
Unsupervised Time Series Outlier Detection with
Diversity-Driven Convolutional Ensembles

David Campos1∗, Tung Kieu1∗, Chenjuan Guo1+, Feiteng Huang2, Kai Zheng3, Bin Yang1, and
Christian S. Jensen1

1Aalborg University, Denmark 2Huawei Cloud Database Innovation Lab, China
3University of Electronic Science and Technology of China, China

1{dgcc, tungkvt, cguo, byang, csj}@cs.aau.dk, 2huangfeiteng@huawei.com, 3zhengkai@uestc.edu.cn

ABSTRACT
With the sweeping digitalization of societal, medical, industrial,
and scientific processes, sensing technologies are being deployed
that produce increasing volumes of time series data, thus fueling a
plethora of new or improved applications. In this setting, outlier
detection is frequently important, and while solutions based on
neural networks exist, they leave room for improvement in terms
of both accuracy and efficiency. With the objective of achieving
such improvements, we propose a diversity-driven, convolutional
ensemble. To improve accuracy, the ensemble employs multiple
basic outlier detection models built on convolutional sequence-to-
sequence autoencoders that can capture temporal dependencies in
time series. Further, a novel diversity-driven training method main-
tains diversity among the basic models, with the aim of improving
the ensemble’s accuracy. To improve efficiency, the approach en-
ables a high degree of parallelism during training. In addition, it
is able to transfer some model parameters from one basic model
to another, which reduces training time. We report on extensive
experiments using real-world multivariate time series that offer
insight into the design choices underlying the new approach and
offer evidence that it is capable of improved accuracy and efficiency.

PVLDB Reference Format:
David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin
Yang, and Christian S. Jensen. Unsupervised Time Series Outlier Detection
with Diversity-Driven Convolutional Ensembles. PVLDB, 15(3): 611 - 623,
2022.
doi:10.14778/3494124.3494142

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/d-gcc/CAE-Ensemble.

1 INTRODUCTION
As part of the continued digitization, processes are increasingly be-
ing instrumented with sensors, which offer monitoring capabilities
with the objective of supporting a variety of applications [25, 33, 50].
The monitoring of processes results in time series data [9, 21]. In
many cases, it is important to be able to use this data to identify

∗: Equal contributions. +: Corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 3 ISSN 2150-8097.
doi:10.14778/3494124.3494142

outliers or anomalies [1]. Outliers are relatively uncommon ob-
servations that differ from the remaining observations in a series.
The accurate detection of outliers is critical in applications such as
health, manufacturing, and transportation [15, 37, 38].

We consider unsupervised outlier detection, meaning that we
do not rely on outlier labeled data for training, which offers two
benefits. First, labeling by human experts is time consuming and
labor intensive; thus, time series often come without outlier labels.
Second, the unsupervised setting eliminates the reliance on manual
labeling, where some outliers may go unnoticed, thus potentially
enabling the detection of unanticipated types of outliers.

Unsupervised outlier detection has traditionally been supported
by linear methods [16] that require human experts to set model pa-
rameters for the specific scenarios. The recent use of deep learning
techniques enables substantial detection accuracy improvements
over the linear models because they are able to learn non-linear
features from the data, such as complex temporal dependencies,
without requiring explicit supervision by human experts.

Autoencoders (AE) [17, 26] represent a popular and powerful
deep learning based approach to unsupervised outlier detection.
An AE consists of an encoding phase that compresses an original
time series T into a compact representation and a subsequent
decoding phase that reconstructs an output time series T̂ from the
compact representation. The compact representation is only able to
capture representative patterns that reflect general patterns in the
original time series. As a result, the reconstructed time series T̂ is
unlikely to capture outliers that by virtue of being outliers are not
representative. Thus, if the difference between observations in T
and in T̂ , called the reconstruction error, exceeds a threshold 𝜖 , this
suggests an outlier. For example, this occurs at time 3 in Figure 1.

2 4 6 8 10 12
0

20

40

Time

T T̂ Reconstruction Error

Figure 1: AE-based unsupervised outlier detection.

An autoencoder ensemble (AE-Ensemble) employs multiple AEs
to avoid a single AE being overfit to original data [7, 36], which often
further improves accuracy. In particular, RAE-Ensemble achieve

611

https://doi.org/10.14778/3494124.3494142
https://github.com/d-gcc/CAE-Ensemble
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3494124.3494142
https://www.acm.org/publications/policies/artifact-review-and-badging-current

high accuracy using an ensemble of recurrent neural network based
autoencoders (RAEs) [27], where a RAE is able to capture temporal
dependencies among the observations in time series [28, 35],e.g.,
the increasing trend shown in Figure 1. This is a highly desirable
property compared to classic AEs that use, e.g., feedforward neural
networks, which fail to capture temporal dependencies.

However, RAE-Ensemble may still be improved in terms of ac-
curacy and efficiency. First, while an ensemble often benefits from
diverse basic models [2], the basic models in RAE-Ensemble may
not be sufficiently diverse. Specifically, RAE-Ensemble generates ba-
sic models with randomly different network structures by randomly
adding skip connections. However, the resulting basic models may
not necessarily return diverse results, offering room for higher ac-
curacy. Second, the basic models in RAE-Ensemble are based on
Recurrent Neural Networks (RNNs), which are inefficient, as an RNN
must process the time series data sequentially, as opposed to in
parallel, due to its recurrence nature.

We propose CAE-Ensemble, a novel autoencoder ensemble ap-
proach that uses convolutional neural networks and aims to im-
prove accuracy and efficiency by overcoming the limitations of
RAE-Ensemble. First, we introduce a diversity metric that makes
possible to assess the suitability of a newly generated basic model
given the current state of the ensemble. This ensures the diversity
among the basic models. Second, we replace the RNN framework of
RAE-Ensemble with Convolutional Neural Networks (CNN) [14, 31],
in order to capture temporal dependencies, with the benefit of
achieving a high degree of training parallelism, thus improving ef-
ficiency. Third, to further reduce the training time, CAE-Ensemble
integrates a transfer learning method based on so-called born-again
networks [13] that share a portion of the trained parameters from
one basic model with other basic models. Fourth, we propose a
fully unsupervised strategy for selecting hyperparameters without
relying on ground truth outlier labels.

To summarize, we make the following contributions. First, we
propose a convolutional sequence-to-sequence autoencoder CAE for
outlier detection that is capable to capture temporal dependencies
with a high degree of training parallelism. Second, to improve the
accuracy and efficiency, we propose a diversity-driven ensemble
using CAEs as its basic models, along with a parameter transfer
based training strategy. Third, we propose a fully unsupervised
strategy to select hyper-parameters, and finally, we report insights
from extensive experiments with real-world time series data sets
to justify design choices in our proposal.

The paper is organized as follows. Section 2 formalizes the prob-
lem. Section 3 elaborates CAE-Ensemble. Section 4 reports on the
experiments. Section 5 reviews related work. Section 6 concludes.

2 PRELIMINARIES
Time SeriesOutlierDetection. A time seriesT = ⟨s1, s2, . . . , s𝐶 ⟩
is a sequence of 𝐶 observations, where each observation s𝑡 ∈ R𝐷
is a 𝐷-dimensional vector. If 𝐷 = 1, T is univariate, and if 𝐷 > 1,
T is multivariate, or multidimensional. Given a time series T =

⟨s1, s2, . . . , s𝐶 ⟩, the outlier score OS(s𝑡) for observation s𝑡 is a
value such that the higher OS(s𝑡) is, the more likely it is that s𝑡
is an outlier. Given an outlier score threshold 𝜖 , outliers are the

observations in T whose outlier score exceeds 𝜖 . Usually, threshold
𝜖 is defined according to domain knowledge.

In the experiments, to evaluate accuracy in a fair and meaningful
manner, we use different metrics, including metrics that (1) require
such specific thresholds and (2) do not rely on thresholds, e.g., when
domain knowledge on selecting such thresholds is unavailable.
Autoencoders. A classic autoencoder AE consists of an encoder
and a decoder, where each is a feed-forward neural network. The
encoder transforms a 𝐷-dimensional input x to an intermediate
and compact vector h ∈ 𝑅𝑀 , where 𝑀 < 𝐷 . Then, the decoder
transforms the intermediate vector h to an output vector x̂ ∈ 𝑅𝐷
that approximates the input vector. The learning goal is to minimize
the difference between the input x and the reconstructed x̂.

Given a set of training inputs X = [x1, x2, . . . , x𝐶], the corre-
sponding autoencoder outputs X̂ = [x̂1, x̂2, . . . , x̂𝐶], where x̂𝑖 =

AE(x𝑖), and the learnable parameters 𝜃𝐴𝐸 of the AE, the objective
function L𝐴𝐸 used for training is formulated in Equation 1.

argmin
𝜃𝐴𝐸

L𝐴𝐸 = argmin
𝜃𝐴𝐸

1
𝐶

𝐶∑
𝑖=1
(x𝑖 − x̂𝑖)2 (1)

The reconstruction error (RE) is defined as | |x𝑖 − x̂𝑖 | |22 . If the RE
exceeds threshold 𝜖 , x𝑖 is considered as an outlier [39].

Applications of AEs often relate to non-sequential data, such as
images, and AEs do not consider relationships between observa-
tions over time, e.g., the increasing trend as shown in Figure 1, as
summarized in Table 1.

Table 1: Autoencoder-based models for outlier detection.

Temporal-
dependencies

Efficiency Diversity

AE ✗ ✓ ✗

RAE ✓ ✗ ✗

CAE ✓ ✓ ✗

AE-Ensemble ✗ ✓ ✓ (Implicit)
RAE-Ensemble ✓ ✗ ✓ (Implicit)
CAE-Ensemble ✓ ✓ ✓ (Explicit)

RecurrentAutoencoders. A sequence-to-sequencemodel targets
the analysis of sequential data, by preserving the relationships
surrounding each data point, e.g., temporal dependencies in time
series. For example, if a time series is growing, e.g., as shown in
Figure 1, such a model is capable to taking this growing tendency
into account when making predictions or detecting outliers.

A recurrent autoencoder (RAE) follows a sequence-to-sequence
model using a recurrent neural network (RNN). In the encoder, an
observation s𝑡 in time series T and a hidden state at the previous
timestamp h(𝐸)

𝑡−1 are fed into an RNN unit to compute the current
hidden state h(𝐸)𝑡 at timestamp 𝑡 using Equation 2.

h(𝐸)𝑡 = RNN(s𝑡 , h(𝐸)𝑡−1). (2)

Here, RNN(·) is an abstraction that can be a Long Short Term
Memory (LSTM) [20] or a Gated Recurrent Unit (GRU) [11]. Once
h(𝐸)𝑡 is computed, it is fed into the next RNN unit to compute the
hidden state at timestamp 𝑡 + 1.

612

In the decoder, the time series is reconstructed in reverse order.
Specifically, the last hidden state in the encoder h(𝐸)

𝐶
is used as the

first hidden state of the decoder h(𝐷)
𝐶

, i.e., h(𝐸)
𝐶

= h(𝐷)
𝐶

. Based on
the previous hidden state h(𝐷)

𝑡+1 of the decoder and the previous re-
constructed observation ŝ𝑡+1, the decoder reconstructs the current
observation ŝ𝑡 = RNN(ŝ𝑡+1, h(𝐷)𝑡+1) using an RNN unit.

Similar to an AE, an RAE identifies the learnable parameters that
minimize the difference between the reconstructed time series and
the original time series. Then, given the reconstructed observations
represented by T̂ = ⟨ŝ1, ŝ2, . . . , ŝ𝐶 ⟩, it is possible to calculate the
differences from the original time series T . Specifically, the outlier
score for observation s𝑖 is defined as | |s𝑖 − ŝ𝑖 | |22 .

Despite the good accuracy achieved by RAE [27], they suffer from
low efficiency. In an RNN, the computation of one state takes as
input the previous state, making RNN learning unparallelizable [35].
To improve efficiency, we propose a convolutional sequence-to-
sequence autoencoder CAE in Section 3.1 that captures temporal
dependencies without recursive computations.
Autoencoder Ensembles. Ensemble models combine multiple,
diverse basic models and often achieve better accuracy than a sin-
gle model by avoiding overfiting and underfitting (a.k.a., achieving
better bias-variance trade-off) . To achieve improved accuracy, en-
sembles need to be designed so that the individual basic models are
diverse and contribute differently to solving the problem [2].

Existing autoencoder ensembles often create different basic mod-
els randomly, without explicitly quantifying their diversity. For ex-
ample, AE-Ensemble [7] creates multiple AEs by removing connec-
tions between neurons at random in feed-forward neural networks,
and RAE-Ensemble [27] incorporates random skip connections to
generate RAEs with different network structures. In other words, ex-
isting autoencoder ensembles consider diversity only implicitly. In
Section 3.2, we propose a metric to quantify the diversities among
different basic models and incorporate this metric explicitly into
the objective function, making diversity part of the learning goals.
This explains the “Diversity” column in Table 1.
Summary. Table 1 summarizes the existing autoencoder based
models. The first three do not use ensembles and thus do not offer
any diversity. AE is efficient, as matrix computations can be paral-
lelized easily, but is unable to capture temporal dependencies. RAE
is able to capture temporal dependencies, but is inefficient due to
its recursive computations. We propose an efficient CAE that is able
to capture temporal dependencies. We offer empirical evidence to
justify this in Section 4.

The last three models are ensembles whose basic models em-
ploy the first three models, respectively. Thus, they have the same
properties as their corresponding basic models. AE-Ensemble and
RAE-Ensemble offer limited diversity because they generate basic
models with randomly selected network structures without explic-
itly quantify the diversity in the learning processes. In contrast, we
propose a metric that quantifies the diversity between basic models,
and we judiciously design an objective function to incorporate the
diversity metric to make CAE-Ensemble a diversity-driven ensem-
ble. In addition, we propose a parameter sharing mechanism to
improve the training efficiency of CAE-Ensemble.

3 THE CAE-ENSEMBLE FRAMEWORK
This section details the proposed CAE-Ensemble. In Section 3.1,
we first cover basic CAE models using convolutional sequence-to-
sequence autoencoders that are able to capture temporal depen-
dencies in time series data while ensuring efficiency. Next, in Sec-
tion 3.2, we describe a diversity-driven ensemble CAE-Ensemble
that consists of the basic CAE models while taking into account
diversity during training, along with an efficient training method
using parameter transferring for the proposed ensemble. Finally, in
Section 3.3, we propose an strategy for tuning hyperparameters in
a fully unsupervised manner. The complete process is summarized
in Algorithm 1 and a framework overview is shown in Figure 2.

Algorithm 1: CAE-Ensemble
Input :Raw time series T , Number of Basic Models𝑀
Output :Outlier scores

1 outlierScores [] ← ∅, savedParam← ∅;
2 T ← ReScale (T) ;
3 𝛽, 𝜆, 𝑤 ← HyperparameterSelection(T) ; /* Sec 3.3 */

4 Twindows ← SplitIntoWindows (T, 𝑤) ;
5 X← Embedding (Twindows) ;
6 for 𝑖 ← 1 to𝑀 do
7 if 𝑖 = 1 then

/* Build the first basic model CAE 𝑓1. */

8 𝜃 𝑓1 ← OptimizeNormal (𝑓1);
9 X̂(1) ← 𝑓1 (X) ;

10 else
/* Build the 𝑖-th basic model CAE 𝑓𝑖. */

11 𝜃 𝑓𝑖 ← OptimizeDiverse (𝑓𝑖 , 𝜆, savedParam) ;
/* OptimizeDiverse uses Eq. 13. */

12 X̂(i) ← 𝑓𝑖 (X) ;

13 outlierScores [𝑖] ← ⟨∥x1 − x̂(𝑖)1 ∥
2
2 , . . . , ∥x𝑤 − x̂

(𝑖)
𝑤 ∥22 ⟩;

14 savedParam← Randomly select the fraction 𝛽 of the
parameters 𝜃 𝑓𝑖 from basic model CAE 𝑓𝑖 ;

15 return median(outlierScores)

Time Series


Pre-
processing

Model
CAE-Ensemble

(Trained)
Model

Training

Outlier
Scores Outliers

Pre-
processing

Normalized
time series
windows

Raw
time series Learned

model
CAE-Ensemble

Model
CAE-Ensemble

Outlier
scores

Reconstruction
errors

Optimization
&

Hyperparameter
selection

CAE-Ensemble
Section 3.2

CAE
Section 3.1

Raw
time
series

Pr
e-

pr
oc

es
si

ng
&

 E
m

be
dd

in
g


Outlier scores

X

w
λ, β

Unsupervised Hyperparameter Selection
(Window size w, Diversity λ, Transfer rate β)

Section 3.3

Figure 2: Framework overview.

Before introducing the model, we cover a pre-processing step:
a raw time series is pre-processed into time series windows that
are then used for training and testing [8]. The pre-processing first
re-scales an observation 𝑥 in the time series to 𝑧 =

𝑥 − 𝜇
𝜎

, where
𝜇 is the mean and 𝜎 is the standard deviation of the observations

613

in the training time series. This is to prevent that magnitude dif-
ferences among different dimensions in a time series affect the re-
construction errors differently, which is a common pre-processing
technique [40].

We then create sliding windows of size𝑤 that slide one obser-
vation at a time. For example, for T = ⟨s1, s2, . . . , s𝐶 ⟩, the first
window is ⟨s1, s2, . . . , s𝑤⟩ and the second is ⟨s2, s3, . . . , s𝑤+1⟩, etc.

3.1 Convolutional Autoencoder CAE
We build the CAE-Ensemble from basic models that use convolu-
tion sequence-to-sequence autoencoders CAEs. A CAE combines
convolutional neural networks (CNNs) with a sequence-to-sequence
architecture, as shown in Figure 3. First, the CAE embeds a time
series window T into vectors that capture both the content and
positions of the observations in T . These vectors are then fed to
the encoder that employs a 1D CNN to extract features that capture
temporal dependencies in T and then outputs the features as hid-
den states. Next, the decoder employs another 1D CNN to extract
features from both the embedded vectors and the hidden states
from the encoder. The output from the decoder is another set of
hidden states. As a 1D CNN does not involve recursive computations,
it is possible to perform 1D CNN for different timestamps in parallel.
This improves efficiency. Finally, an attention layer is applied to
combine the hidden states from the encoder and the decoder, the
result of which is then used for reconstructing the time series.

PAD x1 xCx2

Encoder

PAD PAD PAD x1

Decoder

Attention

xC

x1 x2 xC

EmbeddingEmbedding

s1 sCs2 s1 sC

˄˄ ˄

PAD x1 xwx2

Encoder

PAD PAD PAD x1

Decoder

Attention

xw-1

x1 x2 xw

Embedding
(Position and observation)

Embedding
(Position and observation)

s1 sws2 s1 sw-1

˄˄ ˄

x2

s2

Figure 3: Convolutional autoencoder CAE.

3.1.1 Embedding. The embedding encompasses: observation em-
bedding and position embedding.
Observation Embedding: The input of the encoder is a time series
window T = ⟨s1, s2, . . . , s𝑤⟩, with vectors s𝑡 ∈ R𝐷 , which is then
embedded into V = ⟨v1, v2, . . . , v𝑤⟩, where each vector v𝑡 ∈ R𝐷

′

is a 𝐷 ′ dimensional representation for the original 𝐷 dimensional
observation s𝑡 that captures its most typical features [23].

Specifically, we have v𝑡 = 𝑓𝑠 (W𝑣 · s𝑡 + b𝑣), where 𝑓𝑠 represents
a non-linear activation function that maps the original time series
observation s𝑡 to the embedding and W𝑣 ∈ R𝐷

′×𝐷 and b𝑣 ∈ R𝐷
′

are learnable parameters.

Position Embedding:When using CNNs instead of RNNs to model
time series, we need to capture explicitly the positions of the ob-
servations in time series. Thus, we define a positional entry 𝑡 for
each observation in a time series. For example, the 5-th observation
in a time series has the position entry 5. Specifically, positional
entries 1, 2, . . . ,𝑤 are embedded into p1, p2, . . . , p𝑤 , respectively,
where each p𝑡 ∈ R𝐷

′
, with 𝑡 ∈ [1,𝑤], is a 𝐷 ′ dimensional repre-

sentation of the position of an observation. The transformation
p𝑡 = 𝑓𝑡 (W𝑝 · 𝑡 + b𝑝) is similar to the observation embedding.
Final Embedding: The observation and position embeddings are
combined to obtainX = ⟨x1, x2, . . . , x𝑤⟩ = ⟨v1+p1, v2+p2, . . . , v𝑤+
p𝑤⟩ as the input to the CNN. We use sum, instead of, e.g., concate-
nation, as existing studies show that summing achieves high effec-
tiveness [14, 46]. A summary of the process is shown in Figure 4.

Convolutional Input

Embedding

Observations and
Positions

x1

v1 p1

s1 1

x2

v2 p2

s2 2

xC

vC pC

sC C

+ + +Sum

fs(•) fs(•) fs(•)ft(•)ft(•) ft(•)

Convolutional Input

Observations and
Positions

x1

v1 p1

s1 1

x2

v2 p2

s2 2

xw

vw pw

sw w

+ + +

fs(•)

Embedding

Sum

ft(•) fs(•) ft(•) fs(•) ft(•)

Figure 4: Embedding process.

3.1.2 Encoder. The encoder employs a stack of convolutional lay-
ers to capture typical temporal features and trends of time series.
Figure 5 shows an encoder with 3 convolutional layers. Each layer

x1 x2 xw0
PAD

x3 0

0 0

0 0

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

PAD

PAD

(1)
1e

(1)
2e (1)

3e
(1)
we

(2)
1e

(2)
2e

(2)
3e (2)

we

(3)
1e

(3)
2e

(3)
3e

(3)
we

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

Layers

l=2

l=1

l=3

PAD

PAD

PAD

Figure 5: An example encoder with 3 layers.

is framed by a 1D convolution followed by a non-linear activation
function. More specifically, the 𝑙-th layer takes as input a vector
E(𝑙) ∈ R𝑤×𝐷′ and feeds a new vector E(𝑙+1) ∈ R𝑤×𝐷′ into the next
layer, i.e., (𝑙 + 1)-th convolution layer. The E vectors are the hidden
states of the encoder.

E(𝑙+1) = 𝑓𝐸 (W(𝑙)𝐸 ⊗ GLU(E(𝑙)) + b(𝑙)
𝐸
) (3)

614

The input to the first layer, E(0) , is the embedded input vector X
with zero padding. We use padding in all layers to ensure that the
output of the convolution has the same length as the input. Next,
⊗ denotes the 1D convolutional operator; 𝑘 is the kernel size of
the convolution operator; and W(𝑙)

𝐸
∈ R𝐷′×𝑘 and b(𝑙)

𝐸
∈ R𝐷′ are

the kernel matrix and bias vector, respectively, at the 𝑙-th layer.
Multiple different kernel matrices are often used. 𝑓𝐸 (·) is a non-
linear activation function.

To capture temporal information flow in time series better, we
integrate Gated Linear Units (GLUs) [11] into the convolution layers.
Specifically, a GLU is applied to E(𝑙) before applying the convolution
operation. A GLU mimics the gating mechanisms used in RNNs and
controls how much information along the temporal dimension
should be kept or forgotten. First, from E(𝑙) , we produce A(𝑙)1 and
A(𝑙)2 by applying convolution (cf. Equation 5). Here, W(𝑙)

𝐴𝑖
∈ R𝐷′×𝑘

and b𝐴𝑖
∈ R𝐷′ are the kernel matrix and bias vector, respectively.

Then, we perform element-wise matrix multiplication, denoted by
⊙, between A(𝑙)1 and the sigmoid function applied to A(𝑙)2 , thus
controlling how much information should be kept or forgotten (see
Equation 4). GLU is specified in Equations 4 and 5.

GLU(E(𝑙)) = A(𝑙)1 ⊙ 𝜎 (A
(𝑙)
2) (4)

A(𝑙)1 = W(𝑙)
𝐴1
⊗ E(𝑙) + b𝐴1 , A

(𝑙)
2 = W(𝑙)

𝐴2
⊗ E(𝑙) + b𝐴2 (5)

Finally, at each convolution layer, the output of the current con-
volution layer is added to the output from the previous convolution
layer by using a skip or residual connection. Formally, we have
E(𝑙+1) = E(𝑙+1) + E(𝑙) . Using skip connections establish a flow for
gradients across layers in the network, reducing the vanishing and
the exploding gradients issues [18].

The encoder process is summarized in Figure 5, where the blue
triangles represent the 1D convolution with GLU and the arrows
indicate the skip connections.

3.1.3 Decoder. The decoder shown in Figure 6 is slightly different
from the encoder. In the decoder, we ensure that the convolution
at timestamp 𝑡 only uses observations that appear no later than 𝑡 .
This aligns with the time series setting, where observations only to
be seen in the future cannot be utilized. Thus, we apply padding to
the input vector only before the first observation and then compute
the hidden states for the decoder D ∈ R𝑤×𝐷′ as follows.

D(𝑙+1) = 𝑓𝐷 (W(𝑙)𝐷 ⊗ GLU(D(𝑙)) + b(𝑙)
𝐷
+ E(𝑙)) (6)

Here, ⊗ denotes the 1D convolution; 𝑘 is the kernel size of the
convolution operator; W(𝑙)

𝐷
and b(𝑙)

𝐷
are the kernel matrix and

the bias vector at the 𝑙-th layer, respectively; E(𝑙) is the hidden
state from the encoder at the same layer; and 𝑓𝐷 (·) is a non-linear
activation function.

As for the encoder, at each layer, the output of the current layer
is added to the output from the previous layer by using a skip
connection, i.e., D(𝑙+1) = D(𝑙+1) + D(𝑙) .

0 x1 xw-10
PAD

x2

0

0
PAD

PAD

(2)
1d

(2)
2d (2)

3d
(2)
wd

(3)
1d

(3)
2d

(3)
3d (3)

wd

PAD

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

GLU
CNN

(1)
1d

(1)
2d

(1)
3d (1)

wd

(3)E

(2)E

(1)E

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

sk
ip

Layers

l=2

l=1

l=3

Figure 6: An example decoder with 3 layers.

3.1.4 Attention. We apply an attention mechanism [34] in the
convolutional sequence-to-sequence autoencoder to capture lo-
cal temporal patterns, e.g., periodicity, in an input time series by
identifying similar observations that reoccur. Thus, the attention
should consider observations that are relatively more important
than others, given different specific settings.

To achieve this, we adopt a global attention method [34] that
computes a context vector c(𝑙)𝑡 that captures the relative importance
of the observation at each timestamp 𝑡 for each decoder layer 𝑙 .
Specifically, we first compute a state summary z(𝑙)𝑡 = W(𝑙)𝑧 · d

(𝑙)
𝑡 +

b(𝑙)𝑧 using the decoder hidden state d(𝑙)𝑡 at each timestamp. Then,
we compute an attention score 𝛼 (𝑙)

𝑡𝑡 ′ that captures the temporal
correlation between the observation at timestamp 𝑡 at decoder layer
𝑙 and the observation at timestamp 𝑡 ′ at encoder layer 𝑙 . Attention
score 𝛼 (𝑙)

𝑡𝑡 ′ is computed as follows.

𝛼
(𝑙)
𝑡𝑡 ′ =

exp(z(𝑙)𝑡 · e
(𝑙)
𝑡 ′)∑𝑤

𝑡 ′=1 exp(z
(𝑙)
𝑡 · e

(𝑙)
𝑡 ′)

(7)

Here, e(𝑙)
𝑡 ′ , 𝑡

′ ∈ [1,𝑤], is the output of encoder layer 𝑙 at timestamp
𝑡 , and · denotes the dot product.

Next, a context vector c(𝑙)𝑡 =
∑𝑤
𝑡 ′=1 𝛼

(𝑙)
𝑡𝑡 ′ e
(𝑙)
𝑡 ′ captures the tem-

poral correlation between the observation at timestamp 𝑡 at the
decoder layer 𝑙 and all observations at the encoder layer 𝑙 . Once c(𝑙)𝑡
is computed, we update the output of the corresponding decoder
layer d(𝑙)𝑡 by replacing d(𝑙)𝑡 by c(𝑙)𝑡 + d

(𝑙)
𝑡 , i.e., D(𝑙) = C(𝑙) + D(𝑙) .

In Figure 7, we summarize the attention mechanism. The atten-
tion score 𝛼 (𝑙)𝑡 between the decoder state summary and the encoder
hidden states is calculated and weighted with the embedding in-
formation to obtain the context vector c(𝑙)𝑡 . Finally, represented by
the orange lines, the output for the decoder is updated using the
context to obtain the reconstruction X̂.

3.1.5 Reconstruction. At the last 𝐿-th convolution layer in the de-
coder, we obtain a final hidden state D(𝐿+1) . We reconstruct the
time series from this state using a simple fully connected neural
network. Specifically, we have X̂ = 𝑓𝑅 (W𝑅 ⊗ GLU(D(𝐿+1)) + b𝑅).

615

()
1
lz
()
2
lz

()l
wz

()
1
le ()

2
le ()l

we

1

()l
()
2
l

()l
w

Σ

Σ

Σ

skip
skip
skip

()
1
lc
()
2
lc

()l
wc

11

()l
12

()l
1

()
w

l

21

()l
22

()l
2

()
w

l

1

()
w

l
2

()
w

l ()
ww

l

()
1
ld
()
2
ld

()l
wd

Figure 7: Attention structure.

Here, X̂ = ⟨x̂1, x̂2, . . . , x̂𝑤⟩ is the reconstruction of time series X;
W𝑅 and b𝑅 are the weight matrix and bias vector of the reconstruc-
tion layer, respectively; function 𝑓𝑅 (·) is a non-linear activation
function. The reconstruction errors between the elements of X̂ and
X are used as outlier scores.

3.2 Diversity-Driven Ensembles
We use the proposed CAEs as basic models in the ensemble called
CAE-Ensemble. Ensembles are generally able to improve overall
accuracy by combining the outputs from individual basic models [7].
A naive approach is to first train multiple basic models. Then, each
basic model is used to reconstruct embedded time series X. The
average over the reconstructed time series from all basic models
is used as the final reconstructed time series for the ensemble, as
defined in Equation 8.

𝐹 (X) = 1
𝑀

𝑀∑
𝑚=1

𝑓𝑚 (X), (8)

where 𝑀 is the total number of basic models, 𝑓𝑚 (·) refers to the
𝑚-th basic model, and 𝐹 (·) is the output of the ensemble.

This naive approach has two limitations: (1) If the basic models
are similar, the accuracy of the ensemble is similar to those of the
basic models, meaning that the ensemble is not substantially better
than each basic model. (2) The computational cost of the ensemble
is often𝑀 times that of a single basic model. When𝑀 is large, the
ensemble can be very expensive to train.

The first limitation has been addressed partially by using basic
models with different structures, e.g., by randomly modifying the
connections among computational units [7, 27]. However, basic
models with different structures may not produce diverse outputs.

We introduce a diversity-driven ensemble to address the above
two limitations, as depicted in Figure 8. Rather than training differ-
ent basic models independently [7, 27], we generate the basic mod-
els one by one. When training a basic model, we design an objective
function that considers not only the accuracy of the model but also
its difference compared to the previous basic models, which ensures
diversity among basic models, thus addressing the first limitation.
In addition, when training a basic model, we transfer a portion of
the parameters from the previous basic model to the model instead
of training the model from scratch. This helps significantly reduce
the training time, thus addressing the second limitation.

f2 (X)

f1 (X)

fM (X)

Basic model f1
at epoch 1

Basic model f2
at epoch 2

Basic model fM
at epoch M

B
oo

st
in

g

Final ensemble
model F (X)

Diversity-
driven

optimization

Diversity-
driven

optimization

Diversity-
driven

optimization

Parameter
Transfer

Outlier
Score

Adaptive
Threshold OutliersXembedding

Optimize θf1
Optimize θf2
Optimize θfM

f2 (X)

f1 (X)

fM (X)

Basic model f1
at epoch 1

Basic model f2
at epoch n+1

Basic model fM at
epoch (M-1)*n+1

Final ensemble
model F (X)

Optimize θf1

Optimize θf2

Optimize θfM

Parameter
Transfer

Outlier
Score

Adaptive
Threshold OutliersX

f2 (X)

f1 (X)

fM (X)

Basic model f1
at epoch 1

Basic model f2
at epoch n+1

Basic model fM at
epoch (M-1)*n+1

Final ensemble
model F (X)

Optimize θf1

Optimize θf2

Optimize θfM

Parameter
Transfer

Outlier
Score OutliersX

f2 (X)

f1 (X)

fM (X)

Basic model f1
at epoch 1

Basic model f2
at epoch n+1

Basic model fM at
epoch (M-1)*n+1

Final ensemble
model F (X)

Optimize θf1

Optimize θf2

Optimize θfM

Parameter
Transfer

X

f2 (X)

f1 (X)

fM (X)

Basic model f1
at epoch 1

Basic model f2
at epoch n+1

Basic model fM at
epoch (M-1)*n+1

Final
ensemble

model
F (X)

Optimize
θf1

Optimize
θf2

Optimize
θfM

Parameter
Transfer

Outlier
scoreX

f2 (X)

f1 (X)

fM (X)

Basic model CAE f1
at epoch 1

Basic model CAE f2
at epoch n+1

Basic model CAE fM
at epoch (M-1)*n+1

Final
ensemble

model
F (X)

Optimize
θf1

Optimize
θf2

Optimize
θfM

Parameter
Transfer

Outlier
scoresX

Unsupervised Hyperparameter Selection

Window size w Diversity λ Transfer rate β

Figure 8: CAE-Ensemble overview.

3.2.1 Basic Model Generation. Inspired by Born-again Neural Net-
works [13] (BANN) and AdaBoost Negative Correlation [47], we
iteratively generate basic models in the model training epochs. For
example, we may generate a basic model per 𝑛 training epochs. If
𝑛 = 10, when training an ensemble using 200 epochs, we can then
generate 20 basic models.

In the first epoch, we create the first basic model 𝑓1 (·), and we
start training this basic model using embedded time series X. We
then add the first basic model to the ensemble. After 𝑛 epochs, the
first basic model is partially trained. We continue to generate the
second basic model 𝑓2 (·) by transferring a portion of the parameters
learned in the first basic model to 𝑓2 (·). Then, we train the second
basic model. The training and basic model generation processes
continue until the last training epoch.

More specifically, given a basic model 𝑓𝑚−1 (·) with 𝜃 𝑓𝑚−1 trained
parameters obtained in the previous epochs, the newly generated
basic model 𝑓𝑚 (·) receives a randomly selected fraction 𝛽 of its
parameters from 𝑓𝑚−1 (·). Then, the remaining fraction 1 − 𝛽 of the
parameters must be trained in subsequent epochs. This approach
enables us to train a large number of ensemble components with
low training time. Figure 9 shows the process of generating new
basic models with parameter transfer.

βfm-1 (•) 1-β

Newly learnedfm (•)

1mf




Transfer

Figure 9: Basic model generation with parameter transfer.

Note that the proposed ensemble differs from a Snapshot Ensem-
ble [24], where the trained parameters are transferred completely
among the basic models.

3.2.2 Diversity Metric. Based on existing studies [2], an ensemble
benefits from consisting of diverse basic models. The more diverse
the basic models in an ensemble are, themore accurate the ensemble

616

often achieves. To quantify the diversity explicitly, we define a
diversity metric DIV 𝑓𝑚,𝑓𝑛 (·) to measure the dissimilarity between
two basic models 𝑓𝑚 (·) and 𝑓𝑛 (·).

DIV 𝑓𝑚,𝑓𝑛 (X) = | |𝑓𝑚 (X) − 𝑓𝑛 (X) | |2, (9)

Here, a larger DIV 𝑓𝑚,𝑓𝑛 (X) value indicates a larger difference be-
tween the outputs of basic models 𝑓𝑚 (·) and 𝑓𝑛 (·).

The design of diversity metric DIV 𝑓𝑚,𝑓𝑛 (·) is inspired by the
supervised diversity metric [55]. However, the supervised diver-
sity metric computes the softmax outputs of two basic models and
compares the outputs with ground-truth labels to quantify the di-
versity. In our unsupervised setting, we do not have ground truth
labels. Instead, we aim for different basic models with different
reconstructions, i.e., basic models with diverse outputs.

Next, we extend the diversity metric DIV 𝐹 (·) to measure the
diversity of an ensemble model 𝐹 (·) as follows.

DIV 𝐹 (X) =
2

𝑀 (𝑀 − 1)

𝑀∑
𝑚=1

𝑀∑
𝑛=𝑚+1

DIV 𝑓𝑚,𝑓𝑛 (X), (10)

where a large DIV 𝐹 (·) value indicates that ensemble model 𝐹 (·) is
more diverse.

3.2.3 Diversity-Driven Objective Function. Based on the proposed
diversity metric, we define the objective function for training each
basic model in the ensemble in two parts.

First, a basic model 𝑓𝑚 (·) should reconstruct the time series
accurately, which is the same as for all autoencoder models. Thus,
the objective function J𝑓𝑚 measures the difference between the
input embedded time series vectors and the reconstructed vectors.

J𝑓𝑚 = | |X − X̂| |22 = | |X − 𝑓𝑚 (X) | |22 (11)

Second, the basic model should increase the diversity of the
current ensemble. Thus, the objective function K𝑓𝑚 utilizing Equa-
tion 9, measures the diversity between the basic model 𝑓𝑚 (X) and
the current ensemble 𝐹 (X).

K𝑓𝑚 = | |𝑓𝑚 (X) − 𝐹 (X) | |22 (12)

Finally, the objective function O𝑓𝑚 for training the basic model
𝑓𝑚 (·) is defined as a combination of J𝑓𝑚 and K𝑓𝑚 .

argmin
𝜃 𝑓𝑚

L𝑓𝑚 = argmin
𝜃 𝑓𝑚

J𝑓𝑚 − 𝜆K𝑓𝑚 , (13)

where 𝜆 is a factor that controls the importance of the diversity,
and 𝜃 𝑓𝑚 represents the learnable parameters of model 𝑓𝑚 (·).

3.2.4 Ensemble Outlier Score. We aggregate the outlier scores from
all basic models to obtain the final outlier score. Given𝑀 basic mod-
els that reconstruct the embedded time series X = ⟨x1, x2, . . . , x𝑤⟩,
we obtain𝑀 reconstructions X̂(𝑚) = ⟨x̂(𝑚)1 , x̂(𝑚)2 , . . . , x̂(𝑚)𝑤 ⟩, where
1 ≤ 𝑚 ≤ 𝑀 . For each vector x𝑡 in the embedded time series X, we
obtain𝑀 reconstruction errors as follows.

⟨∥x𝑡 − x̂(1)𝑡 ∥
2
2 , ∥x𝑡 − x̂

(2)
𝑡 ∥

2
2 , . . . , ∥x𝑡 − x̂

(𝑀)
𝑡 ∥22⟩ (14)

We use the median of the 𝑀 errors as the final outlier score of
vector x𝑡 as follows.

𝑂𝑆 (x𝑡) = median
(
∥x𝑡 − x̂(1)𝑡 ∥

2
2 , . . . , ∥x𝑡 − x̂

(𝑀)
𝑡 ∥22

)
(15)

We use median(·) instead of mean(·) because median(·) reduces
the influence of the reconstruction errors from the basic models
that overfit to the original time series [27].

3.3 Unsupervised Hyperparameter Selection
Hyperparameter selection is an important step in deep learning. In
our setting, important hyperparmeters include, e.g., the window
size𝑤 , the parameter transfer percentage 𝛽 , and parameter 𝜆 that
controls the importance of the diversity in the loss function (cf.
Equation 13).

Hyperparameter selection is often conducted on a validation set
that is separated from the training set.We first train amodel, under a
specific hyperparameter setting, using the training set, and then we
use the model to obtain a quality score on the validation set. Since
the training and validation sets are independent, the quality score
indicates how good the model, under the specific hyperparameter
setting, would perform on unseen testing data. Based on the quality
scores for different hyperparameter settings, we then select the
hyperparameter setting that has the highest quality score.

The above strategy works well in supervised settings where
ground truth labels in the validation set can be used to compute
directly the quality scores, e.g., mean square errors or F1 scores.
However, in an unsupervised setting, this becomes nontrivial as no
ground truth labels are available.

Most existing studies for unsupervised outlier detection only
provide the hyperparameters used in experiments, with no specifi-
cation about how to select them. We summarize two strategies that
exist in the literature for unsupervised outlier detection, identifying
their limitation and propose a new strategy.

First, as there are no ground truth outlier labels available in the
validation set to guide the best hyperparameter, they randomly
select hyperparameters [7, 27]. However, if we are unlucky, we
may choose inadequate hyperparameters, conducting to reduced
accuracy.

Second, using small amounts of testing data for validation such
that the ground truth labels in the testing data enables the computa-
tion of the quality scores. However, this strategy is no longer fully
unsupervised—although the training is still unsupervised with no
ground truth outlier labels, the hyperparameter selection needs the
ground truth outlier labels [6].

We propose to use the reconstruction errors on the validation set
as quality scores. This is fully unsupervised, since computing the
reconstruction errors does not require ground truth labels. We may
choose the hyperparameters that give the lowest reconstruction
errors. However, we observe in our experiments that this strategy
often leads to sub-optimal outlier detection accuracy. When the
reconstruction errors are too small, the model may overfit to the
specifics in the training time series, including outliers, thus making
it difficult to distinguish outliers from regular patterns.

Our proposal uses the hyperparameters with the median recon-
struction error among all hyperparameter settings. Although this
strategy does not guarantee that the selected hyperparameters pro-
duce a model with the best accuracy on the testing data, it often
provides a good enough accuracy and often outperforms the model
using the hyperparameters with the lowest reconstruction errors,
as it is shown in experiments in Section 4.2.4.

617

We employ three important hyperparameters in the model, as
shown in Figure 8: the window size 𝑤 , the diversity factor 𝜆 (cf.
Equation 13) and the fraction of parameter transfer between ensem-
ble members 𝛽 (cf. Figure 9). The process is detailed in Algorithm 2.

Algorithm 2: Unsupervised Hyperparameter Selection
Input :A time series T
Output :Selected hyperparameter values

1 reconst [] ← ∅;
2 Ttraining, Tvalidation ← Split (T) ;
/* Finding default hyperparameter values using random

search. */

3 while Randomly Select (𝑤, 𝛽, 𝜆) from ([𝑤1,𝑤𝑎],

[𝛽1,𝛽𝑏], [𝜆1,𝜆𝑐]) do
4 Train CAE-Ensemble(Ttraining, 𝑤, 𝛽, 𝜆) ;
5 𝑟𝑒𝑐𝑜𝑛𝑠𝑡 [𝑤, 𝛽, 𝜆] ← CAE-Ensemble(Tvalidation) ;
6 (𝑤def , 𝛽def , 𝜆def) ← arg median(reconst) ;
/* Choosing the Optimal Hyperparameters. */

7 𝑤opt ← arg median𝑤∈[𝑤1,𝑤𝑎]ReconError (𝑤, 𝛽def , 𝜆def) ;
8 𝛽opt ← arg median𝛽∈[𝛽1,𝛽𝑏]ReconError (𝑤def , 𝛽, 𝜆def) ;
9 𝜆opt ← arg median𝜆∈[𝜆1,𝜆𝑐]ReconError (𝑤def , 𝛽def , 𝜆) ;

10 return (𝑤opt , 𝛽opt , 𝜆opt)

The dataset is first split into training and validation sets, both
without ground-truth labels. This ensures that the hyperparameter
selection remains unsupervised. Then we define a range for each
hyperparameter, i.e., [𝑤1,𝑤𝑎] for window size𝑤 . Next, we use ran-
dom search [3] to identify a specific hyperparameter combination
(𝑤def , 𝛽def , 𝜆def) with the median reconstruction error among all
hyperparameter combinations considered in the random search.
This triple is used as the default hyperparmeters. Here, we use ran-
dom search instead of grid search that requires enumeration of all
possible hyperparameter combinations, which is too costly. Finally,
we identify the optimal value for each hyperparameter. To do so, we
fix the other two hyperparameters to their default values and vary
the hyperparameter in its range. For example, when identifying
the optimal 𝑤 , we fix 𝛽 and 𝜆 to their default values, and vary 𝑤
in range [𝑤1,𝑤𝑎]. We then choose the𝑤opt that gives the median
reconstruction error as the optimal value for hyperparameter𝑤 .

4 EXPERIMENTS
We conduct extensive experiments to support the design choices
for CAE-Ensemble. We evaluate both accuracy the efficiency.

4.1 Experiment Setup
4.1.1 Data sources. We use five different multivariate public real-
world time series datasets, comprising settings from different do-
mains such as server metrics, health, and embedded systems moni-
toring. All datasets, except ECG, include a train and test sets, consid-
ering ground-truth labels indicating outliers only for testing. We do
not use the labels when training, just to calculate the accuracy. For
ECG, the same set is used for both steps, ignoring the labels during
training. For each data set, we reserve 30% of the training set as the
validation set to enable the selection of optimal hyperparameters
using the proposed median strategy.

• ECG1 is a two-dimensional time series related to electro-
cardiogram readings for seven patients. Each time series
contains 3,700-5,400 observations. The outlier ratio is 4.88%.
• SMD2 is a public dataset for server metrics consisting of
28 time series, where each has 38 dimensions. It contains
708,405 observations for training and 708,420 for testing. The
outlier ratio is 4.16%.
• MSL3 consists on telemetry data from the Mars Curiosity
Rover. It comprises 36 time series with 55 dimensions, con-
taining 58,317 observations for training and 73,729 for testing.
The outlier ratio is 9.17%.
• SMAP3 is a dataset from a Soil Moisture satellite consisting
on 69 time series with 25 different variables distributed in
ten subsets. In total, they consist on 138,004 training and
435,826 testing observations. The outlier ratio is 12.27%.
• WADI4 consists on two time series with 127 dimensions,
representing a water distribution system under normal oper-
ation (1,994,172 observations) and during intrusion attacks
(345,604 testing readings). The outlier ratio is 5.76% and it is
sampled every ten timestamps, given its extensive size.

4.1.2 Baselines. We compare the proposed CAE-Ensemble with
the following unsupervised outlier detection models.
• Isolation Forest (IS) [32]: An ensemble of randomized clus-
tering trees that isolates outliers in sparse clusters. We use
100 base estimators for the ensemble;
• Local Outlier Factor (LOF) [5]: A density clustering based
method that detects outliers according to local deviations
from neighbors. The number of neighbors is 20 and we use
Euclidean distance;
• One-Class SVM (SVM) [42]: A one-class classification method
that employs Support Vector Machines to learn the boundary
normal data points. We use a radial basis function (RBF)
kernel with 𝜈 = 0.5 [41];
• Moving Average Smoothing (MAS): A method where the val-
ues that deviates from a moving average window are likely
to be considered as outliers;
• Autoencoder Ensemble (AE-Ensemble) [7]: An ensemble that
consists of feed forward autoencoders with 20% of the con-
nections randomly removed (cf. Table 1 in Section 2);
• Recurrent Autoencoder (RAE) [35]: A recurrent autoencoder
using LSTM units to reconstruct time series via a sequence-
to-sequence architecture (cf. Table 1 in Section 2);
• Convolutional Autoencoder (CAE): The proposed convolu-
tional sequence-to-sequence autoencoder without using an
ensemble (cf. Section 3.1);
• Correlation Matrices Recurrent Autoencoder (MSCRED) [54]:
A state-of-the-art method for multivariate time series outlier
detection that uses an autoencoder to reconstruct correlation
matrices instead of using the time series directly. Matrices
have length 16 with 5 steps in-between;
• Variational Recurrent Autoencoder (RNNVAE) [43]: Themodel
establishes a stochastic latent component in the autoencoder

1https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
2https://github.com/NetManAIOps/OmniAnomaly/
3https://github.com/khundman/telemanom
4https://itrust.sutd.edu.sg/itrust-labs_datasets/

618

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://github.com/NetManAIOps/OmniAnomaly/
https://github.com/khundman/telemanom
https://itrust.sutd.edu.sg/itrust-labs_datasets/

for learning a distribution to improve the reconstruction
output. The hidden and stochastic spaces are 64 with a regu-
larization of 0.0001;
• Temporal Variational Autoencoder (OMNIANOMALY) [44]: The
method extends the previous variational modeling with an
additional component to capture temporal dependencies in
the context of stochastic variables. The hidden space is 32
with 16 stochastic variables and a regularization of 0.0001;
• Recurrent Autoencoder Ensembles (RAE-Ensemble) [27]: A
state-of-the-art recurrent autoencoder ensemble (cf. Table 1
in Section 2), where 20% of the skip connections are randomly
dropped.

4.1.3 Evaluation Metrics. We consider two categories of metrics.
All thresholds: We consider a setting where prior knowledge on
selecting a specific threshold is not provided. In this case, we use
twometrics that consider all possible thresholds [7, 27]—Area Under
the Curve of Precision-Recall (PR) and Area Under the Curve of
Receiver Operating Characteristic (ROC) [40]. Both metrics are
defined in terms of true positives (TP) (i.e., outliers predicted as
outliers), true negatives (TN) (i.e., inliers predicted as inliers), false
positives (FP) (i.e., inliers predicted as outliers), and false negatives
(FN) (i.e., outliers predicted as inliers). The difference between PR
and ROC is that PR disregards TN. The higher the PR and ROC are,
the more accurate a method is.
Specific thresholds:We consider a setting where a specific thresh-
old is chosen and we measure Precision, Recall, and F1 [40] with
the ground-truth outlier labels using the specific threshold. Higher
values are desired. Here, we consider two settings. First, we select
a threshold, among all possible thresholds, that gives the “best” F1,
i.e., the best possible threshold [44, 49]. We use this threshold to
report the best F1, along with the corresponding Precision and Recall.
Second, we consider a specific threshold that is decided by the prior
knowledge on the outlier ratio. In particular, if we know that a data
set has K% of outliers, we choose a threshold such that there are
K% of data whose ouliter scores are higher than the threshold.

4.1.4 Hyperparameters. The transfer 𝛽 and diversity 𝜆 parameters
(see Equation 13) are set according to the median strategy presented
in Section 3.3, evaluating the cases 𝛽 = 𝑖/10, 𝑖 ∈ [1, 9] and 𝜆 =

2𝑗 , 𝑗 ∈ [0, 6] for each data set. Then, each time series is divided
into windows of size𝑤 with𝑤 − 1 overlapped observations with
respect to the previous window. For each window, we consider
the reconstruction of the last observation in the window when
calculating the outlier scores, except in the case of the first window,
where all reconstructions are considered. The 𝑤 is also chosen
according to the median strategy, considering 𝑤 = 2𝑘 , 𝑘 ∈ [2, 8].
The selected hyperparameters for different data sets are shown
in Table 2. The details of hyperparameter selection are offered in
Sections 4.2.4 and 4.2.5.

Table 2: Selected hyperparameters, median strategy.

ECG MSL SMAP SMD WADI
𝛽 0.5 0.7 0.9 0.2 0.5
𝜆 2 16 2 32 1
𝑤 16 16 16 32 32

4.1.5 Implementation Details. We set the number of convolution
layers in CAE to 10 for both the encoder and the decoder, with the
kernel size for the convolution operator in all layers set to 3. The
dimension of embedded vector 𝐷 ′ is set to 256, and the batch sizes
to 64. By default we use 8 basic models, with a new basic model
for every 50 epochs. This setting ensures that a newly generated
basic model is learned from previously well-trained basic models.
We also vary the number of basic models in Section 4.2.6. We use
Adam [29], a Stochastic Gradient Descent variant, as the optimizer.
The learning rate is set to 0.001.

The experiments are run on a Ubuntu 18.04 server with a 10-
cores CPU Intel Xeon W-2155, 128GB RAM, and two GPU NVIDIA
TITAN RTXs. The code was written in Python 3.9.1 using PyTorch
1.7.1. The source code is publicly available at https://github.com/d-
gcc/CAE-Ensemble.

4.2 Experiment Results
4.2.1 Accuracy. We report the accuracy results for the five datasets,
respectively, as well as the average accuracy over all datasets. We
report all-threshold metrics PR and ROC and threshold-dependent
metrics Precision, Recall, and F1, when using the threshold that gives
the best F1. We use bold and underline to highlight the highest and
second highest values.

The results of ECG are shown in the first section of Table 3. The
neural network based methods outperform the non-neural network
based methods in almost all metrics. The relatively high Recall for
ISF comes with a price with low Precision, which means that many
instances that are not outliers are mistakenly considered as outliers.
On average, CAE-Ensemble achieves the best result for Precision,
F1, and PR with a competitive ROC case, showing a very good
performance overall in comparison to the baselines.

The results for SMD are shown in the middle of Table 3. where
CAE and CAE-Ensemble achieve higher accuracy on most of the
metrics, in particular, Precision, F1, and PR, demonstrating the model
functionality in server-related data sets. The high Recall inMSCRED
reflects the case detailed before, i.e., with the price of low Precision.

For MSL, in the last part of Table 3, and SMAP in the first part
of Table 4, our proposals show a great performance on the all-
threshold metrics PR and ROC and also on the threshold-dependent
metric F1 that represents a balance between Precision and Recall,
compared to all baselines. Then, for WADI, in the middle section
of Table 4, the proposed models also present a robust performance,
suggesting that the proposals also work in an application domain
of water distribution.

The last part of Table 4 summarizes the overall performance for
all the time series. The results show that our method outperforms all
the other baselines w.r.t. Precision, F1, PR, and ROC, suggesting that
CAE-Ensemble is a very competitive solution in terms of quality.
For the Recall metric, the better performance shown by MSCRED and
ISF come with very low Precision, making them not competitive
in real application scenarios. This occurs when such methods are
overly pessimistic and identify many observations as outliers, al-
though some observations are not outliers. This produces more true
positives at the cost of obtanining many false positives. This gives
high Recall but low Precision. In addition, CAE-Ensemble performs
not so well onWADI, where it has a very low Recall and thus low

619

https://github.com/d-gcc/CAE-Ensemble
https://github.com/d-gcc/CAE-Ensemble

Table 3: ECG, SMD, and MSL accuracy results.

Data set ECG SMD MSL
Model Precision Recall F1 PR ROC Precision Recall F1 PR ROC Precision Recall F1 PR ROC
ISF 0.0543 0.7199 0.0999 0.0501 0.5062 0.0880 0.4571 0.1079 0.0591 0.5066 0.1553 0.6512 0.1895 0.1085 0.5036
LOF 0.0539 0.6539 0.0962 0.0500 0.4912 0.2494 0.2571 0.1764 0.1203 0.5695 0.2463 0.5316 0.2358 0.1431 0.5268
MAS 0.0670 0.6276 0.1159 0.0578 0.5342 0.4720 0.4099 0.3716 0.3253 0.7520 0.2959 0.5537 0.2525 0.1595 0.5469
OCSVM 0.0825 0.4987 0.1309 0.0588 0.5342 0.3414 0.2944 0.2626 0.1927 0.5783 0.2847 0.5149 0.2616 0.1581 0.5629
MSCRED 0.1789 0.6651 0.2303 0.1055 0.5166 0.0631 0.7719 0.1100 0.0395 0.5000 0.1243 0.7747 0.1874 0.1166 0.5072
OMNIANOMALY 0.2220 0.4938 0.2042 0.1409 0.5584 0.2432 0.3328 0.2110 0.1503 0.6148 0.1936 0.6297 0.2414 0.1609 0.5429
RNNVAE 0.1768 0.4222 0.1439 0.0895 0.5500 0.4334 0.3194 0.3045 0.2406 0.6917 0.1641 0.5639 0.2125 0.1378 0.5335
AE-Ensemble 0.1583 0.5398 0.1907 0.1302 0.5952 0.3713 0.3709 0.2832 0.2349 0.6823 0.1775 0.6936 0.2424 0.1404 0.5360
RAE 0.1297 0.5394 0.1669 0.0936 0.5922 0.4466 0.3037 0.3078 0.2424 0.6836 0.2069 0.6091 0.2423 0.1503 0.5575
RAE-Ensemble 0.2003 0.5838 0.1864 0.1176 0.5372 0.4684 0.3318 0.3332 0.2639 0.6998 0.2085 0.5633 0.2495 0.1572 0.5714
CAE 0.1919 0.4574 0.1954 0.1297 0.5633 0.4625 0.3804 0.3895 0.3299 0.7416 0.2223 0.5273 0.2649 0.1641 0.5843
CAE-Ensemble 0.2522 0.4924 0.2521 0.1887 0.5715 0.4924 0.3739 0.3770 0.3246 0.7375 0.2501 0.5343 0.2713 0.1633 0.5963

Table 4: SMAP, WADI, and Overall accuracy results.

Data set SMAP WADI Overall
Model Precision Recall F1 PR ROC Precision Recall F1 PR ROC Precision Recall F1 PR ROC
ISF 0.1396 0.5298 0.1986 0.1300 0.4979 0.0667 0.4765 0.1170 0.0610 0.5248 0.1008 0.5669 0.1426 0.0818 0.5078
LOF 0.2261 0.5178 0.2027 0.1289 0.5005 0.0736 0.3155 0.1193 0.0702 0.5284 0.1698 0.4552 0.1661 0.1025 0.5233
MAS 0.2819 0.5174 0.2542 0.1655 0.5233 0.2586 0.1555 0.1942 0.1490 0.5788 0.2751 0.4528 0.2377 0.1714 0.5870
OCSVM 0.2561 0.5722 0.2302 0.1461 0.4924 0.0980 0.2955 0.1472 0.1192 0.5754 0.2125 0.4351 0.2065 0.1350 0.5487
MSCRED 0.1266 0.8199 0.1914 0.1028 0.4403 0.1382 0.8590 0.2377 0.0993 0.6730 0.1262 0.7781 0.1913 0.0927 0.5274
OMNIANOMALY 0.2307 0.6222 0.2681 0.1556 0.5402 0.2996 0.3976 0.3404 0.1723 0.7261 0.2378 0.4952 0.2530 0.1560 0.5965
RNNVAE 0.1622 0.5646 0.1971 0.1192 0.5119 0.2881 0.3147 0.2867 0.1734 0.5739 0.2449 0.4370 0.2289 0.1521 0.5722
AE-Ensemble 0.3134 0.5895 0.2939 0.1780 0.5496 0.1619 0.2398 0.1928 0.0911 0.5102 0.2404 0.4727 0.2379 0.1498 0.6078
RAE 0.2071 0.6316 0.2381 0.1476 0.5390 0.2118 0.2799 0.2342 0.1150 0.6667 0.2365 0.4867 0.2406 0.1549 0.5747
RAE-Ensemble 0.2603 0.6604 0.2529 0.1628 0.5716 0.2999 0.2535 0.2707 0.1580 0.6516 0.2875 0.4786 0.2585 0.1719 0.6063
CAE 0.3175 0.5912 0.3170 0.2135 0.5892 0.2350 0.3019 0.2004 0.1243 0.5994 0.2858 0.4516 0.2735 0.1923 0.6156
CAE-Ensemble 0.3387 0.6187 0.3327 0.2223 0.6080 0.5006 0.1995 0.2853 0.1911 0.6023 0.3668 0.4438 0.3037 0.2180 0.6231

F1 and ROC. This is due to how the ground-truth is provided in the
data set—the ground-truth marks all observations in long intervals
as outliers, whereas only a few observations in the middle of the
long intervals are real outliers. Although CAE-Ensemble is often
able to detect the real outliers, it still has a low recall.

Due to the space limitation, in the following experiments, we
only report results on two data sets, ECG and SMAP, as other data
sets show similar results.

4.2.2 Outlier Score Threshold Sensitivity. To characterize the met-
rics related to specific thresholds, in Figure 10, we show their evolu-
tion as we select the top 𝐾 percentage of the largest outlier scores
as the threshold and consider the observations which have larger
outlier scores as outliers.

For ECG, Figure 10(a) shows convergence at𝐾 = 5 percent, which
is close to the actual outlier ratio (i.e., 4.88% cf. Section 4.1.1). SMAP
includes multiple subsets whose outlier ratios differ significantly,
ranging from 0.8% to 21.9%. Figure 10(b) shows a representative
subset from SMAP with an outlier ratio of 12%, which is close to
the average outlier ratio of SMAP (cf. Section 4.1.1).

Both figures suggest that when the outlier ratio is available,
choosing it as the 𝐾 percentage is a good choice.

4.2.3 Ablation Study. To evaluate our design choices, we study
the effect of each module of CAE-Ensemble by removing model

0 5 10

0.1

0.2

0.3

0.4

K Percent

Precision@𝐾 Recall@𝐾 F1@𝐾

(a) ECG

10 15 20
0.15

0.2

0.25

0.3

K Percent

(b) SMAP

Figure 10: Outlier score threshold sensitivity with top 𝐾%
largest outlier scores.

components. Specifically, we (1) remove the attention module (No
attention); (2) remove the parameter transfer learning and without
using the diversity metric on the objective function in the ensemble
such that all basic models are trained independently (No diversity);
(3) disregard the ensemble, i.e., using a single basic model CAE (No
ensemble), and (4) remove the re-scaling in the pre-processing step
and use the raw time series directly (No re-scaling).

620

Table 5: Ablation study, ECG and SMAP.

Precision Recall F1 PR ROC

EC
G

No attention 0.1440 0.4809 0.1840 0.1037 0.5606
No diversity 0.1683 0.4714 0.1819 0.1244 0.5939
No ensemble 0.1919 0.4574 0.1954 0.1297 0.5633
No re-scaling 0.1806 0.4819 0.1741 0.1130 0.5379
CAE-Ensemble 0.2522 0.4924 0.2521 0.1887 0.5715

SM
A
P

No attention 0.3290 0.5763 0.3049 0.1957 0.5605
No diversity 0.3241 0.5841 0.3210 0.2186 0.5832
No ensemble 0.3175 0.5912 0.3170 0.2135 0.5892
No re-scaling 0.3252 0.5689 0.2872 0.1938 0.5666
CAE-Ensemble 0.3387 0.6187 0.3327 0.2223 0.6080

Table 5 shows that the model with all components achieves the
best results on almost all metrics. The only exception is the ROC
metric for ECG when no diversity is considered. The diversity may
introduce a few noisy false positives at some thresholds, which
adversely affects the average performance.

We evaluate the diversity metric using Equation 10 for the two
ensemble models in Table 6. A higher value indicates an ensemble
has more diverse basic models, which is more desirable [2]. As
expected, the full CAE-Ensemble model that considers diversity
in the loss function achieves higher diversity. In contrast, for No
Diversity ensemble, the basic models are trained independently
using different random seeds to initialize their model parameters,
which still results in different, but less diverse, basic models.

Table 6: Quantifying the diversity.

ECG SMAP
No Diversity 57.0118 16.3409
CAE-Ensemble 94.7425 52.0796

4.2.4 Hyperparameters Selection for 𝛽 and 𝜆. Figure 11 shows the 𝛽
and 𝜆 parameter choices for the ECG and SMAP datasets according
to the median reconstruction error strategy. Here, we consider
metrics PR and ROC to evaluate the accuracy of the outlier detection.
Note that computing PR and ROC requires ground-truth outlier
labels, which are unavailable during validation.

The results in Figure 11 are ordered by the associated reconstruc-
tion errors. Then, the median reconstruction error is marked by
the dashed vertical line in the middle of each figure. The numbers
along the PR curve show specific values for the considered hyper-
parameter. For example, in Figure 11(a), when 𝛽 = 0.3 (underlined),
its corresponding reconstruction error is 0.03, the corresponding
PR is a bit more than 0.17, and the corresponding ROC is below
0.57.

Figure 11 shows that the median strategy achieves good enough
PR and ROC, although the selected 𝛽 and 𝜆 are not the optimal
values that give the highest PR or ROC. Compared to the strategy
that selects the values with the smallest reconstruction errors, the
median strategy often achieves higher PR and ROC.

More specifically, the results for 𝛽 in Figures 11(a) and 11(c)
are relatively unstable, showing sudden changes mainly for ECG.
However, the median case is balanced between the best and worst
cases, suggesting that it is a robust strategy. The 𝜆 parameter, in

Figures 11(b) and 11(d), seems to have a trend, where the better
results are achieved just before the median validation error. That
observation can be useful for defining enhanced criteria using the
validation errors for selecting 𝜆. Again, the median strategy is a
robust and good enough strategy.

0.03 0.08 0.11

0.2

0.4

0.6

0.7
0.30.80.1

0.50.40.90.60.2

Reconstruction errors

ROC PR

(a) 𝛽 , ECG

0.07 0.10 0.14

0.2

0.4

0.6

4 1 64 2 32 8 16

Reconstruction errors

(b) 𝜆, ECG

469 507 709

0.2

0.4

0.6

0.4
0.2 0.7

0.3 0.9 0.6 0.1 0.8
0.5

Reconstruction errors

(c) 𝛽 , SMAP

439 492 514

0.2

0.4

0.6

8 4 16 2 32 64 1

Reconstruction errors

(d) 𝜆, SMAP

Figure 11: Hyperparameters selection—the numbers over
the PR curve are candidate values for 𝛽 and 𝜆.

4.2.5 Hyperparameters Selection for Window Size𝑤 . We examine
the effect of different window sizes. The results are shown in Fig-
ure 12, where we notice that the window size𝑤 , using the median
strategy is not the best, since other configurations exist with higher
PR and ROC values. Even so, the median strategy is reliable since
the results are balanced among all the evaluated cases.

0.07 0.5 4.38

0.2

0.4

0.6

4 8
32 16 64

128256

Reconstruction errors

ROC PR

(a) ECG

409 487 635

0.2

0.4

0.6

4 32 128 16 64
8
256

Reconstruction errors

(b) SMAP

Figure 12: Hyperparameter selection—the numbers over the
PR curve are candidate values for window size𝑤 .

621

1 10 20

0.2

0.4

0.6

of Basic Models

ROC PR

(a) ECG

1 10 20

0.2

0.4

0.6

of Basic Models

(b) SMAP

Figure 13: Effect of the number of basic models.

4.2.6 Effect of the number of Basic Models. Figure 13 shows the
performance for PR, and ROC as the number of basic models in
the ensemble grows during training. For both datasets, there is an
increasing performance as we include more basic models. For ECG,
the results for PR are steadier and clearer as the number of basic
models is greater. Then, for ROC, the metric shows a positive trend,
but it is more unstable, as there are sudden changes between cases.
For SMAP, the results are similar as the number of basic models is
growing, with a clear and stable trend in PR with some fluctuations
in ROC. This suggests that more basic models often help improve
outlier detection accuracy, while training more basic models also
needs more time.

4.2.7 Run Time. In Table 7, we report the training time of RAE,
CAE, RAE-Ensemble, and CAE-Ensemble on five datasets, with eight
basic models for each case. The ensemble models take longer time
than their corresponding basic models, which is expected. However,
CAE-Ensemble is much faster than RAE-Ensemble. For example, in
cases such as SMD, the training for CAE-Ensemble finishes in a
quarter of the time required for RAE-Ensemble. The results suggest
that CAE-Ensemble is very efficient in comparison to the recurrent
autoencoder. Also, the runtime ratio of RAE-Ensemble and RAE is
on average 7.82, while the ratio between the CAE-Ensemble and CAE
is 5.91, indicating that the parameter transfer in the CAE-Ensemble
is effective reducing the training time. Thus, the convolution au-
toencoder and the parameter transfer are effective and succeed in
reducing the running time in comparison to the recurrent model.

In the online phase, it takes around 50 microseconds to process
a window of observations, making CAE and CAE-Ensemble possible
to support real time outlier detection on streaming data.

Table 7: Training Time Comparison (in minutes).

Model ECG MSL SMAP SMD WADI
RAE 7.84 16.63 32.19 246.43 72.32
RAE-Ensemble 59.66 129.99 254.83 1959.13 566.89
Ratio 7.60 7.82 7.92 7.95 7.84
CAE 4.16 7.65 20.36 74.34 22.37
CAE-Ensemble 24.05 45.45 122.13 452.06 129.58
Ratio 5.78 5.94 6.00 6.08 5.79

5 RELATEDWORK
Outlier Detection in Time Series. Several traditional methods
exist [16] that rely mainly on parametric methodologies to detect
outliers and further to repair outliers [53]. Thus, they generally
achieve good results given proper refinement and tuning according
to specific guidelines [30, 56]. Some studies [45, 52] focus on im-
proving the efficiency of distance based outlier detection methods
to better support streaming data settings. CAE-Ensemble is also able
to support streaming settings since the training is performed offline.
Other studies exist that target semi-supervised [19] and supervised
settings [25], which require ground-truth labels. In contrast, we
study unsupervised outlier detection. Deep learning based methods
are summarized in Table 1.
Sequence-to-sequence (seq2seq) Processing. Seq2seq model-
ing is introduced to model sequences, which is intrinsically se-
quential. Recurrent seq2seq architectures [10, 22, 23, 35, 51] require
expensive recursions. A convolutional architecture [14] makes it
possible to take advantage of parallel execution. Our framework
differs from other seq2seq models by focusing on the unsupervised
time series outlier detection problem using the convolution process.
To the best of our knowledge, our study is the first attempt to apply
seq2seq convolution in unsupervised time series outlier detection.
Ensemble Learning. Ensembles are used in a broad range of
applications, generally covering supervised settings such as classi-
fication and regression [36]. Although several ensemble methods
exist, such as bagging [4], boosting [12], and stacking [48], these
methods all depend on labeled data to aggregate basic models. As a
result, it is not trivial to apply these methods for unsupervised out-
lier detection. Existing unsupervised ensemble studies [7, 27] form
an ensemble by creating a large quantity of basic models with ran-
dom architectures. However, these methods is sub-optimal because
the obtained basic models can be strongly alike thus limiting the
diversity. A recent study [55] proposes EDGE, a solution to this prob-
lem using a diversity measure among basic models, which inspires
our work. However, EDGE targets a supervised setting that differs
substantially from our setting of unsupervised outlier detection. In
addition, EDGE does not work for sequential data.

6 CONCLUSION AND FUTUREWORK
We propose a diversity-driven ensemble model built on convolu-
tional sequence-to-sequence autoencoders for unsupervised outlier
detection in time series data, along with an unsupervised hyper-
parameter selection method. An extensive empirical study offers
evidence that the proposal is capable of improving both accuracy
and efficiency compared to existing autoencoder based methods.

In future work, it is of interest to enable unsupervised time
series cleaning by repairing detected outliers. It is also of interest
to study more advanced unsupervised hyperparameter selection,
e.g., exploring the relationships between the outlier ratio and the
diversity metric.

ACKNOWLEDGMENTS
This work was partially supported by Independent Research Fund
Denmark under agreements 8022-00246B and 8048-00038B, the
VILLUM FONDEN under agreement 34328, Huawei Cloud Database
Innovation Lab, and the Innovation Fund Denmark centre, DIREC.

622

REFERENCES
[1] Charu C. Aggarwal. 2013. Outlier Analysis.
[2] Charu C. Aggarwal and Saket Sathe. 2017. Outlier Ensembles - An Introduction.
[3] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter

Optimization. J. Mach. Learn. Res. 13 (2012), 281–305.
[4] Leo Breiman. 1996. Bagging Predictors. Mach. Learn. 24, 2 (1996), 123–140.
[5] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000.

LOF: Identifying Density-Based Local Outliers. In SIGMOD. 93–104.
[6] Hakan Cevikalp, Burak Benligiray, and Omer Nezih Gerek. 2020. Semi-supervised

Robust Deep Neural Networks for Multi-label Image Classification. Pattern Recog-
nition 100 (2020), 107164.

[7] Jinghui Chen, Saket Sathe, Charu C. Aggarwal, and Deepak S. Turaga. 2017.
Outlier Detection with Autoencoder Ensembles. In SDM. 90–98.

[8] Razvan-Gabriel Cirstea, Darius-Valer Micu, Gabriel-Marcel Muresan, Chenjuan
Guo, and Bin Yang. 2018. Correlated Time Series Forecasting using Multi-Task
Deep Neural Networks. In CIKM. 1527–1530.

[9] Razvan-Gabriel Cirstea, Tung Kieu, Chenjuan Guo, Bin Yang, and Sinno Jialin
Pan. 2021. EnhanceNet: Plugin Neural Networks for Enhancing Correlated Time
Series Forecasting.. In ICDE. 1739–1750.

[10] Razvan-Gabriel Cirstea, Bin Yang, and Chenjuan Guo. 2019. Graph Atten-
tion Recurrent Neural Networks for Correlated Time Series Forecasting.. In
MileTS19@KDD.

[11] Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2017. Language
Modeling with Gated Convolutional Networks. In ICML. 933–941.

[12] Yoav Freund and Robert E. Schapire. 1997. A Decision-Theoretic Generalization
of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 55, 1
(1997), 119–139.

[13] Tommaso Furlanello, Zachary Chase Lipton, Michael Tschannen, Laurent Itti, and
Anima Anandkumar. 2018. Born-Again Neural Networks. In ICML. 1602–1611.

[14] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin.
2017. Convolutional Sequence to Sequence Learning. In ICML. 1243–1252.

[15] ChenjuanGuo, Bin Yang, Jilin Hu, Christian S. Jensen, and Lu Chen. 2020. Context-
aware, preference-based vehicle routing. VLDB J. 29, 5 (2020), 1149–1170.

[16] Manish Gupta, Jing Gao, Charu C. Aggarwal, and Jiawei Han. 2014. Outlier
Detection for Temporal Data: A Survey. IEEE Trans. Knowl. Data Eng. 26, 9 (2014),
2250–2267.

[17] Simon Hawkins, Hongxing He, Graham J. Williams, and Rohan A. Baxter. 2002.
Outlier Detection Using Replicator Neural Networks. In DAWAK. 170–180.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR. 770–778.

[19] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and Dawn Song. 2019. Using
Self-Supervised Learning Can Improve Model Robustness and Uncertainty. In
NIPS. 15637–15648.

[20] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780.

[21] Jilin Hu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2018. Risk-aware
path selection with time-varying, uncertain travel costs: a time series approach.
VLDB J. 27, 2 (2018), 179–200.

[22] Jilin Hu, Bin Yang, Chenjuan Guo, Christian S. Jensen, and Hui Xiong. 2020.
Stochastic Origin-Destination Matrix Forecasting Using Dual-Stage Graph Con-
volutional, Recurrent Neural Networks. In ICDE. 1417–1428.

[23] Renjun Hu, Charu C. Aggarwal, Shuai Ma, and Jinpeng Huai. 2016. An embedding
approach to anomaly detection. In ICDE. 385–396.

[24] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q.
Weinberger. 2017. Snapshot Ensembles: Train 1, Get M for Free. In ICLR. pp. 14.

[25] Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and
Tom Söderström. 2018. Detecting Spacecraft Anomalies Using LSTMs and Non-
parametric Dynamic Thresholding. In SIGKDD. 387–395.

[26] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2018. Distinguish-
ing Trajectories from Different Drivers using Incompletely Labeled Trajectories.
In CIKM. 863–872.

[27] Tung Kieu, Bin Yang, Chenjuan Guo, and Christian S. Jensen. 2019. Outlier
Detection for Time Series with Recurrent Autoencoder Ensembles. In IJCAI.
2725–2732.

[28] Tung Kieu, Bin Yang, and Christian S. Jensen. 2018. Outlier Detection for Multi-
dimensional Time Series Using Deep Neural Networks. In MDM. 125–134.

[29] Diederik P. Kingma and Jimmy Ba. 2015. Adam: a Method for Stochastic Opti-
mization. In ICLR. pp. 15.

[30] Kim-Hung Le and Paolo Papotti. 2020. User-driven Error Detection for Time
Series with Events. In ICDE. 745–757.

[31] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.

[32] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation Forest. In ICDM.
413–422.

[33] Huiping Liu, Cheqing Jin, Bin Yang, and Aoying Zhou. 2018. Finding Top-k
Optimal Sequenced Routes. In ICDE. 569–580.

[34] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective Ap-
proaches to Attention-based Neural Machine Translation. In EMNLP. 1412–1421.

[35] Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet
Agarwal, and Gautam M. Shroff. 2016. LSTM-based Encoder-Decoder for Multi-
sensor Anomaly Detection. In ICML Anomaly Detection Workshop. 5.

[36] Oleg Okun, Giorgio Valentini, and Matteo Ré (Eds.). 2011. Ensembles in Machine
Learning Applications. Studies in Computational Intelligence, Vol. 373.

[37] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Anytime
Stochastic Routing with Hybrid Learning. Proc. VLDB Endow. 13, 9 (2020), 1555–
1567.

[38] Simon Aagaard Pedersen, Bin Yang, and Christian S. Jensen. 2020. Fast stochastic
routing under time-varying uncertainty. VLDB J. 29, 4 (2020), 819–839.

[39] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly Detection Using Autoencoders
with Nonlinear Dimensionality Reduction. In MLSDA. 4–11.

[40] Claude Sammut and Geoffrey I. Webb (Eds.). 2017. Encyclopedia of Machine
Learning and Data Mining.

[41] Bernhard Schölkopf, Alexander J. Smola, Robert C. Williamson, and Peter L.
Bartlett. 2000. New Support Vector Algorithms. Neural Comput. 12, 5 (2000),
1207–1245.

[42] Bernhard Schölkopf, Robert C. Williamson, Alexander J. Smola, John Shawe-
Taylor, and John C. Platt. 1999. Support Vector Method for Novelty Detection. In
NIPS. 582–588.

[43] Maximilian Soelch, Justin Bayer, Marvin Ludersdorfer, and Patrick van der Smagt.
2016. Variational Inference for On-line Anomaly Detection in High-Dimensional
Time Series. CoRR abs/1602.07109 (2016), 4.

[44] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust
Anomaly Detection for Multivariate Time Series through Stochastic Recurrent
Neural Network. In SIGKDD. 2828–2837.

[45] Luan Tran, Minyoung Mun, and Cyrus Shahabi. 2020. Real-Time Distance-Based
Outlier Detection in Data Streams. Proc. VLDB Endow. 14, 2 (2020), 141–153.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NIPS. 5998–6008.

[47] Shuo Wang, Huanhuan Chen, and Xin Yao. 2010. Negative correlation learning
for classification ensembles. In IJCNN. 1–8.

[48] David H. Wolpert. 1992. Stacked generalization. Neural Networks 5, 2 (1992),
241–259.

[49] Haowen Xu, Wenxiao Chen, Nengwen Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, Ying
Liu, Youjian Zhao, Dan Pei, Yang Feng, Jie Chen, Zhaogang Wang, and Honglin
Qiao. 2018. Unsupervised Anomaly Detection via Variational Auto-Encoder for
Seasonal KPIs in Web Applications. In WWW. 187–196.

[50] Sean Bin Yang, Chenjuan Guo, Jilin Hu, Jian Tang, and Bin Yang. 2021. Unsu-
pervised Path Representation Learning with Curriculum Negative Sampling. In
IJCAI. 3286–3292.

[51] Sean Bin Yang, Chenjuan Guo, and Bin Yang. 2020. Context-Aware Path Ranking
in Road Networks. IEEE Trans. Knowl. Data Eng. (2020).

[52] Susik Yoon, Jae-Gil Lee, and Byung Suk Lee. 2019. NETS: Extremely Fast Outlier
Detection from a Data Stream via Set-Based Processing. Proc. VLDB Endow. 12,
11 (2019), 1303–1315.

[53] Aoqian Zhang, Shaoxu Song, Jianmin Wang, and Philip S. Yu. 2017. Time Series
Data Cleaning: From Anomaly Detection to Anomaly Repairing. Proc. VLDB
Endow. 10, 10 (2017), 1046–1057.

[54] Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu,
Wei Cheng, Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V. Chawla. 2019. A
Deep Neural Network for Unsupervised Anomaly Detection and Diagnosis in
Multivariate Time Series Data. In AAAI. 1409–1416.

[55] Wentao Zhang, Jiawei Jiang, Yingxia Shao, and Bin Cui. 2020. Efficient Diversity-
Driven Ensemble for Deep Neural Networks. In ICDE. 73–84.

[56] Xuyun Zhang, Wan-Chun Dou, Qiang He, Rui Zhou, Christopher Leckie, Kotagiri
Ramamohanarao, and Zoran A. Salcic. 2017. LSHiForest: A Generic Framework
for Fast Tree Isolation Based Ensemble Anomaly Analysis. In ICDE. 983–994.

623

