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ABSTRACT

Software organizations are increasingly incorporating machine learning
(ML) into their product offerings, driving a need for new data manage-
ment tools. Many of these tools facilitate the initial development of ML
applications, but sustaining these applications post-deployment is difficult
due to lack of real-time feedback (i.e., labels) for predictions and silent
failures that could occur at any component of the ML pipeline (e.g., data
distribution shift or anomalous features). We propose a new type of data
management system that offers end-to-end observability, or visibility into
complex system behavior, for deployed ML pipelines through assisted (1)
detection, (2) diagnosis, and (3) reaction to ML-related bugs. We describe
new research challenges and suggest preliminary solution ideas in all three
aspects. Finally, we introduce an example architecture for a “bolt-on” ML
observability system, or one that wraps around existing tools in the stack.
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1 INTRODUCTION

Organizations are devoting increasingly more resources towards de-
veloping and deploying applications powered by machine learning
(ML). ML applications rely on pipelines that span many heteroge-
neous stages or components, such as feature generation and model
training, requiring specialized data management tools. Most work
in data management for ML concentrates on specific components,
e.g., preprocessing [24, 63] or model training [77, 78, 47, 22]. Some
industry solutions have also garnered adoption by handling data
management issues that stem from model experimentation [82, 10].
However, there are many unaddressed challenges in sustaining
ML pipelines once built: maintaining, debugging, and improving
them after the initial deployment. Various best practices for “pro-
duction ML” and failure case studies highlight the dire need for ML
sustainability [11, 70]. We posit that for sustainability, ML practi-
tioners should be able to (1) detect, (2) diagnose, and (3) react to
bugs post-deployment. Compared to traditional software systems,
which typically only break when there are infrastructure issues,
ML pipelines can also fail unpredictably due to data issues—and
therefore are uniquely challenging to sustain in all three aspects.
Bug Detection: Hard Due to Feedback Delays. It is well-known
that data distributions change or shift over time, causing model
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performance to drop [74, 58]. Detecting performance drops post-
deployment is challenging due to lack of “ground-truth” data: in
many production ML systems, feedback on predictions, or labels,
can arrive at a later time. Furthermore, in many pipelines, only a
few labels arrive (e.g., labelers manually annotate some predictions,
or only a handful of predicted outputs are displayed to the user).
As a result, practitioners are unable to monitor simple ML metrics
such as accuracy in real-time. As an alternative, end-to-end ML
frameworks such as TFX [48] and Sagemaker [37] monitor internal
pipeline state or health via distance metrics [44] over distributions
of ML features and outputs over time. These proxies often produce
too many false positives and thus do not accurately determine when
models are underperforming, as we will discuss further in Section 2.

Bug Diagnosis: Hard Due to Pipeline Complexity. Even if a
failure is confidently detected, the complex, highly intertwined
nature of components in the ML pipeline makes it hard to under-
stand where bugs could lie. For production ML pipelines, “changing
anything changes everything (CACE),” causing predictions to vary
unpredictably [70]. Consequently, production ML uniquely suf-
fers from silent pipeline bugs, such as corrupted or stale subsets
of features. Practitioners painstakingly enumerate and maintain
(i.e., tune) data quality constraints for component inputs and out-
puts [12, 69], motivating automatic specification and maintenance
of precise constraints at the component level.

Bug Fixes: Hard Due to No Obviously Correct Answers. Even
if users can successfully pinpoint all pipeline bugs, there can be
many ways to bring model performance back up to a desirable
level, and effectiveness depends on the nature of the data or task.
For example, different components, when fixed, can cause different
magnitudes of improvement in ML performance. Users often have
no sense of what to fix first, relative to resource and time costs.

ML Observability. The challenges outlined above motivate the
need for observability [73], or “better visibility into understanding
the complex behavior of software using telemetry collected ... at run
time” [32], tailored for ML pipelines. Observability encompasses
more than just monitoring predefined metrics for holistic system
health—it also allows users to ask questions about how systems his-
torically behaved or perform “needle-in-a-haystack” queries [43].

Contributions. In this paper, we discuss unaddressed research
challenges in ML observability as a call-to-arms for the database
community to contribute to this nascent research direction. We
propose the concept of a “bolt-on” observability system for ML
pipelines—one that does not require users to rewrite all their code to
use a specific framework. ML application developers assemble their
pipelines in an ad-hoc manner employing a myriad of tools along
the way, and our bolt-on observability system must interoperate
with such heterogeneous pipelines. For example, practitioners may
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Figure 1: A generic end-to-end ML pipeline. Feedback comes with
delay, impacting real-time accuracy.

use a Hive metastore to catalog raw data [75], Deequ for data
validation [69], and Weights & Biases for experiment tracking [10].

For our bolt-on observability system to address bug detection,
diagnosis, and fixing needs, we propose a three-pronged approach:
(1) Monitoring approximations of top-line, i.e., business-critical, ML
metrics to alert users of ML performance drops even when there
may not be real-time labels. In Section 3.3, we propose automated
techniques that rely on lightweight proxies to bin predictions and
estimate metrics based on importance weighting, drawing on the
approximate query processing and streaming literature.

(2) Given ML performance drops, identifying issues in inputs and
outputs for each component in the pipeline to aid diagnosis. In
Section 3.4, we propose logging fine-grained information across
provenance snapshots, automatically specifying and tuning data
quality constraints, and adversarially learning differences between
training and live data to track distribution shift.

(3) Tracing ML bugs back to silent data and engineering-related
issues (i.e., pipeline bugs). In Section 3.5, we describe tracking feed-
back delays and column-wide error scores across dataflow graphs
to assist practitioners in repairing broken components.

In Section 3, we present a roadmap (Figure 2) of challenges and
preliminary solutions—detecting drops in holistic ML metrics (e.g.,
accuracy), diagnosing them by tracking point-in-time, component-
level issues, and reacting to the drops by analyzing cross-time,
cross-component issues. In Section 4, we discuss an example of a
bolt-on ML observability system architecture and introduce our
vision for MLTRACE, a lightweight bolt-on ML observability tool,
which has already received preliminary interest from practitioners
with over 400 GitHub stars (github.com/loglabs/mltrace).

2 BACKGROUND

We discuss prior work in data management for ML pipelines and
current end-to-end ML pipeline frameworks.

ETL, Assertions, and Experiment Tracking. Input data for ML
models is typically constructed through a series of ETL workloads.
Faulty predictions can stem from such workloads, such as incor-
rectly performing missing value imputation [68]. Tools like Dag-
ger [63] and mlinspect [24] help practitioners detect data-related
bugs in ML preprocessing components. Our focus is instead on
bugs that arise post-deployment. Other tools [82, 77, 10] focus on
experiment tracking, one of the biggest pain points in generating
models for production ML pipelines. However, none of these tools
determine if and why production pipelines are failing.

Data Quality Assertions. Other work [69, 2, 48, 30] proposes li-
braries of assertions to be embedded in ML code, however, they
provide no guidance for which assertions to embed. Additionally,
results of these tests must be externally logged with a separate ser-
vice for users to query post-hoc. While data quality assertions are
certainly valuable for catching egregious issues (e.g., negative val-
ues for columns that should be positive), ML pipeline performance
can drop over time without failing user-embedded assertions.
Detecting data shift. Many papers in the ML literature discuss
how various forms of data shift cause model performance to de-
grade [74, 50, 40]. To address such shift problems, the ML com-
munity has proposed monitoring distance metrics across distribu-
tions of features and predictions [61]. However, with thousands
of features and seasonal changes in data, such methods may not
correctly flag shift, might trigger too many alarms and cause alert
“fatigue” [12]. Thus, there is a need for higher-precision methods
that detect, diagnose, and react to data shift. Some research in post-
deployment ML debugging focuses on finding slices (i.e., predicates)
where models perform poorly [59, 65], but these methods require
labels, which are not always available.

Unresolved Observability Challenges in Existing Tools. End-
to-end frameworks such as Sagemaker [37] and TFX [48] provide
logging at the component level but only support primitive monitor-
ing based on user-specified metrics and similarly do not help address
data shift. These frameworks also force their users to rewrite their
pipeline using their DSLs. To avoid having users perform a cum-
bersome rewrite, some proprietary tools only monitor features and
predictions. Other declarative frameworks [64, 49] allow users to
declaratively specify end-to-end ML pipelines without supporting
the identification of deployment bugs.

3 RESEARCH CHALLENGES

Before we describe our research challenges, we first introduce key
definitions and an example ML pipeline (Figure 1).

3.1 ML Pipeline Preliminaries

3.1.1 Definitions. An ML pipeline involves multiple data process-
ing components, leading to one or more ML models that provide
predictions for a specific task. A metric is a measure of success for
an ML pipeline, such as prediction accuracy. A tuple is an individual
feature vector used to generate predictions. A live prediction is a
prediction made after deployment, as opposed to predictions made
during training. The consumers of predictions provide feedback, or
some data that indicates the quality of a prediction (e.g., item se-
lection for recommendations, correctness for binary classification).
Labels, or “ground-truth” for predictions, are derived from feedback.
Finally, we refer to groups of tuples, defined on conjunctions of
predicates on features, as buckets.

3.1.2  Example ML Pipeline. Using data from the New York City
Taxi and Limousine Coalition [3], our ML task is to predict whether
a rider will give their driver a tip > 20% of the fare. Predictions are
probabilities (i.e., floats between 0 and 1). Each tuple in the dataset
(Yellow Trips) represents a single ride, with 17 attributes.

Our ML pipeline includes five components, as described by the
rectangular boxes in Figure 1. We have two sub-pipelines—training
and inference—that share the cleaning and feature generation com-
ponents. The pipeline includes one model, an sklearn random
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Figure 2: Breakdown of research challenges

forest classifier. The ML pipeline is evaluated on accuracy, or the
fraction of correct predictions.

3.1.3  Formalizing Distribution Shift. In deployment settings, real-
time accuracy is often difficult to measure due to feedback delays, so
practitioners monitor changes, or shifts, in distributions of features
and predictions. ML practitioners have introduced any number of
types of shifts, such as concept, data, covariate, label, subpopulation,
prior probability, and low-data shifts, among others—and these
definitions often conflict [74, 50, 40, 67, 80]. If Y is the label space and
X is the feature or covariate space (e.g., location of ride, number of
passengers), we note that all of the aforementioned shift definitions
boil down to at least one of the two shift scenarios:
Concept shift: P(Y|X) changes; P(Y) changes but P(X) doesn’t
Covariate shift: P(X) and P(Y) change but P(Y|X) doesn’t
A concrete example of concept shift is a recession: riders tip less,
changing P(Y) but not P(X). A concrete example of covariate shift
is New Year’s Eve: the number of taxi rides will be relatively higher
near Times Square in New York, changing P(X) and P(Y) as aresult,
even though the nature of a taxi ride that results in a high tip does
not change, i.e., P(Y|X). There’s ML literature on learning under
these natural shifts [21, 41]; however, our research challenges focus
on the unexpected combinations of shifts that arise in production.
The rationale for tracking P(Y) and P(X) over time in produc-
tion pipelines is that significant changes in these values can indicate
new data quality or engineering bugs that need to be fixed. However,
methods to flag changes in distributions, as mentioned in Section 2,
cause too many false positive alerts. For example, practitioners
compute the K-S test statistic between training and live tuples for
each feature to approximate how P(X) has changed, often yielding
thousands of measures, which can be confusing to navigate. Ad-
ditionally, on large datasets, p-values can go to zero even without
actual significance [38], further exacerbating alert fatigue.

3.2 Research Roadmap

As shown in Figure 2, we employ a three-pronged framework of
detecting (Section 3.3), diagnosing (Section 3.4), and reacting (Sec-
tion 3.5) to bugs in ML pipelines after deployment:

Detection. This prong answers the question how is the deployed
ML pipeline doing in real-time, with a focus on performance mea-
sures such as accuracy. There are two challenges in estimating
performance. First, the lack of labels, which happens soon after
deployment (Section 3.3.1), and second, labels are available but
arbitrarily delayed (Section 3.3.2). In the latter case, estimating real-
time performance requires a join across the out-of-sync label and
prediction streams, which is difficult at scale.
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Figure 3: Bucketing strategies, normalized to show bucket density.
As buckets become more finer-grained, they also become sparse.

Diagnosis. Given a drop in performance, diagnosis answers the
question which components of the pipeline are potential sources of
errors, with a focus on a single component and a single point in
time. To make sense of errors in individual components, we need
to log intermediate inputs/outputs and provenance (Section 3.4.1).
With this logging in place, we should automatically specify and
tune data validation constraints to address spectrum of pipeline
bugs, from hard and soft constraint violations (Section 3.4.2), to
data shift (Section 3.4.3).

Reaction. With errors in individual components identified, reac-
tion answers the question what fixes to the pipeline can help address
errors, across components and time. To help fix the pipeline, we
need to both make sure that any sources of label lag are addressed
(Section 3.5.1)—to ensure that we have better estimates of perfor-
mance measures, and that the cross-component and cross-time
issues are addressed (Section 3.5.2).

3.3 Detecting ML Performance Issues

Post-deployment, the starting point for identifying issues is moni-
toring drops in ML metrics such as accuracy. This becomes chal-
lenging when labels or predictions are delayed or absent. Moreover,
delays may not be uniform across buckets (e.g., a power outage in
East Village might prevent taxicab meter information from being
uploaded). As shown in Figure 1, predictions and feedback arrive
at different timestamps and are joined on some identifier. At every
timestamp, ML pipelines can move between three feedback scenar-
ios: no feedback, partial feedback, and full feedback. There are two
key challenges: first, the lack of labels (impacting the partial and
no feedback settings), and second, arbitrary label delays (impacting
the partial and full feedback settings). We discuss both of these
challenges in turn. We focus on cumulative accuracy, which is the
easier case; there are additional challenges in computing accuracy
on sliding windows, which we cover in our technical report [72].

3.3.1 The Lack of Labels. After deployment, it is common to ei-
ther have no labels or only a subset of predictions labeled. These
labels may arrive in batches at a later date, possibly after human
review, motivating us to still find ways to estimate real-time per-
formance without them. To estimate cumulative accuracy, we may
use importance weighting (IW) techniques [74]. We can identify
buckets based on input feature combinations, determine the train-
ing accuracy for each bucket, and weight these accuracies based on
the number of points in each bucket in the live (post-deployment,
unlabeled) data. Consider neighborhood as a bucketing strategy: if
the training set had FiDi and Midtown accuracies of 80% and 50%
respectively and we have 100 FiDi and 500 Midtown live predictions,
we can estimate an accuracy of 0.8 X 100 + 0.5 X 500 = 55%.



There are multiple competing objectives in determining which
bucketing strategy would lead to best estimates of accuracy, among
the O(n!) possible bucketing schemes, where n is the number of
features. Figure 3 illustrates three bucketing schemes. The first
couple have representation in each bucket, which gives us some
confidence in per-bucket accuracy. However, the last one has some
empty buckets: if a live tuple were to be assigned to such a bucket,
we would not have an accuracy estimate for it. Finer-grained bucket-
ing schemes may capture patterns not found in coarse-grained ones
but could also be more sparse, which can impact the correctness of
our accuracy estimates. Moreover, finer-grained bucketing schemes
would occupy more space than coarse-grained ones. Beyond (i)
Space and (ii) Sparsity, there are other objectives we need to con-
sider. (iii) Variance: buckets should have high variance in training
accuracies, (iv) Predictiveness: the training accuracy for each bucket
should be predictive of actual accuracies for live data in that bucket.
Balancing these objectives is non-trivial. We may take inspiration
from stratified sampling [56] in Approximate Query Processing
(AQP) [6, 5], and also ensemble schemes [36].

Finally, we may gain additional benefits from changing the buck-

eting strategy in response to live data. To do so, we must efficiently
identify buckets in high-dimensional, changing data streams with
a reference dataset in mind (i.e., the training set). A starting point
could be to extend streaming clustering algorithms that are explic-
itly robust to changing data distributions [51].
3.3.2 Label Delays. Labels are often delayed in arbitrary ways. So,
estimating accuracy, which requires a join between prediction and
label/feedback streams, is challenging to do at scale, since keeping
both streams in memory is impossible. One option is to uniformly
subsample both streams, since the usual problems with sampling
over joins [15, 29, 27] don’t apply when each prediction tuple joins
with precisely one feedback tuple. Since we do not know the size of
the streams, one can apply reservoir sampling [7] on both streams
using a shared hash function on the common identifier. However,
this approach is wasteful—once the pair of prediction and feedback
tuples are received, they no longer need to be in memory. Moreover,
the quality of the estimate degrades over time since we are main-
taining a fixed size sample over growing streams. Ideally we want
to maintain both a reservoir (for prediction tuples without feed-
back) plus partial aggregates (for prediction tuples with feedback).
Joined tuples can make way for new slots in the reservoir. However,
doing so while respecting reservoir sampling guarantees of each
tuple having the same probability of being sampled is non-trivial.
For example, the sudden arrival of many feedback tuples can cause
multiple vacant slots in the reservoir, increasing the probability for
the next prediction tuple to be included in the reservoir.

Beyond labels, another way to approximate ML pipeline perfor-
mance is to directly monitor changes in an important business met-
ric (e.g., user satisfaction, click-through-rate, revenue). Sometimes
the ML metric (e.g., model accuracy) does not align with a business
metric (e.g., user satisfaction, revenue), requiring users to rethink
the ML objective or discard the model altogther. An engineering
challenge is to provide integrations with other system components
that are not directly part of the ML pipeline—e.g., sales tools that
record metrics like daily active users. To help users understand the
effectiveness of their ML models, we can show correlations between
ML metrics and business metrics over time.
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3.4 Diagnosing ML Performance Issues

After detecting an ML performance drop, we next need to diagnose
it by identifying which components have bugs at that time. We
focus on bugs that arise after a pipeline deployment (i.e., related
to a mismatch in data between training and serving). There is a
spectrum of data-centric ML production bugs [31, 45]: hard — soft
— drift, from most to least time-sensitive. Hard errors, such as
some data sources failing to ingest and resulting in missing feature
values, need immediate attention. Soft errors, such as features hav-
ing anomalous means, require more tedious manual investigation
because of false positives: many columns can deviate significantly
while only a few are responsible for pipeline performance drops.
Hard and soft errors are both forms of pipeline errors, which are
often addressed by engineering changes to pipeline components.
Finally, bugs can result from natural data drift, causing model per-
formance to slowly decrease; nevertheless, they require attention.
Unlike pipeline errors, data drift occurs naturally as data evolves
and models no longer faithfully capture the underlying relation-
ships. We discuss the challenges addressing pipeline errors and drift

errors next, after discussing a prerequisite: logging and provenance.
3.4.1 Logging and Provenance. Logging at the component level

helps us uncover whether the output of a given pipeline compo-
nent has an error. Then, to trace errors across components, we
additionally need provenance. There is extensive work on log-
ging and provenance, e.g., [26, 53, 16, 54, 20], and for ML and data
science pipelines [14, 8, 52, 26, 17, 46, 82]. Some approaches re-
quire using a specific end-to-end ML framework [8] or logging
API [14, 26, 46, 82]. Others instrument the AST or bytecode to
capture lineage [24, 25, 17] or employ error-prone static analy-
sis [52], forcing users to remain in a particular language or ML
framework. We instead propose a simple bolt-on approach: users
annotate pipeline components (e.g., with decorators for Python)
with pointers to inputs and outputs (e.g., dataframe variables) that
automatically get logged to an observability store.
3.4.2 Tracking Pipeline Errors via Auto-tuned Data Integrity Con-
straints. ML pipeline errors are typically caught by data validation
constraints [12, 24, 68, 4, 57]. For example, Schelter et al. [68] de-
fines 25 different types of single-column ML-specific constraints,
and two constraints on column pairs, each requiring tediously set-
ting thresholds per column (or pair). The long-term maintenance of
these constraints is also a headache: this includes dealing with alert
fatigue or missed constraint violations, and tuning thresholds for
each constraint. Automating creation and maintenance for these
constraints while preserving high precision (i.e., all violations cor-
respond to bugs) and recall (i.e., all bugs are caught by violations) is
an important challenge. Existing solutions suggest basic automatic
constraints such as type checks and set membership for categorical
columns; although they have decent precision, recall is low [48].
We propose auto-generating suites of input and output vali-
dation constraints and auto-tuning them over time to maximize
precision and recall of violations. Constraints should be explain-
able and thus more actionable for users, rather than seemingly
random float-valued column bounds. A solution idea is to learn
an autoregressive model [81] that predicts the likelihood of a col-
umn’s value for a tuple given values of the other columns; then
we can aggregate likelihood scores for each column over sliding
windows of post-deployment tuples. One approach is to fit an
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Figure 4: AUC and log loss from the adversarial classifier trained to
separate a training data sample and reservoir sample of live tuples.

autoregressive function for each column to model its distribution
at time t given the joint distribution of other columns at time ¢, as
well as tuples corresponding to times < t. However, this does not
scale to more than a handful of columns, so we can use masking
techniques to train a single model for all columns [23, 18, 81]. An-
other challenge is that most off-the-shelf autoregressive models are
trained explicitly to predict the next value or token, not to learn
the distributions, or density functions, of columns. Thus, we need
to discretize inputs and outputs so the model learns a distribution
of buckets. A simple bucketization strategy can be derived from the
CDF (e.g., quantiles), but this will fail as distributions change over
time. Alternatively, recent progress in language modeling suggests
a different bucketization strategy—numbers can be discretized into
digits [79]. To turn the density estimation model(s) into a suite of
constraints, users can define a common threshold for columns, e.g.,
tuples should have an aggregated column likelihood score above
80%. We can also fine-tune the threshold based on the size of the
data (i.e., number of columns and tuples) to find a good trade-off
between precision and recall of alerts. Further challenges include
efficiently maintaining these autoregressive models and their data
(e.g., fine-tuning, running across provenance snapshots).

3.4.3 Addressing Natural Data Drift. Data integrity checks do not
flag slower, longer-term distribution shift. For instance, a recession
could cause riders to tip less across the population, changing P(Y)
but not P(X). To approximately compute shifts in P(X) and P(Y),
existing work proposes tracking metrics like KL divergence and
KS tests [61] between sliding windows in live inference data and
train datasets (i.e., for train-serve skew as described in Breck et
al. [12]). There are two problems with this approach: (1) it requires
the inference and training data to be kept in memory, and (2) it
doesn’t work well when there are many tuples—p-values go to
zero even if shifts aren’t significant enough to warrant a retrain, as
discussed in Section 3.1.3.

To solve (1), the memory issue, we can leverage a reservoir
of live tuples (as in Section 3.3), but it is impractical to keep the
entire training set in memory. We can keep a materialized sam-
ple of the training set in-memory. To solve (2), the p-value issue,
we can draw inspiration from adversarial validation, a method to
determine whether train and test sets are drawn from the same
distribution [19]. Adversarial validation trains a binary classifier
F to predict whether a tuple d came from either the train or test
dataset. If F converges to ~ 50% AUC [39], then one can assume
the datasets are similar [55]. We can extend this to track shift: we
train F to predict whether d comes from the training sample or
the reservoir sample of live data (as in Section 3.3), and log the
AUC. However, adapting this method to the streaming setting is
computationally challenging because we would need to train a new
classifier F every time we log an AUC, and computing AUC requires
multiple passes through the data.
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One insight is that users only care about how the AUC changes
over time, as an increasing AUC indicates that live data is diverging
from training set data. As a proxy, we can log F(d)’s loss over
time, which can be computed in a single pass. To avoid frequently
retraining F(d) from scratch, every time we get a new tuple in the
reservoir sample of live data, we can sample d from the reservoir
with p = 0.5 and the training set with p = 0.5; then, we can fine-
tune F(d) on d with stochastic gradient descent. Here, the intuition
is that decreases in loss are coupled with increases in AUC, as
shown in Figure 4. As loss decreases, it becomes easier to separate
the training and live data, indicating distribution shift. The onset of
distribution shift as flagged by the adversarial classifier aligns with
the beginning of the ML model accuracy drop (late March 2020).
The features highly weighted in F(d) are also the ones most likely
to be responsible for the shift, further aiding diagnosis.

3.5 Reacting to Bugs in ML Pipelines

Once bugs are isolated, they need to be fixed. Slower distribution
shift can be fixed by a retrain, but silent pipeline errors require
immediate engineering attention. These pipeline errors require
careful analysis across components and time: the challenge is to
determine which pipeline errors that, upon fixing, will have the
largest positive impact on ML accuracy. Unlike traditional data
repair problems [4, 34, 62, 42, 9], where the focus is on cleaning a
snapshot of the data, here we want to point users to pipeline errors
that, if addressed, can best improve future prediction quality. We
discuss two such pipeline errors: reacting to label feedback delays
and repairing broken pipeline components.
3.5.1 Reacting to Feedback Delays. Knowing how the distribution
of feedback delays changes over time can uncover pipeline errors
and enable quick response. Assuming the distribution of label delay
is unknown and nonstationary (i.e., we cannot train a separate
model to predict which predictions won’t have feedback), a chal-
lenge lies in identifying groups of tuples that have similar feedback
delay times to understand patterns. Most streaming clustering al-
gorithms may not produce groups described with only a few predi-
cates [66]. For debugging purposes, users also care about how these
clusters of delayed tuples change over time, or anomalies in delays.
Overall, we want to pick predicate combinations that “cover”
all of the tuples that have severe label delays. This is analogous to
frequent itemsets [35]; recent work has extended it to work in an
approximate setting, while optimizing for metrics like coverage [28].
Unlike that setting, here, we cannot materialize a sample upfront
and operate on it; instead, we must operate on a stream directly, and
determine what predicate combinations may have high coverage
“on the fly”. For this, we can draw on incremental maintenance
for frequent itemsets [76], however this work focuses on updating
itemsets given the addition of new tuples. In our setting some
prediction tuples that are missing feedback may have their feedback
arrive a bit later than expected. Therefore, we will need to both add
and remove tuples and thereby update the counts of the current
frequent itemsets during incremental maintenance.
3.5.2  Assisted Repair of Broken Components. Besides feedback,
there are two types of pipeline errors that cause performance drops:
data staleness (no change) and corruption (unexpected change).
A staleness example is if the pipeline to regenerate rider-related
features (e.g., historical average tip) broke, forcing reads of old



feature values. A corruption example is if an engineer changed
geographical features to read from a better maps API, but the API
returned distances in kilometers instead of miles.

A key insight for both types of pipeline errors is that they
are caused by columns, because columns tend to be outputs of
pipeline logic (e.g., creating features) [12]. Quantitative data clean-
ing techniques from the statistics and database literature typi-
cally define units of data to be cleaned as subsets of tuples, not
columns [4, 13, 60]. Column-level changes are hard to catch—in our
corruption example, a few anomalous trip distances isn’t unusual,
but all of them suddenly increasing is. We could leverage functional
dependency (FD) discovery techniques to identify which columns
most violate FDs [33, 62]. However, these are hard to apply in a
noisy multivariate setting and consistently tune for production
pipelines, especially without prior specifications from users.

To assist repairing broken components, our research question
is: what (component, column set) pairs best explain an ML per-
formance drop? We can leverage the auto-tuned constraints from
Section 3.4.2 to identify fuzzy changes in behavior at the column
level. First, we determine individual column error scores for each
component based on its historical behavior; then, we group columns
by statistical correlations. Finally, we rank the (component, column
set) error scores based on pipeline behavior by aggregating them
across the dataflow graph. We discuss all three steps in turn.

To measure column error, we can adapt statistical anomaly de-
tection techniques to track how our auto-tuned data integrity con-
straints behave over time. Concretely, since we have learned a rep-
resentation of Pr[X] for any column X, we fix some scalar estimate
of Pr[X] (e.g., u(Pr[X]) or p25(Pr[X])) and derive a time-based
anomaly score (e.g., how many standard deviations p(Pr[X]) at a
given time is away from its rolling, 7-day mean). Columns with an
anomaly score > 3 may indicate errors. Note that this approach
flags corruption bugs but not staleness bugs, which will have anom-
aly scores of 0. To formulate staleness as an anomaly detection
problem, we derive the time-based anomaly score from a different
scalar estimate of Pr[X], such as the variance of recent means of
the column. Consequently, zero-valued historical variances and
large-magnitude anomaly scores indicate staleness. We leave fur-
ther implementation details to the tech report [72]. A practical
challenge is that columns are highly correlated, but we can group
co-erroneous columns based on correlation. One option is to use
probabilistic graphical models [62], but a simpler, non-ML idea is
to sample a covariance matrix to represent “distances” between
features and apply spectral clustering.

For the last step—ranking errors across all pipeline components—
we track error across the dataflow graph. Each node represents a
(column group, component) pair. Two nodes share an edge if their
corresponding components share an edge in the ML pipeline graph.
Each node is initially labeled with its error score {. Intermediate
nodes with small {'s should deprioritize errors earlier in the pipeline,
as our goal is to find nodes that cause high {’s later in the pipeline.
For our ranking algorithm, we can conceptually traverse from the
predictions node (i.e., the final component) backwards through
all paths p € P in the graph; at every node i, we record ¢; =
maxpep [ [ j for all the nodes j visited so far (including the current
node i). Nodes with high ¢ require immediate attention.
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4 SYSTEM

A bolt-on ML observability system must be able to compute and
store (1) history of and (2) interactions between components, requir-
ing logging state at component runtime. Data and model integrity
checks (e.g., expected number of nulls, model assertions [30]) can be
programmed as constraints. Metric computation (e.g., approximate
accuracy) can run as triggers.

Interface Layer. Users should be able to view real-time pipeline
performance (i.e., accuracy) and query fine-grained data summaries,
traces for outputs, and other information in component logs.

Execution Layer. The execution layer, which wraps around a com-
ponent, must be able to run trigger computation such as importance-
weighting, executing and fine-tuning data quality constraints, drift
detectors, time-based anomaly detection, and other methods de-
scribed in Section 3. Additionally, the execution layer must identify
component dependencies to track provenance for predictions.

Storage Layer. We must store at least three types of data: point-
ers to inputs and outputs, ML metrics monitored across consecu-
tive runs of the same component (Section 3.3), and logs capturing
fine-grained state (provenance, data validation results, and drift
detection as described in Section 3.4) every time a component is
run. Additionally, the system must keep samples of training sets
and live inference tuples in-memory for the execution layer to use
while computing fine-grained information (e.g., K-S test results,
adversarial classifier weights).

MLTRACE Abstractions. Our bolt-on ML observability system,
MLTRACE, will eventually have the following functionality: (1) a
library of functions that can support predefined computation before
or after component runs for metric calculation or any relevant alerts,
triggers, or constraints; (2) automatic logging of inputs, outputs,
and metadata at the component run level; and (3) an interface for
users to ask arbitrary post-hoc queries about their pipelines. Our
current prototype has preliminary approaches for (2) and (3) and we
are working on populating our library (1). We provide declarative,
client-facing abstractions for users to specify components and the
metrics and tests they would like to compute at every run of the
component. The current prototype of MLTRACE is publicly available
on Github [71] and PyPI [1]. Additional details can be found in our
technical report [72].

5 CONCLUSION

We proposed new research challenges in ML observability through
a taxonomy of detecting, diagnosing, and reacting to ML bugs,
helping make sense of performance with incomplete information,
identify potential issues in ML pipeline components, and trace the
source of errors. We discussed a high-level architecture of a bolt-on
ML observability system, and introduced our prototype, MLTRACE.
We call on the database community to contribute to the vision of
ML observability by alleviating the many the data management
concerns that come with production ML.
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