
Fairness Ma�ers: A Tit-For-Tat Strategy Against Selfish Mining
Weijie Sun

The Hong Kong University of Science
and Technology

Hong Kong SAR, China
wsunan@cse.ust.hk

Zihuan Xu
The Hong Kong University of Science

and Technology
Hong Kong SAR, China

zxuav@cse.ust.hk

Lei Chen
The Hong Kong University of Science

and Technology
Hong Kong SAR, China
leichen@cse.ust.hk

ABSTRACT
The proof-of-work (PoW) based blockchains are more secure nowa-
days since pro�t-oriented miners contribute more computing pow-
ers in exchange for fair revenues. This virtuous circle only works
under an incentive-compatible consensus, which is found to be
fragile under sel�sh mining attacks. Speci�cally, sel�sh miners
can conceal and reveal blocks strategically to earn unfairly higher
revenue compared to honest behaviors. Previous countermeasures
either require incompatible modi�cations or fail to consider the
asynchronous network and multiple honest nodes setting in reality.

In this paper, we introduce the unfairness measurement based
on the KL-divergence from the computing power distribution to
the revenue distribution of miners. To improve fairness with the
existence of sel�sh miners, we propose a novel block promotion
strategy namely Tit-for-Tat (TFT), for honest miners. In particu-
lar, based on a miner’s local observation of forks, we design the
suspicious probability measurement of other nodes. Rather than
promoting a fresh block instantly, miners withhold it for di�erent
time periods according to others’ suspicious probability before de-
livery. Meanwhile, to minimize the attacker’s unfair revenue, we
formulate the delay vector (DV) problem for honest miners to de-
termine the optimal withholding time. We prove that DV problem
is nonconvex, and thus propose two approximation algorithms that
yield n-suboptimal solutions. In addition, we extend TFT strategy
to support dynamic networks. Extensive experiments validate the
e�ciency and e�ectiveness of our strategy and algorithms to reduce
unfairness by 54.62% within bounded withholding time.

PVLDB Reference Format:
Weijie Sun, Zihuan Xu, and Lei Chen. Fairness Matters: A Tit-For-Tat
Strategy Against Sel�sh Mining. PVLDB, 15(13): 4048 - 4061, 2022.
doi:10.14778/3565838.3565856

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/SwJay/tft.

1 INTRODUCTION
Blockchain has evolved from the original cryptocurrency ledger
into an almighty platform that copes with troublesome scenarios
lacking trust in �elds like �nance [37, 50], crowdsourcing [23],
e-voting [38], etc.. To ensure system security and reliability, the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.
doi:10.14778/3565838.3565856

consensus protocol plays an essential role. Nakamoto consensus,
the de facto consensus mechanism for most permissionless chains
(e.g., Bitcoin [34], Ethereum [52]), adopts the proof-of-work (PoW)
to nominate a node to append a new block every round and the
longest-chain rule [34] to ensure the eventual consistency in an
honest majority environment. In addition, incentive mechanisms
motivate miners to join mining and increase computing power for
more pro�ts, thus contributing to the growing system hash rate
that raises the attack cost and strengthens the overall security.

However, such enhanced security of Nakamoto consensus is
based on a vulnerable property which is taken for granted – fair-
ness. Nowadays, a growing interest in the miner’s fairness of per-
missionless blockchain has emerged in the blockchain community
and database �eld [11, 25, 26, 40]. Fairness assumes that on expec-
tation, each miner has the same relative ratio of the revenue and
computing power [7]. However, fairness may not hold due to the
asynchronous network in reality [39], where di�erent propagation
delays among nodes will give some miners an unfair lead over
others to solve PoW puzzles [11]. What’s worse, such delay can be
manipulated by malicious nodes to enforce a fork to partition the
network, and the total computing power is dispersed and under-
mined. Due to the uneven distribution of nodes’ wasted computing
power leading to mismatched rewards, unfairness emerges.

Sel�sh mining is such a threat that gives attackers unfairly
higher revenue yet with a budget attack cost much lower than the
typical 51% attack in Nakamoto Consensus [7, 17, 40]. In particular,
for a freshly mined block, honest miners promote it immediately,
while the sel�sh attacker conceals it and continues mining on its
local branch privately. The attacker will reveal withheld blocks to
initiate a fork only when receiving a competing block from the
honest community. First, let’s consider an example:

Figure 1: Example work�ow for sel�sh mining.

Example 1.1. Fig. 1 shows three honest miners (A, B, C) and one
sel�sh miner (S) that are fully connected. When S �rst mines a block
(1 at time C1, S conceals it and continues mining on this private
branch, while A, B, and C remain unaware of (1 and still endeavor

4048

https://www.acm.org/publications/policies/artifact-review-and-badging-current

to mine on⌧0. Later at time C2, B mines a block ⌫1 and promotes it
immediately. Once S receives ⌫1, it reveals (1 to others, resulting
in a split where A and B mine on ⌫1, while C and S mine on (1.
Eventually, this fork tie is broken by node C who mines a higher
block⇠1 at time C3. The branch⌧0-(1-⇠1 becomes the longest chain
and is accepted as the main branch by the whole network. In this
case, S still gets rewards from (1 which is mined by C, while wasting
A and B’s computing power on ⌫1 in this malicious fork.

In Example 1.1, block mining becomes an unfair game since the
sel�sh attacker doesn’t disclose the information of an existing block
and gets pro�ts in two aspects. First, it can reveal private blocks
strategically to cause forks, dispersing the computing power of the
honest community, s.t. blocks from the honest community may
be discarded. Second, even honest miners mining based on blocks
proposed by attackers, are less likely to compete with the attacker,
since the attacker has an unfair lead to mine on concealed blocks.

To design solutions for the unfairness problem originated from
sel�sh mining, there are three challenges to overcome:
(1) Compatibility. Compatibility is essential to blockchain clients

which operate in a decentralized manner, thus hard forks from
outdated nodes are not desired.

(2) Asynchronous network. The network connectivity plays a
vital role in sel�sh mining, thus the propagation delay of the
underlying network should be properly considered.

(3) Multiple honest nodes. Multiple honest nodes rather than a
single honest party is more practical. It gives deeper insight on
the impact of sel�sh mining, and enables partial participation
in the countermeasure.

Most existing solutions to sel�sh mining require heavy modi-
�cations on blockchain structures which are mainly categorized
into three aspects, time witness mechanisms [24, 40, 45], reward
incentives [4], and fork selection rules [17, 56]. Pass [40] Solat [45]
and Heilman [24] introduce time witness by adding fruits, dummy
blocks, or unforgeable timestamps respectively, and Bahack [4]
modi�es block reward rules which all require incompatible modi�-
cations causing hard forks thus fail to address challenge 1. Eyal [17]
and Zhang [56] propose novel fork resolving policies for synchro-
nous networks which neglect challenge 2. In addition, existing
works on sel�sh mining simply split the network into an honest
majority and a sel�sh pool with no propagation delay [20, 35, 43].
Though these works make contributions to the theoretic game
modeling, considerations for challenges 2 and 3 are still missing.

In this paper, we propose a novel solution namely Tit-for-Tat
(TFT), with compatibility to existing blockchains to improve fair-
ness against sel�sh mining in an asynchronous network with mul-
tiple honest players. Particularly, For challenge 1, TFT strategy
targets block promotion and can be easily adapted by miners to
decide promotion schedules without system incompatible modi-
�cations. For challenge 2, TFT strategy utilizes sel�sh miner’s
late-mover drawback and ampli�es the targeted propagation de-
lay to the suspicious attacker in an asynchronous network. For
challenge 3, we introduce the unfairness measurement by using
the KL-divergence from miners’ computing power to their revenue.
Besides, we propose the suspicious probability of other nodes under
the n-player model to assist with the decision of promotion delay.
Meanwhile, to determine the optimal delay schedules in TFT strat-
egy, we model an optimization problem named the delay vector

(DV) problem to minimize the attacker’s unfair revenue. We prove
that the DV problem is non-convex which is hard to �nd a global
optimum. Thus, we propose approximation algorithms yielding
n-suboptimal solutions with bounded promotion delay. In addition,
we extend TFT strategy for practicality in a dynamic network. Ex-
tensive experiments validate the e�ciency and e�ectiveness of the
TFT strategy to improve fairness against sel�sh mining.

We summarize our main contributions below:

• To the best of our knowledge, we are the �rst to tackle sel�sh
mining with compatibility under an asynchronous network
with multiple honest players. Speci�cally, we target the block
promotion and propose a novel tit-for-tat strategy to undermine
sel�sh mining and reduce unfairness.

• We formulate the delay vector (DV) problem to minimize the
attacker’s pro�t and prove its non-convexity. Thus, we propose
approximation algorithms yielding n-optimal solution with
bounded promotion delay.

• We implement a simulator to evaluate our methods. Exten-
sive results show that for the sel�sh miner with computing
power < 1

3 (deduced by theoretical proof), we reduce the self-
ish miner’s revenue to 60.26% of an honest miner on average.
When the attacker’s computing power � 1

3 , we reduce the
system unfairness by 54.62% on average.

The rest of paper is organized as follows. Sec. 2 introduces the
background. Sec. 3 de�nes the unfairness and analyzes the e�ect of
sel�sh mining. Sec. 4 proposes TFT strategy and the DV problem,
followed by solutions in Sec. 5. Sec. 6 extends TFT for dynamic
networks. Sec. 7 shows experiment results.We discuss relatedworks
in Sec. 8 and conclude in Sec. 9.

2 BACKGROUND
In this section, we introduce our background including theNakamoto
consensus protocol and the sel�sh mining attack.

2.1 Nakamoto Consensus
Nakamoto consensus is introduced to reach consensus among nodes
without a trusted party [34], which consists of three components:
Leader selection policy. Whoever solves the PoW puzzle is nom-
inated as the leader to append a block, where the di�culty is pe-
riodically updated to retain a stable block interval [34]. Thus, we
can treat the overall mining as a Poisson process [12]. Generally, a
miner’s hash rate (normalized computing power over the network)
is proportional to the probability to mine a block [25].
The longest-chain rule. The rule is to solve fork con�icts caused
by the asynchronous network, requiringminers to select the longest
chain as the main branch which represents the honest majority [34].
However, such security is only guaranteed when competing blocks
in a fork have an equal chance to be selected. In reality, some
in�uential nodes (e.g., mining pools) have network advantages to
deliver blocks [33], thus more likely to gain support from other
nodes in a fork. What worse, deliberate forks make miners with
strong network connectivity have higher rewards [53].
Incentive mechanism. The incentive of the Nakamoto consensus
includes the reward for mining a block and transaction fees within
the block. However, it lacks the incentive to other honest behaviors
such as transaction propagation and block validation [3, 32]. In

4049

consequence, although winners are supposed to publish the block
expeditiously, it turns out that miners who maliciously conceal the
block strategically can gain revenue higher than its fair share [17].
Such malicious behavior is known to be sel�sh mining.

2.2 Sel�sh Mining Attack
Intuitively, miners are motivated to promote a block immediately
once they mine it s.t. it’s accepted by others as soon as possible.
However, sel�sh mining [17] shows that an immediate promotion
(IP) is not incentive compatible. Instead, by withholding a freshly
mined block and strategically revealing blocks to enforce forks, the
sel�sh miner can gain higher rewards than its fair share. Such an
attacker can control a majority of con�rmed blocks with minor
computing power, which severely damages the system fairness and
security. Worse yet, its pro�table threshold is much lower than
the typical 51% attack: 25% for attackers who win half forks, and
33.3% for attackers who even never win forks. According to the data
monitored on Mining Pool Stats[46], such thresholds are achievable
even in popular blockchains like BCH, ETH, not to mention other
projects. Below we illustrate the details of sel�sh mining.

Figure 2: State machine of the sel�sh mining process.

Attack work�ow. As studied in [35], sel�sh mining can be mod-
eled as a Markov process illustrated by the state machine in Fig. 2
for an attacker with the computing power U and the network con-
nectivity W . In particular, U is normalized, denoting the percentage
of computing power that an attacker possesses (1 � U for other
honest nodes). The network connectivity W denotes the ratio of
honest miners who mine based on the sel�sh miner’s block during
a fork. For the honest community ⌘, the sel�sh miner B< with ;
concealed blocks ahead of ⌘, the Markov chain works as follows:
State Y0: B< and ⌘ mines at the same height with ; = 0. If ⌘ mines
a block �rst, B< accepts it and stays at (0. If B< mines a block �rst,
B< conceals it and moves to (1 with ; = 1.
State Y1: B< mines on his private branch with ; = 1 block lead. If ⌘
mines a block �rst, B< reveals his private block to enforce a fork
immediately when informed and goes to (00 with ; = 0. If B< mines
a block �rst, B< conceals it again and goes to (2 with ; = 2.
State Y00 : B< and the ⌘ are mining on competing blocks in a fork.
The network is split into two groups: 1) B< and a proportion W of
honest miners ⌘ are working on B<’s block. 2) The rest (1 � W) of
honest miners ⌘ are working on the block from ⌘. Whoever mines
the next block gets reward, and B< always moves to (0.
State Y2: B< mines on his private branch with ; = 2 blocks lead. If
⌘ �nds a block �rst, B< reveals two private blocks at once to beat ⌘
and goes to (0 with ; = 0. If B< mines a block �rst, B< conceals it
again and goes to (= with ; = 3.
State Yn: B< mines on his private branch with ; > 2 blocks lead
over ⌘. If ⌘ �nds a block �rst, B< reveals the earliest private block

to cause a fork with ; = ; � 1. If ; = 2, B< moves to (2, otherwise
stays. If B< mines a block �rst, it conceals this block with ; = ; + 1.
Attack revenues. Given the states above, the probability of state
transition depends on the winner selection at the current state. It
follows Bernoulli distribution where B< wins with ? = U and ⌘
wins with ? = 1�U . Denote by ?(8 the state probability for a certain
state (8 , and the revenue for the honest community ('⌘) and the
sel�sh attacker ('B<) are summarized by Eyal as follows [17]:

'⌘ = ?(00 [W (1 � U) + 2(1 � W) (1 � U)] + ?(0 (1 � U) (1)
'B< = ?(00 [2U + W (1 � U)] + (2?(2 + ?(=) (1 � U) (2)

The stationary distribution of this chain can represent the at-
tacker’s relative revenue AB< = 'B<

'B<+'⌘ determined by U,W , and the
pro�table threshold C (W) is computed as follows [17]:

AB< =
U (1 � U)2 (4U + W (1 � 2U)) � U3

1 � U (1 + (2 � U)U) (3)

C (W) = inf {U |AB< (U,W) > U } = 1 � W
3 � 2W

(4)

Two types of attackers. C (W) in Eq. (4) monotonically decreases
from the upper bound 1

3 . We interpret C (W) for two di�erent at-
tackers: convincing a�acker with small U < 1

3 but high W , and
powerful a�acker with large U � 1

3 . When a convincing attacker’s
W is close to 1, the pro�table threshold drops to 0, i.e.,it can invest
minor computing power to pro�t unfairly, so long as it dominates
the network propagation. A powerful attacker always gains unfairly
since the U surpasses the upper bound of C (W) = 1

3 .
With the prerequisites above, we give insights on countering

both convincing and powerful attackers in Sec. 3.2 and demonstrate
our detailed defense strategy in Sec. 4.

3 UNFAIRNESS
In this section, we give a formal de�nition of unfairness for a =-
player blockchain network under Nakamoto consensus and analyze
the overall unfairness caused by sel�sh mining.

3.1 Formal De�nition of Unfairness
To quantify unfairness in blockchain, most works [15, 25, 40] fol-
low the theory of inequity with the essence to compare perceived
revenue and investment between oneself and another entity [1].
However, such a comparison implies a 2-player model, failing to
capture the unfairness within the integrated reference.

Therefore, we extend the 2-player model to =-player with both
computing power distribution a and mining revenue distribution r

normalized among all miners. As discussed in Sec. 2.1, the single
block mining process is modeled with the same probability distri-
bution of a [25]. Therefore, we de�ne unfairness as follows:

De�nition 3.1 (Unfairness). For a blockchain network with =
players, let a = (01,02, ...,0=) be the computing power distribution
and r = (A1, A2, ..., A=) be the revenue distribution. Unfairness* is
de�ned as the KL-divergence from a to r :

* = ⇡ ! (r | |a) (5)
In this de�nition, unfairness is isolated from the incentive mech-

anism, and purely measures the di�erence between the designed
and measured distributions of leader selection. For a fair blockchain,
we would expect the actual leader selection allocation to comply

4050

with miners’ computing power distribution. Thus, the deviation of
selection can be well captured by the entropy loss in KL-divergence.

3.2 Unfairness in the Sel�sh Mining Scenario
We then analyze how sel�sh mining aggravates unfairness with
higher relative revenue. Based on the honest community⌘’s revenue
in Eq. (1) in Sec. 2.2, we further elaborate the revenue of every
single honest miner 8 2 ⌘ since the unfairness metric is proposed
for multiple players. Speci�cally, there are three cases for 8 to pro�t
given the state machine depicted in Fig. 2. We denote ⌫8,B as the
block mined by 8 at state (B , and W as the network connectivity
de�ned in Sec. 2.2, which is the ratio of honest miners who mine
on a sel�sh block during a fork:
(1) Node 8 mines a block ⌫8,0 at state (0 with the probability of 08 .
(2) Node 8 mines a block ⌫8,00 at state (00 with the probability of

08 . Note that, whether 8 mines based on an honest block ⌫⌘,1
or a sel�sh block ⌫B<,1, does not a�ect the reward of ⌫8,00 .

(3) (1 � W) of miners in ⌘ successfully mines a block at state (00
where the last honest block ⌫8,1 mined at state (1 from 8 get
rewarded. Though the reward for honest block ⌫⌘,00 in case
(2) is irrelevant to the former blocks proposed at (1, the last
honest block ⌫8,1 from 8 only receives reward when the (1 �W)
of miners in ⌘ wins the fork competition. Conditioned on (00 ,
the probability for 8 to propose the former block ⌫8,1 is 08

1�U .
We sum the three cases up and calculate the revenue for a single

honest miner 8 as follows:
'8 = ?(008 + ?(0008 +

08
1 � U ?(00 (1 � W) (1 � U) =

08
1 � U '⌘

We can observe that the proportion of 8’s revenue '8 among the
overall honest revenue (i.e., '⌘ in Eq. (1)), equals to 8’s computing
power proportion within the overall honest miners 08Õ=

9<B< 0 9
. Thus,

8’s relative revenue A8 can be computed as A8 = 08
1�U · (1 � AB<) and

we can compute the unfairness* from Eq. (5) as follows:

* = ⇡ ! (r | |a) = AB< log
AB<
U

+
=’
8=1

A8 log
A8
08

= AB< log
AB<
U

+ (1 � AB<) log 1 � AB<
1 � U (6)

Given the unfairness evaluation under sel�sh mining attack
in Eq. (6), we further elaborate it with an example.

Table 1: Computing power (CP) distribution and propagation
time of the example network.

CP Propagation time
distribution Node � Node ⌫ Node ⇠ Node (

Node � 20% 0 2 5 3
Node ⌫ 25% 2 0 6 4
Node ⇠ 25% 5 6 0 1
Node (30% 3 4 1 0

Example 3.2. Consider a fully connected network with three hon-
est miners (A, B, C) and one sel�sh miner (S). Table 1 shows their
computing power distribution and propagation time. We evaluate
the expectation ofW as

Õ
82{+ \{(}}

08
1�U

Õ
92{+ \{8,(}}

0 9
1�U {C8,9>C8,(,9 } ⇡

0.4592, where {C8,9>C8,B,9 } indicates whether it takes shorter time
to traverse from node 8 to 9 when passing node (. From Eq. (3)
and Eq. (6), we compute attacker’s relative revenue AB< ⇡ 0.3225 >
U and overall unfairness* = 0.12% > 0.

Intuition to solve unfairness. We compute the �rst-order and
second-order derivatives for unfairness* and list below:

d*
dAB<

= log(1 � U
U

AB<
1 � AB<

), d2*
dA 2B<

=
1

AB< (1 � AB<) > 0

Therefore,* gets optimal when log(1�UU
AB<

1�AB<) = 0, i.e. AB< = U .
We assume the sel�shminer is rational that always tries tomaximize
the revenue which means the attacker only performs sel�sh mining
when it’s more pro�table, otherwise behaves honestly. Thus, a fair
system should minimize the relative revenue AB< of sel�sh miners.

To achieve so, the intuition is to minimize the attacker’s con-
nectivity W . We analyze why lower W helps to reduce AB< for both
convincing attackers and powerful attackers introduced in Sec. 2.2.
For convincing attackers. From Eq. (4), the pro�table threshold
C (W) is monotonically decreasing over W . By minimizing W , we raise
the attack cost for convincing attackers higher than its pro�t. Thus a
rational convincing attacker won’t launch sel�sh mining anymore.
For powerful attackers. The relative revenue AB< from Eq. (3)
is also monotonically decreasing over W . Hence, for a powerful
attacker with computing power larger than the upper bound of
C (W), the best we can do is directly reduce his relative revenue via
lowering his network responsiveness.

To tackle unfairness caused by sel�sh attackers above, we for-
mally de�ne the problem in Sec. 4.3 and solve it in Sec. 5.

3.3 Network and Threat Model
To better capture W under the n-player setting, a more detailed
model is required to reveal the communication among nodes.
Network model. We study the honest community at a �ner gran-
ularity of mining pools since they dominate computing power and
provide a natural abstract of the underlying P2P network. By De-
cember 2018, Romiti analyzed that more than 80% mining shares in
Bitcoin were occupied by known mining pools whose percentage
was more than 4%, where top 3 or 4 pools held more than 50% of the
overall computing power [41]. The largest pool in other popular
blockchains like BCH, ETH, etc., can sometimes occupy more than
1
3 computing power according to Mining Pool Stats. Studies on
the underlying P2P network also suggest the impact from well-
connected in�uential nodes and community structures formed in
network clustering [13, 33]. Moreover, in�uential nodes and pools
are considered to connect directly [35] thus forming a complete
graph that is robust against network attacks. With the granularity
�xed, we model the spatial relationship and communication delays
with Göbel’s assumptions [21]. We assume all miners follow the
spatial Poisson point process. We assume the communication de-
lay between any two miners follows the normal distribution with
mean : · 3 proportional to their distance 3 , with a constant vari-
ance f2. Therefore we can treat the overall network as a complete
graph =+1 = (+ , ⇢), where + is composed of = honest players
= {1, 2, ...,=} and 1 sel�sh miner with |+ | = = + 1, and the weight
for each edge (D, E) in ⇢ represents the Euclidean distances between
two nodes 3 (D, E). From the perspective of our agency, a single hon-
est miner, the structure it is aware of is a star (= since it has no
information of edges between any other two nodes.
Threat model. The strongest sel�sh mining comes from a single at-
tacker who is more pro�table than multiple attackers and damages
the fairness most severely [6]. Therefore, without loss of generality,

4051

we adapt a solo sel�sh miner as our threat model. Moreover, as
we’ve analyzed in Sec. 3.2, a lower connectivity W suppresses the
unfair pro�ts for both convincing attacker and powerful attacker.
Hence for our threat model, we consider the strongest attacker that
completes block delivery in a �ash s.t.it has the largest connectivity
W . That means once it receives a new block from the honest com-
munity, the rest uninformed honest nodes will immediately receive
and mine on the sel�sh miner’s block. It is under such a strong
threat model that we can tell the e�ectiveness of our strategy.

4 TFT STRATEGY
In this section, we illustrate the work�ow of our tit-for-tat (TFT)
strategy in static networks, improving fairness against sel�sh min-
ing. TFT strategy enables honest miners to delay promotions to
suspicious attackers with optimized scheduling, i.e., delay vector.

4.1 Tit-for-tat Strategy
As discussed in Sec. 3.2, to tackle unfairness from sel�sh mining,
we need to paralyze the attacker’s network connectivity W , i.e., the
number of honest miners mining on sel�sh blocks in forks. To
reduce W , the insight of TFT strategy is to utilize the late-mover
drawback of the sel�sh miner and amplify such gap by delaying
promotions in a tit-for-tatmanner. Sel�shminer only reveals private
blocks until receiving a competing honest block, thus it’s always
one step behind the honest community to promote blocks. Such
late-mover promotion can be aggravated if its receipt of the honest
block is delayed by honest miners. Speci�cally, TFT strategy helps
the honest miner develop a well-scheduled promotion plan, namely
delay vector, to delay block promotions to suspicious attackers.
Before introducing the calculation of delay vectors, let’s �rst check
its e�ectiveness on countering sel�sh mining through an example.
Table 2: Computing power (CP) distribution and propagation
time with delay vector of the example network.

CP Propagation time with delay vector
distribution Node � Node ⌫ Node⇠ Node (

Node � 20% 0 2 + 0 5 + 1 3 + 3
Node ⌫ 25% 2 + 0 0 6 + 1 4 + 3
Node⇠ 25% 5 + 1 6 + 1 0 1 + 3
Node (30% 3 4 1 0

Figure 3: Example TFT strategy against sel�sh mining.

Example 4.1. Consider the same network in Example 3.2, but
now we allow honest miners to delay their promotion following
delay vectors in Table 2. For example, when B generates the block
⌫1 at C2, B doesn’t propagate it instantly to the whole network, but

promote to A at C2, C at C2 + 1 and S at C2 + 3 in Fig. 3. This strategy
wins B the support from node C since it receives block ⌫1 earlier
than block (1. Now only S is mining on (1 in the fork tie which is
later broken by C and the longest chain ⌧0 � ⌫1 �⇠1 leaves S no
reward. Same as Example 3.2, we compute W = 0 and the relative
revenue AB< ⇡ 0.2731 < U , hence it’s not pro�table for the attacker.

Nowwe dive into the TFT strategy with three steps: 1)Detect the
sel�sh mining behavior (in Sec. 4.2). 2) Compute the sel�sh mining
suspicious probability of neighbor nodes (in Sec. 4.2). 3) Promote
the honest block according to optimized delay vector (in Sec. 4.3).

For step 1, the essence of sel�sh mining is to disperse the honest
community’s computing power through deliberate forks, thus fork
events serve as a signi�cant indicator [10, 16, 51].

For step 2, based on the fork events detected in step 1, we learn
the latent variables behind their fork patterns to compute the sus-
picious probability of other nodes in Sec. 4.2.

For step 3, according to the suspicious probability, the honest
miner can measure the attacker’s network connectivity by the ex-
pectation of W it perceives.To minimize W , it’s modeled as the delay
vector problem in Sec. 4.3 to calculate the optimized delay schedul-
ing. We prove it to be non-convex and propose two approximation
algorithms to calculate the n-suboptimal delay vector in Sec. 5.

4.2 Sel�sh Detection and Suspicious Probability
Sel�sh mining detection. Since the attacker pro�ts by withhold-
ing its private blocks to initiate forks, the network’s fork events are
more frequent and severe [10]. Therefore, honest miners can easily
observe abnormal fork rate, which serves as a signi�cant indicator
of sel�sh mining [16, 51]. Now we introduce a sliding window of
width !F to measure the fork rate in the latest !F blocks. Every
honest miner maintains a fork count vector ^ = (-1, ...,-=) 2 Z=�0
to record the number of competing blocks from other nodes. When-
ever an honest miner receives two competing blocks from nodes 8
and 9 , it records on -8 and - 9 , thus the honest miner can measure
the fork rate as ?A 5 =

Õ=
8 -8
!F

. Once the observed fork rate is higher
than normal fork rate threshold which is a dynamically estimated
system parameter, the honest miner can determine the existence of
sel�sh mining in progress. An example normal fork rate in Bitcoin
from block height 180, 000 to 190, 000 is 1.69%, measured by [12].
Suspicious probability measurement. Among all those fork
events recorded in ^ , we model the number of forks caused by
node 8 as a Binomial distributed random variable with probability
\8 , where the attacker should have the highest probability \B =
max82# {\8 } to launch a fork. Given node 8’s observed fork count
-8 , all = Binomial distributions can generate this result only at
di�erent probability, thus we represent it with latent probability
%A [I8 |- ,)] where latent variable I8 2 {1, 2, . . . ,=} as the I8 -th
distribution and) as the unknown parameters to be predicted. We
are interested in the latent probability for each node 8 to be the
attacker conditioned on data in the current window %A [I8 = B |^ ,)],
where B = argmax=8 {\8 }. To compute the distribution of latent
variable I and unknown parameter) , an honest miner can apply the
EM algorithm [14] with hash rate as the initial parameter estimation.
Based on the converged parameter) , we can obtain the suspicious
probability ?8 = %A [I8=B |- ,)]Õ=

9 %A [I 9=B |- ,)]
, 8 = 1, 2, ...,=.

4052

4.3 Delay Vector Problem
Now we formulate delay vector problem for the optimal promotion
delay scheduling. Here, we �rst de�ne some basic notations.

Given a blockchain network =+1, what an honest miner< 2 ⌘
can perceive is the star subgraph (= (<) with itself as the internal
node. For a perceived network (= (<), each leaf 8 has computing
power 08 , and each edge (<, 8) has a weight 38 indicating the Eu-
clidean distance between nodes< and 8 . It complies with our threat
model since the attacker’s propagation distribution is unknown
and we assume it’s �nished immediately for a strong attacker.

De�nition 4.2 (Delay Vector). Given a perceived network (= (<),
let t = (C1, C2, ..., C=) 2 R=�0 be the vector of proactive delay time
determined by<. After< mines a block,< will withhold this block
for C8 before promoting it to node 8 .

With the proper delay vector t , an honest miner can win extra
support from the community before the attacker is informed and
reacts. To determine the delay vector in an asynchronous network,
we followGöbel’s work [21] to model the communication as follows.

De�nition 4.3 ((k, 2)-Communication Condition). For a given
constant pair (:,f) where : � 0 and f � 0, a perceived network
(= (<) satis�es the (:,f)-communication condition if for any edge
(<, 8), the message arrival time through this edge)8 follows normal
distribution # (: · 38 + C8 ,f2).

For simplicity, we write : ·38 +C8 as `8 . Given a perceived network
(= (<) satisfying (:,f)-communication condition, since both : and
38 for every edge (<, 8) are �xed, deciding the value of delay vector
t is equivalent to determining -. As for constraints, we require
- � : · d for 8 = 1, 2, ...,=.

De�nition 4.4 (Precedence Matrix). For a perceived network
(= (<) satisfying (:,f)-communication condition, let ⇡8, 9 denote
the di�erence between)8 and)9 where 8 < 9 , hence ⇡8, 9 ⇠ # (`8 �
` 9 , 2f2). When 8 = 9 , ⇡8, 9 = 0. Let V be the precedence matrix
where %8, 9 indicates the probability that node 8 receives the block
from< earlier than node 9 ,

%8,9 = % (⇡8,9 0) =
(
0 8 = 9

�(�`8+`9p
2f

) esle
(7)

� denotes the cumulative distribution function of standard nor-
mal distribution, �(G) = %A [- G] = 1p

2c

Ø G
�1 4

� `
2
2 dD. Thus for

any 1 8 < 9 =, we have %8, 9 + % 9,8 = 1.
De�nition 4.5 (Delay Vector (DV) Problem). Given a perceived

network (= (<) satisfying (:,f)-communication condition, a suspi-
cious vector ? , the honest miner< wants to determine the value of
- under certain constraints s.t. his measured expectation of network
connectivity W over the suspicious distribution is minimized:

min W =
=’
8=1

?8

=’
9=1

%8,9 ·
0 9

1 � 08
, (8)

s.t. - � : · d (9)

5 DELAY VECTOR OPTIMIZATION
In this section, we �rst prove the DV problem is non-convex. To
solve it, we study its benign property and prove it shares the lower
bound with a transformed convex problem.We propose two approx-
imation algorithms yielding n-suboptimal solutions with a bounded
withholding time.

5.1 Hardness Analysis
T������ 5.1. The DV problem is non-convex.
P����. It’s an inequity constrained problem with a�ne inequal-

ity constraint functions Eq. (9), therefore it is the convexity of the
objective function Eq. (8) that matters. For simplicity, we de�ne
weighted suspicious probability b = p

1�a and transform the objec-
tive function as follows:

W = � (-) =
=’
8=1

18

=’
9=1

%8,9 · 0 9 = b) Va. (10)

The transformed objective W has the Hessian Matrix N with the
following (8, 9)th entry N8, 9 :

N8, 9 =

8>>><
>>>:

(18U 9�1 9U8) (` 9�`8)
4
p
cf3 4�

(`9 �`8)2

4f2 8 < 9
Õ=
:=1 (18U:�1:U8) (`8�`:)

4
p
cf3 4�

(`8 �`:)2
4f2 8 = 9

Assume for any a and b , the objective function is convex on
domain D = R=�0. Under this assumption, its Hessian matrix N is
positive semide�nite and should guarantee that all of its eigenvalues
are non-negative. For any given pair (a, b), consider the region
F = {- 2 D|(`8 � ` 9) (1808 �

1 9
0 9
) < 0} where we have every

�8, 9 > 0, 8 < 9 . Compute the sum of all eigenvalues of N as follows:
=’
8=1

_8 = tr(N) = �
=’
8=1

=’
9<8

�8,9 < 0.

The fact that the sum of eigenvalues is negative on F violates the
assumption and completes the proof. ⇤

5.2 Interior-point Method in Smith’s Region
Basic Idea. To tackle the non-convex DV problem, we �rst show
its optimal value W¢ is �nite but not attained (Sec. 5.2.1). Then, we
solve the n-suboptimal set (Sec. 5.2.2) and prove it’s contained in
a convex region. Therefore, we construct a corresponding convex
problem namely RDV and we show how to apply the interior-point
method (IPM) [8, 36] with barrier functions [19] (Sec. 5.2.3). Due
to space limitations, please refer to our technical report [49] for
detailed proof of lemma and theorem in this section.

5.2.1 Optimal Value. First, we consider the lower bound W¢ of
the DV problem. Inspired by the weighted shortest processing
time (WSPT) rule proposed by Smith to optimize a scheduling
problem [44], we apply its de�nition of Smith’s permutation to the
delay vector problem.

De�nition 5.2. (Smith’s permutation c) Given the computing
power distribution a and the weighted suspicious distribution b ,
the Smith’s permutation c satis�es 1c (8)

0c (8)
<
1c (8+1)
0c (8+1)

.

With Smith’s permutation c , we construct the matrix Vc where
%c8, 9 = %c (8),c (9) . Denote a

c = {0c1 ,0c2 , ...,0c= } and bc = {1c1 ,1c2 , ...,1c= }
where 0c8 = 0c (8) and1c8 = 1c (8) for any 8 = 1, 2, ...,=. From Def. 5.2

we have 1
c
8
0c8

<
1c9
0c9

for any 8 < 9 . We can write the objective function

Eq. (10) under c as W = �c (Vc) = b
c)

V
c
a
c .

Now, we consider the limit value of pc . First, we de�ne a domain
D" = {�8, 9 2 [0, 1]; 1 8, 9 = |�8, 9 + � 9,8 = 1,�8,8 = 0,88, 9 =
1, 2, ...,=} which is a superset of the domain of Vc . Because every
%c meets all conditions in D" . Thus %c is also an element in
D" . Then we prove in domain D" , when X =

Õ=�1
8=1 4

`c (8)�`c (8+1)

approaches 0, we can obtain the limit value of pc to be O 2 D"

4053

which is a strictly upper triangular matrix with all �8, 9 = 1 for 8 < 9
in the following lemma:

L���� 5.3. limX!0 V
c = O .

The semantic meaning of Lemma 5.3 is that, for any two nodes
c (8), c (9) where 8 < 9 under Smith’s permutation c , as the gap of
their expected arrival times `c (8) and `c (9) grows large enough (i.e.,
X ! 0), %c8, 9 approaches 1 and %

c
9,8 approaches 0. In consequence,

the limit value of pc is O . Then we give the theorem that the lower
bound W¢ of DV problem is �c (O).

T������ 5.4. Given the power distribution a, the weighted suspi-
cious distribution b , and their Smith’s permutation c , the lower bound
W¢ of DV problem is �c (O) = Õ=

8=2 0c (8)
Õ8�1
9=1 1c (9) .

5.2.2 n-suboptimal Solution. Since the lower bound W¢ is unattain-
able, we discuss the region where suboptimal solutions lie in. Since
the Smith’s permutation c is a discrete scheduling order, we need
to extend it to the set of positive real numbers R=�0, namely Smith’s
region, with the de�nition below:

De�nition 5.5. (Smith’s Region) For the given computing power
distribution a and weighted suspicious distribution b , Smith’s re-
gion S = {- 2 D|(`8 � ` 9) (1808 �

1 9
0 9
) � 0} is a region where the

order of {`8 } follows the increasing order of {1808 }.
Def. 5.5 is to ensure `c (8) `c (8+1) for any - 2 S, such that

we can �nd the suboptimal solutions by enlarging the gap between
`c (8) and `c (9) for all 1 8 < 9 = to let Vc approach O , which
provides a guidance for our solution algorithm as well. Next, we
give the theorem that S contains n-suboptimal solution -

¢.

T������ 5.6. 8n > 0, the n-suboptimal solution -
¢ 2 S.

Algorithm 1: Interior-point Method in Smith’s Region.
Input: computing power distribution 0, weighted

suspicious distribution 1, lower bound ;
1 c the ascending order of 10 ;
2 � zero matrix;
3 for 8 1 to |c | � 1 do
4 �[8] [c8] �1;
5 �[8] [c8+1] 1;
6 (2>=BCA08=(�, 0,1);// 8` 2 (, 0 < �` < 1.
7 ⌫ 1>D=3 (;,1);// 8` 2 ⌫, ; < ` < 1.
8 $ >1 942C8E4 (� |S);
9 ` �%" ($,⌫);

10 return `;

5.2.3 Interior-point Method in Smith’s Region. By theorem Theo-
rem 5.6 that Smith’s region S contains n-suboptimal solutions, now
we transform DV problem into a convex problem, namely restricted
delay vector (RDV) problem, sharing the same lower bound. Based
on the interior-point method (IPM), we propose IPM-S in Smith’s
region to �nd n-suboptimal solutions. Speci�cally, RDV has a new
objective function � |S , the restriction of � to S: S ! R, - ! �(-).
We give the de�nition of RDV and the theorem of its convexity.

De�nition 5.7. (Restricted delay vector problem) Given a per-
ceived network (= (⌘) under (:,f)-communication condition, the
weighted suspicious vector b , an honest miner⌘ wants to determine
the value of - 2 S under certain constraints to minimize � |S (-).

min � |S (-), s.t. - � : · d (11)

T������ 5.8. RDV problem is convex.

To solve the convex RDV problem, we propose IPM-S as in
Algo. 1. We �rst compute Smith’s permutation c for given a, b
(line 1). With c , we construct a matrix G to constrain - satisfying
0 < G- < 1 that describes Smith’s region ((line2-6). We de�ne
the bound ⌫ which - subjects to (line7) and set the Smith’s region
constrained objective function � |S (line 8). Finally, we call IPM
to tackle this transformed convex problem (line 9). We further
illustrate IPM-S with the following example.

Example 5.9. Consider the same network in Example 3.2 but
now satis�es (1, 1)-communication condition. Inputs for IPM-S
are listed in Table 3(a) from node ⌫’s view where the weighted
suspicious probability b is computed as b = p

1�a . We �rst compute
c = (1, 2, 3) by sorting b

a in ascending order (line 1). Then we
compute the matrix G (line 2-5). When 8 = 1, for example, we have
�1,1 = �1 and �1,2 = 1 which constrains 0 < �`1 + `2 < 1. The
complete matrixG is presented in Table 3(b). Now we can construct
the Smith’s region (that constrains `1 < `2 < `3 (line 6), bound
⌫ that complies with the topology distance (line 7), and objective
function � |S under ((line 8). Eventually we call IPM solver with
error tolerance at 0.1 to get solution - ⇡ (3.75, 7.29, 10.14) (line 9).

Table 3: Tables for Example 5.9.
(a) Inputs for IPM-S.

a p b l

Node � 20% 0% 0 2
Node ⇠ 25% 10% 0.13 6
Node (30% 90% 1.29 4

(b) Matrix G.

�1 1 0
0 �1 1
0 0 0

Performance analysis of Algo. 1. The RDV problem is convex
and holds Slater’s condition, s.t. its optimum and dual optimum
satisfy the Karush-Kuhn-Tucker (KKT) condition. Current interior-
point methods with barrier functions to approximate the indicator
of inequality constraints, implied in a rewritten objective can tackle
the restricted problem. 8n > 0, since there are 2= � 1 inequality
constraints including S restriction in the RDV problem, set the
approximation accuracy as 2=�1

n and the barrier method is guaran-
teed to converge to an n-suboptimal solution [18]. The resulting -

is also the n-suboptimal solution for the original DV problem.

5.3 Step Algorithm
The interior-point method can converge e�ciently within polyno-
mial time, however, the solution is unbounded since for any n > 0,
the n-suboptimal set for the RDV problem is unbounded. Thus, we
propose an approximation algorithm, step algorithm (STA), that
bounds the maximum delay time `c= without sacri�cing the tol-
erance n . Speci�cally, we de�ne V = max18< 9= 1c9 0

c
8 � 1c8 0c9 .

Meanwhile, for a given n > 0, we de�ne the step function as

g (n) =
p
2f · ��1 (1 � 1

V
· n

(= � 1)!) . (12)

4054

With the step function g (n), the Step Algorithm is described
in Algo. 2. We �rst compute Smith’s permutation c for given a, b
(line 1). 8n > 0, the step size is �xed and the value of `c1 is irrelevant
with n (line 2). We construct - by following the order of c (line
3). At each iteration, the value for the current element in - is the
maximum between its lower bound and last element with one step
length to satisfy both bound and step constraint (line 4-5).

To further illustrate, we refer to the same network setting as Ex-
ample 5.9. The same permutation c = (1, 2, 3) is generated (line
1). Given the error tolerance at 0.1, we compute the step size
BC = g (0.1) ⇡ 1.31 (line 2). The �rst item ` [c1] = ` [1] = ; [1], equals
to its lower bound (line3). When 8 = 2, for example, ` [c2] = ` [2]
should be assgined as ; [2] since ; [2] > ` [1] + BC . The eventual
result - ⇡ (2, 6, 7.31) (line 4-5) indicates shorter delays than IPM-S.

Algorithm 2: Step Algorithm.
Input: power distribution 0, weighted suspicious

distribution 1, lower bound ; , tolerance n
1 c the ascending order of 10 ;
2 BC g (n);
3 ` [c1] ; [c1];
4 for 8 2 to |c | do
5 ` [c8] max{; [c8], ` [c8�1] + BC};
6 return `;

Performance analysis of Algo. 2 It’s clear that for any n , the
maximum delay time `c= for Step Algorithm is bounded bymax{: ·
3c8 + (= � c (8))g (n)}. For given -, c , we construct a set -3 (-) =
{G = `c9 � `c8 |1 8 < 9 =}. De�ne the set ((n) = {- 2
D| argminG2-3 (-) �(

Gp
2f

) � C (n)}. We give the theorem that for
a given n > 0, the lower bound C (n) for G 2 -3 (`) can guarantee
that ` is an n-suboptimal solution.

T������ 5.10. 8n > 0, ((n) is an n-suboptimal set.

P����. 8-̂ 2 ((n), compute the di�erence between Ŵ and W¢:

Ŵ � W¢ =
=�1’
8=1

=’
9=8+1

(1c9 0c8 � 1c8 0c9) (�8,9 � %̂8,9)

=�1’
8=1

=’
9=8+1

(1c9 0c8 � 1c8 0c9) (
1
V

· n

(= � 1)!) n .

It’s proved that 8-̂ 2 ((n) holds n-suboptimality, thus ((n) is an
n-suboptimal set. ⇤

Thus the solution - of Step Algorithm is n-suboptimal with
bounded maximum delay time. Other than designating an error
tolerance in the step function g (n), STA also works with given
bounds or step size. For example, one can follow the three-sigma
rule of thumb to set its default value BC = 3f . That shall yield a
suboptimal solutionwith relative error[= W (3f)

W¢ �1 1��(3
p
2

2) '
6.7% which is acceptable in exchange for a �xed maximum delay.

6 PRACTICALITY IN DYNAMIC NETWORK
In this section, we handle dynamic issues, including the variation
of network participants, their computing power and location.

6.1 Dynamic Issues
In reality, the blockchain network is dynamically varying accompa-
nied by the following three cases. 1) The node’s computing power
varies, in�uencing its mining ability. 2) The node updates its loca-
tion, resulting in di�erent propagation delay. 3) The node joins or
leaves the network, a.k.a. churn [48]. An example of churn is that
a node disguises its identity by modifying its IP or wallet address,
which can be viewed as an old node leaves and a new node joins.
These dynamic cases raise three new challenges which cannot be
solved by the static version of TFT strategy.

(1) Computing power estimation: The node hash rate used by
the static TFT strategy to compute the suspicious probability
can vary from time to time.

(2) Distancemeasurement: The message propagation delay used
in static TFT should be dynamically measured in real-time.

(3) Practicality under churn: Suspicious probability and delay
vector in TFT require dynamic computation as nodes churn.

To tackle these three challenges in the dynamic scenario, we pro-
pose the dynamic TFT strategy below.

6.2 Dynamic TFT Strategy
To overcome challenge 1 and 2 we modify the sliding window in
the static TFT and use round trip time to measure computing power
and distance dynamically. To overcome challenge 3 we introduce
three new concepts: node deprecation, cold start period and quick
estimation. We next introduce these methods in detail.
Dynamic Power Estimation. To estimate the node computing
power at any time g , we modify the sliding window,g of length !F
in static TFT to record theminers of recent blocks from height g�!F
to g , and estimate the node computing power by the distribution
of its mined blocks. For instance, suppose node 8 mines<8 blocks
in previous !F rounds, its computing power is estimated as 08 =
<8/

Õ=
9=1< 9 . In reality, an example proper !F is 100 blocks which

is adopted by Mining Pool Stats to measure the network hash rate.
Dynamic distance measurement. To capture the latest loca-
tion of pools, we measure the distance by the expected round trip
time (RTT) of the message transmission. For example, messages on
blocks and transactions are frequently exchanged in each round.
Therefore, the honest node can estimate the latest distances with
other pools by the RTTs of these messages. Such a method can
cover cases of new connection establishment and location variance.

For node churn, we de�ne the lifespan C8 of node 8 in the window
,g , indicating 8 joins the network C8 blocks earlier. Meanwhile, if
C8 > !F , we set C8 = !F where 8 is regarded as a static node.
Node deprecation.Whenwe lose the connection of a node, namely
deprecated node, we do not compute its suspicious probability and
delay vector any more. However, its fork count still contributes to
the sel�sh mining detection, which will be detailed later.
Cold start.We introduce the cold start period with length !< < !F
for a newly joined node 8 with C8 < !< , namely immature node. For
immature nodes, we assign the delay vectors to make sure they are
the last one to receive the block on expectation. Such a cold start
period is for data collection of immature node for later estimation.
Meanwhile, cold start can also restrict attackers, aiming to escape
from the punishment by frequently disguising their identities.

4055

Quick estimation. For a node 8 passing the cold start period (C8 2
[!<, !F)), namely mature nodes, its computing power and fork
counts are roughly estimated by multiplying a ratio !FC8 . Speci�cally,
consider a mature node 8 , its estimated hash rate is computed as 08 =
<8

!F
C8
/Õ=9 < 9

!F
C 9

, and estimated fork count is - 08 = -8
!F
C8

where -8
is node 8’s actual fork count within C8 blocks. While dynamic power
estimation requires !F rounds to measure a static node’s hash rate
and fork count, quick estimation can roughly estimate information
of mature nodes after !< < !F rounds.

We now introduce the work�ow of the dynamic TFT strategy.
Dynamic TFT. The dynamic TFT works in rounds, as the sliding
window,g moves one step forward. In each round, we �rst up-
date the node distance d based on RTTs of the last round message
exchange. Recall that the static TFT consists of three steps: sel�sh
mining detection, suspicious probability measurement, and delay
vector computation. Here we show how to modify these steps to
address dynamic cases for deprecated node (who loses connection),
immature node (C8 > !<), mature node (!< C8 < !F) and static
node (C8 = !F) respectively.

• Sel�sh mining detection (for all nodes): In each round g ,
we monitor the fork rate ?A 5 =

Õ=0
8 -8/!F in,g , where =0

is the number of nodes appeared in,g including deprecated
nodes. Once ?A 5 is above the normal threshold (in Sec. 4.2), we
enter the suspicious probability measurement step.

• Suspicious probability measurement (for mature and
static nodes only): For mature node 8 , we apply the quick
estimation to roughly measure its estimated fork count - 08
and hash rate 08 . For static node 8 , we measure its fork count
-8 within the sliding window,g and obtain its hash rate 08
through the dynamic power estimation. Given estimated hash
rate and fork count, we use the EM algorithm in Sec. 4.2 to com-
pute the suspicious probability p of mature and static nodes.

• Delay vector computation (excluding deprecated nodes):
Given hash rate a, distance d and suspicious probability p of
mature and static nodes, we use the STA algorithm in Sec. 5.3
to compute their delay vectors. Finally, immature nodes in the
cold start period are arranged with the same expected block
arrival time as the last one in mature and static nodes.

For other practical issues, due to space limitations, please refer
to our technical report [49] for details.

7 EXPERIMENTS
In this section, we conduct comprehensive experiments to evaluate
the e�ectiveness of the TFT strategy in countering sel�sh mining
and improving fairness in both static and dynamic network settings.

7.1 Experiment Setting
Data set. To evaluate algorithms for the DV problem, we generate
normalized inputs to simulate the distribution of node computing
power and suspicious probability. In TFT strategy experiments, we
generate di�erent network graphs with random distance and power
distributions to match given computing power U and attacker’s con-
nectivity W , where the U is exact and the error for W is bounded
within 0.05. We compute W by

Õ
8<B

08
1�U

Õ
9<8<B

0 9
1�U �(

38B�38 9p
2f

),

where 38 9 denotes the distance between nodes 8, 9 . In addition, net-
works are generated in compliance with the actual median propa-
gation time whose recent measurement is 8.7 seconds [11, 12].
Implementation. We implement the simulator to validate our
strategy in Python with an event-driven fashion [2], s.t. it can
capture any scale of concurrent forks and a complete sel�sh mining
attack state machine. We list key details below.
• We consider the block generation from honest miners as events

with total occurrences of 10000 for a single trial.
• We adopt the longest-chain rule to determine the main branch.

Revenue distribution is computed by rolling back along the
main branch s.t. there is no fork con�ict.

• We decompose the sel�sh mining state machine s.t. it �ts the
honest event trigger of the simulator, while secret block mining
is conducted within every single phase.

Experiment environment.We conduct experiments on an Azure
server with Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz proces-
sors with 220GB memory. Data generation and simulation are im-
plemented in a multi-process manner, while algorithm testing is
single-threaded for execution time estimating. We repeat 50 times
and count the mean results for nondeterministic experiments.
Compared approaches. For the DV problem, we compare our step
(STA) algorithm (proposed in Sec. 5.3) with the following baselines:
• Interior-point method in Smith’s region (IPM-S in Sec. 5.2).
• Di�erential evolution (DE), a heuristic optimization algorithm.

We adopt implementations for IPM with inequality constraints
and DE from scipy package following classic designs [9, 47]. We
compare them under di�erent error tolerance n , controlling their
performance, for a more comprehensive experiment.

For strategy validation, we compare our tit-for-tat strategy (TFT)
proposed in Sec. 4 with the following baselines:
• Instant promotion (IP): miners promote a new block instantly.
• Uniform tie breaking (UTB) [17]: miners has 50% to select the

block from honest community ⌘.
• Optimal tie breaking (OTB) [43]: the theoretical lower bound

where miners can always choose the honest block.

Table 4: Parameter Setting

Parameters Settings

Pool numbers = 8, 16, 32, 64, 128
Maximum delay C3 5, 10, 15, 20, 25

Coe�cient of variation ⇠+ 0.01, 0.02, 0.04, 0.08, 0.16
Attacker’s computing power U 5%, 10%, . . . , 30%, 35%, 40%, 45%

Attacker’s connectivity W 0.05, 0.1, . . . , 0.55, 0.6, 0.65, 0.7
Honest churn cycle 2⌘ 10, 20, 40, 80, 160

Attacker’s disguise cycle 2B< 10, 20, 40, 80, 160
Power adjustment cycle 2? 10, 20, 40, 80, 160
Power adjustment range '? 10%, 20%, 30%, 40%, 50%

Parameters and Metrics. Parameter settings are listed in Table 4
where default values (in bold) follow current empirical studies [11,
12, 21, 41]. Simulation experiments apply the default settings above
like algorithm experiments where we adopt STA with step size
determined by the three-sigma rule of thumb. In dynamic cases,
we set the width of the sliding window as 100 and the mature
period half its width at 50, which is consistent with the 100 blocks

4056

estimation in Mining Pool Stats. The resulting fork rate matches
the empirical study in [12] while the measured attacker revenue
and state probability for sel�sh mining also match its theoretical
study [17] thus validating the implementation. Speci�cally, we vary
parameters and measure metrics for experiments below.
• For DV algorithm, we test di�erent network conditions by

varying the pool numbers =, maximum delay C3 and coe�cient
of variation ⇠+ . We use executing time C and relative error [
to measure the e�ciency and e�ectiveness of DV algorithms.

• For static strategies, we vary attackers’ computing power U
and connectivity W to measure it’s relative ratio of revenue
dB< = AB<

U for the overall performance, while the pro�table
threshold C (W) and unfairness * illustrate the e�ectiveness in
detail. In addition, we measure the throughput and e�ective
hash rate to evaluate the overhead cost of the TFT strategy.

• For dynamic strategies, we test di�erent dynamic cases. 1)
Peer dynamics: a random node leaves while a new node joins
the network every 2⌘ rounds and attacker can disguise its
identi�cation every 2B< rounds. 2) Power dynamics: each node
changes its hash rate in the range of [1 � '? , 1 + '?] every
2? rounds. We evaluate the attacker’s relative ratio of revenue
dB< as the e�ectiveness of tested strategies.

7.2 Experimental Results of the DV Problem
First, we show the experimental result of the DV problem. Due to
space limitations, we only show results on varying the maximum
delay C3 . For the impact of pool number= and coe�cient of variation
⇠+ , please refer to our technical report [49] for details.

(a) Relative error [(b) Executing time C
Figure 4: Impact of maximum delay C3 .

Impact of maximum delay C3 . As shown in Fig. 4(a), the relative
error [of STA and IPM-S drops down along with a wider search
range while DE is not sensitive to C3 . For STA, a larger C3 grants
it a larger step size s.t. the resulting suboptimal solution can be
bounded within a smaller error. For IPM-S, the relative error [drops
as C3 increases where a larger tolerance yields smaller [except for
a relaxed error tolerance n = 10�1. In additional, C3 = 10 serves as
a watershed for n = 10�1 where [doesn’t decrease with a growing
C3 . It indicates that C3 = 10 already provides enough search space
for IPM-S to satisfy an easy termination criteria (n = 10�1). For
DE, a larger search space basically makes no huge di�erence in
its performance. Fig. 4(b) denotes that the maximum delay won’t
a�ect executing time C signi�cantly for most algorithms except for
IPM-S with n = 10�1. When C3 = 5, IPM-S (n = 10�1) has C at a
similar scale as IPM-S with stricter tolerances, and also has similar
[as validated in Fig. 4(a). But once C3 is larger than 10 seconds, it
su�ces for IPM-S (n = 10�1) to solve it e�ciently under its error
requirements hence both [and C becomes stable.

In conclusion, STA outperforms IPM-S and DE in both e�ective-
ness and e�ciency. Meanwhile, STA with a maximum delay time
C3 = 20s can yield a solution pretty close to the optima e�ciently.
Thus, we adopt STA to solve DV problem in later experiments.

7.3 Experimental Results of Static Strategies
Overall performance. Fig. 5 shows the heat map of sel�sh miner’s
relative ratio of revenue dB< . Fig. 5(a) indicates attacker’s dB< while
honest miners promote blocks with default IP strategy. The results
comply with the theoretical analysis Eq. (3) and validate our imple-
mentation andmeasurement of sel�sh mining. Generally, the sel�sh
attacker with larger W and U can gain higher dB< . In addition, the
pro�table threshold C (W) from Eq. (4), represented by the white area
in heat map Fig. 5(a), is monotonically decreasing over W . Whereas,
as Fig. 5(b) indicates, under TFT promotion strategy the higher
revenue gained from large U is suppressed, and the unfair revenue
from large W is nearly evicted. Therefore, when honest miners apply
TFT strategy, the attacker won’t gain a large unfair revenue from
his connectivity advantage. Attacker’s pro�table threshold is also
kept at around 1

3 , which is elaborated in Fig. 7(a).

(a) Heat map of AB< under (IP) (b) Heat map of AB< under (TFT)
Figure 5: Heat map of relative ratio of revenue.

(a) W = 0.7 (b) W = 0.3
Figure 6: The relative ratio of revenue on W .

E�ects on W . Fig. 6 compares the relative ratio of revenue dB<
with di�erent promotion and propagation strategies on both small
and large W . Fig. 6(a) illustrates dB< for a well connected attacker
(W = 0.7). An honest miner keeps a constant relative ratio of revenue
d⌘ = 1. The sel�sh miner’s relative ratio dB< is related to the honest
community’s promotion and propagation strategy. Results from IP
strategy matches theoretical analysis Eq. (3), and the attacker gains
unfair revenue when U > 3

16 (W = 0.7) from Eq. (4). Theoretical
propagation strategies, UTB and OTB, break the fork tie with the
probability of either 50% or 100% to select the honest block. UTB
alleviates the attacker’s unfair revenue to some extent, and OTB
gives the theoretical lower bound. Our strategy TFT can achieve a
similar performance like OTB, especially for attackers with large
computing power. Fig. 6(b) deals with poorly connected attacker
(W = 0.3). It clearly shows the �aw of UTB, i.e., a poorly connected
attacker even earns more since UTB strengthens his connectivity,
while TFT strategy performs better for a less in�uential attacker
(W = 0.3), and is closer to the optimal lower bound.

4057

E�ects onU . Fig. 7 demonstrates the e�ects onU from the pro�table
threshold C (W) and overall unfairness* . On average, we decrease
the revenue of convincing attacker (U < 1

3) to 60.26% of an honest
miner, and reduce the system unfairness by 54.62% for a powerful
attacker (U � 1

3) Fig. 7(a) evaluates the C (W) for di�erent strategies.
For IP strategy, our simulated C (W) matches the theoretical analysis
in Eq. (4) that decreases monotonically. UTB strategy maintains the
attacker’s connectivity W = 50% and C (W) = 1

4 . The ideally optimal
solution OTB gives the maximum C (W) at 1

3 for all W . Our simulated
results for TFT strategy o�er a similar C (W) as the optimal upper
bound, though slightly smaller at 32.78% for a large initial W = 0.7.
Therefore, a sel�sh attacker with small computing power won’t
pro�t from his connectivity advantage. Rational miner assumption
ensures sel�sh mining (U < 1

3) is straightly evicted. Though a
powerful attacker (U � 1

3) can still pro�t from sel�sh mining, TFT
decreases his revenue and improves the overall fairness. Fig. 7(b)
shows the unfairness measurement for di�erent strategies. The
unfairness * rises for larger U , but both TFT and UTB decrease
unfairness by a lower initial value and smaller gradients, where
TFT outperforms UTB signi�cantly.

(a) Pro�table threshold (U < 1
3). (b) Unfairness (U � 1

3).
Figure 7: E�ects on attackers with di�erent U .

(a) Throughput (b) E�ective hash rate
Figure 8: Overhead cost of the TFT strategy.

Overhead cost of TFT strategy. Fig. 8 displays the overhead cost
of applying the TFT strategy. As shown in Fig. 8(a), with U growing
the throughput under both IP and TFT strategies decrease by at
most 33.41%. Because an attacker with higher hash rate is easier
to perform sel�sh mining and withhold mined blocks, resulting
in longer block delay and lower system throughput. On the other
hand, TFT strategy brings extra delay in honest block promotion,
leading to lower throughput than IP strategy. However, the decrease
is minor (0.85% lower than IP on average) since the delay vector is
controllable. As shown in Fig. 4(a), the 20s more delay time of TFT
su�ces to approach the minimizedW thus yielding a suboptimal AB< .
Such delay time is minor compared with the block interval delay (10
mins by default). Thus, TFT can e�ectively suppress sel�sh mining
without sacri�cing too much throughput.

Meanwhile, with higher U , the e�ective hash rate downgrades
from 94.59% to 62.25% under IP strategy as in Fig. 8(b). Because an
attacker with higher hash rate can withhold more private blocks,
which aggravates the waste of honest computing power. Under TFT

strategy, the e�ective hash rate decreases by 0.47% for small U = 5%
but improves by 7.2% for larger U = 45% compared with IP. For
larger U , there is more frequent withholding and intentional forks
consuming honest power, which can be greatly saved by TFT and
thus the e�ective hash rate is improved.

7.4 Experimental Results of Dynamic Strategies
Peer dynamics. Fig. 9 shows the attacker’s relative ratio of revenue
dB< under di�erent churn cycles. With smaller 2⌘ , the attacker’s
dB< under dynamic TFT is larger as in Fig. 9(a). Because a shorter
2⌘ implies more honest but immature nodes are arranged at the last
to receive honest blocks. Thus it increases attacker’s connectivity
W and revenue AB< compared to the static case. However, it still
decreases attacker’s dB< by 15.66% for short 2⌘ = 10 in the dynamic
network.When attacker disguises its identi�cation every 2B< round,
its dB< under dynamic TFT is relatively stable as in Fig. 9(b). For any
2B< less than the mature period !< , such frequent disguise traps
attacker in cold start period where it is arranged at the last to receive
blocks. For 2B< > !< , delay vectors to an attacker will be calculated
after it survives the cold start, and the longer 2B< yields more
accurate calculation. Therefore, whether peers join/leave frequently
or rarely, dynamic TFT strategy can always reduce attackers’ dB< .

(a) Honest churn (b) Attacker disguise
Figure 9: Peer (honest/attacker) dynamics.

(a) Power adjustment cycle (b) Power adjustment range
Figure 10: Network power dynamics.

Power adjustment.When each node’s hash rate varies dynami-
cally, the sliding window based hash rate measurement is evaluated
by dB< in Fig. 10. With varying power adjustment cycles 2? , the at-
tacker has relatively stable dB< under dynamic TFT as in Fig. 10(a).
Though power varies more frequently with shorter 2? , such mod-
i�cation is stable under the �xed adjustment range '? = 20%. As
the adjustment range '? grows, the attacker’s dB< under dynamic
TFT increases as in Fig. 10(b). Given a �xed update cycle 2? = 20,
the network’s computing power varies dramatically with a larger
'? . Thus, the computing power and delay vector estimated from
the sliding window is less accurate, resulting in attacker’s better
connectivity and higher dB< . However, the TFT strategy is still
e�ective for power dynamics, and decreases the attacker’s dB< by
17.92% with a large '? = 50%.
Summary. In static cases, the TFT promotion strategy outperforms
both IP strategy [34] and UTB strategy [17]. It lifts the attacker’s
pro�table threshold C (W) close to theoretical upper bound (U =
1
3) and decreases unfairness * by 54.62% for a powerful attacker.

4058

Compared to IP, the extra delay in TFTmerely decreases throughput
by 0.85%, and even increases 7.2% e�ective hash rate instead. For
dynamic cases, TFT strategy is still e�ective and decreases the
attacker’s dB< by 15.66% under frequent churn. In conclusion, TFT
strategy resists the sel�sh mining attack and improves fairness
e�ectively in both static and dynamic cases.

8 RELATEDWORKS
Fairness in Blockchain. There is growing interest in miner fair-
ness of permissionless blockchain [11, 25, 26, 40]. Existing works
quantify fairness from three perspectives: 1)Malicious Attack: Bitcoin-
NG treats mining as a state machine and de�nes fairness as the
ratio between transition rate and computing power of the network
other than the largest miner [15]. Fruit chain de�nes fairness as
any fraction coalition of honest community gains revenue at least
the same as their computing power ratio [40]. 2) Propagation De-
lay: Croman claimed that fairness is harmed by block propagation
delay since top 10% miners may receive a block much earlier than
the tail [11]. Kanda proposed the e�ective hash rate that incor-
porates both computing power and propagation distribution s.t.
fairness is measured by the di�erence between e�ective hash rate
and actual hash rate [26]. 3) Incentive Design: Huang and Tang de-
�ned expectational fairness as one miner’s expected revenue ratio
equals to resource ratio, and proposed robust fairness to measure
the con�dence region of revenue [25].

However, the above works either merely aims at a single cause
of unfairness or is limited within a 2-player scenario. In contrast,
our measurement provides a quanti�ed analysis that captures the
network’s overall fairness with multiple players. Like [25], our
de�nition of unfairness * = ⇡ ! (r | |a) in Sec. 3 can be extended
to PoS chains by replacing hash rate a with stakes s in PoS.
Sel�shMining. Existing works detect sel�shmining by twomeans:
1) Supplementary Indicators: Heilman [24] added unforgeable times-
tamp to each block, and Saad [42] appended expected con�rmation
height to each transaction. Then attacker’s blocks can be detected
due to withholding timeout, at the cost of systematic modi�cations.
2) Intrinsic Indicators: Chicarino [10] studied di�erent fork heights
in sel�sh mining and showed high accuracy of the fork indicator.
Wang [51] applies machine learning algorithms on fork samples
to predicate sel�sh blocks in an o�ine manner. However, their
works aim at improving accuracy of sel�sh block prediction and
fail to incorporate it with the miner distribution for attacker suspect
measurement, which we utilize for targeted delay.

Most sel�sh mining countermeasures focus on three directions:
1) Mining Incentive: Bahack [4] changed the block rewards s.t. who-
ever attaches fork evidence get rewarded from forked blocks to
disincentivize malicious forks by sel�sh miners. However, a new
incentive can’t be accepted by currently operating systems and has
other potential �aws [56]. 2) Time Witness: Heilman [24] adopted
unforgeable timestamps to denote a block’s actual age, yet it relied
on a third party for a random beacon source. Without introduc-
ing external trust, Solat [45] witnessed time by generating dummy
blocks after a timeout, while Pass [40] decoupled incentives from
consensus safety by mining two di�erent blocks embedded mu-
tually in time. However, those implementations forced backward-
incompatible upgrades on miners which would lead to hard forks.
3) Fork Selection: Zhang [56] switched to a weight-based policy by

incorporating uncle blocks. Though extra blocks are not involved
to guarantee compatibility, it may still su�er from inconsistency
from old clients which is especially vulnerable in an asynchronous
network. Uniform tie breaking rule [17] suggested miners select
competing blocks uniformly to maintainW at 50%, which is incentive
incompatible for rational miners to discard e�orts already invested
on the �rst block.

Those defenses didn’t utilize the attacker’s intrinsic weakness
which is covered by the synchronous assumption, that it’s a re-
active attack always one step behind honest miners. We consider
asynchronous networks and propose targeted promotion delays to
paralyze the attacker’s responsive speed, which performs closely
to the theoretical optimal tie breaking rule without incompatible
modi�cations. To our best knowledge, we are the �rst to target the
block promotion process and counter sel�sh attacks by promotion
delay. In contrary to existing works on sel�sh mining attack with
multiple attackers [5, 28–30, 57, 58], we study the countermeasure
in a network with multiple honest pools rather than a single party.
By decomposing the honest party, we model attacker’s connectivity
and propagation delay more practically at a �ner granularity even
the honest part adopts a sharding organization [22, 27, 31, 54, 55].
In addition, solutions with single honest party model may fail if the
individual honest miner doesn’t follow the strategy. However, our
solution with multiple honest miner model ensures that even some
nodes don’t utilize TFT, those nodes who use it can still bene�t
from winning forks caused by attacker. In conclusion, our solution
enhances the system security by decreasing the risk of adversarial
control of blockchain, and protects data reliability and integrity by
preventing the monopoly due to unfairness [25].

9 CONCLUSION
In this paper, we target the unfairness issue caused by sel�shmining
attacks in PoW-based blockchains. To measure the global unfair-
ness, we introduce KL-divergence from the computing power to the
revenue of all miners. To reduce the attacker’s unfair revenue, we
propose the TFT promotion strategy utilizing suspicious probabili-
ties and delay vectors. For the optimal performance of TFT strategy,
we formulate the delay vector (DV) problem and prove it to be non-
convex. To tackle that, we propose two approximation algorithms
that generate n-suboptimal solutions at given error tolerance. Exten-
sive experiments have been conducted where both e�ciency and
e�ectiveness of our algorithm outperform the heuristic method. Our
strategy also beats existing promotion and propagation strategies
and performs close to the theoretically optimal e�ects.

ACKNOWLEDGMENTS
Lei Chen’s work is partially supported by National Key Research
and Development Program of China Grant No. 2018AAA0101100,
the Hong Kong RGC GRF Project 16213620, CRF Project C6030-18G,
C1031-18G, C5026-18G, CRFC2004-21GF, AOE Project AoE/E603/18,
RIF Project R6020-19, Theme-based project TRS T41-603/20R, China
NSFC No. 61729201, Guangdong Basic and Applied Basic Research
Foundation 2019B151530001, HongKong ITC ITF grants ITS/044/18FX
and ITS/470/18FX, Microsoft Research Asia Collaborative Research
Grant, HKUST-NAVER/LINE AI Lab, Didi-HKUST joint research
lab, HKUST-Webank joint research lab grants and HKUST Global
Strategic Partnership Fund (2021 SJTU-HKUST).

4059

REFERENCES
[1] J Stacy Adams. 1963. Towards an understanding of inequity. The journal of

abnormal and social psychology 67, 5 (1963), 422.
[2] Yusuke Aoki, Kai Otsuki, Takeshi Kaneko, Ryohei Banno, and Kazuyuki Shudo.

2019. Simblock: A blockchain network simulator. In IEEE INFOCOM 2019-IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS). IEEE,
325–329.

[3] Moshe Babaio�, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. 2012. On bitcoin
and red balloons. In Proceedings of the 13th ACM conference on electronic commerce.
56–73.

[4] Lear Bahack. 2013. Theoretical bitcoin attacks with less than half of the compu-
tational power (draft). arXiv preprint arXiv:1312.7013 (2013).

[5] Qianlan Bai, Yuedong Xu, Nianyi Liu, and Xin Wang. 2021. Blockchain Mining
with Multiple Sel�sh Miners. arXiv preprint arXiv:2112.10454 (2021).

[6] Qianlan Bai, Xinyan Zhou, Xing Wang, Yuedong Xu, Xin Wang, and Qingsheng
Kong. 2019. A deep dive into blockchain sel�sh mining. In ICC 2019-2019 IEEE
International Conference on Communications (ICC). IEEE, 1–6.

[7] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A
Kroll, and Edward W Felten. 2015. Sok: Research perspectives and challenges for
bitcoin and cryptocurrencies. In 2015 IEEE symposium on security and privacy.
IEEE, 104–121.

[8] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[9] Richard H Byrd, Mary E Hribar, and Jorge Nocedal. 1999. An interior point
algorithm for large-scale nonlinear programming. SIAM Journal on Optimization
9, 4 (1999), 877–900.

[10] Vanessa Chicarino, Célio Albuquerque, Emanuel Jesus, and Antonio Rocha. 2020.
On the detection of sel�sh mining and stalker attacks in blockchain networks.
Annals of Telecommunications (2020), 1–10.

[11] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed
Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, and Emin Gün Sirer. 2016.
On scaling decentralized blockchains. In International conference on �nancial
cryptography and data security. Springer, 106–125.

[12] Christian Decker and Roger Wattenhofer. 2013. Information propagation in the
bitcoin network. In IEEE P2P 2013 Proceedings. IEEE, 1–10.

[13] Sergi Delgado-Segura, Surya Bakshi, Cristina Pérez-Solà, James Litton, Andrew
Pachulski, Andrew Miller, and Bobby Bhattacharjee. 2019. Txprobe: Discovering
bitcoin’s network topology using orphan transactions. In International Conference
on Financial Cryptography and Data Security. Springer, 550–566.

[14] Arthur P Dempster, NanM Laird, and Donald B Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal Statistical Society:
Series B (Methodological) 39, 1 (1977), 1–22.

[15] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016.
Bitcoin-ng: A scalable blockchain protocol. In 13th USENIX symposium on net-
worked systems design and implementation (NSDI 16). 45–59.

[16] Ittay Eyal and Emin G Sirer. 2014. How to Detect Sel�sh Miners. Cornell University.
Retrieved 2021-09-14 from https://hackingdistributed.com/2014/01/15/detecting-
sel�sh-mining/

[17] Ittay Eyal and Emin Gün Sirer. 2014. Majority is not enough: Bitcoin mining is
vulnerable. In International conference on �nancial cryptography and data security.
Springer, 436–454.

[18] Anthony V Fiacco and Garth P McCormick. 1964. The sequential unconstrained
minimization technique for nonlinear programing, a primal-dual method. Man-
agement Science 10, 2 (1964), 360–366.

[19] Anthony V Fiacco and Garth P McCormick. 1990. Nonlinear programming:
sequential unconstrained minimization techniques. SIAM.

[20] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert
Ritzdorf, and Srdjan Capkun. 2016. On the security and performance of proof of
work blockchains. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security. 3–16.

[21] Johannes Göbel, Holger Paul Keeler, Anthony E Krzesinski, and Peter G Taylor.
2016. Bitcoin blockchain dynamics: The sel�sh-mine strategy in the presence of
propagation delay. Performance Evaluation 104 (2016), 23–41.

[22] Siyuan Han, Zihuan Xu, and Lei Chen. 2018. Jupiter: a blockchain platform for
mobile devices. In 2018 IEEE 34th International Conference on Data Engineering
(ICDE). IEEE, 1649–1652.

[23] Siyuan Han, Zihuan Xu, Yuxiang Zeng, and Lei Chen. 2019. Fluid: A blockchain
based framework for crowdsourcing. In Proceedings of the 2019 international
conference on management of data. 1921–1924.

[24] Ethan Heilman. 2014. One weird trick to stop sel�sh miners: Fresh bitcoins, a so-
lution for the honest miner. In International Conference on Financial Cryptography
and Data Security. Springer, 161–162.

[25] Yuming Huang, Jing Tang, Qianhao Cong, Andrew Lim, and Jianliang Xu. 2021.
Do the Rich Get Richer? Fairness Analysis for Blockchain Incentives. In Proceed-
ings of the 2021 International Conference on Management of Data. 790–803.

[26] Reiki Kanda and Kazuyuki Shudo. 2020. Block interval adjustment toward fair
proof-of-work blockchains. In 2020 IEEE 36th International Conference on Data

Engineering Workshops (ICDEW). IEEE, 1–6.
[27] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa

Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized
ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
583–598.

[28] Tin Leelavimolsilp, Viet Nguyen, Sebastian Stein, and Long Tran-Thanh. 2019.
Sel�sh mining in proof-of-work blockchain with multiple miners: An empirical
evaluation. In International Conference on Principles and Practice of Multi-Agent
Systems. Springer, 219–234.

[29] Tin Leelavimolsilp, Long Tran-Thanh, and Sebastian Stein. 2018. On the prelimi-
nary investigation of sel�sh mining strategy with multiple sel�sh miners. arXiv
preprint arXiv:1802.02218 (2018).

[30] Quan-Lin Li, Yan-Xia Chang, and Chi Zhang. 2022. Tree Representation, Growth
Rate of Blockchain and Reward Allocation in Ethereum with Multiple Mining
Pools. arXiv preprint arXiv:2201.10087 (2022).

[31] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert,
and Prateek Saxena. 2016. A secure sharding protocol for open blockchains. In
Proceedings of the 2016 ACM SIGSAC conference on computer and communications
security. 17–30.

[32] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. 2015. Demystifying
incentives in the consensus computer. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 706–719.

[33] Andrew Miller, James Litton, Andrew Pachulski, Neal Gupta, Dave Levin, Neil
Spring, and Bobby Bhattacharjee. 2015. Discovering bitcoin’s public topology
and in�uential nodes. et al (2015).

[34] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decen-
tralized Business Review (2008), 21260.

[35] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. 2016. Stubborn
mining: Generalizing sel�sh mining and combining with an eclipse attack. In
2016 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 305–320.

[36] Yurii Nesterov and Arkadii Nemirovskii. 1994. Interior-point polynomial algo-
rithms in convex programming. SIAM.

[37] Wangze Ni, Peng Cheng, and Lei Chen. 2022. Mixing Transactions with Arbi-
trary Values on Blockchains. In 2022 IEEE 38th International Conference on Data
Engineering (ICDE). IEEE, 2602–2614.

[38] Wangze Ni, Peng Cheng, Lei Chen, and Xuemin Lin. 2021. When the Recur-
sive Diversity Anonymity Meets the Ring Signature. In Proceedings of the 2021
International Conference on Management of Data. 1359–1371.

[39] Rafael Pass, Lior Seeman, and Abhi Shelat. 2017. Analysis of the blockchain
protocol in asynchronous networks. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Springer, 643–673.

[40] Rafael Pass and Elaine Shi. 2017. Fruitchains: A fair blockchain. In Proceedings
of the ACM Symposium on Principles of Distributed Computing. 315–324.

[41] Matteo Romiti, Aljosha Judmayer, Alexei Zamyatin, and Bernhard Haslhofer.
2019. A deep dive into bitcoin mining pools: An empirical analysis of mining
shares. arXiv preprint arXiv:1905.05999 (2019).

[42] Muhammad Saad, Laurent Njilla, Charles Kamhoua, and Aziz Mohaisen. 2019.
Countering sel�sh mining in blockchains. In 2019 International Conference on
Computing, Networking and Communications (ICNC). IEEE, 360–364.

[43] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2016. Optimal sel�sh
mining strategies in bitcoin. In International Conference on Financial Cryptogra-
phy and Data Security. Springer, 515–532.

[44] Wayne E Smith. 1956. Various optimizers for single-stage production. Naval
Research Logistics Quarterly 3, 1-2 (1956), 59–66.

[45] Siamak Solat and Maria Potop-Butucaru. 2016. Zeroblock: Timestamp-free
prevention of block-withholding attack in bitcoin. arXiv preprint arXiv:1605.02435
(2016).

[46] Mining Pool Stats. 2022. https://miningpoolstats.stream.
[47] Rainer Storn and Kenneth Price. 1997. Di�erential evolution–a simple and

e�cient heuristic for global optimization over continuous spaces. Journal of
global optimization 11, 4 (1997), 341–359.

[48] Daniel Stutzbach and Reza Rejaie. 2006. Understanding churn in peer-to-peer
networks. In Proceedings of the 6th ACM SIGCOMM conference on Internet mea-
surement. 189–202.

[49] Weijie Sun, Zihuan Xu, and Lei Chen. 2022. https://github.com/SwJay/tft.
[50] Philip Treleaven, Richard Gendal Brown, and Danny Yang. 2017. Blockchain

technology in �nance. Computer 50, 9 (2017), 14–17.
[51] Zhaojie Wang, Qingzhe Lv, Zhaobo Lu, Yilei Wang, and Shengjie Yue. 2021.

ForkDec: Accurate Detection for Sel�sh Mining Attacks. Security and Communi-
cation Networks 2021 (2021).

[52] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper 151, 2014 (2014), 1–32.

[53] Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. 2020. Modeling the im-
pact of network connectivity on consensus security of proof-of-work blockchain.
In IEEE INFOCOM 2020-IEEE Conference on Computer Communications. IEEE,
1648–1657.

[54] Zihuan Xu, Siyuan Han, and Lei Chen. 2018. CUB, a consensus unit-based storage
scheme for blockchain system. In 2018 IEEE 34th International Conference on Data

4060

Engineering (ICDE). IEEE, 173–184.
[55] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. Rapidchain:

Scaling blockchain via full sharding. In Proceedings of the 2018 ACM SIGSAC
conference on computer and communications security. 931–948.

[56] Ren Zhang and Bart Preneel. 2017. Publish or perish: A backward-compatible
defense against sel�sh mining in bitcoin. In Cryptographers’ Track at the RSA
Conference. Springer, 277–292.

[57] Shiquan Zhang, Kaiwen Zhang, and Bettina Kemme. 2020. A simulation-based
analysis of multiplayer sel�sh mining. In 2020 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC). IEEE, 1–5.

[58] Shiquan Zhang, Kaiwen Zhang, and Bettina Kemme. 2020. Analysing the bene�t
of sel�sh mining with multiple players. In 2020 IEEE International Conference on
Blockchain (Blockchain). IEEE, 36–44.

4061

