
On Detecting Cherry-picked Generalizations
Yin Lin

University of Michigan
irenelin@umich.edu

Brit Youngmann
Tel Aviv University
brity@cs.tau.ac.il

Yuval Moskovitch
University of Michigan
yuvalm@umich.edu

H. V. Jagadish
University of Michigan

jag@umich.edu

Tova Milo
Tel Aviv University
milo@cs.tau.ac.il

ABSTRACT
Generalizing from detailed data to statements in a broader context is
often critical for users to make sense of large data sets. Correspond-
ingly, poorly constructed generalizations might convey misleading
information even if the statements are technically supported by
the data. For example, a cherry-picked level of aggregation could
obscure substantial sub-groups that oppose the generalization. We
present a framework for detecting and explaining cherry-picked
generalizations by refining aggregate queries. We present a scoring
method to indicate the appropriateness of the generalizations. We
design efficient algorithms for score computation. For providing
a better understanding of the resulting score, we also formulate
practical explanation tasks to disclose significant counterexamples
and provide better alternatives to the statement. We conduct ex-
periments using real-world data sets and examples to show the
effectiveness of our proposed evaluation metric and the efficiency
of our algorithmic framework.

PVLDB Reference Format:
Yin Lin, Brit Youngmann, Yuval Moskovitch, H. V. Jagadish, Tova Milo. On
Detecting Cherry-picked Generalizations. PVLDB, 15(1): 59-71, 2022.
doi:10.14778/3485450.3485457

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/niceIrene/Cherry-picked-Generalizations.

1 INTRODUCTION
Given a large data set, we make sense of it through aggregate state-
ments based on the data. We refer to these aggregate statements
as generalizations. For example, given a data set of people with
height and gender, we may arrive at a generalization that, on av-
erage, men are taller than women. Of course we know there are
many exceptions – in pairwise individual comparisons, we will
find many women taller than men. (We may also worry about the
database treating gender as binary and static). Nevertheless, the
generalization may still be a “reasonable” conclusion of the data.

The natural question then is to determine when a generalization
is reasonable? So-called “hasty generalization” has been identified

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 1 ISSN 2150-8097.
doi:10.14778/3485450.3485457

as a common mistake made by many [34]. Even worse, people may
cherry-pick their generalization to create a false impression.

Example 1.1. (March 4, 2020, Bernie Sanders) [4] “If you look
at California, if you look at people of color in general, {African-
Americans, Latinos, Asian-Americans,} we won that big time. Big
time. Not even close.” Democratic presidential candidate Sanders an-
nounced a big victory with people of color at a news conference. While
this statement is technically correct, it suggests that he won among
African-Americans, Latinos, Asian-Americans, etc., even if he hadn’t
explicitly named these sub-groups in the curly braces above. He in-
cludes African-Americans, which sub-group he lost to Joe Bidden by
20 points, in his claim about winning “people-of-color”.

Since African-Americans are a substantial sub-group among
“people-of-color” in the U.S., we would expect a more balanced and
informative statement to be that Sanders beat Biden among people
of color in California, except African-Americans. On the other
hand, suppose there was a small ethnic minority called “Purple-
Americans”, with only ten members in California. Even if Sanders
had lost to Biden in this sub-group, we would care less if this
exception was not mentioned in the generalization because of its
minuscule size.

Errors in generalizing from the data occur not only as “spin”
in the context of politically charged issues: they can even occur
in “objective” arenas like science and medicine. For instance, doc-
tors have over-diagnosed ADD and ADHD for years after making
generalizations to age, sex, the maturity of the children [2].

Even if we base the generalized conclusion on aggregation over
the entire data set, we could still fail to reach an appropriate repre-
sentation of the situation, as is shown in the next example.

Example 1.2. (IMDB) [23] According to IMDB, the television series
Sex and the City is less popular than The O.C and Gossip Girl,
which are all television series that came out in 2000 − 2010, with
ratings of 7.1, 7.5, and 7.4, resp. This is surprising considering the
popularity of Sex and the City. An explanation is that Sex and the
City is particularly appealing to women.When considering the ratings
provided solely by female raters, indeed, Sex and the City receives a
rating of 8, compared with the The O.C and Gossip Girl, which get
the ratings of 7.5 and 7.7, resp. However, male raters, give Sex and
the City an average rating of 5.8. For most shows there may not be
a significant difference between scores from men and women. When
there is a large difference, as in this case, it may be essential to include
that in the generalization produced. Without this, users are likely to
have trouble interpreting the ratings appropriately.

In the example above, the two sub-groups, male and female
raters, had different opinions about a particular TV series. In light
of these differences, a generalization over the sub-groups obscures

59

https://doi.org/10.14778/3485450.3485457
https://github.com/niceIrene/Cherry-picked-Generalizations
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3485450.3485457
https://www.acm.org/publications/policies/artifact-review-badging#available

Table 1: Table of notations.

Symbol Description

𝑓𝑄 (T) The statement derived by partition query 𝑄
𝑄 𝑓 (T) Groups that are relevant to statement 𝑓𝑄 (T)

A𝑔𝑟𝑝 ,A𝑝𝑟𝑒𝑑 Partition attributes for drill-down and slicing
𝑟 Refinement expression given by A𝑟 ⊆ A𝑝𝑟𝑒𝑑

𝐴 Attribute set 𝐴 ⊆ A𝑔𝑟𝑝 as group-by predicate
𝑄𝑟
𝐴

Refinement query with predicates 𝑟 and 𝐴

the real underlying data and is therefore inappropriate. Another
interesting application of generalization evaluation is the detection
of the Simpson’s paradox, which is a phenomenon that a trend of
the whole population reverses within the sub-populations [9].

To determine whether a generalization is reasonable, one pos-
sibility is to consider how much support it has, evaluated as the
proportion of pairwise individual comparisons supporting or op-
posing the statement. However, considering individual pairs may
not give a meaningful explanation for the support, or lack thereof.
A more natural way is to examine the refined sub-group compar-
isons and consider the size of the sub-groups as the weight to the
support. Given generalizations derived from aggregate queries, we
refine the queries using conjunctions of predicates to explore the
responsible sub-groups as shreds of evidence for the support. In this
way, an explanation for a low score would be a set of non-negligible
sub-groups of the population opposing the given statement.

While a rich vein of research [17, 24–27, 36, 37] has been devoted
to computational fact-checking aiming to evaluate the quality and
correctness of statements based on structured data, most of them
formulate the correctness of the statement based on the dataset
query results. See relatedwork (Section 6) for a brief summary. How-
ever, simply modeling the appropriateness of the generalization
level via a single aggregate query or the perturbation of parame-
terized queries is not enough. As indicated in previous examples,
misleading conclusions could still be derived if we only look at the
aggregate results given by a single query. The evidence (opposing
sub-groups) might depend on arbitrary combinations of predicates
to validate such cherry-picked generalizations. We next outline our
main contributions.

Statement scoring model (Section 2). We propose a model to quan-
tify the quality of generalizations derived by aggregate queries. We
refine the entities in the statements into sub-groups, through the
notion of refinement queries. Then, using the refinement queries,
we evaluate the data portion supporting/opposing the statement.
Intuitively, the score of a statement reflects the degree to which the
aggregation result represents the underlying data.

Efficient score evaluation (Section 3). The set of possible sub-
groups (and the corresponding refinement queries) could be ex-
ponential with the number of attributes. Thus, a naive approach
of enumerating all such queries to compute the statement score is
inefficient. We propose an algorithm for efficient score computation
that allows for the reuse of computational results, which is based on
a hierarchy over refinement queries and a dedicated data structure.

Score explanation and statement refinement (Section 4). To provide
the user a better understanding of the resulting score, we introduce
the problem of providing counterexamples, i.e., disclosing signifi-
cant parts of the data opposing the statement. We further discuss

Table 2: Example data set.

Res ID Gender Age Aged Over 35 Role Salary
1 Male 25 - 34 years old No Developer 94K
2 Male 25 - 34 years old No DB Admin 11K
3 Female 25 - 34 years old No Developer 86K
4 Female 18 - 24 years old No Designer 19K
5 Male 35 - 44 years old Yes Developer 13K
6 Male 45 - 54 years old Yes DB Admin 18K
7 Female 35 - 44 years old Yes Developer 14K
8 Female 35 - 44 years old Yes Designer 40K

the problem of refining the statement to obtain alternatives that
better represent the data. We present extensions to our score com-
putation algorithm for identifying counterexamples and statement
refinement utilizing an inverted index structure.

2 MODEL
We start by presenting our model for statements and the score using
the notations of partition queries and query refinement. We demon-
strate the ideas using the following running example. For simplicity,
we consider a single table dataset. However, as we discuss in Sec-
tion 7, our framework is also adaptable to more general scenarios.
For convenience, we summarize the core symbols in Table 1.

Example 2.1. (Ageism in Tech) Age discrimination towards people
over 35 in the IT industry is a growing issue that has attracted much
attention. Developers over 35 may feel over the hill when working in
the tech industry [1]. We consider a projection of the Stack Overflow
dataset, containing answers of users to the Stack Overflow developers
survey, presented in Table 2. For simplicity, we consider only the
Gender, Age (discretized), Role, and Salary attributes and construct an
Aged Over 35 attribute to indicate the age group of each respondent.
The aggregation over the example dataset suggests that respondents
under 35 earn more on average compared with respondents over 35.
However, this might not be an appropriate representation of the data
because, as shown next, this statement might hold differently for
people in different roles. We provide a detailed analysis in Section 5.1.

2.1 Statements
We consider statements derived by aggregate value comparisons.
We start by defining partition queries.

Definition 2.1 (PartitionQuery). Let T be a table with a set of
𝑛 attributes TA = {𝐴1, . . . , 𝐴𝑛}. A partition query 𝑄 is a GROUPBY
aggregate query of the form

SELECT attr, agg(target)
FROM T
WHERE cond
GROUP BY attr

Where attr⊆ TA , target ∈ TA , and cond contains the WHERE
clause conditions for 𝐴𝑖 ∈ TA .

We denote by 𝑄.𝑐𝑜𝑛𝑑 and 𝑄.𝑎𝑡𝑡𝑟 the attribute sets in the cond
expression and attr resp. , and 𝑄 (T) to denote the query result.

Example 2.2. Consider the dataset in Table 2. The following query
is an example of a partition query 𝑄 .

SELECT Aged_over_35, avg(Salary)

FROM T
GROUP BY Aged_over_35

Here,𝑄.𝑐𝑜𝑛𝑑 = ∅ (as no WHERE clause), and𝑄.𝑎𝑡𝑡𝑟 = {Aged_over_35}.

60

We assume an arbitrary order over the tuples in 𝑄 (T) and use
𝑔𝑖 to refer the 𝑖’th group in 𝑄 (T), and 𝑎𝑔𝑔(𝑔𝑖) to the aggregate
result of 𝑔𝑖 . Our model focuses on decomposable aggregate func-
tions [14], which can be computed by the aggregate of subsets,
examples include COUNT, MIN, MAX, SUM, AVERAGE, RANGE.
Such queries are important in online analytical processing (OLAP)
as they allow the computation to be performed on the pre-computed
results instead of the base data. We consider COUNT aggregation
for non-numeric target attributes or when the target attribute is
not provided.

A statement over the database is based on a comparison of aggre-
gate values of two or more selected groups obtained by a partition
query 𝑄 . We aim to devise a unified mechanism for specifying
various different types of statements.

Example 2.3. Consider again the dataset T given in Table 2. Ex-
amples of statements with respect to T (and some partition queries)
are: (S1) “The average salary of respondents aged under 35 is higher
than that of respondents aged over 35" or (S2) “On average, developers
earns over twice than of designers, and the salary of designers is higher
by 50% that database administrators".

We define a statement using a Boolean function as follows.

Definition 2.2 (Statement). Let 𝑄 be a partition query, a state-
ment 𝑓𝑄 (T) is a Boolean function 𝑓𝑄 : (T)→{0, 1} indicating the
conditions that are satisfied by the aggregate value comparisons of
some of the groups in𝑄 (T), obtained by the partition query𝑄 . We say
that a statement holds if the conditions are satisfied, giving 𝑓𝑄 (T)=1.

We denote by 𝑄 𝑓 (T) the groups in 𝑄 (T) which are relevant to
the statement 𝑓 .

Example 2.4. Continuing with our running example, let 𝑔1 denote
the group associated with respondents aged under 35, and 𝑔2 is the
group associated with respondents aged over 35. The statement 𝑆1 from
Example 2.3, defining an order over the average salary of respondents
in two age groups can be defined using the following function:

𝑓𝑄 (T) =
{
1, if 𝑎𝑔𝑔(𝑔1) − 𝑎𝑔𝑔(𝑔2) ≥ 0
0, otherwise

Here, 𝑄 𝑓 (T) consists of two groups, aged under 35 and aged over 35,
which are relevant for the function 𝑓𝑄 (T).

2.2 Query Refinement
To explore the refined sub-group comparisons, we next define the
notion of query refinement. We consider typical OLAP operations
drill-down and slice [18] to get finer partitions of the groups. Drill-
down steps down a concept hierarchy of a dimension, which in our
setting can be performed by adding attributes to Q.attr. Slice picks
a particular sub-set by choosing a single value for one of its dimen-
sions, which in our setting be performed by adding conjunctions
of attribute-value assignments to cond. Refining a partition query
allows for the comparison of the aggregate results of sub-groups,
which in turn can determine how well the underlying data is re-
flected by the partition query and reveal misleading conclusions.
For instance, the statement S1 from Example 2.3 is supported by
the query results given by Example 2.2, but does not reflect the fact
that it is not the case for database administrators and designers. To

this end, we define the sets of partition attributes A𝑔𝑟𝑝 and A𝑝𝑟𝑒𝑑 .
We consider discretized/categorical attributes here as continuous
attributes would give infinite sub-groups. The A𝑔𝑟𝑝 attributes are
used to refine the GROUP BY clause given by Q.attr, and theA𝑝𝑟𝑒𝑑

attributes are used to refine the WHERE clause given by Q.cond.

Definition 2.3 (Query Refinement). Given a partition query𝑄 ,
and the attribute sets A𝑔𝑟𝑝 and A𝑝𝑟𝑒𝑑 , a refinement query 𝑄𝑟

𝐴
is a

query with: 𝑄.𝑎𝑡𝑡𝑟⊆𝑄𝑟
𝐴
.𝑎𝑡𝑡𝑟⊆A𝑔𝑟𝑝∪𝑄.𝑎𝑡𝑡𝑟 , and 𝑄.𝑐𝑜𝑛𝑑⊆𝑄𝑟

𝐴
.𝑐𝑜𝑛𝑑

⊆A𝑝𝑟𝑒𝑑∪𝑄.𝑐𝑜𝑛𝑑 .

Example 2.5. Let A𝑝𝑟𝑒𝑑= {Gender, Role} and A𝑔𝑟𝑝= {Age},
a possible refinement query 𝑄𝑟

𝐴
of the query 𝑄 in Example 2.2 is:

SELECT Aged_over_35, Age, avg(Salary)
FROM T
WHERE Gender = Female and Role = Developer
GROUP BY Aged_over_35, Age

Here,𝑄𝑟
𝐴
.𝑐𝑜𝑛𝑑 ={Gender, Role} and𝑄𝑟

𝐴
.𝑎𝑡𝑡𝑟 ={Aged_over_35, Age}.

In what follows, when it is clear from the context, we refer to
both partition queries and refinement queries simply as queries.

Partition attribute selection. We next describe the difference be-
tween A𝑔𝑟𝑝 and A𝑝𝑟𝑒𝑑 . The set A𝑔𝑟𝑝 contains attributes that are
used to drill down the concept hierarchy given by 𝑄.𝑎𝑡𝑡𝑟 . For in-
stance, in our running example, Age attribute is in A𝑔𝑟𝑝 to drill
down the age concept hierarchy. It cannot be in A𝑝𝑟𝑒𝑑 because
the age groups (under 35 and over 35) contain different age ranges,
adding Age to the WHERE clause will get empty results. When com-
paring the sub-group aggregate values given by A𝑔𝑟𝑝 , we allow
cross-group comparison, i.e., comparing respondents under 35 aged
[18− 24], [25− 34], to respondents over 35 aged [35− 44], [45− 54].
Attributes that share (almost) the same data domain in all groups
of 𝑄 (T), are in A𝑝𝑟𝑒𝑑 for slicing. In the running example, all age
groups contain both males and females. Thus Gender would be
used in A𝑝𝑟𝑒𝑑 to refine the query. In this case, we compare only
the aggregate values of females (and males) of each age group.

The attribute sets A𝑝𝑟𝑒𝑑 , and A𝑔𝑟𝑝 can be defined by the end-
user; however, we propose a default setting. Partition attributes that
are in the same conceptual dimensions of𝑄.𝑎𝑡𝑡𝑟 are added toA𝑔𝑟𝑝 .
Attributes having unique values, e.g., res ID in Table 2, are ignored.
The rest are added to A𝑝𝑟𝑒𝑑 . We recommend discarding attributes
in A𝑝𝑟𝑒𝑑 that have a strong correlation with 𝑄.𝑎𝑡𝑡𝑟1. This is to
minimize the skew refinements that give significantly different
sizes of the sub-groups. For example, if there is a strong correlation
between the Role and the Aged_over_35 attributes, resulting in a
case that there are few developers aged over 35 and the others are all
aged under 35, such sub-group comparisons are sensitive to outliers
and cannot provide strong evidence for statement evaluation.

2.3 Statement’s Score
Given a statement 𝑓𝑄 (T) and the attribute sets A𝑝𝑟𝑒𝑑 and A𝑔𝑟𝑝 ,
our goal is to define the score of the statement, which measures
how well it reflects the underlying data. To define the score of a
statement, we iterate over all possible refinements of the partition
query 𝑄 and consider the size of the sub-groups as their potential

1We can compute the Cramer’s V correlationmatrix to examine the association between
the categorical variables.

61

influence on the score. To this end, we next define the weight of a
refinement query, and the support of a statement.

The weight of a refinement query. Given the attribute set
A𝑝𝑟𝑒𝑑 and a partition query 𝑄 , we define the notion of refinement
expression, an expression containing attribute value assignments to
be added to 𝑄.𝑐𝑜𝑛𝑑 .

Definition 2.4 (Refinement Expression). Given the attribute
set A𝑝𝑟𝑒𝑑 , let 𝐴𝑟⊆A𝑝𝑟𝑒𝑑 be a subset of attributes from A𝑝𝑟𝑒𝑑 . A
refinement expression 𝑟 is a conjunction of value assignments to at-
tributes in 𝐴𝑟 .

We denote by R the set of all possible refinement expressions
for the attributes in A𝑝𝑟𝑒𝑑 .

Example 2.6. Consider the partition query in Example 2.2, a pos-
sible subset of attributes from A𝑝𝑟𝑒𝑑 is 𝐴𝑟 = {Gender}. A possible
refinement expression is 𝑟 = {Gender = Male}.

Given a partition query 𝑄 and a refinement expression 𝑟 , we
denote by 𝑄𝑟 the refined query obtained by adding 𝑟 to the WHERE
clause. Let |𝑔𝑖 | be the number of tuples in the 𝑖-th group of 𝑄 𝑓 (T).
Given a refinement expression 𝑟 , we use 𝑔𝑟

𝑖
to denote the lineage of

𝑔𝑖 (with 𝑟 being a filter), and by |𝑔𝑟𝑖 | its number of tuples. Intuitively,
the weight of a refinement is the proportion of the sub-groups that
qualify.

Definition 2.5 (RefinementQueryWeight). Given a database
T , a statement 𝑓𝑄 (T), and a refinement expression 𝑟 , the weight of
the refinement query 𝑄𝑟 w.r.t. the groups in 𝑄 𝑓 (T) is defined as:

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑟) =
∑
𝑔𝑖 ∈𝑄 𝑓 (T) |𝑔𝑟𝑖 |∑
𝑔𝑖 ∈𝑄 𝑓 (T) |𝑔𝑖 |

If 𝑟 is empty, we say that𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑟) = 1.

Example 2.7. Consider again the statement 𝑓𝑄 (T) with the under-
lying partition query𝑄 (presented in Example 2.2), and the refinement
expression 𝑟= {Gender = Male}. The weight of 𝑄𝑟 is the fraction of
male respondents. The weight of this refinement query is:

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑟) = 2 (male, Under 35) + 2 (male, Over 35)
4 (Under 35) + 4 (Over 35) =

1
2

The support of a statement. Given a statement 𝑓𝑄 , and an
attribute set 𝐴⊆A𝑔𝑟𝑝 , we denote by 𝑄𝐴 the refinement query ob-
tained by adding the attributes in 𝐴 to 𝑄.𝑎𝑡𝑡𝑟 . By adding attributes
into 𝑄.𝑎𝑡𝑡𝑟 , we partition each group 𝑔𝑖⊆𝑄 𝑓 (T) into multiple sub-
groups 𝑔1

𝑖
, . . . , 𝑔𝑠

𝑖
. We then perform cross-group comparisons to

compute the support. Intuitively, the support of a statement is the
fraction of the sub-group comparisons that support the statement.

Let 𝐺𝐴
𝑖
denote the set of sub-groups obtained by partitioning

the 𝑖-th group in the partition query output 𝑄 𝑓 (T) by adding 𝐴 to
𝑄.𝑎𝑡𝑡𝑟 . To perform cross-group comparison for these sub-groups,
the number of sub-group comparisons is

∏
𝑖=1,...,𝑛 |𝐺𝐴

𝑖
|, where 𝑛 is

the number of groups in 𝑄 𝑓 (T).
Example 2.8. Consider again our running example statement,

where 𝑔1 and 𝑔2 refer to the groups of respondents under 35 and over
35 respectively. By adding the attribute set A = {Age} to 𝑄.𝑎𝑡𝑡𝑟 , 𝑔1
is partitioned into 𝐺𝐴

1 = {[18 − 24], [25 − 34]} and 𝐺𝐴
2 = {[35 −

44], [45− 54]}. To compare all sub-groups in𝐺𝐴
1 to sub-groups in𝐺𝐴

2 ,
the number of sub-group comparisons is 2 × 2 = 4.

Table 3: All possible refinement expressions (G: Gender, R: Role),
the weight of their corresponding refinement queries, and the sup-
port for the two possible subsets of A𝑔𝑟𝑝 , 𝐴1 = ∅, 𝐴2 = {Age}.

refinement expressions 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑟) 𝑠𝑢𝑝𝑝 (𝑓𝑄𝑟
𝐴1
(T)) 𝑠𝑢𝑝𝑝 (𝑓𝑄𝑟

𝐴2
(T))

{} 1 1 0.75
{R = Developer} 0.5 1 1
{R = DB Admin} 0.25 0 0
{R = Designer} 0.25 0 0

{G = F} 0.5 1 0.75
{G = M} 0.5 1 0.5

{G = F, R = Developer} 0.25 1 1
{G = F, R = DB Admin} 0 0 0
{G = F, R = Designer} 0.25 0 0
{G = M, R = Developer} 0.25 1 1
{G = M, R = DB Admin} 0.25 0 0
{G = M, R = Designer} 0 0 0

Given a statement 𝑓𝑄 (T), let 𝑔𝑖1∈𝐺
𝐴
1 , . . ., 𝑔

𝑗
𝑛 ∈ 𝐺𝐴

𝑛 denote 𝑛 sub-
groups obtained by adding the attribute set 𝐴 to 𝑄.𝑎𝑡𝑡𝑟 . We denote
by T [𝑔𝑖1, . . . , 𝑔

𝑗
𝑛] the database containing only the tuples belong to⋃𝑛

𝑗=1 𝑔
𝑖 𝑗
𝑗
. The statement support is defined as follows.

Definition 2.6 (Statement support). Given a statement 𝑓𝑄 (T),
and an attribute set 𝐴⊆A𝑔𝑟𝑝 , the statement support w.r.t. 𝑄𝐴 is:

𝑠𝑢𝑝𝑝 (𝑓𝑄𝐴
(T)) =

∑
𝑔
𝑗

1 ∈𝐺𝐴
1 ,...,𝑔

𝑘
𝑛 ∈𝐺𝐴

𝑛
𝑓𝑄𝐴
(T [𝑔 𝑗1, . . . , 𝑔

𝑘
𝑛])∏

𝑖=1,...,𝑛 |𝐺𝐴
𝑖
|

where 𝑛 is the number of groups in 𝑄 𝑓 (T).
Example 2.9. As shown in Example 2.8, by adding the attribute set

A = {Age} to 𝑄.𝑎𝑡𝑡𝑟 , we refine the groups 𝑔1 and 𝑔2 into two groups.
The total number of sub-group combinations considered for the support
computation is 4. The comparisons of different age ranges that satisfy
the statement are ⟨[25-34], [35-44]⟩, ⟨[25-34], [45-54]⟩ and
⟨[18-24], [45-54]⟩. Therefore, the support of the statement with
respect to 𝐴 is 3

4 = 0.75 (three out of four comparisons hold).

The score of a statement. To define the score of a statement,
we consider all refinement queries obtained by either modifying
𝑄.𝑐𝑜𝑛𝑑 or 𝑄.𝑎𝑡𝑡𝑟 . Given a refinement expression 𝑟 , and a set of
attributes 𝐴⊆A𝑔𝑟𝑝 , we use 𝑄𝑟

𝐴
to denote the refinement query

obtained by adding both 𝑟 to 𝑄.𝑐𝑜𝑛𝑑 and 𝐴 to 𝑄.𝑎𝑡𝑡𝑟 . Finally, we
define the score of a statement as follows.

Definition 2.7 (Statement Score). Given a statement 𝑓𝑄 (T),
and the attribute sets A𝑔𝑟𝑝 and A𝑝𝑟𝑒𝑑 , the score of 𝑓𝑄 (T) is:

𝑠𝑐𝑜𝑟𝑒 (𝑓𝑄 (T)) =

∑
𝑟 ∈R 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑟) ·

(∑
𝐴⊆A𝑔𝑟𝑝

𝑠𝑢𝑝𝑝
(
𝑓𝑄𝑟

𝐴
(T)

))∑
𝑟 ∈R

∑
𝐴⊆A𝑔𝑟𝑝

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑟
𝐴
)

If A𝑝𝑟𝑒𝑑=∅, then R=∅. In this case, we consider the entire pop-
ulation, thus

∑
𝑟 ∈R 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑟)=𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄)=1. Then, the score of

a given statement is defined only by its support value. If A𝑔𝑟𝑝=∅,∑
𝐴⊆A𝑔𝑟𝑝

𝑠𝑢𝑝𝑝
(
𝑓𝑄𝑟

𝐴
(T)

)
=𝑠𝑢𝑝𝑝

(
𝑓𝑄𝑟 (T)

)
=𝑓𝑄𝑟 (T), which is either

0 or 1. We note that the score is normalized to the range of [0, 1]
by dividing by the sum of weights of all refinement queries.

Example 2.10. Consider our running example statement, all pos-
sible refinement expressions 𝑟 , subsets 𝐴 of attributes fromA𝑔𝑟𝑝 , and
their corresponding supports are depicted in Table 3. In the running
example, the sum of weights of all refinement queries is 8. Following
Definition 2.7, the normalized score is 𝑠𝑐𝑜𝑟𝑒 (𝑓𝑄 (T)) = 5.375

8 = 0.672.

62

2

1

0

Level D1: Gender D2: Role D3: Age

gender

not included not included

not included

role

Aged_over_35

{Aged_over_35, Age}

Figure 1: Dimension hierarchy.
Intuitively, the score reflects the population of sub-groups sup-

porting the generalization. A higher score indicates a better reflec-
tion of the underlying data. In the running example, observe that
although the generalized aggregation supports the statement, it still
gets a relatively low score since a large fraction of sub-groups, such
as designers and database administrators, opposing the statement.

3 SCORE COMPUTATION
We are now ready to define the statement validation problem.

Problem 1 (Statement validation). Given a statement 𝑓𝑄 (T),
A𝑝𝑟𝑒𝑑 and A𝑔𝑟𝑝 compute 𝑠𝑐𝑜𝑟𝑒 (𝑓𝑄 (T)).

A naive algorithm for score computation would follow Defini-
tion 2.7 and operate as follows. Given a statement 𝑓𝑄 (T), and the
attribute sets A𝑔𝑟𝑝 and A𝑝𝑟𝑒𝑑 , iterate over all possible refinement
expressions in R. For each 𝑟∈R compute: (1) the weight of 𝑄𝑟 and
(2) the support of 𝑓𝑄𝑟

𝐴
(T) for each 𝐴⊆A𝑔𝑟𝑝 . Then using these re-

sults compute the score of 𝑓𝑄 (T). Note that |R | is exponential in
|A𝑝𝑟𝑒𝑑 | and the number of possible queries 𝑄𝑟

𝐴
is exponential in

|A𝑔𝑟𝑝 |. To execute all queries for weight and support computation,
the naive approach may lead to prohibitive execution time.

We next outline an improved algorithm that works well in prac-
tice, as we show in our experiments. The algorithm constructs a
Hasse diagram based on the dimension hierarchy of the partition
attributes, which represents a partial order over the refinement
queries. Enumerating the refinement queries in a bottom-up fash-
ion allows for the reuse of computational results (using a dedicated
data structure). Thus we don’t need to access the dataset to get
aggregate results repeatedly, which reduces the running time sig-
nificantly. We start by describing the refinement queries hierarchy.

3.1 Refinement Queries Hierarchy
We first define the notion of generalization level of refinement
queries. In the OLAP multidimensional view of the data, attributes
are grouped by their context into dimensions. In the 𝑖𝑡ℎ dimension,
there is a hierarchy given by a set of attributes {𝐴𝑖1 , . . . , 𝐴𝑖𝑚 } ⊆ TA
to define hierarchical partitions of T into groups, where at the top
level all the tuples are in a single group, and the lower levels reflect
partitions at different granularities for the same aspect of the data.

Example 3.1. The attributes set {Aged_over_35, Age} in Table
2 can be used to define a hierarchy over the age dimension. As is
shown in Figure 1, the top level of the hierarchy groups together all
the tuples in the data, the first level partition the tuples based on the
Aged_over_35, and the bottom layer group together tuples with the
same values in both, the Aged_over_35 and Age attributes.

Following common practice in OLAP, we assume a set of disjoint
dimensions over partition attributes are provided by the user. When
not provided, a default hierarchy of attributes singleton for each

[0, 0, 0]

[0, 0, 1] [0, 1, 0] [1, 0, 0]

[1, 1, 0][0, 1, 1] [1, 0, 1]

[1, 1, 1]3

2

1

0

Level

Partition Query
SELECT Aged_over_35, avg(Salary)

 FROM T

 GROUP BY Aged_over_35

Refinement Queries belonging to [0, 0, 0]

SELECT Aged_over_35, Age, avg(Salary)

 FROM T

 WHERE (Role = Developer and Gender = Female)

 GROUP BY Aged_over_35, Age

...

SELECT Aged_over_35, Age, avg(Salary)

 FROM T

 WHERE (Role = Designer and Gender = Male)

 GROUP BY Aged_over_35, Age

Figure 2: QRH for the running example (P𝑄 = [1, 1, 1]).

attribute is used. The generalization level of a query is then defined
by its dimension hierarchy levels.

Definition 3.1 (Generalization Level). Given a query 𝑄 , let
ℓ𝑖 denotes the domain generalization level used for the dimension 𝑑𝑖
in 𝑄 . The generalization level of 𝑄 is denoted by P𝑄 = [ℓ1, . . . , ℓ𝑘].

Example 3.2. In our running example, a possible dimension defi-
nition is D1:Gender, D2:Role, and D3:Age. Figure 1 shows the hier-
archies for each dimension. The generalization level of the partition
query 𝑄 (Example 2.2) is P𝑄 = [1, 1, 1], and the generalization level
of the refinement query 𝑄𝑟

𝐴
in Example 2.5 is P𝑄𝑟

𝐴
= [0, 0, 0].

Finally, we can define a partial order over the set of all queries.

Definition 3.2. Given two queries 𝑄 and 𝑄 ′, we use P𝑄⪯P𝑄′ to
denote that∀𝑖,P𝑄 [𝑖]≤P𝑄′ [𝑖]. We sayP𝑄′ dominatesP𝑄 ifP𝑄⪯P𝑄′ .

The definition of the generalization level provides a hierarchy
over all queries that are dominated by the partition query 𝑄 . We
construct a Hasse diagram to represent the partial order of the gen-
eralization levels. We refer to this diagram as the Query Refinement
Hierarchy (QRH). Each node in QRH represents a generalization
level that contains a set of queries. We say that the query 𝑄 ′∈𝑣
where 𝑣 is a node in QRH if P𝑄′=𝑣 . We use 𝑣⊥ to denote the bottom
node in the diagram (𝑣⊥=[0, 0, . . . , 0]). Figure 2 shows the QRH for
the running example. As shown, each node corresponds to a set of
refinement queries in the same level (with different predicate value
assignments). All sub-groups given by queries in the same node are
mutually exclusive, and their union is the entire population.

3.2 Algorithm
The key idea of our improved algorithm relies on the following
observation. Given the count and the aggregate value of each group
that belongs to some refinement query 𝑄𝑟

𝐴
of 𝑄 , we can compute

the weight and support of 𝑄𝑟
𝐴
without executing the query. To this

end, we define the Group Memorization (GM) table of a node 𝑣∈
QRH, that contains aggregate information for every refinement
query 𝑄𝑟

𝐴
∈𝑣 . Intuitively, our algorithm traverses the nodes of the

QRH diagram in a bottom-up fashion, computes the GM table for
each node, and uses it to calculate the weight and support of the
refinement queries, while scanning the data exactly once.

63

Node Refinement Expression Grouping Attributes Count Agg value

[0,0,0]

{G = F, R = Developer} {[25, 34], Under 35} 1 86K
{G = F, R = Developer} {[35, 44], Over 35} 1 14K
{G = M, R = Developer} {[25, 34], Under 35} 1 94K
{G = M, R = Developer} {[35, 44], Over 35} 1 13K
{G = F, R = Designer} {[18, 24], Under 35} 1 19K
{G = F, R = Designer} {[35, 44], Over 35} 1 40K
{G = M, R = DB Admin} {[25, 34], Under 35} 1 11K
{G = M, R = DB Admin} {[45, 54], Over 35} 1 18K

[1,0,0]

{R = Developer} {[25, 34], Under 35} 2 90K
{R = Developer} {[35, 44], Over 35} 2 13.5K
{R = Designer} {[18, 24], Under 35} 1 19K
{R = Designer} {[35, 44], Over 35} 1 40K
{R = DB Admin} {[25, 34], Under 35} 1 11K
{R = DB Admin} {[45, 54], Over 35} 1 18K

Figure 3: Example GM tables of two nodes.

We next formally define the GM table of a node 𝑣∈ QRH and
explain how it can be efficiently computed. We then present our
optimized algorithms. For the simplicity of presentation, we as-
sume a numeric target value and average as the aggregate function.
Our algorithms can be adjusted to support other aggregate func-
tions and non-numeric target values, as described in Section 2. We
also assume the statements describe a total ordered comparison of
the groups’ aggregation values (partial ordered statements can be
equivalently represented by several total ordered statements).

Definition 3.3 (The GM Table). Let 𝑣 be a node in QRH, and
let 𝐺𝑀𝑣 denote the GM table of 𝑣 . 𝐺𝑀𝑣 stores the values of |𝑔𝑖 | and
𝑎𝑔𝑔(𝑔𝑖), for every (non-empty) group 𝑔𝑖∈𝑄𝑟

𝐴
(T), where 𝑄𝑟

𝐴
is a re-

finement query that belongs to node 𝑣 .

Figure 3 depicts the GM table of the nodes [0, 0, 0] and [1, 0, 0]
from the QRH diagram presented in Figure 2.

We can prove the following holds.

Proposition 3.1. Let 𝑣∈𝑄𝑅𝐻 . If 𝑣=𝑣⊥, 𝐺𝑀𝑣 can be computed
using a single data scan. Otherwise 𝐺𝑀𝑣 can be computed using
𝐺𝑀𝑣′ , where 𝑣 ′ is a child node of 𝑣 in QRH.

Example 3.3. Consider the GM tables given in Figure 3, and let
𝑣=[1, 0, 0]. A child node of 𝑣 is 𝑣⊥. To compute 𝐺𝑀𝑣 , we iterate over
every group in 𝑣⊥, and remove from each refinement expressionthe
predicate of the𝐺𝑒𝑛𝑑𝑒𝑟 dimension. Records with the same refinement
expressions and grouping attributes are merged, where the count is
the sum of counts, and the aggregated value is the weighted average.

Algorithm 1 computes the score of a statement. Given a statement
𝑓𝑄 (T), it first set the 𝑠𝑐𝑜𝑟𝑒 to be 0 (line 1). Then it traverses the
refinement queries by their generalization level (lines 2–11), starting
from the least general refinement queries (i.e., the queries in 𝑣⊥).
For each node 𝑣 , the algorithm computes 𝐺𝑀𝑣 (lines 3–7). For the
bottom node 𝑣⊥, the GM table is computed using a procedure, which
preform a single scan of the data (line 4). For a node 𝑣≠𝑣⊥, 𝐺𝑀𝑣 is
computed using a child node 𝑣 ′, following Proposition 3.1 (lines 6–
7). The node 𝑣 ′ is obtained by setting ℓ𝑗 to be ℓ𝑗−1, where ℓ𝑗 is the
first non-zero data dimension in 𝑣 . Next, the algorithm iterates over
all refinement queries that belong to the current node 𝑣 . For each
query, the algorithm computes its weight and the support using
𝐺𝑀𝑣 , and updates the score accordingly (lines 8–11).

Weight and support computation using GM tables. To compute
the weight of a query 𝑄𝑟

𝐴
∈𝑣 , we sum the counts of the groups that

satisfy 𝑟 , and divide by the sum of counts of all groups in 𝑣 . A

Algorithm 1: Score Computation
input :A statement 𝑓𝑄 (𝑇), the attributes set A𝑝𝑟𝑒𝑑 and

A𝑔𝑟𝑝 , and the QRH diagram.
output :The 𝑠𝑐𝑜𝑟𝑒 of 𝑓𝑄 (𝑇).

1 𝑠𝑐𝑜𝑟𝑒 = 0
Let 𝐿 be an enumeration of QRH in a bottom-up fashion

2 foreach node 𝑣 in 𝐿 do
3 if 𝑣 = 𝑣⊥ then
4 𝐺𝑀𝑣 ←getButtomGM (𝑓𝑄 (𝑇),A𝑝𝑟𝑒𝑑 ,A𝑔𝑟𝑝)

5 else
6 𝑣 ′ ← a child node of 𝑣
7 𝐺𝑀𝑣 ← getGMFromChild (𝑣 ′, 𝑣)
8 foreach partition query 𝑄𝑟

𝐴
∈ 𝑣 do

9 𝑤𝑒𝑖𝑔ℎ𝑡 ← getWeight (𝐺𝑀𝑣, 𝑄
𝑟
𝐴
)

10 𝑠𝑢𝑝𝑝 ← getSupp (𝐺𝑀𝑣, 𝑄
𝑟
𝐴
)

11 𝑠𝑐𝑜𝑟𝑒 ← 𝑠𝑐𝑜𝑟𝑒 +𝑤𝑒𝑖𝑔ℎ𝑡 · 𝑠𝑢𝑝𝑝

12 return 𝑠𝑐𝑜𝑟𝑒

Algorithm 2: Get Support
input :A node 𝑣 ∈ 𝑄𝑅𝐻 , it’s 𝐺𝑀𝑣 table, and a query

𝑄𝑟
𝐴
∈ 𝑣 .

output :The support value 𝑠𝑢𝑝𝑝 (𝑄𝑟
𝐴
).

1 foreach 𝑔𝑖 ∈ 𝑄 𝑓 (𝑇) do
2 𝑎𝑔𝑔[𝑔𝑖] ← getAggValue (𝑄𝑟

𝐴
)

3 𝑎𝑔𝑔[𝑔𝑖] .𝑠𝑜𝑟𝑡 (𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑇𝑟𝑢𝑒)
4 𝑛𝑖 ← 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎𝑔𝑔[𝑔𝑖])
5 while 𝑖1 ≤ 𝑛1, 𝑖2 ≤ 𝑛2, · · · , 𝑖𝑘 ≤ 𝑛𝑘 do
6 find 𝑖𝑚 , s.t. 𝑎𝑔𝑔[𝑔𝑚] [𝑖𝑚] is the current minimum value
7 𝑖𝑚 ← 𝑖𝑚 + 1,
8 if 𝑚 = 𝑘 then
9 𝑎𝑚 ← 𝑖𝑚

10 else
11 𝑎𝑚 ← 𝑎𝑚+1 + 𝑎𝑚

12 return 𝑎1∏
𝑖 𝑛𝑖

naive way to compute the support of𝑄𝑟
𝐴
, is to count the number of

sub-group comparisons that satisfy the statement and divide it by
the total number of sub-group comparisons.

Example 3.4. Consider refinement query 𝑄𝑟
𝐴
with 𝑟= {Gender =

Female, Role = Developer}, 𝐴= {Aged_over_35, Age}, and
P𝑄𝑟

𝐴
=[0, 0, 0]. The corresponding node of 𝑄𝑟

𝐴
in QRH is 𝑣=[0, 0, 0].

The GM table of 𝑣 is given in Figure 3. Following the above descrip-
tion, we get the weight of the refinement query𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑟

𝐴
)= 2

8 . The
number of sub-group comparisons is only one: {Age = [25, 34],
Aged_over_35 = No} (with an aggregate value of 86𝐾) and {Age =
[35, 44], Aged_over_35 = Yes} (with an aggregate value of 14𝐾),
which supports the statement. Thus the support is 𝑠𝑢𝑝𝑝 (𝑄𝑟

𝐴
)= 1

1=1.

Efficient support computation. The naive support computation
(following Definition 2.6), requires the consideration of aggregate

64

sorted aggregate values for each group

g1

1
2
6
8

i4=1,a4=1

i4=2,a4=2

i4=3,a4=3

i4=4,a4=4

3
5
9

i3=1,a3=2
i3=2,a3=4

i3=3,a3=8

i2=1,a2=24

7 i2=2,a2=6
10
11

i1=1,a1=6

i1=2,a1=12
g2

g3
g4

When the current minimum is 7:
a2 = a2+a3=2+4=6

Figure 4: Efficient support computation.

value comparisons for all sub-groups in 𝑔𝑖 for each 𝑔𝑖∈𝑄 𝑓 (𝑇).
This makes the time complexity of getSupp in Algorithm 1 ex-
ponential in the number of groups in the statement 𝑘=|𝑄 𝑓 (𝑇) |, i.e.,
𝑂 (𝑐𝑘 |𝐴𝑔𝑟𝑝 |), where 𝑐 is the highest attribute cardinality, and 𝑐 |𝐴𝑔𝑟𝑝 |

is the greatest number of sub-groups in each group 𝑔𝑖 . We present
Algorithm 2 which is an optimized support computation algorithm
reduces the complexity of getSupp to 𝑂 (𝑘𝑐 |𝐴𝑔𝑟𝑝 | log(𝑐 |𝐴𝑔𝑟𝑝 |)). In-
tuitively, Algorithm 2 avoids unnecessary pair-wise comparisons
of all aggregate values. It sorts the aggregate values for each con-
sidered sub-groups, iterates the sorted lists simultaneously, and
examines only the “frontier” values.

W.l.o.g, we assume the total order in the statements is: 𝑎𝑔𝑔(𝑔1)>
𝑎𝑔𝑔(𝑔2)> · · · >𝑎𝑔𝑔(𝑔𝑘). We compute a value 𝑎 𝑗 for each group 𝑔 𝑗
representing the number of value combinations for sub-groups
from 𝑔 𝑗 to 𝑔𝑘 that might satisfy the statement. The value 𝑎1 would
be the number of value combinations of all sub-groups that satisfy
the statement. We next demonstrate our algorithm and explain the
details using a visual example. Given a node 𝑣 , its𝐺𝑀𝑣 table, and a
query 𝑄𝑟

𝐴
∈𝑣 , the algorithm first computes and sorts the aggregate

values for each group 𝑔𝑖∈𝑄 𝑓 (T) (lines 1–4). The groups and their
aggregate values are extracted from 𝐺𝑀𝑣 . Next, the algorithm iter-
ates over the aggregate values (lines 5–11). It fetches the minimum
value among all sorted aggregate value lists (line 6). For each newly
fetched value, we first increase the index of this group 𝑖𝑚 by 1
(line 7), and then we update the value 𝑎𝑚 for this group (lines 8–11).
If the minimum value is from group 𝑔𝑘 , we set 𝑎𝑚 to 𝑖𝑚 , otherwise,
𝑎𝑚 is updated by adding 𝑎𝑚+1. Finally, the algorithm returns the
fraction of sub-group combinations that satisfy the statement.

In Figure 4, we show an example of computing the support for a
statement containing four groups (𝑄 𝑓 (𝑇)=4). The arrays are sorted
aggregate values for each group. In each iteration, we show the 𝑖
and 𝑎 values. We first explain how 𝑎 is updated. For example, when
the current minimum is 7, the values we have enumerated are from
1 to 6. As shown, 𝑎2 is updated by adding 2 to 4 which are the
current values of 𝑎2 and 𝑎3. We next explain the meaning of the
𝑎 values. 𝑎1 is the number of value combinations that satisfy the
statement. For example, when the current minimum is 10, 𝑎1 is 6,
representing the number of all combinations: (10,4,3,1), (10,4,3,2),
(10,7,3,1), (10,7,3,2), (10,7,5,1),(10,7,5,2) that satisfy the statement.

Additional Optimizations. We conclude this section with two
additional optimizations that could be applied on Algorithm 1. First,
to compute the GM table of a node 𝑣≠𝑣⊥, all we need is the GM table
of one of its child nodes (Proposition 3.1). Thus, there is no need to
keep in memory the GM tables of all nodes in QRH. It is enough to
store the tables of nodes in only two levels at a time. Therefore, we
track the current level 𝑖 of the examined node. When moving on to
a node in an upper level, we can delete all GM tables of nodes in
level 𝑖−1. Second, we can use parallelism to speed up running times.

According to our experiments, the “bottleneck" of the algorithm
is when it iterates over all refinement queries of a given node 𝑣 .
We can therefore split all these queries into 𝑘 batches, compute the
score of each batch in parallel. Then, sum the 𝑘 obtained score and
move on to the next node. This is possible since the getWeight and
getSupp procedures use only information from the GM table of 𝑣 .

4 SCORE EXPLANATION AND STATEMENT
CORRECTION

The score of a statement reflects the degree to which the result of
the corresponding partition query represents the underlying data.
Given a low score the user may wish to: (i) understand why the
score is low (i.e., which parts of the data do not "agree with the
statement") and (ii) refine the statement such that the new refined
statement better represents the data but is "as close as possible" to
the original query. In this section we formalize these two problems.

4.1 Counterargument Identification
Intuitively, sub-groups (of the groups considered by the statement)
that do not align with the statement reduce the statement’s score.
Their sizes are used to quantify the effect on the score. Thus, an
explanation of a low scoremay consist of these sub-groups. Counter-
arguments refer to the statements comparing these sub-groups but
with a different conclusion to the original statement. For instance, a
counterargument for (S1) “The average salary of respondents aged
under 35 is higher than that of respondents aged over 35” could be
“The average salary of designers aged under 35 is lower than that
of designers aged over 35”. However, reporting all such statements
can be overwhelming, as the number of opposing sub-groups may
be exponential. In fact, it may obscure the “dominant” sub-groups.
To this end, we focus on finding the set of counterarguments given
by sub-groups that are not dominated by more general ones. We
formally define the problem as follows.

Problem 2 (Counterargument Identification). Given a state-
ment 𝑓𝑄 (T), find the set of statements C = {𝑓𝑄′ (T) | 𝑓𝑄′ (T) =
¬𝑓𝑄 (T), 𝑄 ′ ⪯ 𝑄, and�𝑄 ′′s.t.𝑄 ′ ⪯ 𝑄 ′′ ⪯ 𝑄and𝑓𝑄′′ (T) = ¬𝑓𝑄 (T)}.

Recall that in the score computation, Algorithm 1 traverses over
all refinement queries. Therefore, identifying the counterarguments
can be done alongside the score computation using extra bookkeep-
ing. One simple solution is to store a Boolean value for each refined
statement, then traverse the QRH in a top-down breadth-first man-
ner in search for counterarguments using the stored Boolean values.
The search space may be pruned using the domination relationship
of the refinement queries. Given the large number of refined state-
ments to explore, the memory and time consumption for this naive
solution could be prohibitive. We next provide a method to maintain
the set of counterarguments C during score computation, hence
avoiding this additional memory required and the QRH traversal.

Counterargument computation. To keep track of the set of coun-
terarguments, we use the inverted index technique [20]. We aug-
ment Algorithm 1 with an additional inverted index 𝑉 that stores
the current set C. Figure 5 depicts the inverted index 𝑉 for our
running example. We store the counterarguments by their corre-
sponding refinement queries. For each refinement query, we repre-
sent all predicates in form of value assignment 𝐴𝑖=𝑎𝑖 to represent

65

Predicates

𝑄1 :
𝐴𝑝𝑟𝑒𝑑 : Role = Designer
𝑔1 : {[18 − 24], Under 35}
𝑔2 : {[35 − 44], Over 35}

𝑄2 :
𝐴𝑝𝑟𝑒𝑑 : Role = DB Admin

𝑔1 : Under 35
𝑔2 : Over 35

𝑄3 :
𝐴𝑝𝑟𝑒𝑑 : Role = Designer

𝑔1 : Under 35
𝑔2 : Over 35

{Role = Developer} 0 0 0
{Role = Designer} 1 0 1
{Role = DB Admin} 0 1 0
{Aged_over_35 = No} 1 1 1
{Aged_over_35 = Yes} 1 1 1
{Age = [18 − 24]} 1 0 0
{Age = [35 − 44]} 1 0 0

Figure 5: Inverted index for counterargument computation.

1 2 3 4
Generalization Level in QRH

0
2
4
6
8

10
12
14

Nu
m

be
r o

f C
ou

nt
er

-A
rg

um
en

ts S1:score=0.91
S2:score=0.58

Figure 6: Counterargument distribution.

the refinement expression and the sub-group selection. The rows
in 𝑉 represent possible predicates for refinement queries, and the
columns represent the current set of counterarguments C. The
Boolean value𝑉 [𝑖] [𝑗] indicates whether the query𝑄 𝑗 contains the
predicate component 𝑃𝑖 , where 𝑃𝑖 is a value assignment 𝐴𝑘=𝑣𝑏 .

During the bottom-up traversal of Algorithm 1, for each re-
finement query 𝑄 ′ and its corresponding sub-groups 𝑄 ′𝑓 (T), s.t.
𝑓𝑄′ (T)=¬𝑓𝑄 (T), C is updated. We first find the set of queries in
C that are dominated by 𝑄 ′ via an efficient bitwise AND operation
as follows. Let 𝑄 𝑗 be the refinement query considered by the algo-
rithm for which we find 𝑓𝑄 𝑗

(T)=¬𝑓𝑄 (T), and let 𝑖1 . . . , 𝑖𝑘 be the
indices s.t. 𝑉 [𝑝] [𝑗]=1 for 𝑝 ∈ {𝑖1 . . . , 𝑖𝑘 }. For example, in Figure 5,
when adding 𝑄3, the corresponding indices are {2, 4, 5} (cells in
dark gray) representing the predicates 𝑄3 contains. A query 𝑄𝑚

in C is dominated by 𝑄 𝑗 if 𝑉 [𝑝] [𝑚]=1 for 𝑝 ∈ {𝑖1 . . . , 𝑖𝑘 }. We use
𝑣𝑝 to denote the vector of Boolean values in row 𝑝 of the inverted
index (before the insertion of 𝑄 𝑗). To efficiently compute the set of
queries in C dominated by 𝑄 𝑗 we apply a bitwise AND operation
between the vectors 𝑣𝑝 for 𝑝 ∈ {𝑖1 . . . , 𝑖𝑘 }. The queries in C that
are dominated by 𝑄 𝑗 are the queries that are represented by the
columns that correspond to the positions with the value 1 in the
vector AND operation result. Continuing the example in Figure 5,
to find the set of queries that are dominated by 𝑄3, we apply the
AND operation between the three vectors (1, 0), (1, 1) and (1, 1)
that correspond to rows 2, 4 and 5 (and the columns of 𝑄1 and
𝑄2) (rows in gray). The result is (1, 0) indicating that only 𝑄1 is
dominated by 𝑄3. Lastly, columns that correspond to queries that
are dominated by 𝑄 𝑗 are removed from the inverted index and a
new column (representing 𝑄 𝑗) is added.

Note that counterarguments can also be considered as state-
ments, which could be cherry-picked as well. Given the resulting
counterarguments, the user may further investigate them and com-
pute their score using the score computation algorithm.

4.2 Statement Refinement
Given a statement 𝑓𝑄 (T) and a threshold 𝜏 , if 𝑠𝑐𝑜𝑟𝑒 (𝑓𝑄 (T))≥𝜏 , we
call it a strong statement. Otherwise, we call it a weak statement.

Problem 3 (Statement Refinement). Given a threshold 𝜏 and
a weak statement 𝑓𝑄 (T), find the set of statementsM={𝑓𝑄′ (T) |
𝑓𝑄′ (T) is a strong statement, 𝑄 ′⪯𝑄, and �𝑄 ′′ s.t. 𝑄 ′⪯𝑄 ′′⪯𝑄 and
𝑓𝑄′′ (T) is a strong statement}.

Given a weak statement 𝑓𝑄 (T), finding alternative statements
via statement refinement requires computing the scores for all
queries 𝑄 ′ that are dominated by 𝑄 . A naive solution may apply a
top-down breadth-first search over the QRH, utilizing Algorithm 1

to evaluate the score of 𝑓𝑄′ (T) of each refinement query 𝑄 ′. We
next present a recursive score computation method using the space-
time trade-off to avoid the repeated application of Algorithm 1.

The cumulative score computed during the refinement query
enumeration in Algorithm 1 provides an easy way to compute
the score for a given statement, but it does not reflect the score
of the statement w.r.t. the refinement queries considered by the
algorithm. We next present a recursive expression for score com-
putation which can be used to compute the score of the statement
w.r.t. the refinement queries alongside the execution of Alg. 1.

Proposition 4.1. Let 𝑄 be a partition query, 𝑣 ∈ 𝑄𝑅𝐻 such that
𝑄 ∈ 𝑣 , 𝑣 ′ ∈ 𝑄𝑅𝐻 a child node of 𝑣 and 𝑉 ′ the set of all descendent
nodes of 𝑣 in 𝑄𝑅𝐻 excluding 𝑣 ′ and its descendants.

𝑠𝑐𝑜𝑟𝑒 (𝑓𝑄 (T)) =
∑
𝑄𝑖 ∈𝑣′

𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄𝑖)
𝑤𝑒𝑖𝑔ℎ𝑡 (𝑄) 𝑠𝑐𝑜𝑟𝑒 (𝑓𝑄𝑖

(T))

+𝑠𝑢𝑝𝑝 (𝑓𝑄 (T)) +
∑

𝑣′′∈𝑉 ′

∑
𝑄 𝑗 ∈𝑣′′,𝑄 𝑗 ⪯𝑄

𝑠𝑢𝑝𝑝 (𝑓𝑄 𝑗
(T))

Example 4.1. Consider the refinement query 𝑄𝑟
𝐴
with 𝑟 ={Gender

= Male} and 𝐴 = ∅, which belongs to the node [0, 1, 1]. To compute
the score of the statement with respect to𝑄𝑟

𝐴
, we first fetch its children

node [0, 0, 1]. The set of 𝑉 ′ contains only one node [0, 1, 0]. In node
[0, 1, 0], we consider just the query 𝑄 ′𝑟𝐴 with 𝑟 ={Gender = Male},
𝐴 = {Age} as it is the only query that satisfies 𝑄 ′𝑟𝐴 ⪯ 𝑄𝑟

𝐴
. Therefore,

the statement score is given by considering the scores of all queries in
node [0, 0, 1], and the support of 𝑄 ′𝑟𝐴 in node [0, 1, 0].

To find the set of alternative statements, we add two columns,
Score and Support, to the GM tables, recording the score and sup-
port value of each refinement statement. This allows for alternative
statements computation while executing Algorithm 1. In each step
we use the recursive formula to compute the refinement statement
scores. We use an inverted index structure, similar to Section 4.1,
to maintain the current set of alternative statements.

5 EXPERIMENTAL STUDY
The first question to examine is whether our model creates “reason-
able” scores for the appropriateness of generalization statements.
We examine this question by in-depth look at examples, and let
the reader judge for herself. We follow this with a quantitative
experimental study to examine the efficiency of our algorithms in
terms of running times and memory consumption in multiple prac-
tical scenarios. We evaluated our algorithms under varying number

66

of partition attributes, data sizes, and number of groups in state-
ments. We then evaluated the performance of the counterargument
identification and statement refinement algorithms.

5.1 Proof of Concept
We next present two examples, demonstrating that our proposed
framework provides a reasonable metric that intuitively reflects the
sub-group fractions supporting/opposing real-life statements.

Ageism in Tech. [1] cited the StackOverflow yearly survey [3]
that “among all participants, only 2% of developers are over 50, 4.6%
are between ages of 40 to 50, and only 9.1% are between 35 and 39.”
The aggregate results strongly suggest an age barrier for developers
over 35. However, the data show that is not all of the story. Here
we look into two types of developers—front-end developers and
engineering managers—to see how the conclusion holds based on
the Stack Overflow (SO) dataset. We consider the following two
statements 𝑆1: “The number of front-end developers under 35 is greater
than front-end developers over 35", and 𝑆2: “The number of engineering
managers under 35 is greater than engineering managers over 35".

We suggest considering partition attributes related to ethnic-
ity, gender, education, and so on, which generate meaningful sub-
groups that users are interested in. Herewe consider {Age, RaceEthinic-
ity, YearsCoding, FormalEducation} as partition attributes. The four
attributes belong to different concept dimensions; thus the query
refinement hierarchy (QRH) contains five levels. Based on the defi-
nitions in Section 2, we consider the COUNT() aggregate function
and𝑄.𝑎𝑡𝑡= Aged_over_35,𝑄.𝑐𝑜𝑛𝑑= Role. The score for statement
𝑆1 is 0.91 while the score of 𝑆2 is only 0.58. To explain the underly-
ing results for the difference between the relatively high and the
relatively low score, we run the algorithms for counterargument
identification in Section 4.1. As shown in Figure 6, for 𝑆1, there are
42 counterexamples out of ~10K sub-groups explored, and most of
these counterarguments are in lower levels of QRH. For example,
𝑆1 might not hold for front-end developers from East Asia with a
professional degree. On the other hand, for 𝑆2, there are 33 counter-
arguments; most are in higher levels. For instance, 𝑆2 does not hold
for engineering managers who have been to graduate school (Mas-
ter’s and Ph.D.). A possible alternative for 𝑆2 with a score threshold
equals 0.85 is "The number of engineering managers with less than 5
years coding experiences under 35 is greater than those over 35". The
result indicates that the more significant the opposing sub-groups
are, the less confident we are towards the statement.

Gender bias in academia. We next validate the utility of our
framework in a real-life analysis of the gender gap in the promo-
tion of faculty members. We use the dataset of the academic staff
at a well-known university.2 The dataset contains the informa-
tion of over 1.2K academics hired by the university in the period
1990 − 2020. This information includes gender, rank (instructor,
assistant professor, associate professor, or professor), research di-
rection (art/life/science/law), employment type (full/part-time), and
employment track. The data analysts are interested in investigating
gender gaps in this hiring. We focus on the statement 𝑆 : the number
of male researchers is greater than that of female researchers. Here we
use the count aggregation and consider the {Rank, Direction, Employ-
ment type, Track} as partition attributes. The score for the original
2Following the university request, the university’s name is omitted and the data is
private.

statement is: 0.98 meaning male researchers generally dominate fe-
male researchers and the conclusion is unlikely to be cherry-picked.
We next look into the total 6 counterexamples for score explanation,
including (1) part-time instructors (weight =0.03, score =0.18), (2)
part-time non-regular track researchers (weight=0.01, score =0.19),
(3) non-regular track professors (weight =0.002, score =0), (4) part-
time art researchers (weight =0.02, score =0), (5) non-regular track
art researchers (weight =0.03, score =0.34), and (6) part-time life
science researchers (weight =0.21, score =0.46). The above result
shows that the counterarguments take up a very small fraction and
have a low score under the conclusion of the original statement,
which explains the relatively high score for statement 𝑆 .

5.2 Experimental Setup
The experiments were implemented in Python 3.7 and executed on
a Linux server with a 2.1GHz CPU, and 96GB memory.

Datasets and Statements. We used three datasets containing up
to 2.4M records, which include multiple categorical attributes and
can be associated with real-life statements.

Stack Overflow: Stack Overflow’s (SO) annual Developer Sur-
vey is the largest survey of people who code around the world.
The answers of the developers (i.e., the dataset) are publicly avail-
able [10]. It has more than 98K records containing information
about the developers’ age, place of residence, gender, ethnicity, in-
come, and education. Besides the attributes city and country, each
attribute in this dataset is related to a different data dimension. We
enriched the dataset with additional attributes, such as age-group
and continent (inferred from age and country, resp.), obtaining 11
dimensions with the maximal dimension hierarchy height of 3.

Police Killings: The Police Killings (PK) dataset is a publicly
available dataset released by an online opinion poll website FiveThir-
tyEight [7], containing information regarding people killed by
police and other law enforcement agencies in the United States
throughout 2015 and 2016. We chose 11 attributes related to people
demographics (e.g., age, gender, ethnicity) as well as details of the
cases (e.g., cause of death and whether victims were armed or not).

US Census Data: The US Census dataset (USC) [13] is a dis-
cretized version of the 1990 US Census raw data, which contains
information regarding the annual income and demographics of
over 2.4M people in the US. From this dataset, we selected a subset
of categorical attributes describing people demographics (such as
the number of kids, marital status, and gender). We obtained 14
partition attributes with a maximal hierarchy height of 3.

The statements we derived range from Stack Overflow user re-
ports [3] to news and media websites, including the Guardian [12],
AlterNet[5], and the World Socialist Web Site[15]. They are used
to generate insights about job opportunities, technology trends
(Stack Overflow) or expose problems of contemporary society (Po-
lice Killings). For the US Census dataset, we generated synthesized
statements uniformly at random. In all cases, attributes were as-
signed either to A𝑝𝑟𝑒𝑑 or A𝑔𝑟𝑝 as described in Section 2.2.

Baseline algorithms. To quantify the usefulness of our proposed
algorithm for score computation, we assessed the effectiveness of
each of the proposed optimizations and compared its results with
the baseline solutions. We thus examined the following baselines:

67

Table 4: Default parameters.
of partition attributes # of tuples # of groups

Stack Overflow 5 98,855 2
Police killings 8 468 2
US Census Data 6 2,458,285 2

Naive. The naive algorithm, as described in Section 3.
Cube. The algorithm computes the aggregate values for all sub-
groups using the CUBE operator [16] in PostgreSQL at the very
beginning and runs the baseline algorithm using the cube.
Score Computation. Algorithm 1 with efficient support computa-
tion (Algorithm 2) without parallelism and memory optimization.
Optimized. The algorithm that includes all optimizations.

Parameter Setting. We examined the effect of the following pa-
rameters: (1) the number of attributes in A𝑔𝑟𝑝 and A𝑝𝑟𝑒𝑑 ; (2) the
number of tuples in the datasets; (3) the number of groups com-
pared in the statements. In each experiment, we varied the value of
one parameter, while setting the others to the default value. The
default values are depicted in Table 4. Some values were chosen
to be the largest possible values in which all baseline algorithms
can handle. The time cutoff used in all experiments was 90minutes.
The number of threads for parallelism was set to 20 or 4.

5.3 Score Computation
We found that for each dataset, the results among different state-
ments demonstrated similar trends. Thus, we reported the average
results obtained for three statements in each dataset.

Partition Attributes. We incrementally added partition attributes
to A𝑔𝑟𝑝∪A𝑝𝑟𝑒𝑑 , comparing the execution time and memory over-
head of different algorithms. For execution time, the results are
depicted in Figures 7a–7c. The 𝑥-axis is the number of partition at-
tributes, and the𝑦-axis is the runtime.We observed a near-exponential
growth in the running times as increasing the number of partition
attributes. This is because the time complexity of all algorithms is
exponential in |A𝑔𝑟𝑝 | and |A𝑝𝑟𝑒𝑑 |. However, our model can still
work for wide datasets because attributes not in A𝑔𝑟𝑝∪ A𝑝𝑟𝑒𝑑

would not affect the execution time as the sizes of the GM tables are
only related to the number of partition attributes. The result indi-
cates that there is a limitation of the number of partition attributes.
This limitation exists in all OLAP cube computations; data systems
like PostgreSQL usually limit the data cube to 12 attributes [28].
We note that this limitation has little effect on the availability of
our model as sub-groups defined by more than 12 predicate combi-
nations are typically very small (take up a very small percentage of
the data population) and have a low impact on the result.

We use the Telco Customer Churn dataset [11], a fictional dataset
with multiple low-cardinality attributes, to demonstrate the scal-
ability of the algorithm runtime w.r.t. the number of partition at-
tributes.3 As shown in Figure 10, the Score Computation and Opti-
mized can support up to 12 partition attributes and the execution
time is exponential to the number of partition attributes. Nonethe-
less, in Figures 7a–7c, while the baseline algorithms can only handle
a small number of attributes in reasonable running times, the Score

3Due to space constraints, the results of other experiments on the Telco Customer
Churn dataset are omitted as they showed similar trends to the rest of the datasets.

Computation and Optimized algorithms show a better time effi-
ciency and are more scalable as the number of attributes increases.
With a small number of partition attributes, which leads to few
refinement queries to explore (i.e., in very simple cases), the Score
Computation algorithm performs better than the Optimized algo-
rithm. This stems from the fact that in such cases, dividing the
queries and unifying the results into a single score is wasteful.
When the dataset is small (e.g., PK dataset), the execution time for
the Naive algorithm is close to the Score Computation algorithm.
This is because the time overhead of executing the queries on very
small datasets is low; thus, the effect of the GM table is negligible.

Thememory consumption for all algorithms is exponential to the
number of partition attributes. In Figure 7d, we report the memory
consumption under the maximal number of partition attributes for
each dataset. The Optimized algorithm reduces memory consump-
tion of the Score Computation algorithm by more than half. The GM
tables also have smaller memory consumption compared with the
Cube algorithm for most of the time as it resembles an incremen-
tal way to compute the cuboids of the cube. The GM tables only
contain the predicate information in the corresponding refinement
queries. There could be exceptions in computing some aggregate
functions like AVERAGE, which needs auxiliary information, i.e.
the sum and the count for each sub-group to compute the average.
The results demonstrate that our algorithms can handle millions of
refinement queries with low memory requirements.

Dataset size. We examined the effect of the data size on the
performance. To this end, we selected increasing portions of the
datasets. For the small datasets (SO and PK), we further increased
their size by generating additional tuples uniformly at random.
The results are depicted in Figure 8, showing the effect on running
times and memory consumption. Observe that the number of tuples
has almost no effect on the Score Computation and the Optimized
algorithms, while the running time of the Naive algorithm is linear
to the number of tuples. This is due to the usage of the GM table.
While the Naive approach queries the database for each weight and
support computation, our algorithms query the database only once.
This highlights the usefulness of the GM table when scaling up
the data size, as the number of possible groups in the GM table is
bounded by the number of attribute-value combinations (and not
affected by the data size). The execution time of the Cube algorithm
is also not affected by the data size, as it precomputes the aggregate
data and uses it for score computation. There is an exception on
the (small) PK dataset because the increase in the data size causes
a drastic increase in the data cube size. However, the execution
time for Cube algorithm would be prohibitive when the number of
partition attributes is large. In this case, the size of the data cube
swells, and it would take a longer time to fetch the aggregate results.
For example, the cube contains 76,457 records in the PK dataset,
while the dataset only has 467 rows. We next consider Figure 8d
which shows the memory consumption under the maximal number
of tuples. Observe that the memory consumption remains small
because the sizes of GM tables and data cubes are only affected by
the number and the cardinalities of partition attributes.

Number of groups. Last, we varied the number of groups to be
compared and report the effect on running times and memory us-
age. This experiment set aims to evaluate the contribution of our

68

4 5 6 7 8 9
of partition attributes

0

1000

2000

3000

4000

5000

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(a) Stack Overflow

4 5 6 7 8 9
of partition attributes

0

1000

2000

3000

4000

5000

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(b) Police Killings

4 5 6 7 8 9
of partition attributes

0

1000

2000

3000

4000

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(c) US Census

Stack Overflow
Police Killings US Census

Datasets

0

100

200

300

M
em

or
y

Co
ns

um
pt

io
n

(M
B) Opitimized

Score Computation
Cube

(d)Maximal memory consumption

Figure 7: Runtime and memory consumption, varying the number of partition attributes.

10
K

50
K

10
0K

20
0K

30
0K

40
0K

50
0K

60
0K

70
0K

80
0K

90
0K 1M

of tuples

0

500

1000

1500

2000

2500

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(a) Stack Overflow

10
0

50
0 1K

15
0K

28
0K

42
0K

56
0K

70
0K

84
0K

of tuples

0

1000

2000

3000

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(b) Police Killings

24
5K

50
0K

74
0K

1.
2M

1.
5M

1.
7M 2M

2.
2M

2.
4M

of tuples

0

2000

4000

6000

8000

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(c) US Census

Stack Overflow
Police Killings US Census

Datasets

0

2

4

6

M
em

or
y

Co
ns

um
pt

io
n

(M
B) Opitimized

Score Computation
Cube

(d)Maximal memory consumption

Figure 8: Runtime and memory consumption, varying data size.

2 3 4 5 6
of groups

0

1000

2000

3000

4000

5000

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(a) Stack Overflow

2 3 4 5 6 7 8 9 10
of groups

0

1000

2000

3000

4000

5000

6000

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(b) Police Killings

2 3 4 5 6
of groups

0

1000

2000

3000

4000

5000

Ru
nt

im
e

(s
)

Naive
Cube
Score Computation
Optimized

(c) US Census

Stack Overflow
Police Killings US Census

Datasets

0

1

2

3

4

5

M
em

or
y

Co
ns

um
pt

io
n

(M
B) Opitimized

Score Computation
Cube

(d)Maximal memory consumption

Figure 9: Runtime and memory consumption, varying the number of groups in statements.

4 5 6 7 8 9 10 11 12
of partition attributes

0

1000

2000

3000

4000

Ru
nt

im
e

(s
)

Score Computation
Optimized

Figure 10: Algorithm runtime, varying the number of partition
attributes (Telco Customer Churn dataset).
optimized support score computation (Algorithm 2). The results are
depicted in Figure 9. Observe that the number of groups has very
little impact on the execution times of the Score Computation and
Optimized algorithms. Although the time complexity indicates that
it is linear to the number of groups (Figure 11c has a clear view)),
the trend is not obvious in most of the cases as the time to fetch
the aggregate values dominates the time to sort and enumerate the
values. In contrast, the running times of algorithms that use a naive
approach for support computation (i.e., Naive and Cube) are expo-
nential in the number of groups. The trend of Cube algorithm in the
USC dataset is not obvious since the number of sub-groups in each

group is small in this case. This is in accord with our complexity
analysis. In Algorithm 2, we reduce the exponential time complex-
ity of pairwise comparison to linear. In all cases, our optimized
algorithm uses approximately half of the memory space compared
with the algorithm that uses no memory pruning (Figure 9d).

5.4 Counterargument & Statement Refinement
Next, we study the performance of counterargument identification
and statement correction algorithms. As all datasets indicate similar
trends, we reported only the results of the SO dataset here. To iden-
tify counterarguments and refine the statements, we maintain an
extra data structure while executing the algorithm for score compu-
tation. The maintenance of the inverted index structure cannot be
done in parallel, therefore, in this section, we discuss the memory
and time overhead of computing the counterarguments and refined
statements compared with the Score Computation algorithm.

Figure 11 shows the execution time of the counterargument iden-
tification and the statement refinement algorithm under varying
numbers of partition attributes, data size, and the number of groups
in statements. Compared with the Score Computation algorithm,
these two algorithms demonstrate the same tendency in the scal-
ing experiments. Specifically, as the number of partition attributes

69

4 5 6 7 8
of Partition attributes

0

500

1000

1500

2000

2500

3000
Ru

nt
im

e
(s

)
Score Computation
Counter Arguement
Statement Refinement

(a) Varying # of partition attributes

10K 50K
100K

200K
300K

400K
500K

600K
700K

800K
900K 1M

of tuples

50

75

100

125

150

175

Ru
nt

im
e

(s
)

Score Computation
Counter Arguement
Statement Refinement

(b) Varying data size

2 3 4 5 6
of groups

10

20

30

40

Ru
nt

im
e

(s
)

Score Computation
Counter Arguement
Statement Refinement

(c) Varying # of groups

Figure 11: Runtime of counterargument identification and statement refinement (Stack Overflow).

increases, the execution time for all algorithms increases expo-
nentially (Figure 11a). The size of the data set does not affect the
execution time of the algorithms when it reaches a certain value
(Figure 11b). This is due to our optimization using GM tables, which
records the aggregate information for each sub-group to avoid ac-
cessing the data sets. The execution time is linear in the number
of groups in the statements (Figure 11c). In all experiments, we
showed that the time overhead for counterargument identification
and statement refinement is reasonable. We also recorded the mem-
ory consumption for the inverted index structures. As they are all
less than 3MB, we omitted the graphs from the presentation.

6 RELATED WORK
Computational fact-checking is an emerging research field [17, 24–
27, 36–38]. Traditional fact-checking methods relying on the do-
main knowledge of human experts and crowdsourcing [6, 8, 21, 22]
are not scalable and unconvincing without the presence of sup-
porting datasets. A large body of work focuses on automating the
fact-checking process with structured data. [36, 37] explore data
perturbation and provide an efficient framework to model claims
as parameterized queries for robustness and accuracy evaluation.
[24–27] aim at checking aggregate data summaries from relational
databases with a natural language interface. Our work not only
focuses on maliciously false claims but also on the cherry-picking
scenario, where the aggregate results could be true but misleading.
[17] focuses on evaluating cherry-picked trendlines, where "unrea-
sonable" trends could be derived from falsely chosen endpoints. To
the best of our knowledge, no prior work has focused on the cherry-
picked generalizations [33], where inductive conclusions are made
based on insufficient evidence or cherry-picked aggregation levels.

The tests of statistical significance are common methods to eval-
uate the hypotheses about statistics of given groups. We distinguish
our framework from these tests in the following aspects. First of
all, our score and the p-value in the statistical significance tests
have different meanings. The p-value is not a measure of the appro-
priateness of generalization levels. Tests of statistical significance
assume the data from each group follows the same distribution and
use the p-value to indicate if the observed data is statistically signif-
icant. Our score, in comparison, evaluates whether this assumption,
which generalizes the data from various sub-groups, is reasonable.
In addition, the tests of statistical significance focus on hypotheses
of sample statistics, e.g., mean and standard deviation. It does not
support many aggregate values, e.g. the COUNT aggregation. Our
statement model supports more flexible comparisons and allows
the users to specify conditions for comparison results.

Our work is closely related to multidimensional data aggrega-
tion. The multidimensional view of data is one of the most popular
conceptual models of data warehousing. The drill-down and rollup
operators tend to increase/decrease the levels of aggregation along
dimension hierarchies [18], and the RELEX [30] operator inspects
several kinds of generalization to get interpretable data summary.
[29] focuses on the interactive exploration of data cubes and helps
users to find the most informative and interesting parts of the data
to explore. However, none of these works consider whether a gen-
eralization is a fair representation of the data. Our work proposes
efficient algorithms to evaluate statements derived from aggregate
value comparisons. Our computation of the GM tables also shares
some similar ideas with the CUBE [16] operator to compute group-
bys on all possible combinations of selected attributes. Experimental
results indicate that the GM tables achieve better efficiency com-
pared with using data cubes. The idea of enumerating the predicate
combinations for aggregate values is also similar to Scorpion [35]
which uses aggregate queries to explain away problematic data
points, and SEEDB [32] explores aggregate data visualization.

7 CONCLUSION
In this paper, we provide a metric to determine if a statement
given by generalized aggregation is a reasonable representation of
the underlying data. We consider generalization evaluation in the
context of fact-checking while recognizing a broader application of
evaluating OLAP aggregations, which are essential components in
many decision-support applications. For example, in exploratory
data analysis [31], and data visualization [19]. We define the notion
of query refinement to compute a cherry-picked score based on
the sub-group proportion supporting/opposing the statement. We
propose efficient algorithms for score computation, allowing the
reuse of computational results and reduce time complexity; we also
develop algorithms for identifying significant counterexamples and
alternative statements to provide explanations of the score. Our
framework and algorithms are not limited to single-table relational
databases. Since the computation only relies on the GM tables, as
long as the aggregate values are accessible, our framework and
algorithms would be effective. Extensive experiments on real-world
statements and datasets validate the effectiveness and efficiency of
our proposed methods.

ACKNOWLEDGMENTS
This research was supported in part by NSF under grants 1741022
and 1934565 and was partially funded by the Israel Science Founda-
tion, the Binational US-Israel Science Foundation, and the Tel Aviv
University Center for AI and Data Science.

70

REFERENCES
[1] 2019. What happens to developers once they reach 35? https://blog.pitchme.co/

2019/10/29/what-happens-to-developers-once-they-reach-35/.
[2] 2019. What to know about ADHDmisdiagnosis. https://www.medicalnewstoday.

com/articles/325595#age-related-factors.
[3] 2020. 2020 Stackoverflow Developer Survey. https://insights.stackoverflow.com/

survey/2020.
[4] 2020. Fact Check: Did Bernie Sanders Win ‘People Of Color’ In California, And

Was It ‘Not Even Close’? https://www.politifact.com/factchecks/2020/mar/09/
bernie-sanders/fact-check-did-bernie-sanders-win-people-color-cal/.

[5] 2021. AlterNet. https://www.alternet.org/2018/12/about-alternet/.
[6] 2021. FactCheck.org. https://www.factcheck.org/.
[7] 2021. Police Killings Dataset. https://github.com/fivethirtyeight/data/tree/master/

police-killings.
[8] 2021. PolitiFact. https://www.politifact.com/.
[9] 2021. Simpson’s paradox. https://en.wikipedia.org/wiki/Simpson%27s_paradox.
[10] 2021. Stack Overflow developer survey. https://insights.stackoverflow.com/

survey.
[11] 2021. Telco Customer Churn Dataset. https://www.kaggle.com/blastchar/telco-

customer-churn.
[12] 2021. TheGuardian.com. https://www.theguardian.com/us-news/series/counted-

us-police-killings.
[13] 2021. US Census Data (1990) Data Set. https://archive.ics.uci.edu/ml/datasets/

US+Census+Data+(1990).
[14] 2021. WIKIPEDIA: Aggregate function. https://en.wikipedia.org/wiki/Aggregate_

function#Decomposable_aggregate_functions.
[15] 2021. World Socialist Web Site. https://www.wsws.org/en/special/pages/icfi/

wsws.html.
[16] Sameet Agarwal, Rakesh Agrawal, Prasad M Deshpande, Ashish Gupta, Jeffrey F

Naughton, Raghu Ramakrishnan, and Sunita Sarawagi. 1996. On the computation
of multidimensional aggregates. In VLDB, Vol. 96. VLDB Endowment, 506–521.

[17] Abolfazl Asudeh, Hosagrahar Visvesvaraya Jagadish, You Wu, and Cong Yu. 2020.
On detecting cherry-picked trendlines. PVLDB 13, 6 (2020), 939–952.

[18] Surajit Chaudhuri and Umeshwar Dayal. 1997. An overview of data warehousing
and OLAP technology. SIGMOD 26, 1 (1997), 65–74.

[19] Chun-houh Chen, Wolfgang Karl Härdle, and Antony Unwin. 2007. Handbook of
data visualization. Springer Science & Business Media.

[20] Doug Cutting and Jan Pedersen. 1989. Optimization for dynamic inverted index
maintenance. In SIGIR. ACM, 405–411.

[21] Naeemul Hassan, Fatma Arslan, Chengkai Li, and Mark Tremayne. 2017. Toward
automated fact-checking: Detecting check-worthy factual claims by claimbuster.
In SIGKDD. ACM, 1803–1812.

[22] Naeemul Hassan, Chengkai Li, and Mark Tremayne. 2015. Detecting check-
worthy factual claims in presidential debates. In CIKM. ACM, 1835–1838.

[23] Walt Hickey. 2016. Men Are Sabotaging The Online Reviews Of TV Shows Aimed
AtWomen. https://fivethirtyeight.com/features/men-are-sabotaging-the-online-
reviews-of-tv-shows-aimed-at-women/.

[24] Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi Wang, Cong Yu, Daniel Liu,
and Niyati Mehta. 2019. Aggchecker: A fact-checking system for text summaries
of relational data sets. PVLDB 12, 12 (2019), 1938–1941.

[25] Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi Wang, Cong Yu, Daniel
Liu, and Niyati Mehta. 2019. Verifying text summaries of relational data sets. In
SIGMOD. ACM, 299–316.

[26] Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, and Immanuel Trummer.
2020. Scrutinizer: A Mixed-Initiative Approach to Large-Scale, Data-Driven
Claim Verification. PVLDB 13, 12 (2020), 2508–2521.

[27] Georgios Karagiannis, Mohammed Saeed, Paolo Papotti, and Immanuel Trummer.
2020. Scrutinizer: fact checking statistical claims. PVLDB 13, 12 (2020), 2965–2968.

[28] Babak Salimi, Johannes Gehrke, and Dan Suciu. 2018. Bias in olap queries:
Detection, explanation, and removal. In SIGMOD. ACM, 1021–1035.

[29] Sunita Sarawagi. 2001. User-cognizant multidimensional analysis. The VLDB
Journal 10, 2 (2001), 224–239.

[30] Gayatri Sathe and Sunita Sarawagi. 2001. Intelligent rollups in multidimensional
OLAP data. In VLDB, Vol. 1. 531–540.

[31] John W Tukey et al. 1977. Exploratory data analysis. Vol. 2. Reading, Mass.
[32] Manasi Vartak, Sajjadur Rahman, Samuel Madden, Aditya Parameswaran, and

Neoklis Polyzotis. 2015. SEEDB: Efficient Data-Driven Visualization Recommen-
dations to Support Visual Analytics. PVLDB 8, 13 (2015), 2182–2193.

[33] Douglas Walton. 1999. Rethinking the fallacy of hasty generalization. Argumen-
tation 13, 2 (1999), 161–182.

[34] John Woods. 2004. Hasty generalization. In The Death of Argument. Springer,
311–334.

[35] Eugene Wu and Samuel Madden. 2013. Scorpion: Explaining Away Outliers in
Aggregate Queries. PVLDB 6, 8 (2013), 553–564.

[36] You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2014. Toward
computational fact-checking. PVLDB 7, 7 (2014), 589–600.

[37] You Wu, Pankaj K Agarwal, Chengkai Li, Jun Yang, and Cong Yu. 2017. Compu-
tational fact checking through query perturbations. TODS 42, 1 (2017), 1–41.

[38] Xinyi Zhou and Reza Zafarani. 2018. Fake news: A survey of research, detection
methods, and opportunities. arXiv preprint arXiv:1812.00315 2 (2018).

71

https://blog.pitchme.co/2019/10/29/what-happens-to-developers-once-they-reach-35/
https://blog.pitchme.co/2019/10/29/what-happens-to-developers-once-they-reach-35/
https://www.medicalnewstoday.com/articles/325595##age-related-factors
https://www.medicalnewstoday.com/articles/325595##age-related-factors
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020
https://www.politifact.com/factchecks/2020/mar/09/bernie-sanders/fact-check-did-bernie-sanders-win-people-color-cal/
https://www.politifact.com/factchecks/2020/mar/09/bernie-sanders/fact-check-did-bernie-sanders-win-people-color-cal/
https://www.alternet.org/2018/12/about-alternet/
https://www.factcheck.org/
https://github.com/fivethirtyeight/data/tree/master/police-killings
https://github.com/fivethirtyeight/data/tree/master/police-killings
https://www.politifact.com/
https://en.wikipedia.org/wiki/Simpson%27s_paradox
https://insights.stackoverflow.com/survey
https://insights.stackoverflow.com/survey
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.kaggle.com/blastchar/telco-customer-churn
https://www.theguardian.com/us-news/series/counted-us-police-killings
https://www.theguardian.com/us-news/series/counted-us-police-killings
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://en.wikipedia.org/wiki/Aggregate_function##Decomposable_aggregate_functions
https://en.wikipedia.org/wiki/Aggregate_function##Decomposable_aggregate_functions
https://www.wsws.org/en/special/pages/icfi/wsws.html
https://www.wsws.org/en/special/pages/icfi/wsws.html
https://fivethirtyeight.com/features/men-are-sabotaging-the-online-reviews-of-tv-shows-aimed-at-women/
https://fivethirtyeight.com/features/men-are-sabotaging-the-online-reviews-of-tv-shows-aimed-at-women/

