intensity and water boiler electricity usage

From Fig. 1, we can identify several useful patterns. First, the wa-
ter boiler switches On once a day, for one hour between 6 and
8AM. This indicates that the resident takes only one hot shower
per day which starts between 5.30 and 6.30AM. Second, all water
boiler On events are contained in CO2 High events, i.e., the periods
when CO2 intensity is high. Third, between two consecutive On
events of the boiler, there is a CO2 Low event lasting for one or
more hours which occurs at most 4 hours before the hot shower
(so water heated during that event will still be hot at 6AM). Pattern
mining can be used to extract the relations between CO2 intensity
and water boiler events. However, traditional sequential patterns
only capture the sequential occurrence of events, e.g., that one
boiler On event follows after another, but not that there is at least
23 hours between them; or that there is a CO2 Low event between
the two boiler On events, but not when or for how long it lasts. In
contrast, temporal pattern mining (TPM) adds temporal information
into patterns, providing details on when certain relations between
events happen, and for how long. For example, TPM expresses the
above relations as: ([7:00 - 8:00, Day X] BoilerOn→ [6:00 - 7:00, Day
X+1] BoilerOn) (meaning BoilerOn is followed by BoilerOn), ([6:00
- 10:00, Day X] HighCO2 ≽ [7:00 - 8:00, Day X] BoilerOn) (meaning
HighCO2 contains BoilerOn), and ([7:00 - 8:00, Day X] BoilerOn→
[0:00 - 2:00, Day X+1] LowCO2→ [6:00 - 7:00, Day X+1] BoilerOn).
As the resident is very keen on reducing her CO2 footprint, we can
rely on the above temporal patterns to automatically (using the
smart-plug) delay turning on the boiler until the CO2 intensity is
low again, saving CO2 without any loss of comfort for the resident.

Another example is in the smart city domain in which tem-
poral patterns extracted from vehicle GPS data [41] can reveal
spatio-temporal correlations between traffic jams. For example,
if the pattern ([07:30, 08:00] SlowSpeedTunnel → [08:00, 08:30]
SlowSpeedMainBoulevard) is found with high frequency and high
confidence on weekdays, it can be used to advise drivers to take
another route for their morning commute.

673

https://doi.org/10.14778/3494124.3494147
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494147

Although temporal patterns are useful, mining them is much
more expensive than sequential patterns. Not only does the tempo-
ral information add extra computation to the mining process, the
complex relations between events also add an additional exponen-
tial factor O(3h2) to the complexity O(mh) of the search space (m
is the number of events and h is the length of temporal patterns),
yielding an overall complexity of O(mh3h2) (see Lemma 1 in Section
4.4). Existing TPM methods [8, 35, 36] do not scale on big datasets,
i.e., many time series and many sequences, and/or do not work
directly on time series but rather on pre-processed temporal events.

Contributions. In this paper, we present our comprehensive Fre-
quent Temporal Pattern Mining from Time Series (FTPMfTS) ap-
proach which overcomes the above limitations. Our key contribu-
tions are: (1) We present the first end-to-end FTPMfTS process that
receives time series as input, and produces frequent temporal pat-
terns as output. Within this process, a splitting strategy is proposed
to convert time series into event sequences while ensuring the
preservation of temporal patterns. (2) We propose the efficient Hier-
archical Temporal Pattern Graph Mining (HTPGM) algorithm that
employs: a) efficient data structures, Hierarchical Pattern Graph
and bitmap, to enable fast support and confidence computation;
and b) pruning techniques based on the Apriori principle and the
transitivity property of temporal relations to enable faster mining.
(3) Based on the concept of mutual information which measures
the correlation among time series, we propose a novel approximate
version of HTPGM that prunes unpromising time series to signifi-
cantly reduce the search space and can scale on big datasets, i.e.,
many time series and many sequences. (4) We perform extensive
experiments on synthetic and real-world datasets which show that
HTPGM outperforms the baselines in both runtime and memory
usage. The approximate HTPGM is up to two orders of magni-
tude faster and less memory consumption than the baselines while
retaining high accuracy compared to the exact HTPGM.

2 RELATEDWORK
Temporal pattern mining: Compared to sequential pattern mining,
TPM is rather a new research area. One of the first papers in this
area is [20] from Kam et al. that uses a hierarchical representation to
manage temporal relations, and based on that mines temporal pat-
terns. However, the approach in [20] suffers from ambiguity when
presenting temporal relations. In [39], Wu et al. develop TPrefix to
mine temporal patterns from non-ambiguous temporal relations.
However, TPrefix has several inherent limitations: it scans the data-
base repeatedly, and the algorithm does not employ any pruning
strategies to reduce the search space. In [32], Moskovitch et al. de-
sign a TPM algorithm using the transitivity property of temporal
relations. They use this property to generate candidates by infer-
ring new relations between events. In comparison, our HTPGM
uses the transitivity property for effective pruning. In [3], Iyad et
al. propose a TPM framework to detect events in time series. How-
ever, their focus is to find irregularities in the data. In [38], Wang
et al. propose a temporal pattern mining algorithm HUTPMiner
to mine high-utility patterns. Different from our HTPGM which
uses support and confidence to measure the frequency of patterns,
HUTPMiner uses utility to measure the importance or profit of an
event/ pattern, thereby addresses an orthogonal problem. In [37],

Amit et al. propose STIPA which uses a Hoeppner matrix represen-
tation to compress temporal patterns for memory savings. However,
STIPA does not use any pruning/ optimization strategies and thus,
despite the efficient use of memory, it cannot scale to large datasets,
unlike our HTPGM. Other work [4], [7] proposes TPM algorithms
to classify health record data. However, these methods are very
domain-specific, thus cannot generalize to other domains.

The state-of-the-art TPM methods that currently achieve the
best performance are our baselines: H-DFS [35], TPMiner [8], IEM-
iner [36], and Z-Miner [28]. H-DFS is a hybrid algorithm that uses
breadth-first and depth-first search strategies to mine frequent
arrangements of temporal intervals. H-DFS uses a data structure
called ID-List to transform event sequences into vertical repre-
sentations, and temporal patterns are generated by merging the
ID-Lists of different events. This means that H-DFS does not scale
well when the number of time series increases. In [36], Patel et
al. design a hierarchical lossless representation to model event
relations, and propose IEMiner that uses Apriori-based optimiza-
tions to efficiently mine patterns from this new representation. In
[8], Chen et al. propose TPMiner that uses endpoint and endtime
representations to simplify the complex relations among events.
Similar to [35], IEMiner and TPMiner do not scale to datasets with
many time series. Z-Miner [28], proposed by Lee et al., is the most
recent work addressing TPM. Z-Miner improves the mining effi-
ciency over existing methods by employing two data structures: a
hierarchical hash-based structure called Z-Table for time-efficient
candidate generation and support count, and Z-Arrangement, a
structure to efficiently store event intervals in temporal patterns
for efficient memory consumption. Although using efficient data
structures, Z-Miner neither employs the transitivity property of
temporal relations nor mutual information for pruning. Thus, Z-
Miner is less efficient than our exact and approximate HTPGM
in both runtimes and memory usage, and does not scale to large
datasets with many sequences and many time series (see Section 6).
Our HTPGM algorithm improves on these methods by: (1) using
efficient data structures and applying pruning techniques based on
the Apriori principle and the transitivity property of temporal rela-
tions to enable fast mining, (2) the approximate HTPGM can handle
datasets with many time series and sequences, and (3), providing
an end-to-end FTPMfTS process to mine temporal patterns directly
from time series, a feature that is not supported by the baselines.

Using correlations in TPM: Different correlation measures such as
expected support [1], all-confidence [27], and mutual information
(MI) [6, 11, 15–18, 21–25, 40] have been used to optimize the pattern
mining process. However, these only support sequential patterns.
To the best of our knowledge, our proposed approximate HTPGM
is the first that uses MI to optimize TPM.

3 PRELIMINARIES
In this section, we introduce the notations and the main concepts
that will be used throughout the paper.

3.1 Temporal Event of Time Series
Definition 3.1 (Time series) A time series X = x1, x2, ..., xn is a
sequence of data values that measure the same phenomenon during
an observation time period, and are chronologically ordered.

674

Table 1: A Symbolic Database DSYB

Time 10:00 10:05 10:10 10:15 10:20 10:25 10:30 10:35 10:40 10:45 10:50 10:55 11:00 11:05 11:10 11:15 11:20 11:25 11:30 11:35 11:40 11:45 11:50 11:55 12:00 12:05 12:10 12:15 12:20 12:25 12:30 12:35 12:40 12:45 12:50 12:55

S On On On On Off Off Off On On Off Off Off Off Off Off On On On Off Off Off Off On On On Off Off On On Off Off On On On Off Off

T Off On On On Off Off Off On On Off Off On On Off Off On On On Off Off Off Off On On On Off Off On On Off Off Off On On On Off

M Off Off Off Off On On On Off Off On On On Off On On Off Off Off On On Off On On Off Off On On Off Off On On On Off Off On On

W Off Off Off Off On On On Off Off On On Off On On On Off Off Off On On Off On On Off Off On On Off Off On On On Off Off On On

D Off Off Off Off Off Off Off Off Off On On Off Off Off Off Off On On Off Off Off Off Off Off Off Off Off On On Off Off Off On On Off Off

I Off Off Off Off Off Off Off On On Off Off Off Off Off Off Off Off Off On On Off Off Off Off Off Off Off On On Off Off Off Off Off On On

Definition 3.2 (Symbolic time series) A symbolic time series XS
of a time series X encodes the raw values of X into a sequence of
symbols. The finite set of permitted symbols used to encode X is
called the symbol alphabet of X , denoted as ΣX .

The symbolic time series XS is obtained using a mapping func-
tion f : X→ΣX that maps each value xi ∈ X to a symbol ω ∈ ΣX .
For example, letX = 1.61, 1.21, 0.41, 0.0 be a time series representing
the energy usage of an electrical device. Using the symbol alphabet
ΣX = {On, Off}, where On represents that the device is on and oper-
ating (e.g., xi ≥ 0.5), and Off that the device is off (xi < 0.5), the
symbolic representation ofX is:XS = On, On, Off, Off. The mapping
function f can be defined using existing time series representation
techniques such as SAX [29] or MVQ [30].
Definition 3.3 (Symbolic database) Given a set of time series X =
{X1, ...,Xn }, the set of symbolic representations of the time series
in X forms a symbolic database DSYB.

An example of the symbolic database DSYB is shown in Table 1.
There are 6 time series representing the energy usage of 6 electri-
cal appliances: {Stove, Toaster, Microwave, Clothes Washer, Dryer,
Iron}. For brevity, we name the appliances respectively as {S, T, M,
W, D, I}. All appliances have the same alphabet Σ = {On, Off}.
Definition 3.4 (Temporal event in a symbolic time series) A tempo-
ral event E in a symbolic time series XS is a tuple E = (ω,T) where
ω ∈ ΣX is a symbol, and T = {[tsi , tei]} is the set of time intervals
during which XS is associated with the symbol ω.

Given a time seriesX , a temporal event is created by first convert-
ing X into symbolic time series XS , and then combining identical
consecutive symbols in XS into one single time interval. For ex-
ample, consider the symbolic representation of S in Table 1. By
combining its consecutive On symbols, we form the temporal event
“Stove is On” as: (SOn, {[10:00, 10:15], [10:35, 10:40], [11:15, 11:25],
[11:50, 12:00], [12:15, 12:20], [12:35, 12:45]}).
Definition 3.5 (Instance of a temporal event) Let E = (ω,T) be
a temporal event, and [tsi , tei] ∈ T be a time interval. The tuple
e = (ω, [tsi , tei]) is called an instance of the event E, representing a
single occurrence of E during [tsi , tei]. We use the notation E▷e to
denote that event E has an instance e .

3.2 Relations between Temporal Events
We adopt the popular Allen’s relations model [2] and define three
basic temporal relations between events. Furthermore, to avoid
the exact time mapping problem in Allen’s relations, we adopt the
buffer idea from [35], adding a tolerance buffer ϵ to the relation’s
endpoints. However, we change the way ϵ is used in [35] to ensure
the relations are mutually exclusive (proof is in the full paper [19]).

Consider two temporal events Ei and Ej , and their corresponding
instances, ei = (ωi , [tsi , tei]) and ej = (ωj , [tsj , tej]). Let ϵ be a non-
negative number (ϵ ≥ 0) representing the buffer size. The following
relations can be defined between Ei and Ej through ei and ej .

Definition 3.6 (Follows) Ei and Ej form a Follows relation through
ei and ej , denoted as Follows(Ei▷ei ,Ej▷ej) orEi▷ei→Ej▷ej , iff tei±ϵ≤tsj .
Definition 3.7 (Contains)Ei andEj form aContains relation through
ei and ej , denoted as Contains(Ei▷ei , Ej▷ej) or Ei▷ei ≽Ej▷ej , iff (tsi ≤
tsj) ∧ (tei ± ϵ ≥ tej).
Definition 3.8 (Overlaps) Ei and Ej form an Overlaps relation
through ei and ej , denoted as Overlaps(Ei▷ei , Ej▷ej) or Ei▷ei ≬ Ej▷ej ,
iff (tsi < tsj) ∧ (tei ± ϵ < tej) ∧ (tei − tsj ≥ do ± ϵ), where do is the
minimal overlapping duration between two event instances, and
0 ≤ ϵ ≪ do .

The Follows relation represents sequential occurrences of one
event after another. For example, Ei▷ei is followed by Ej▷ej if the
end time tei of ei occurs before the start time tsj of ej . Here, the
buffer ϵ is used as a tolerance, i.e., the Follows relation between
Ei▷ei and Ej▷ej holds if (tei +ϵ) or (tei −ϵ) occurs before tsj . On the
other hand, in a Contains relation, one event occurs entirely within
the timespan of another event. Finally, in an Overlaps relation,
the timespans of the two occurrences overlap each other. Table 2
illustrates the three temporal relations and their conditions.

3.3 Temporal Pattern
Definition 3.9 (Temporal sequence) A list of n event instances
S=<e1, ..., ei , ..., en> forms a temporal sequence if the instances are
chronologically ordered by their start times. Moreover, S has size n,
denoted as |S | = n.
Definition 3.10 (Temporal sequence database) A set of temporal
sequences forms a temporal sequence database DSEQ where each
row i contains a temporal sequence Si .

Table 3 shows the temporal sequence database DSEQ, created
from the symbolic database DSYB in Table 1.
Definition 3.11 (Temporal pattern) Let ℜ={Follows, Contains,
Overlaps} be the set of temporal relations. A temporal pattern
P=<(r12, E1, E2),...,(r(n−1)(n), En−1, En)> is a list of triples (rij,Ei ,Ej),
each representing a relation rij ∈ ℜ between two events Ei and Ej .

Note that the relation rij in each triple is formed using the specific
instances of Ei and Ej . A temporal pattern that has n events is called
ann-event pattern. We use Ei ∈ P to denote that the event Ei occurs
in P , and P1 ⊆ P to say that a pattern P1 is a sub-pattern of P .
Definition 3.12 (Temporal sequence supports a pattern) Let S=<e1,
...,ei ,...,en> be a temporal sequence. We say that S supports a tem-
poral pattern P , denoted as P ∈ S , iff |S | ≥ 2 ∧ ∀(rij, Ei , Ej) ∈ P,
∃(el , em) ∈ S such that rij holds between Ei▷el and Ej▷em .

If P is supported by S , P can be written as P=<(r12, E1▷e1 , E2▷e2),
..., (r(n−1)(n),En−1▷en−1 , En▷en)>, where the relation between two
events in each triple is expressed using the event instances.

In Fig. 1, consider the sequence S =<e1=(HighCO2, [6:00, 10:00]),
e2=(BoilerOn, [7:00, 8:00]), e3=(LowCO2, [13:00, 15:00])> represent-
ing the order of CO2 intensity and boiler events. Here, S supports a

675

Table 2: Temporal Relations between Events

Follows:
Ei▷ei → Ej▷ej

ei

tsi tei ±ϵ
tsj tej

ej
ei

tsi tei ±ϵ
tsj tej

ej

tei ±ϵ ≤ tsj

Contains:
Ei▷ei ≽ Ej▷ej

eitsi tei ± ϵ

ej

tsj tej

eitsi tei ± ϵ

ej

tsj tej

eitsi tei ± ϵ

ej

tsj tej

eitsi tei ± ϵ

ej
tsj tej

(tsi ≤ tsj) ∧ (tei ±ϵ ≥ tej)

Overlaps:
Ei▷ei ≬ Ej▷ej

eitsi tei ± ϵ

ej

tsj tej

do

(tsi < tsj) ∧ (tei ±ϵ < tej) ∧ (tei − tsj ≥ do±ϵ)

Table 3: A Temporal Sequence Database DSEQ
ID Temporal sequences
1 (SOn,[10:00,10:15]), (TOff,[10:00,10:05]), (MOff,[10:00,10:20]), (WOff,[10:00,10:20]),

(DOff,[10:00,10:40]), (IOff,[10:00,10:35]), (TOn,[10:05,10:15]), (SOff,[10:15,10:35]),
(TOff,[10:15,10:35]), (MOn,[10:20,10:30]), (WOn,[10:20,10:30]), (WOff,[10:30,10:40]),
(MOff,[10:30,10:40]), (SOn,[10:35,10:40]), (TOn,[10;35,10:40]), (IOn,[10:35,10:40])

2 (SOff,[10:45,11:15]), (TOff,[10:45,10:55]), (MOn,[10;45,10:55]), (WOn,[10:45,10:50]),
(DOn,[10:45,10:50]), (IOff,[10:45,11:25]), (WOff,[10:50,11:00]), (DOff,[10:50,11:20]),
(MOff,[10:55,11:05]), (TOn,[10:55,11:00]), (TOff,[11:00,11:15]), (WOn,[11:00,11:10]),
(MOn,[11:05,11:10]), (WOff,[11:10,11:25]), (MOff,[11:10,11:25]), (SOn,[11:15,11:25]),
(TOn,[11:15,11:25]), (DOn,[11:20,11:25])

3 (SOff,[11:30,11:50]), (TOff,[11:30,11:50]), (MOn,[11:30,11:35]), (WOn,[11:30,11:35]),
(DOff,[11:30,12:10]), (IOn,[11:30,11:35]), (IOff,[11:35,12:10]), (MOff,[11:35,11:45]),
(WOff,[11:35,11:45]), (WOn,[11:45,11:50]), (MOn,[11:45,11:50]), (SOn,[11:50,12:00]),
(MOff,[11:50,12:05]), (TOn,[11:50,12:00]), (WOff,[11:50,12:05]), (SOff,[12:00,12:10]),
(TOff,[12:00,12:10]), (MOn,[12:05,12:10]), (WOn,[12:05,12:10])

4 (SOn,[12:15,12:20]), (TOn,[12:15,12:20]), (MOff,[12:15,12:25]), (WOff,[12:15,12:25]),
(DOn,[12:15,12:20]), (IOn,[12:15,12:20]), (IOff,[12:20,12:50]), (DOff,[12:20,12:40]),
(TOff,[12:20,12:40]), (SOff,[12:20,12:35]), (WOn,[12:25,12:35]), (MOn,[12:25,12:35]),
(MOff,[12:35,12:50]), (SOn,[12:35,12:45]), (WOff,[12:35,12:50]), (TOn,[12:40,12:50]),
(DOn,[12:40,12:45]), (DOff,[12:45,12:55]), (SOff,[12:45,12:55]), (TOff,[12:50,12:55]),
(MOn,[12:50,12:55]), (WOn,[12:50,12:55]), (IOn,[12:50,12:55])

3-event pattern P=<(Contains, HighCO2▷e1 , BoilerOn▷e2), (Follows,
HighCO2▷e1 , LowCO2▷e3), (Follows, BoilerOn▷e2 , LowCO2▷e3)>.

Maximal duration constraint: Let P ∈ S be a temporal pattern
supported by the sequence S . The duration between the start time
of the instance e1, and the end time of the instance en in S must not
exceed the predefined maximal time duration tmax: ten − ts1 ≤ tmax.

The maximal duration constraint guarantees that the relation be-
tween any two events is temporally valid. This enables the pruning
of invalid patterns. For example, under this constraint, a Follows
relation between a “Washer On” event and a “Dryer On” event in
Table 3 happening one year apart should be considered invalid.
3.4 Frequent Temporal Pattern
Given a temporal sequence databaseDSEQ, we want to find patterns
that occur frequently in DSEQ. We use support and confidence [34]
to measure the frequency and the likelihood of a pattern.
Definition 3.13 (Support of a temporal event) The support of a
temporal event E in DSEQ is the number of sequences S ∈ DSEQ
which contain at least one instance e of E.

supp(E) = | {S ∈ DSEQ s.t. ∃e ∈ S : E▷e } | (1)
The relative support of E is the fraction between supp(E) and the
size of DSEQ: rel-supp(E) = supp(E)/ |DSEQ | (2)

Similarly, the support of a group of events (E1, ..., En), denoted
as supp(E1, ..., En), is the number of sequences S ∈ DSEQ which
contain at least one instance (e1, ..., en) of the event group.
Definition 3.14 (Support of a temporal pattern) The support of a
pattern P is the number of sequences S ∈ DSEQ that support P .

supp(P) = | {S ∈ DSEQ s.t. P ∈ S } | (3)
The relative support of P in DSEQ is the fraction

rel-supp(P) = supp(P)/ |DSEQ | (4)
Definition 3.15 (Confidence of an event pair) The confidence of an
event pair (Ei , Ej) inDSEQ is the fraction between supp(Ei , Ej) and
the support of its most frequent event:

conf(Ei , Ej) =
supp(Ei , Ej)

max{supp(Ei), supp(Ej)}
(5)

Definition 3.16 (Confidence of a temporal pattern) The confidence
of a temporal pattern P in DSEQ is the fraction between supp(P)
and the support of its most frequent event:

conf(P) =
supp(P)

max1≤k≤|P | {supp(Ek)}
(6)

where Ek ∈ P is a temporal event. Since the denominator in Eq. (6)
is themaximum support of the events in P , the confidence computed
in Eq. (6) is the minimum confidence of a pattern P in DSEQ, which
is also called the all-confidence as in [34].

Note that unlike association rules, temporal patterns do not
have antecedents and consequents. Instead, they represent pair-
wise temporal relations between events based on their temporal
occurrences. Thus, while the support and relative support of event(s)/
pattern(s) defined in Eqs. (1) − (4) follow the same intuition as the
traditional support concept, indicating how frequently an event/
pattern occurs in a given database, the confidence computed in Eqs.
(5) − (6) instead represents the minimum likelihood of an event
pair/ pattern, knowing the likelihood of its most frequent event.

FrequentTemporal PatternMining fromTime Series (FTP
MfTS). Given a set of univariate time series X = {X1, ...,Xn }, let
DSEQ be the temporal sequence database obtained from X, and
σ and δ be the support and confidence thresholds, respectively.
The FTPMfTS problem aims to find all temporal patterns P that
have high enough support and confidence in DSEQ: supp(P) ≥ σ ∧
conf(P) ≥ δ .
4 FREQUENT TEMPORAL PATTERN MINING
Fig. 2 gives an overview of the FTPMfTS process which consists
of 2 phases. The first phase, Data Transformation, converts a set of
time series X into a symbolic database DSYB, and then converts
DSYB into a temporal sequence database DSEQ. The second phase,
Frequent Temporal Pattern Mining, mines frequent patterns which
includes 3 steps: (1) Frequent Single Event Mining, (2) Frequent 2-
Event Pattern Mining, and (3) Frequent k-Event Pattern Mining (k>2).
The final output is a set of all frequent patterns in DSEQ.
4.1 Data Transformation
4.1.1 Symbolic Time Series Representation. Given a set of time
series X, the symbolic representation of each time series X ∈ X is
obtained by using a mapping function as in Def. 3.2.
4.1.2 Temporal Sequence Database Conversion. To convert DSYB
to DSEQ, a straightforward approach is to split the symbolic series
in DSYB into equal-length sequences, each belongs to a row in

676

Set of Time Series X

Symbolic Time Series Representation

Temporal Sequence Database Conversion

Frequent Single Event Mining

Frequent 2-Event Pattern Mining

Frequent k-Event Pattern Mining (k > 2)

FT
PM

fT
S
Pr
oc
es
s

D
ata

Transform
ation

Tem
poral

Patterns
M
ining

(H
TPG

M
)

Frequent Temporal Patterns

DSYB

DSEQ

Figure 2: The FTPMfTS process

S1 S2

t t
SOn
TOn MOn

WOn

(a) With no overlapping

S1 S2

tov
t

t

SOn
TOn MOn

WOn

(b) With overlapping

Figure 3: Splitting strategy

... TOn,IOn

SOn SOff TOff MOn WOnMOff WOff DOff IOnTOn IOff

∅

SOn,TOn,MOn,WOn

TOn,MOn,WOnSOn,MOn,WOnSOn,TOn,WOnSOn,TOn,MOn

(10:00,10:15),(10:05,10:15),(10:20,10:30)1

0

1

1

(11:50,12:00),(11:50,12:00),(12:05,12:10)

(12:15,12:20),(12:15,12:20),(12:25,12:35)

... MOn,WOn ...

Search space

SOn,TOn SOn,MOn SOn,WOn SOn,IOn TOn,MOn TOn,WOn
1 1 1 1 1 0 1 1

(11:50,12:00)

(12:15,12:20)

1

1

1

1

(10:00,10:15)

(11:15,11:25)

(12:35,12:45)

(10:35,10:40)

(11:30,11:35)

(12:15,12:20)

1

0

1

1

(10:35,10:40)

(12:50,12:55)

Figure 4: A Hierarchical Pattern Graph for Table 3

DSEQ. For example, if each symbolic series in Table 1 is split into 4
sequences, then each sequence will last for 40 minutes. The first
sequence S1 of DSEQ therefore contains temporal events of S, T, M,
W, D, and I from 10:00 to 10:40. The second sequence S2 contains
events from 10:45 to 11:25, and similarly for S3 and S4.

However, the splitting can lead to a potential loss of temporal
patterns. The loss happens when a splitting point accidentally di-
vides a temporal pattern into different sub-patterns, and places
these into separate sequences. We explain this situation in Fig. 3a.
Consider 2 sequences S1 and S2, each of length t . Here, the splitting
point divides a pattern of 4 events, {SOn, TOn, MOn, WOn}, into
two sub-patterns, in which SOn and TOn are placed in S1, and MOn
andWOn in S2. This results in the loss of this 4-event pattern which
can be identified only when all 4 events are in the same sequence.

To prevent such a loss, we propose a splitting strategy using
overlapping sequences. Specifically, two consecutive sequences are
overlapped by a duration tov: 0 ≤ tov ≤ tmax, where tmax is the
maximal duration of a temporal pattern. The value of tov decides
how large the overlap between Si and Si+1 is: tov = 0 results in no
overlap, i.e., no redundancy, but with a potential loss of patterns,
while tov = tmax creates large overlaps between sequences, i.e., high
redundancy, but all patterns are preserved. As illustrated in Fig. 3b,
the overlapping between S1 and S2 keeps the 4 events together in
the same sequence S2, and thus helps preserve the pattern.

4.2 Frequent Temporal Patterns Mining
We now present our method, called Hierarchical Temporal Pattern
Graph Mining (HTPGM), to mine frequent temporal patterns from
DSEQ. The main novelties of HTPGM are: a) the use of efficient data
structures, i.e., the proposed Hierarchical Pattern Graph and bitmap
indexing, to enable fast computations of support and confidence,
and b) the proposal of two groups of pruning techniques based
on the Apriori principle and the temporal transitivity property of
temporal events. In Section 5, we introduce an approximate version

of HTPGM based on mutual information to further optimize the
mining process. We first discuss the data structures used in HTPGM.

Hierarchical Pattern Graph (HPG): We use a hierarchical
graph structure, called the Hierarchical Pattern Graph, to keep track
of the frequent events and patterns found in each mining step. The
HPG allows HTPGM to mine iteratively (e.g., 2-event patterns are
mined based on frequent single events, 3-event patterns are mined
based on 2-event patterns, and so on) and perform effective pruning.
Fig. 4 shows the HPG built from DSEQ in Table 3: the root is the
empty set ∅, and each level Lk maintains frequent k-event patterns.
As HTPGM proceeds, HPG is constructed gradually. We explain
this process for each mining step.

Efficient bitmap indexing:We use bitmaps to index the occur-
rences of events and patterns in DSEQ, enabling fast computations
of support and confidence. Specifically, each event E or pattern P
found in DSEQ is associated with a bitmap indicating where E or
P occurs. Each bitmap b has length |DSEQ | (i.e., the number of se-
quences), and has value b[i] = 1 if E or P is present in sequence i of
DSEQ, or b[i] = 0 otherwise. An example bitmap can be seen at L1
in Fig. 4. The event IOn has the bitmap bIOn = [1,0,1,1], indicating
that IOn occurs in all but the second sequence of DSEQ.

Constructing the bitmap is also done step by step. For single
events in DSEQ, bitmaps are built by scanning DSEQ only once.
Algorithm 1 provides the pseudo-code of HTPGM. The details are
explained in each mining step.

4.3 Mining Frequent Single Events
The first step in HTPGM is to find frequent single events (Alg. 1,
lines 1-4) which is easily done using the bitmap. For each event Ei
inDSEQ, the support supp(Ei) is computed by counting the number
of set bits in bitmap bEi , and comparing against σ . Note that for
single events, confidence is not considered since it is always 1.

After this step, the set 1Freq containing frequent single events is
created to build L1 of HPG. We illustrate this process using Table 3,

677

Algorithm1:Hierarchical Temporal Pattern GraphMining
Input: Temporal sequence database DSEQ, a support threshold σ , a

confidence threshold δ
Output: The set of frequent temporal patterns P
// Mining frequent single events

1: foreach event Ei ∈ DSEQ do
2: supp(Ei) ← countBitmap(bEi);
3: if supp(Ei) ≥ σ then
4: Insert Ei to 1Freq;

// Mining frequent 2-event patterns
5: EventPairs← Cartesian(1Freq,1Freq);
6: FrequentPairs← ∅;
7: foreach (Ei , Ej) in EventPairs do
8: bi j ← AND(bEi ,bEj);
9: supp(Ei , Ej) ← countBitmap(bi j);
10: if supp(Ei , Ej) ≥ σ then
11: FrequentPairs← Apply_Lemma3(Ei , Ej);
12: foreach (Ei , Ej) in FrequentPairs do
13: Retrieve event instances;
14: Check frequent relations;

// Mining frequent k-event patterns
15: Filtered1Freq← Transitivity_Filtering(1Freq); //Lemmas 4, 5
16: kEventCombinations← Cartesian(Filtered1Freq,(k-1)Freq);
17: FrequentkEvents← Apriori_Filtering(kEventCombinations);
18: foreach kEvents in FrequentkEvents do
19: Retrieve relations;
20: Iteratively check frequent relations; //Lemmas 4, 6, 7

with σ = 0.7 and δ = 0.7. Here, 1Freq contains 11 frequent events,
each belongs to one node in L1. The event DOn is not frequent
(only appears in sequences 2 and 4), and is thus omitted. Each L1
node has a unique event name, a bitmap, and a list of instances
corresponding to that event (see SOn at L1).

Complexity: The complexity of finding frequent single events
is O(m·|DSEQ |), wherem is the number of distinct events.

Proof. Detailed proofs of all complexities, lemmas and theorems
in this article can be found in the Appendix of the full paper [19].

4.4 Mining Frequent 2-event Patterns
4.4.1 Search space of HTPGM. The next step in HTPGM is to mine
frequent 2-event patterns. A straightforward approach would be
to enumerate all possible event pairs, and check whether each
pair can form frequent patterns. However, this naive approach is
very expensive. Not only does it need to repeatedly scan DSEQ to
check each combination of events, the complex relations between
events also add an extra exponential factor 3h2 to themh number of
possible candidates, creating a very large search space that makes
the approach infeasible.

Lemma 1. Letm be the number of distinct events in DSEQ, and
h be the longest length of a temporal pattern. The total number of
temporal patterns in HPG from L1 to Lh is O(mh3h2

).

Lemma 1 shows the driving factors of HTPGM’s exponential
search space (proof in [19]): the number of events (m), the max
pattern length (h), and the number of temporal relations (3). A
dataset of just a few hundred events can create a search space with

billions of candidate patterns. The optimizations and approximation
proposed in the following sections help mitigate this problem.

4.4.2 Two-steps filtering approach. Given the huge set of pattern
candidates, it is expensive to check their support and confidence.
We propose a filtering approach to reduce the unnecessary candidate
checking. Specifically, at any level l (l ≥ 2) in HPG, the mining
process is divided into two steps: (1) it first finds frequent nodes (i.e.,
remove infrequent combinations of events), (2) it then generates
temporal patterns only from frequent nodes. The correctness of this
filtering approach is based on the Apriori-inspired lemmas below.

Lemma 2. Let P be a 2-event pattern formed by an event pair
(Ei , Ej). Then, supp(P) ≤ supp(Ei , Ej).

From Lemma 2, the support of a pattern is at most the support
of its events. Thus, infrequent event pairs cannot form frequent
patterns and thereby, can be safely pruned.

Lemma 3. Let (Ei , Ej) be a pair of events occurring in a 2-event
pattern P . Then conf(P) ≤ conf(Ei , Ej).

From Lemma 3, the confidence of a pattern P is always at most
the confidence of its events. Thus, a low-confidence event pair
cannot form any high-confidence patterns and therefore, can be
safely pruned. We note that the Apriori principle has already been
used in other work, e.g., [8, 35], for mining optimization. However,
they only apply this principle to the support (Lemma 2), while we
further extend it to the confidence (Lemma 3). Applying Lemmas
2 and 3 to the first filtering step will remove infrequent or low-
confidence event pairs, reducing the candidate patterns of HTPGM.
We detail this filtering below.

Step 2.1. Mining frequent event pairs: This step finds fre-
quent event pairs in DSEQ, using the set 1Freq found in L1 of HPG
(Alg. 1, lines 5-11). First, HTPGM generates all possible event pairs
by calculating the Cartesian product 1Freq × 1Freq. Next, for each
pair (Ei , Ej), the joint bitmap bij (representing the set of sequences
where both events occur) is computed by ANDing the two individ-
ual bitmaps: bij = AND(bEi ,bEj). Finally, HTPGM computes the
support supp(Ei , Ej) by counting the set bits in bij, and comparing
against σ . If supp(Ei , Ej) ≥ σ , (Ei , Ej) has high enough support.
Next, (Ei , Ej) is further filtered using Lemma 3: (Ei , Ej) is selected
only if its confidence is at least δ . After this step, only frequent and
high-confidence event pairs remain and form the nodes in L2.

Step 2.2. Mining frequent 2-event patterns: This step finds
frequent 2-event patterns from the nodes in L2 (Alg. 1, lines 12-14).
For each node (Ei , Ej) ∈ L2, we use the bitmap bij to retrieve the
set of sequences S where both events are present. Next, for each
sequence S ∈ S, the pairs of event instances (ei , ej) are extracted,
and the relations between them are verified. The support and confi-
dence of each relation r (Ei▷ei , Ej▷ej) are computed and compared
against the thresholds, after which only frequent relations are se-
lected and stored in the corresponding node in L2. Examples of the
relations in L2 can be seen in Fig. 4, e.g., node (SOn, TOn).

Step 2.2 results in two different sets of nodes in L2. The first
set contains nodes that have frequent events but do not have any
frequent patterns. These nodes (colored in brown in Fig. 4) are
removed from L2. The second set contains nodes that have both
frequent events and frequent patterns (colored in green), which
remain in L2 and are used in the subsequent mining steps.

678

Complexity: Let m be the number of frequent single events
in L1, and i be the average number of event instances of each
frequent event. The complexity of frequent 2-event pattern mining
is O(m2i2 |DSEQ |2).

4.5 Mining Frequent k-event Patterns
Mining frequent k-event patterns (k ≥ 3) follows a similar pro-
cess as 2-event patterns, with additional prunings based on the
transitivity property of temporal relations.

Step 3.1. Mining frequent k-event combinations: This step
finds frequent k-event combinations in Lk (Alg. 1, lines 15-17).

Let (k-1)Freq be the set of frequent (k-1)-event combinations
found in Lk−1, and 1Freq be the set of frequent single events in
L1. To generate all k-event combinations, the typical process is to
compute the Cartesian product: (k-1)Freq × 1Freq. However, we
observe that using 1Freq to generate k-event combinations at Lk
can create redundancy, since 1Freq might contain events that when
combined with nodes in Lk−1, result in combinations that clearly
cannot form any frequent patterns. To illustrate this observation,
consider node IOn at L1 in Fig. 4. Here, IOn is a frequent event,
and thus, can be combined with frequent nodes in L2 such as (SOn,
TOn) to create a 3-event combination (SOn, TOn, IOn). However,
(SOn, TOn, IOn) cannot form any frequent 3-event patterns, since
IOn is not present in any frequent 2-event patterns in L2. To reduce
the redundancy, the combination (SOn, TOn, IOn) should not be
created in the first place. We rely on the transitivity property of
temporal relations to identify such event combinations.

Lemma 4. Let S =< e1,..., en−1 > be a temporal sequence that sup-
ports an (n-1)-event pattern P =< (r12, E1▷e1 , E2▷e2),..., (r(n−2)(n−1),
En−2▷en−2 , En−1▷en−1) >. Let en be a new event instance added to S
to create the temporal sequence S

′

=< e1, ..., en >.
The set of temporal relationsℜ is transitive on S

′

: ∀ei ∈ S
′

, i < n,
∃r ∈ ℜ s.t. r (Ei▷ei ,En▷en) holds.

Lemma 4 says that given a temporal sequence S , a new event
instance added to S will always form at least one temporal relation
with existing instances in S . This is due to the temporal transitivity
property, which can be used to prove the following lemma.

Lemma 5. Let Nk−1 = (E1, ..., Ek−1) be a frequent (k-1)-event
combination, and Ek be a frequent single event. The combination
Nk = Nk−1 ∪ Ek can form frequent k-event temporal patterns if
∀Ei ∈ Nk−1, ∃r ∈ ℜ s.t. r (Ei , Ek) is a frequent temporal relation.

From Lemma 5, only single events in L1 that occur in Lk−1 should
be used to create k-event combinations. Using this result, a filtering
on 1Freq is performed before calculating the Cartesian product.
Specifically, from the nodes in Lk−1, we extract the distinct single
events Dk−1, and intersect them with 1Freq to remove redundant
single events: Filtered1Freq = Dk−1 ∩ 1Freq. Next, the Cartesian
product (k-1)Freq × Filtered1Freq is calculated to generate k-event
combinations. Finally, we apply Lemmas 2 and 3 to select frequent
and high-confidence k-event combinations kFreq to form Lk .

Step 3.2 Mining frequent k-event patterns: This step finds
frequent k-event patterns from the nodes in Lk (Alg. 1, lines 18-
20). Unlike 2-event patterns, determining the relations in a k-event
combination (k ≥ 3) is much more expensive, as it requires to verify
the frequency of 1

2k(k − 1) triples. To reduce the cost of relation
checking, we propose an iterative verification method that relies
on the transitivity property and the Apriori principle.

Lemma 6. Let P and P
′

be two temporal patterns. If P
′

⊆ P , then
conf(P

′

) ≥ conf(P).
Lemma 7. Let P and P

′

be two temporal patterns. If P
′

⊆ P and
supp(P

′
)

max1≤k≤|P | {supp(Ek)} Ek ∈P
≤ δ , then conf(P) ≤ δ .

Lemma 6 says that, the confidence of a pattern P is always at
most the confidence of its sub-patterns. Consequently, from Lemma
7, a temporal pattern P cannot be high-confidence if any of its
sub-patterns are low-confidence.

Let Nk−1 = (E1, ..., Ek−1) be a node in Lk−1, N1 = (Ek) be a node
in L1, and Nk = Nk−1 ∪ N1 = (E1, ..., Ek) be a node in Lk . To find
k-event patterns for Nk , we first retrieve the set Pk−1 containing
frequent (k-1)-event patterns in node Nk−1. Each pk−1 ∈ Pk−1 is
a list of 1

2 (k − 1)(k − 2) triples: {(r12, E1▷e1 , E2▷e2),...,(r(k−2)(k−1),
Ek−2▷ek−2 , Ek−1▷ek−1)}. We iteratively verify the possibility of pk−1
forming a frequent k-event pattern with Ek as follows.

We first check whether the triple (r(k−1)k , Ek−1▷ek−1 , Ek▷ek) is
frequent and high-confidence by accessing the node (Ek−1, Ek) in
L2. If the triple is not frequent (using Lemmas 4 and 5) or high-
confidence (using Lemmas 4, 6, and 7), the verifying process stops
immediately for pk−1. Otherwise, it continues on the triple (r(k−2)k ,
Ek−2▷ek−2 , Ek▷ek), until it reaches (r1k , E1▷e1 , Ek▷ek).

We note that the transitivity property of temporal relations has
been exploited in [32] to generate new relations. Instead, we use
this property to prune unpromising candidates (Lemmas 4, 5, 6, 7).

Complexity: Let r be the average number of frequent (k-1)-
event patterns in Lk−1. The complexity of frequent k-event pattern
mining is O(|1Freq| · |Lk−1 | · r · k2·|DSEQ |).

HTPGMoverall complexity:Throughout this section, we have
seen that HTPGM complexity depends on the size of the search
space (O(mh3h2

)) and the complexity of the mining process it-
self, i.e., O(m·|DSEQ |) + O(m2i2 |DSEQ |2) + O(|1Freq| · |Lk−1 | · r ·
k2·|DSEQ |). While the parametersm, h, i , r and k depend on the
number of time series, others such as |1Freq|, |Lk−1 | and |DSEQ |
also depend on the number of temporal sequences. Thus, given
a dataset, HTPGM complexity is driven by two main factors: the
number of time series and the number of temporal sequences.

5 APPROXIMATE HTPGM
5.1 Correlated Symbolic Time Series
Let XS and YS be the symbolic series representing the time series
X and Y , respectively, and ΣX , ΣY be their symbolic alphabets.
Definition 5.1 (Entropy) The entropy of XS , denoted as H (XS), is
defined as

H (XS) = −
∑
x∈ΣX

p(x) · logp(x) (7)

Intuitively, the entropy measures the amount of information or the
inherent uncertainty in the possible outcomes of a random variable.
The higher the H (XS), the more uncertain the outcome of XS .

The conditional entropy H (XS |YS) quantifies the amount of in-
formation needed to describe the outcome of XS , given the value
of YS , and is defined as

H (XS |YS) = −
∑
x∈ΣX

∑
y∈ΣY

p(x , y) · log p(x , y)
p(y)

(8)

Definition 5.2 (Mutual information) The mutual information of
two symbolic series XS and YS , denoted as I (XS ;YS), is defined as

679

Figure 5: Shape of the lower bound

S T

MW

0.49
0.420.49

0.42

0.42

0.68

Figure 6: Corr. graph

I (XS ;YS) =
∑
x∈ΣX

∑
y∈ΣY

p(x , y) · log p(x , y)
p(x) · p(y)

(9)

The MI represents the reduction of uncertainty of one variable (e.g.,
XS), given the knowledge of another variable (e.g., YS). The larger
I (XS ;YS), the more information is shared between XS and YS , and
thus, the less uncertainty about one variable given the other.

We demonstrate how to compute the MI between the sym-
bolic series S and T in Table 1. We have: p(SOn)= 17

36 , p(SOff)=
19
36 ,

p(TOn)= 18
36 , and p(TOff)= 18

36 . We also have the joint probabilities:
p(SOn,TOn)= 15

36 , p(SOff,TOff)=
16
36 , p(SOn,TOff)=

2
36 , and p(SOff,TOn)

= 3
36 . Applying Eq. 9, we have I (S ;T) = 0.29.
Since 0 ≤ I (XS ;YS) ≤ min(H (XS),H (YS)) [10], the MI value has

no upper bound. To scale the MI into the range [0 − 1], we use
normalized mutual information as defined below.
Definition 5.3 (Normalized mutual information) The normalized
mutual information (NMI) of two symbolic time series XS and YS ,
denoted as Ĩ (XS ;YS), is defined as

Ĩ (XS ;YS) =
I (XS ;YS)
H (XS)

= 1 − H (XS |YS)
H (XS)

(10)

Ĩ (XS ;YS) represents the reduction (in percentage) of the uncertainty
of XS due to knowing YS . Based on Eq. (10), a pair of variables
(XS ,YS) holds a mutual dependency if Ĩ (XS ;YS) > 0. Eq. (10) also
shows that NMI is not symmetric, i.e., Ĩ (XS ;YS) , Ĩ (YS ;XS).

Using Table 1, we have I (S ;T) = 0.29. However, we do not know
what the 0.29 reduction means in practice. Applying Eq. (10), we
can compute NMI Ĩ (S ;T) = 0.43, which says that the uncertainty of
S is reduced by 43% given T . Moreover, we also have Ĩ (T ; S) = 0.42,
showing that Ĩ (S ;T) , Ĩ (T ; S).
Definition 5.4 (Correlated symbolic time series) Let µ (0 < µ ≤ 1)
be the mutual information threshold. We say that the two symbolic
series XS and YS are correlated iff Ĩ (XS ;YS) ≥ µ ∨ Ĩ (YS ;XS) ≥ µ,
and uncorrelated otherwise.
5.2 Lower Bound of the Confidence
5.2.1 Derivation of the lower bound. Consider 2 symbolic series
XS and YS . Let X1 be a temporal event in XS , Y1 be a temporal
event in YS , andDSYB andDSEQ be the symbolic and the sequence
databases created from XS and YS , respectively. We first study the
relationship between the support of (X1,Y1) in DSYB and DSEQ.

Lemma 8. Let supp(X1,Y1)DSYB and supp(X1,Y1)DSEQ be the sup-
port of (X1,Y1) inDSYB andDSEQ, respectively.We have the following
relation: supp(X1,Y1)DSYB ≤ supp(X1,Y1)DSEQ .

From Lemma 8, if an event pair is frequent in DSYB, it is also
frequent in DSEQ. We now investigate the connection between
Ĩ (XS ;YS) in DSYB, and the confidence of (X1,Y1) in DSEQ.

Theorem 1. (Lower bound of the confidence) Let σ and µ be the
minimum support and mutual information thresholds, respectively.

Assume that (X1,Y1) is frequent in DSEQ, i.e., supp(X1,Y1)DSEQ ≥ σ .
If the NMI Ĩ (XS ;YS) ≥ µ, then the confidence of (X1,Y1) in DSEQ
has a lower bound:

conf(X1,Y1)DSEQ ≥ σ · λ
1−µ
σ

1 ·

(
nx − 1
1 − σ

) λ2
σ

(11)

where: nx is the number of symbols in ΣX , λ1 is the minimum support
of Xi ∈ XS , and λ2 is the support of (Xi ,Yj) ∈ (XS ,YS) such that
p(Xi |Yj) is minimal, ∀(i , 1 & j , 1).

Proof. (Sketch - Detailed proof in [19]). From Eq. (10), we have:

Ĩ (XS ;YS) = 1 − H (XS |YS)

H (XS)
≥ µ (12)

⇒
H (XS |YS)

H (XS)
=
p(X1,Y1) · logp(X1 |Y1)∑

i p(Xi) · logp(Xi)

+

∑
i,1&j,1 p(Xi ,Yj) · log

p(Xi ,Yj)
p(Yj)∑

i p(Xi) · logp(Xi)
≤ 1 − µ (13)

Let λ1 = p(Xk) such thatp(Xk) = min{p(Xi)}∀i , and λ2 = p(Xm,Yn)
such that p(Xm |Yn) = min{p(Xi |Yj)},∀(i , 1&j , 1). Then, by ap-
plying the min-max inequality theorem for the sum of ratio [5] to
the numerator of Eq. (13), we obtain:

H (XS |YS)

H (XS)
≥

p(X1,Y1) · logp(X1 |Y1) + λ2 · log 1−p(X1,Y1)
nx−p(Y1)

log λ1

≥
σ · log p(X1,Y1)

p(Y1)
+ λ2 · log 1−σ

nx−1
log λ1

(14)

Next, assume that supp(Y1)DSYB ≥ supp(X1)DSYB . From Eqs. (13),
(14), the confidence lower bound of (X1,Y1) in DSYB is derived as:

conf(X1,Y1)DSYB =
supp(X1,Y1)DSYB

supp(Y1)DSYB
≥ λ

1−µ
σ

1 ·

(
nx − 1
1 − σ

) λ2
σ

(15)

Since: conf(X1,Y1)DSEQ ≥ σ · conf(X1,Y1)DSYB (16)

It follows that:
conf(X1,Y1)DSEQ ≥ σ · λ

1−µ
σ

1 ·

(
nx − 1
1 − σ

) λ2
σ

(17)

□
Interpretation of the confidence lower bound: Theorem 1 says that,

given an MI threshold µ, if the two symbolic series XS and YS are
correlated, then the confidence of a frequent event pair in (XS ,YS)
is at least the lower bound in Eq. (11). Combining Theorem 1 and
Lemma 3, we can conclude that given (XS ,YS), if its event pair has
a confidence less than the lower bound, then any pattern P formed
by that event pair also has a confidence less than that lower bound.
This allows to approximate HTPGM (discussed in Section 5.3).
5.2.2 Shape of the confidence lower bound. To understand how the
confidence changes w.r.t. the support σ and the MI µ, we analyze its
shape, shown in Fig. 5 (σ and µ vary between 0 and 1). First, it can
be seen that the confidence lower bound has a direct relationship
with σ and µ (one increases if the other increases and vice versa).
While the direct relationship between the confidence and σ can be
explained using Eq. (5), it is interesting to observe the connection
between µ and the confidence. As the MI represents the correlation
between two symbolic series, the larger the value of µ, the more
correlated the two series. Thus, when the confidence increases
together with µ, it implies that patterns with high confidence are
more likely to be found in highly correlated series, and vice versa.

680

Algorithm 2: Approximate HTPGM using MI
Input: A set of time series X, an MI threshold µ , support threshold

σ , confidence threshold δ
Output: The set of frequent temporal patterns P

1: convert X to DSYB and DSEQ;
2: scan DSYB to compute the probability of each event and event pair;
3: foreach pair of symbolic time series (XS , YS) ∈ DSYB do
4: compute Ĩ (XS ;YS) and Ĩ (YS ;XS);
5: compute µ ;
6: if Ĩ (XS ;YS) ≥ µ ∨ Ĩ (YS ;XS) ≥ µ then
7: insert XS and YS into XC ;
8: create an edge between XS and YS in GC ;
9: foreach XS ∈ XC do
10: mine frequent single events from XS ;
11: foreach event pair (Ei , Ej) in L1 do
12: if there is an edge between XS and YS in GC then
13: mine frequent patterns for (Ei , Ej);
14: if k ≥ 3 then
15: perform HTPGM using L1 and L2;

Fig. 5 also shows that, when σ is low, e.g., σ < 0.1, we obtain
a very low value of the confidence lower bound regardless of µ
value. This implies that the confidence is less sensitive to µ when
the support is low. The opposite is obtained when the support is
high, e.g., σ > 0.1, where we see a visible increase of the confidence
lower bound as µ increases. This indicates that the "insensitive"
area of the lower bound (when σ ≤ 0.1) is less accurate than the
"sensitive" area (σ > 0.1) when performing the approximate mining,
as we will discuss in Section 6.

5.3 Using the Bound to Approximate HTPGM
5.3.1 Correlation graph. Using Theorem 1, we propose to approxi-
mate HTPGM by performing the mining only on the set of correlated
symbolic series XC ⊆ X. We first define the correlation graph.
Definition 5.5 (Correlation graph) A correlation graph is an undi-
rected graph GC = (V , E) where V is the set of vertices, and E is
the set of edges. Each vertex v ∈ V represents one symbolic series
XS ∈ XC . There is an edge euv between a vertex u containing XS ,
and a vertex v containing YS iff Ĩ (XS ;YS) ≥ µ ∨ Ĩ (YS ;XS) ≥ µ.

Fig. 6 shows an example of the correlation graph GC built from
DSYB in Table 1. Here, each node corresponds to one electrical
appliance. There is an edge between two nodes if their NMI is at
least µ. The number on each edge is the NMI between two nodes.

Constructing the correlation graph: Given a symbolic data-
base DSYB, the correlation graph GC can easily be constructed by
computing the NMI for each symbolic series pair, and comparing
their NMI against the threshold µ. A symbolic series pair is included
in GC if their NMI is at least µ, and vice versa.

Setting the value of µ: While NMI can easily be computed
using Eq. (10), it is not trivial how to set the value for µ. Here, we
propose a method to determine µ using the lower bound in Eq. (11).

Recall that HTPGM relies on two user-defined parameters, the
support threshold σ and the confidence threshold δ , to look for
frequent temporal patterns. Based on the confidence lower bound
in Theorem 1, we can derive µ using σ and δ as the following.

Corollary 1.1. The confidence of an event pair (X1,Y1) ∈ (XS ,YS)

in DSEQ is at least δ if Ĩ (XS ;YS) is at least µ, where:

µ ≥ 1 − σ · logλ1
©­« δσ ·

(
1 − σ
nx − 1

) λ2
σ ª®¬ (18)

Note that µ in Eq. (18) only ensures that the event pair (X1,Y1)
has a minimum confidence of δ . Thus, given (XS ,YS), µ has to be
computed for each event pair in (XS ,YS). The final chosen µ value
to be compared against Ĩ (XS ;YS) is the minimum µ value among
all the event pairs in (XS ,YS).
5.3.2 Approximate HTPGM using the correlation graph. Using the
correlation graph GC , the approximate HTPGM is described in
Algorithm 2. First,DSYB is scanned once to compute the probability
of each single event and pair of events (line 2). Next, NMI and µ are
computed for each pair of symbolic series (XS ,YS) in DSYB (lines
4-5). Then, only pairs whose Ĩ (XS ;YS) or Ĩ (YS ;XS) is at least µ are
inserted into XC , and an edge between XS and YS is created (lines
6-8). Next, at L1 of HPG, only the correlated symbolic series in
XC are used to mine frequent single events (lines 9-10). At L2, GC
is used to filter 2-event combinations: for each event pair (Ei , Ej),
we check whether there is an edge between their corresponding
symbolic series in GC . If so, we proceed by verifying the support
and confidence of (Ei , Ej) as in the exact HTPGM (lines 11-13).
Otherwise, (Ei , Ej) is eliminated from the mining of L2. From level
Lk (k ≥ 3) onwards, the exact HTPGM is used (lines 14-15).
5.3.3 Complexity analysis. To compute NMI and µ, we only have
to scanDSYB once to calculate the probability for each single event
and pair of events. Thus, the cost of NMI and µ computations is
|DSYB |. On the other hand, the complexity of the exact HTPGM at
L1 and L2 are O(m2i2 |DSEQ |2) +O(m·|DSEQ |) (Section 4.4). Thus,
the approximate HTPGM is significantly faster than HTPGM.

6 EXPERIMENTAL EVALUATION
We evaluate HTPGM (both exact and approximate), using real-
world datasets from three application domains: smart energy, smart
city, and sign language. Due to space limitations, we only present
here the most important results, and discuss other findings in [19].

6.1 Experimental Setup
Datasets:We use 3 smart energy datasets, NIST [14], UKDALE

[26], and DataPort [13], all of which measure the energy/power
consumption of electrical appliances in residential households. For
the smart city, we use weather and vehicle collision data obtained
fromNYCOpen Data Portal [9]. For sign language, we use the Amer-
ican Sign Language (ASL) datasets [33] containing annotated video
sequences of different ASL signs and gestures. Table 5 summarizes
their characteristics.

Baselinemethods:Our exactmethod is referred to as E-HTPGM,
and the approximate one as A-HTPGM. We use 4 baselines (de-
scribed in Section 2): Z-Miner [28], TPMiner [8], IEMiner [36], and
H-DFS [35]. Since E-HTPGM and the baselines provide the same
exact solutions, we use the baselines only for the quantitative eval-
uation, and compare only E-HTPGM and A-HTPGM qualitatively.

Infrastructure: The experiments are run on virtual machines
(VM) with AMD EPYC Processor 32 cores (2GHz) CPU, 256 GB
main memory, and 1 TB storage. For scalability evaluation, we use
VMs with 512 GB main memory.

Parameters: Table 4 lists the parameters and their values used
in our experiments.

681

Table 4: Parameters and values
Params Values
Support σ User-defined: σ = 0.5%, 1%, 10%, 20%, ...
Confidence δ User-defined: δ = 0.5%, 1%, 10%, 20%, ...

Overlapping
duration tov

User-defined:
tov (hours) = 0, 1, 2, 3 (NIST, UKDALE, DataPort,
and Smart City)
tov (frames) = 0, 150, 300, 450 (ASL)

Tolerance
buffer ϵ

User-defined:
ϵ (mins) = 0, 1, 2, 3 (NIST, UKDALE, DataPort)
ϵ (mins) = 0, 5, 10, 15 (Smart City)
ϵ (frames) = 0, 30, 45, 60 (ASL)

6.2 Qualitative Evaluation
Our goal is to make sense and learn insights from extracted patterns.
Table 7 lists some interesting patterns found in the datasets.

Patterns P1 - P9 are extracted from the energy datasets, showing
how the residents interact with electrical devices in their houses.
Patterns P10 - P15 extracted from the smart city datasets, while
patterns P16 - P19 are from the ASL dataset.
6.3 Quantitative Evaluation
6.3.1 Baselines comparison on real world datasets. We compare E-
HTPGM and A-HTPGM with the baselines in terms of the runtime
and memory usage. Tables 8 and 9 show the experimental results
on the energy and the smart city datasets. The quantitative results
of other datasets are reported in the full paper [19].

As shown in Table 8, A-HTPGM achieves the best runtime
among all methods, and E-HTPGM has better runtime than the
baselines. On the tested datasets, the range and average speedups
of A-HTPGM compared to other methods are: [1.21-4.82] and 2.31
(E-HTPGM), [2.52-25.86] and 7.85 (Z-Miner), [7.43-69.68] and 21.65
(TPMiner), [8.61-188.16] and 40.75 (IEMiner), and [14.50-332.98]
and 61.36 (H-DFS). The speedups of E-HTPGM compared to the
baselines are: [1.47-5.64] and 3.19 on average (Z-Miner), [3.59-
30.97] and 9.08 on avg. (TPMiner), [4.63-78.41] and 15.86 on avg.
(IEMiner), and [5.54-118.21] and 23.37 on avg. (H-DFS). Note that
the time to compute MI and µ for the NIST and the smart city
datasets in Table 8 are 28.01 and 20.82 seconds, respectively.

Moreover, A-HTPGM is most efficient, i.e., achieves highest
speedup andmemory saving, when the support threshold is low, e.g.,
σ = 20%. This is because typical datasets often contain many pat-
terns with very low support and confidence. Thus, using A-HTPGM
to prune uncorrelated series early helps save computational time
and resources. However, the speedup comes at the cost of a small
loss in accuracy (discussed in Sections 6.3.2 and 6.3.4).

In terms ofmemory consumption, as shown in Table 9, A-HTPGM
is the most efficient method, while E-HTPGM is more efficient than
the baselines. The range and the average memory consumption
of A-HTPGM compared to other methods are: [1.1-3.2] and 1.6
(E-HTPGM), [3.7-105.1] and 19.1 (Z-Miner), [1.3-7.9] and 3.4 (TP-
Miner), [1.4-10.4] and 4.5 (IEMiner), and [2.1-13.9] and 6.7 (H-DFS).
The memory usage of E-HTPGM compared to the baselines are:
[2.9-52.5] and 11.4 on avg. (Z-Miner), [1.2-4.7] and 2.1 on average
(TPMiner), [1.3-6.2] and 2.7 on avg. (IEMiner), and [1.9-7.5] and
4.1 on avg. (H-DFS).

Finally, in Table 11, we provide the pre-processing times to con-
vert the raw time series toDSYB, andDSYB toDSEQ. We also report

the sizes of DSYB and DSEQ stored on disk. We see that while the
storage costs forDSYB andDSEQ are small, the pre-processing times
are 10-25 seconds. This is a one-time cost which can be reused for
many mining runs, making it negligible in all non-trivial cases.

6.3.2 Scalability evaluation on synthetic datasets. As discussed in
Section 4, the complexity of HTPGM is driven by two main factors:
(1) the number of temporal sequences, and (2) the number of time
series. The evaluation on real-world datasets has shown that E-
HTPGM and A-HTPGM outperform the baselines significantly
in both runtimes and memory usage. However, to further assess
the scalability, we scale these two factors on synthetic datasets.
Specifically, starting from the real-world datasets, we generate 10
times more sequences, and create up to 1000 synthetic time series.
We evaluate the scalability using two configurations: varying the
number of sequences, and varying the number of time series.

Figs. 7 and 8 show the runtimes of A-HTPGM, E-HTPGM and the
baselines when the number of sequences changes (y-axis is in log
scale). The range and average speedups of A-HTPGM w.r.t. other
methods are: [1.5-3.7] and 2.5 (E-HTPGM), [3.1-13.6] and 8.1 (Z-
Miner), [5.1-31.2] and 16.8 (TPMiner), [6.4-45.8] and 24.9 (IEMiner),
and [9.4-59.1] and 31.8 (H-DFS). In particular, A-HTPGM obtains
even higher speedup for more sequences. Similarly, the range and
average speedups of E-HTPGM are: [1.6-5.3] and 3.2 (Z-Miner),
[2.2-12.1] and 6.7 (TPMiner), [3.5-17.4] and 10.1 (IEMiner), and
[4.9-22.8] and 12.9 (H-DFS).

Figs. 9 and 10 compare the runtimes of A-HTPGM with other
methods when changing the number of time series (y-axis is in log
scale). It is seen that, A-HTPGM achieves even higher speedup with
more time series. The range and average speedups of A-HTPGM
are: [2.1-4.9] and 2.9 (E-HTPGM), [2.9-10.4] and 6.8 (Z-Miner),
[3.6-21.5] and 12.8 (TPMiner), [4.7-30.2] and 18.1 (IEMiner), and
[6.1-39.6] and 23.2 (H-DFS), and of E-HTPGM are: [1.4-4.1] and 2.4
(Z-Miner), [1.7-8.1] and 4.4 (TPMiner), [2.3-11.3] and 6.2 (IEMiner),
and [2.7-16.3] and 8.1 (H-DFS).

In Figs. 9 and 10, to illustrate the computation time of MI and µ,
we add an additional bar chart for A-HTPGM. Each bar represents
the runtime of A-HTPGM with two separate components: the time
to compute MI and µ (top red), and the mining time (bottom blue).
However, note that for each dataset, we only need to compute MI
and µ once (the computed values are used across the mining process
with different support and confidence thresholds). Thus, the times
to compute MI and µ, for example, in Figs. 9a, 9b, and 9c, are added
only for comparison and are not all actually used.

Moreover, most baselines fail for the larger configurations in the
scalability study, e.g., Z-Miner on the NIST dataset when σ=δ=20%
(Fig. 7a), and Z-Miner, TPMiner, IEMiner and H-DFS when the num-
ber of time series grows to 1000 (Fig. 9a). The scalability test shows
that A-HTPGM and E-HTPGM can scale well on big datasets, both
vertically (many sequences) and horizontally (many time series),
unlike the baselines.

Furthermore, the number of time series and events pruned by A-
HTPGM in the scalability test are provided in Table 10. Here, we can
see that high confidence threshold leads to more time series (events)
to be pruned. This is because confidence has a direct relationship
with MI, therefore, high confidence results in higher µ, and thus,
more pruned time series.

682

Table 5: Characteristics of the Datasets

NIST UKDALE DataPort Smart City ASL

sequences 1460 1520 1460 1216 1908
variables 49 24 21 26 25

distinct events 98 48 42 130 173
instances/seq. 55 190 49 162 20

Table 6: The Accuracy of A-HTPGM (%)

Supp. (%)
Conf. (%)

NIST Smart City
10 20 50 80 10 20 50 80

10 87 89 91 94 78 83 98 100
20 96 89 91 94 83 83 98 100
50 100 100 96 94 99 99 98 100
80 100 100 100 100 100 100 100 100

Table 7: Summary of Interesting Patterns
Patterns Supp. (%) Conf. (%)

(P1) ([05:58, 08:24] First Floor Lights) ≽ ([05:58, 06:59] Upstairs Bathroom Lights) ≽ ([05:59, 06:06] Microwave) 20 30
(P2) ([06:00, 07:01] Upstairs Bathroom Lights) ≽ ([06:40, 06:46] Upstairs Bathroom Plugs) 30 55
(P3) ([18:00, 18:30] Lights Dining Room)→ ([18:31, 20:16] Children Room Plugs) ≬ ([19:00, 22:31] Lights Living Room) 20 20
(P4) ([15:59, 16:05] Hallway Lights)→ ([17:58, 18:29] Kitchen Lights ≽ ([18:00, 18:18] Plug In Kitchen) ≽ ([18:08, 18:15] Microwave) 20 25
(P5) ([06:02, 06:19] Kitchen Lights)→ ([06:05, 06:12] Microwave) ≬ ([06:09, 06:11] Kettle) 20 35
(P6) ([18:10,18:15] Kitchen App)→ ([18:15,19:00] Lights Plugs) ≽ ([18:20,18:25] Microwave)→ ([18:25,18:55] Cooktop) 25 50
(P7) ([16:45, 17:30] Washer)→ ([17:40,18:55] Dryer)→ ([19:05, 20:10] Dining Room Lights) ≽ ([19:10, 19:30] Cooktop) 10 30
(P8) ([06:10, 07:00] Kitchen Lights) ≽ ([06:10, 06:15] Kettle)→ ([06:30, 06:40] Toaster)→ ([06:45, 06:48] Microwave) 25 40
(P9) ([18:00, 18:25] Kitchen Lights) ≽ ([18:00, 18:05] Kettle)→ ([18:05, 18:10] Microwave)→ ([19:35, 20:50] Washer) 20 40
(P10) Heavy Rain ≽ Unclear Visibility ≽ Overcast Cloudiness→ High Motorist Injury 5 30
(P11) Extremely Unclear Visibility ≽ High Snow ≽ High Motorist Injury 3 45
(P12) Very Strong Wind→ High Motorist Injury 5 40
(P13) Frost Temperature→Medium Cyclist Injury 5 20
(P14) Strong Wind→ High Pedestrian Killed 4 30
(P15) Strong Wind→ High Motorist Killed 4 10
(P16) [2.12 seconds] Negation ≽ [0.61 seconds] Left Head Tilt-side ≽ [0.27 seconds] Lowered Eye-brows 5 10
(P17) [1.53 seconds] Wh-question ≽ [0.36 seconds] Lowered Eye-brows→ [0.05 seconds] Blinking Eye-aperture 10 15
(P18) [1.69 seconds] Wh-question ≽ [0.35 seconds] Right Head Tilt-side ≽ [0.27 seconds] Lowered Eye-brows 5 5
(P19) [1.92 seconds] Wh-question ≽ [0.82 seconds] Squint Eye-aperture→ [0.13 seconds] Forward Body Lean 1 5

Table 8: Runtime Comparison (seconds)

Supp. (%) Methods
Conf. (%)

NIST Smart City
20 50 80 20 50 80

20

H-DFS 73864.39 8967.15 1538.49 2516.64 223.47 10.27
IEMiner 69440.62 7965.41 622.79 1419.51 130.80 8.59
TPMiner 31445.99 7702.02 533.95 418.25 118.89 6.66
Z-Miner 19063.24 2409.22 160.19 194.86 33.60 4.85
E-HTPGM 3968.19 672.45 109.08 86.36 16.89 2.85
A-HTPGM 1174.28 262.56 55.48 37.54 8.46 0.70

50

H-DFS 6268.88 5170.72 1296.01 453.47 88.32 9.82
IEMiner 5497.78 4581.10 564.48 300.80 73.81 7.81
TPMiner 3483.02 2976.37 512.23 118.89 37.54 6.14
Z-Miner 2971.26 2061.75 149.81 92.22 21.05 1.70
E-HTPGM 573.50 365.30 80.19 23.84 8.76 0.82
A-HTPGM 309.37 207.46 47.86 3.71 1.69 0.68

80

H-DFS 1057.21 867.73 761.61 13.27 8.39 4.41
IEMiner 954.99 460.93 355.19 9.59 5.47 4.37
TPMiner 899.25 412.01 306.91 6.66 3.44 3.37
Z-Miner 241.87 170.64 139.74 3.19 1.23 1.19
E-HTPGM 143.66 93.55 63.51 1.47 0.58 0.47
A-HTPGM 63.71 51.35 41.26 0.51 0.35 0.21

Table 9: Memory Usage Comparison (MB)

Supp. (%) Methods
Conf. (%)

NIST Smart City
20 50 80 20 50 80

20

H-DFS 11976.25 4382.12 1143.17 1293.28 470.49 107.89
IEMiner 7241.96 1613.96 705.51 1197.74 460.52 65.92
TPMiner 6558.48 1216.96 700.75 1002.82 254.26 61.23
Z-Miner 91875.84 17642.01 5241.76 1690.75 602.08 149.77
E-HTPGM 1748.93 732.39 571.48 510.30 140.76 40.48
A-HTPGM 875.29 674.44 562.77 161.63 85.95 32.56

50

H-DFS 3744.73 3173.70 940.48 1040.56 412.14 92.81
IEMiner 1455.14 1155.31 663.52 870.64 353.18 60.87
TPMiner 1109.89 909.38 600.73 660.66 150.68 58.98
Z-Miner 16278.14 10277.83 2153.03 1195.59 505.16 117.64
E-HTPGM 621.77 424.36 345.94 139.50 119.08 34.69
A-HTPGM 319.59 227.06 186.70 83.55 62.16 29.26

80

H-DFS 877.13 726.56 641.43 249.78 139.59 63.65
IEMiner 657.46 609.25 549.25 149.45 119.83 59.59
TPMiner 575.98 512.86 475.22 119.59 69.91 58.63
Z-Miner 1934.23 1735.01 1613.09 263.27 153.16 93.23
E-HTPGM 313.99 261.78 153.26 52.93 36.96 29.89
A-HTPGM 257.32 187.29 106.87 35.75 31.74 25.28

Table 10: Pruned Time Series and Events from A-HTPGM

Attr.

NIST Smart City
Pruned Time Series # Pruned Events # Pruned Time Series # Pruned Events
20-20 20-50 20-80 20-20 20-50 20-80 20-20 20-50 20-80 20-20 20-50 20-80

200 23 55 83 46 110 166 11 27 43 27 87 135
400 37 101 157 74 202 314 17 49 81 57 197 309
600 45 141 225 90 282 450 32 80 128 96 316 492
800 54 182 294 108 364 588 41 105 169 129 429 669
1000 83 243 383 166 486 766 51 131 211 163 543 847

Table 11: Building DSYB and DSEQ

Dataset
DSYB DSEQ

Time (sec) Storage (MB) Time (sec) Storage (MB)

NIST 24.92 10.3 21.60 4.2
UKDALE 19.88 24.1 8.95 11.4
DataPort 11.32 17.7 20.62 2.9
Smart City 17.41 21.9 13.76 7.8

ASL 14.47 5.8 10.05 1.5

6.3.3 Evaluation of the pruning techniques in E-HTPGM. We com-
pare different versions of E-HTPGM to understand how effective
the pruning techniques are: (1) NoPrune: E-HTPGM with no prun-
ing, (2) Apriori: E-HTPGM with Apriori-based pruning (Lemmas 2,

3), (3) Trans: E-HTPGM with transitivity-based pruning (Lemmas
4, 5, 6, 7), and (4) All: E-HTPGM applied both pruning techniques.

We use 3 different configurations that vary: the number of se-
quences, the confidence, and the support. Figs. 11, 12 show the

683

20 40 60 80 100
103

104

105

106

Sequence (%)

Ru
nt
im

e
(se

c)

(a) supp=20%, conf=20%

20 40 60 80 100
103

104

105

Sequence (%)
Ru

nt
im

e
(se

c)
(b) supp=50%, conf=50%

20 40 60 80 100

103

104

105

Sequence (%)

Ru
nt
im

e
(se

c)

(c) supp=80%, conf=80%
A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Figure 7: Varying % of sequences on NIST

20 40 60 80 100

104

105

106

Sequence (%)

Ru
nt
im

e
(se

c)

(a) supp=20%, conf=20%

20 40 60 80 100

104

105

106

Sequence (%)

Ru
nt
im

e
(se

c)

(b) supp=50%, conf=50%

20 40 60 80 100
103

104

105

Sequence (%)

Ru
nt
im

e
(se

c)

(c) supp=80%, conf=80%
A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Figure 8: Varying % of sequences on Smart City

200 400 600 800 1000

104

105

106

Time Series

Ru
nt
im

e
(se

c)

(a) supp=20%, conf=20%

200 400 600 800 1000

104

105

Time Series

Ru
nt
im

e
(se

c)

(b) supp=50%, conf=50%

200 400 600 800 1000103

104

105

Time Series

Ru
nt
im

e
(se

c)

(c) supp=80%, conf=80%
A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Figure 9: Varying # of time series on NIST

200 400 600 800 1000
104

105

106

Time Series

Ru
nt
im

e
(se

c)

(a) supp=20%, conf=20%

200 400 600 800 1000

104

105

106

Time Series

Ru
nt
im

e
(se

c)

(b) supp=50%, conf=50%

200 400 600 800 1000

104

105

Time Series

Ru
nt
im

e
(se

c)

(c) supp=80%, conf=80%
A-HTPGM E-HTPGM Z-Miner TPMiner IEMiner H-DFS

Figure 10: Varying # of time series on Smart City

20 40 60 80 100
103.2

103.4

103.6

Sequence (%)

Ru
nt
im

e
(se

c)

(a) Varying % Seq.

20 40 60 80 100

100
101
102
103

Confidence (%)

Ru
nt
im

e
(se

c)

(b) Varying Conf.

20 40 60 80 100
10−1
100
101
102
103

Support (%)

Ru
nt
im

e
(se

c)

(c) Varying Supp.
NoPrune Apriori Trans All

Figure 11: Runtimes of E-HTPGM on NIST

20 40 60 80 100
103

104

Sequence (%)

Ru
nt
im

e
(se

c)

(a) Varying % Seq.

20 40 60 80 100

101
102
103
104

Confidence (%)

Ru
nt
im

e
(se

c)

(b) Varying Conf.

20 40 60 80 100

101
102
103
104

Support (%)

Ru
nt
im

e
(se

c)

(c) Varying Supp.
NoPrune Apriori Trans All

Figure 12: Runtimes of E-HTPGM on Smart City

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Confidence (%)

Cu
m
ul
at
iv
e
Pr
ob
ab
ili
ty

supp=10%
supp=20%
supp=30%
supp=40%

(a) NIST

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Confidence (%)

Cu
m
ul
at
iv
e
Pr
ob
ab
ili
ty

supp=10%
supp=20%
supp=30%
supp=40%

(b) Smart City

0.5 1 5 10 20 300

0.2

0.4

0.6

0.8

1

Confidence (%)

Cu
m
ul
at
iv
e
Pr
ob
ab
ili
ty

supp=0.5%
supp=1%
supp=5%
supp=10%

(c) ASL
Figure 13: Cumulative probability of pruned patterns

results (the y-axis is in log scale). It can be seen that (All)-E-HTPGM
achieves the best performance among all versions. Its speedup w.r.t.
(NoPrune)-E-HTPGM ranges from 5 up to 60 depending on the
configurations, showing that the proposed prunings are very effec-
tive in improving E-HTPGM performance. Furthermore, (Trans)-
E-HTPGM delivers larger speedup than (Apriori)-E-HTPGM. The
average speedup is from 8 to 20 for (Trans)-E-HTPGM, and from
3 to 12 for (Apriori)-E-HTPGM. However, applying both always
yields better speedup than applying either of them.
6.3.4 Evaluation of A-HTPGM. We proceed to evaluate the accu-
racy of A-HTPGM and the quality of patterns pruned by A-HTPGM.

To evaluate the accuracy, we compare the patterns extracted byA-
HTPGM and E-HTPGM. Table 6 shows the accuracies of A-HTPGM
for different supports and confidences. It is seen that, A-HTPGM
obtains high accuracy (≥ 71%) when σ and δ are low, e.g., σ = δ =
10%, and very high accuracy (≥ 95%) when σ and δ are high, e.g.,
σ = δ = 50%. Next, we analyze the quality of patterns pruned by
A-HTPGM. These patterns are extracted from the uncorrelated time
series. Fig. 13 shows the cumulative distribution of the confidences
of the pruned patterns. It is seen that most of these patterns have
low confidences, and can thus safely be pruned. For NIST and Smart

City datasets, 80% of pruned patterns have confidences less than
20% when the support is 10% and 20%, and 70% of pruned patterns
have confidences less than 30% when the support is 30%. For the
ASL dataset, 80% of pruned patterns have confidences less than 5%.

Other experiments: We analyze the effects of the tolerance
buffer ϵ , and the overlapping duration tov to the quality of extracted
patterns. The analysis can be seen in the full paper [19].

7 CONCLUSION AND FUTUREWORK
This paper presents our comprehensive Frequent Temporal Pattern
Mining from Time Series (FTPMfTS) solution that offers: (1) an
end-to-end FTPMfTS process to mine frequent temporal patterns
from time series, (2) an efficient and exact Hierarchical Temporal
Pattern Graph Mining (E-HTPGM) algorithm that employs efficient
data structures and multiple pruning techniques to achieve fast
mining, and (3) an approximate A-HTPGM that uses mutual infor-
mation to prune unpromising time series, allows HTPGM to scale
on big datasets. Extensive experiments conducted on real world and
synthetic datasets show that both A-HTPGM and E-HTPGM out-
perform the baselines, consume less memory, and scale well to big
datasets. Compared to the baselines, the approximate A-HTPGM
delivers an order of magnitude speedup on large synthetic datasets
and up to 2 orders of magnitude speedup on real-world datasets. In
future work, we plan to extend HTPGM to prune at the event level
to further improve its performance.

ACKNOWLEDGMENTS
This work has been partially supported by the MORE project (grant
agreement 957345), funded by the EU Horizon 2020 program.

684

REFERENCES
[1] Akiz Uddin Ahmed, Chowdhury Farhan Ahmed, Md Samiullah, Nahim Adnan,

and Carson Kai-Sang Leung. 2016. Mining interesting patterns from uncertain
databases. Information Sciences 354 (2016).

[2] James F Allen. 1983. Maintaining knowledge about temporal intervals. Commun.
ACM 26 (1983).

[3] Iyad Batal, Dmitriy Fradkin, James Harrison, Fabian Moerchen, and Milos
Hauskrecht. 2012. Mining recent temporal patterns for event detection in multi-
variate time series data. In SIGKDD.

[4] Iyad Batal, Hamed Valizadegan, Gregory F Cooper, and Milos Hauskrecht. 2013.
A temporal pattern mining approach for classifying electronic health record data.
TIST 4 (2013).

[5] Edwin F Beckenbach, Richard Bellman, and Richard Ernest Bellman. 1961. An in-
troduction to inequalities. Technical Report. Mathematical Association of America
Washington, DC.

[6] Julien Blanchard, Fabrice Guillet, Regis Gras, and Henri Briand. 2005. Using
information-theoretic measures to assess association rule interestingness. In
ICDM’05.

[7] Elizabeth A Campbell, Ellen J Bass, and Aaron J Masino. 2020. Temporal condition
pattern mining in large, sparse electronic health record data: A case study in
characterizing pediatric asthma. JAMIA 27 (2020).

[8] Yi-Cheng Chen, Wen-Chih Peng, and Suh-Yin Lee. 2015. Mining Temporal Pat-
terns in Time Interval-Based Data. TKDE 27 (2015).

[9] New York City. 2019. NYC OpenData. https://opendata.cityofnewyork.us/
[10] Thomas M Cover and Joy A Thomas. 2012. Elements of information theory. John

Wiley & Sons.
[11] Xue Cunjin, Song Wanjiao, Qin Lijuan, Dong Qing, and Wen Xiaoyang. 2015.

A mutual-information-based mining method for marine abnormal association
rules. Computers & Geosciences 76 (2015).

[12] Energi Data Portal. 2021. https://www.energidataservice.dk/tso-
electricity/co2emis/

[13] Pecan Street Data. 2016. Pecan Street Dataport.
https://www.pecanstreet.org/dataport/

[14] William Healy, Farhad Omar, Lisa Ng, Tania Ullah, William Payne, Brian
Dougherty, and A Hunter Fanney. 2018. Net zero energy residential test facility
instrumented data. https://pages.nist.gov/netzero/index.html/

[15] Nguyen Ho, Torben Bach Pedersen, Van Long Ho, and Mai Vu. 2020. Efficient
Search for Multi-Scale Time Delay Correlations in Big Time Series Data. In 23rd
International Conference on Extending Database Technology, EDBT 2020. 37–48.

[16] Nguyen Ho, Torben Bach Pedersen, Mai Vu, Christophe AN Biscio, et al. 2019.
Efficient bottom-up discovery of multi-scale time series correlations using mutual
information. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 1734–1737.

[17] Nguyen Ho, Huy Vo, Mai Vu, and Torben Bach Pedersen. 2019. Amic: An adaptive
information theoretic method to identify multi-scale temporal correlations in big
time series data. IEEE Transactions on Big Data 7, 1 (2019), 128–146.

[18] Nguyen Ho, Huy Vo, and Mai Vu. An adaptive information-theoretic approach
for identifying temporal correlations in big data sets. In 2016 IEEE International
Conference on Big Data (Big Data), pp. 666-675. IEEE, 2016.

[19] Van Long Ho, Nguyen Ho, and Torben Bach Pedersen. 2021. Efficient Temporal
Pattern Mining in Big Time Series Using Mutual Information. arXiv preprint
arXiv:2010.03653 (2020). https://arxiv.org/abs/2010.03653

[20] Po-shan Kam and Ada Wai-Chee Fu. 2000. Discovering temporal patterns for
interval-based events. In DaWak.

[21] Yiping Ke, James Cheng, and Wilfred Ng. 2008. Correlated pattern mining in
quantitative databases. TODS 33 (2008).

[22] Thi Thao Nguyen Ho, and Barbara Pernici. A data-value-driven adaptation frame-
work for energy efficiency for data intensive applications in clouds. In 2015 IEEE
conference on technologies for sustainability (SusTech), pp. 47-52. IEEE, 2015.

[23] Thi Thao Nguyen Ho, Marco Gribaudo, and Barbara Pernici. "Improving energy
efficiency for transactional workloads in cloud environments." In Proceedings
of the Eighth International Conference on Future Energy Systems, pp. 290-295.
2017.

[24] Thi Thao Nguyen Ho, Marco Gribaudo, and Barbara Pernici. "Characterizing
energy per job in cloud applications." Electronics 5, no. 4 (2016): 90.

[25] Macro Gribaudo, Thi Thao Nguyen Ho, Barbara Pernici, and Giuseppe Serazzi.
"Analysis of the influence of application deployment on energy consumption." In
International Workshop on Energy Efficient Data Centers, pp. 87-101. Springer,
Cham, 2014.

[26] Jack Kelly and William Knottenbelt. 2015. The UK-DALE dataset, domestic
appliance-level electricity demand and whole-house demand from five UK homes.
Scientific Data (2015).

[27] Young-Koo Lee, Won-Young Kim, Y Dora Cai, and Jiawei Han. 2003. CoMine:
Efficient Mining of Correlated Patterns. In ICDM.

[28] Zed Lee, Tony Lindgren, and Panagiotis Papapetrou. 2020. Z-Miner: An Efficient
Method for Mining Frequent Arrangements of Event Intervals. In Proceedings of
the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. 524–534.

[29] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A symbolic
representation of time series, with implications for streaming algorithms. In
Proceedings of the 8th ACM SIGMOD workshop on Research issues in data mining
and knowledge discovery. 2–11.

[30] Vasileios Megalooikonomou, Qiang Wang, Guo Li, and Christos Faloutsos. 2005.
A multiresolution symbolic representation of time series. In 21st International
Conference on Data Engineering (ICDE’05). IEEE, 668–679.

[31] Fabian Mörchen. 2007. Unsupervised pattern mining from symbolic temporal
data. ACM SIGKDD Explorations Newsletter 9, 1 (2007), 41–55.

[32] Robert Moskovitch and Yuval Shahar. 2015. Fast time intervals mining using the
transitivity of temporal relations. KAIS 42 (2015).

[33] Carol Neidle, Augustine Opoku, Gregory Dimitriadis, and Dimitris Metaxas. 2018.
NEW Shared & Interconnected ASL Resources: SignStream® 3 Software; DAI 2
for Web Access to Linguistically Annotated Video Corpora; and a Sign Bank. In
8th Workshop on the Representation and Processing of Sign Languages: Involving the
Language Community, Miyazaki, Language Resources and Evaluation Conference
2018.

[34] Edward R Omiecinski. 2003. Alternative interest measures for mining associations
in databases. IEEE Transactions on Knowledge and Data Engineering 15, 1 (2003),
57–69.

[35] Panagiotis Papapetrou, George Kollios, Stan Sclaroff, and Dimitrios Gunopulos.
2009. Mining frequent arrangements of temporal intervals. KAIS 21 (2009).

[36] Dhaval Patel, Wynne Hsu, and Mong Li Lee. 2008. Mining relationships among
interval-based events for classification. In SIGMOD.

[37] Amit Kumar Sharma and Dhaval Patel. 2018. Stipa: A memory efficient technique
for interval pattern discovery. In 2018 IEEE International Conference on Big Data
(Big Data). IEEE, 1767–1776.

[38] Jun-Zhe Wang, Yi-Cheng Chen, Wen-Yueh Shih, Lin Yang, Yu-Shao Liu, and
Jiun-Long Huang. 2020. Mining High-utility Temporal Patterns on Time Inter-
val–based Data. ACM Transactions on Intelligent Systems and Technology (TIST)
11, 4 (2020), 1–31.

[39] Shin-Yi Wu and Yen-Liang Chen. 2007. Mining nonambiguous temporal patterns
for interval-based events. TKDE 19 (2007).

[40] YY Yao. 2003. Information-theoretic measures for knowledge discovery and
data mining. In Entropy measures, maximum entropy principle and emerging
applications. 115–136.

[41] Torp K., Andersen O., Thomsen C. (2020) Travel-Time Computation Based on
GPS Data. In: Kutsche RD., Zimányi E. (eds) Big Data Management and Analytics.
eBISS 2019. Lecture Notes in Business Information Processing, vol 390. Springer,
Cham. https://doi.org/10.1007/978-3-030-61627-4_4.

685

