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ABSTRACT
Stochastic sample-based estimators are among the most funda-

mental and universally applied tools in statistics. Such estimators

are particularly important when processing huge amounts of data,

where we need to be able to answer a wide range of statistical

queries reliably, yet cannot afford to store the data in its full length.

In many applications we need the sampling to be coordinated

which is typically attained using hashing. In previous work, a com-

mon strategy to obtain reliable sample-based estimators that work

within certain error bounds with high probability has been to de-

sign one that works with constant probability, and then boost the

probability by taking the median over 𝑟 independent repetitions. Aa-

mand et al. (STOC’20) recently proposed a fast and practical hashing

scheme with strong concentration bounds, Tabulation-1Permutation,

the first of its kind. In this paper, we demonstrate that using such a

hash family for the sampling, we achieve the same high probability

bounds without any need for repetitions. Using the same space,

this saves a factor 𝑟 in time, and simplifies the overall algorithms.

We validate our approach experimentally on both real and syn-

thetic data. We compare Tabulation-1Permutation with other hash

functions such as strongly universal hash functions and various

other hash functions such as MurmurHash3 and BLAKE3, both

with and without resorting to repetitions. We see that if we want

reliability in terms of small error probabilities, then Tabulation-

1Permutation is significantly faster.
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1 INTRODUCTION
Recent years have brought with them a huge demand for algorithms

that can process and reliably compute statistics of large sets of data.

However, in many practical applications, the sheer volume of the

data makes it impossible to store a complete copy and perform exact

computations. We therefore have to resort to estimation algorithms.

For instance, instead of precisely counting the number of unique

visitors to a website, we may settle for a good estimate.

Bernoulli sampling is one of the most basic ways to reduce the

size of sets of data, while still having access to such reliable esti-

mators. Given some set 𝑋 , we sample a subset 𝑆 by independently

including each element of 𝑋 with probability 𝑝 . The basic idea is

then similar to the one behind election polls: In order to under-

stand a given statistic of 𝑋 , (e.g., the number of people of 𝑋 who

supports a certain political party), we calculate the same statistic

for the sampled set 𝑆 , scale it appropriately, and use that as our

estimator. To be more precise, given any selection 𝑌 from 𝑋 of size

𝑛, the random variable |𝑌 ∩𝑆 | is binomially distributed as 𝐵𝑖𝑛(𝑛, 𝑝),
which is sharply concentrated around its mean |𝑌 |𝑝 . Therefore,
|𝑌 ∩ 𝑆 |/𝑝 will be an unbiased estimator for |𝑌 | lying within a small

error bound with high probability.

There are many ways of using the above basic idea, e.g., in a

streaming context where elements from 𝑋 arrive as a stream of

unknown length, 𝑥1, 𝑥2, . . . . In this case, we may decrease 𝑝 as 𝑋

grows. In this setting, the idea is to generate a random 𝑟𝑖 uniformly

in (0, 1] for each 𝑖 , and select 𝑥𝑖 if 𝑟𝑖 < 𝑝 . We refer to this as threshold
sampling with threshold 𝑝 . If the sampled set grows too large, we

may decrease 𝑝 (and discard elements from 𝑆 having a too large

𝑟𝑖 ). The decrease could be by a constant factor, but alternatively we

could use a bottom-𝑘 sample of the distinct keys seen so far, which

corresponds to having 𝑝 to be the (𝑘 + 1)-th smallest value of the

𝑟𝑖 . A beautiful result from order statistics is that with this choice

of 𝑝 , 1/𝑝 has expectation 𝑛/𝑘 , and further that for any selection 𝑌

from 𝑋 , E [|𝑌 ∩ 𝑆 |/𝑝] = |𝑌 |.
Now, in many contexts, we need coordinated sampling that is

determined by a hash function ℎ : 𝑈 → (0, 1]. In the above, we

would have 𝑟𝑖 = ℎ(𝑥𝑖 ). Below we discuss three examples.
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(1) Set Intersection. Suppose we have samples 𝑆𝑋 and 𝑆𝑌
from two different sets 𝑋 and 𝑌 , and want to estimate their

intersections. Then𝑋∩𝑌 is just a selection from𝑋∪𝑌 , so we
can estimate |𝑋 ∩𝑌 | as |𝑆𝑋 ∩ 𝑆𝑌 |/𝑝 . This is the underlying
idea of Broder’s original min-hash algorithm [6].

(2) Distinct elements. In streaming, coordinated sampling is

particularly important, as the same element 𝑥 may appear

many times. Using hashing for the sampling, if 𝑥 is picked

once, it is picked every time because the hash value of𝑥 does

not depend on when 𝑥 appears. We can therefore estimate

the number of distinct elements by looking at the number

of distinct elements in the sample. This is the underlying

idea of the classic algorithm by Bar-Yossef et al. [3].
(3) Trajectory sample [12]. Suppose we want to sample

packet paths through a network, e.g., to determine the

source of the traffic using a given link. If all routers sample

with the same hash function, then if a packet is sampled

once, it will be sampled by all the routers, so its whole path

is collected.

More examples can be found in [8], including other network

problems, and application domains such as document-features and

market-basket datasets.

In the simple Bernoulli case where each key is sampled indepen-

dently with probability 𝑝 , the size of the sample 𝑆 is distributed as

𝐵𝑖𝑛(𝑛, 𝑝). The strong concentration of the estimates in the exam-

ples above then hinge on the concentration of 𝐵𝑖𝑛(𝑛, 𝑝) around its

mean. However, the size of the sample only has this distribution if

each key is sampled independently, i.e., if all the hash values of the

distinct keys are independent, but such highly independent hashing

is impossible to implement in practice. Classic fast hash functions

such as (𝑎𝑥 + 𝑏) mod 𝑝 are only 2-independent. On the positive

side, the 2-independence ensures that the variance of |𝑌 ∩ 𝑆 | is the
same as if ℎ was fully random (namely |𝑌 |𝑝 (1 − 𝑝)), and hence we

get concentration according to Chebyshev’s inequality. However,

in the tail, Chebyshev is much weaker than the classic Chernoff

bounds which we get with independent Bernoulli sampling.

To get estimators that provably work with high probability

within a certain error bound, a common strategy is to design one

that works with constant probability, and then boost the probability

by taking themedian over 𝑟 independent repetitions. To explain this,

consider a selection 𝑌 from 𝑋 of size 𝑛. If we use a 2-independent

hash family for sampling elements from 𝑋 with probability, say,

𝑝 = 4/(𝜀2𝑛), then Var [|𝑌 ∩ 𝑆 |] ≤ 4/𝜀2 and it follows from Cheby-

chev’s inequality that the estimator |𝑌 ∩𝑆 |/𝑝 is within a 1±𝜀 factor
of 𝑛 with probability at least 3/4. By performing 𝑟 independent

repetitions (e.g., with hash functions ℎ𝑖 (𝑥) = (𝑎𝑖𝑥 + 𝑏𝑖 ) mod 𝑝 ,

where the 𝑎𝑖 ’s and 𝑏𝑖 ’s are all mutually independent) and taking the

median of the estimators, the error probability drops exponentially

in 𝑟 . However, running 𝑟 independent experiments increases the

processing time by a factor 𝑟 .

Recently Aamand et al. [1] introduced a new practical hash-

ing scheme, Tabulation-1Permutation, which provably satisfies so

called strong concentration bounds (to be defined in Section 2.2)

akin to those which hold for sums of Bernoulli variables, and even

more recently Houen and Thorup [16] showed that also the Mixed-

Tabulation scheme from [9] enjoys such bounds. The main theoret-

ical contribution of this paper is demonstrating that using such a

hashing scheme, we get the same high probability bounds on the

errors of the estimators without any need for repetitions. Instead

of making 𝑟 independent samples, we sample a single set which is

Θ(𝑟 ) times larger. The total space usage is therefore essentially the

same. However, we only apply a single hash function, processing

each element in constant time regardless of 𝑟 , with an altogether

significantly simpler algorithm. The hashing schemes of [1, 16]

provide concentration bounds for Bernoulli trials, where each key

is sampled based on its own hash value. This leads to a variable

number of sampled keys. However, if one wants a fixed number

of samples, then one can use the union bound approach of [20] to

obtain similar bounds for more convoluted sampling schemes like

bottom-𝑘 sampling [8] and priority sampling [13]. We will see an

example of this in Section 4.

As we will see examples of, using a fast hashing scheme with

strong concentration bounds to remove the need for independent

repetitions, can also help speed up streaming algorithms. To illus-

trate a streaming scenario where the processing time is critical,

consider the Internet. Suppose we want to process packets passing

through a high-end Internet router. Each application only gets very

limited time to look at the packet before it is forwarded. If it is not

done in time, the information is lost. Since processors and routers

use some of the same technology, we never expect to have more

than a few instructions available. Slowing down the Internet is

typically not an option. The papers of Krishnamurthy et al. [18]
and Thorup and Zhang [21] explain in more detail how high speed

hashing is necessary for their Internet traffic analysis. Incidentally,

the hash function we use from [1] is a bit faster than the ones from

[18, 21], which do not provide strong concentration bounds.

1.1 Experiments
To demonstrate that our approach works well in practice, both

in terms of speed and reliability, we perform experiments on the

use of Tabulation-1Permutation and Mixed-Tabulation for sam-

pling. We have chosen threshold sampling and bottom-𝑘 sam-

pling for our algorithms, see Section 3 and 4 for details. As it

was slightly faster, we here focus our discussion on Tabulation-

1Permutation, but the two schemes had very similar experimental

performances in terms of accuracy. We compare with the fastest

known strongly universal hash functions and with other commonly

used hash functions such as MurmurHash3 [2] and BLAKE3 [17].

Without the use of independent repetitions, we demonstrate that

Tabulation-1Permutation provides more reliable estimates than the

fast strongly universal hash functions. Moreover, the implemen-

tation with Tabulation-1Permutation is faster than when using

MurmurHash3 and BLAKE3. In fact, BLAKE3 was approximately

150 times slower than Tabulation-1Permutation, so we disregard it

in our experiments. On the other hand, the implementation with

Tabulation-1Permutation is both faster and provides better esti-

mates than when implementing the algorithm with the strongly

universal hash functions and independent repetitions.

We include two figures from Section 6 (which will be explained

in more detail in that section). Figure 1a shows the relative error
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incurred by different hash functions over 5 × 10
4
experiments on a

synthetic data set. We see that when implementing the algorithms

with classic strongly universal hash functions like Multiply-Shift

and Multiply-Mod-Prime, some of the estimates are significantly

off. Figure 1b shows the running time per experiment for each of the

hash functions tested.We see that Multiply-Shift is the only hashing

scheme that outperforms Tabulation-1Permutation in regards to

speed. However, in order to eliminate the outliers of Multiply-Shift

seen in Figure 1a, we need to run independent repetitions, making

Tabulation-1Permutation much faster. See Section 6 for details.

In summary, our experiments show that the fastest known

strongly universal hashing schemes fail on simple bad instances.

Remedying this with independent repetitions, the implementation

with just a single Tabulation-1Permutation function becomes faster

and gives more reliable estimates. Finally, one could hope that

popular hash functions like MurmurHash3 or cryptographic hash

functions, would perform well on most data
1
. However, Tabulation-

1Permutation is simply faster and, as shown in [1], they provably
performs well on any given data set with high probability. To the

best of our knowledge, we are the first to provide an experimental

understanding of the large outliers that occur with weaker hashing

schemes (and their non-existence with hashing with strong concen-

tration). Our extensive experimental evaluation of the reliability of

the tabulation-based hashing schemes for sampling is the second

main contribution of the paper.

Remark. An interesting statistical artifact appearing in our exper-
iments is the following. Looking at the accuracy of the estimators

when implemented with Multiply-Shift and Multiply-Mod-Prime,

it appears that for certain structured data sets, they provide even

better estimates than fully random hashing would. This could lead

to the false impression that their performance is always better than
implementing the estimators with e.g., Tabulation-1Permutation.

Since the variance of the estimators are the same for all the seeded

hash functions, it follows that if a hashing scheme yields estimators

that are ’too good’, it must inevitably fail occasionally and provide

estimates that are far off. We will see examples of this in Section 6

and discuss it further in Section 6.5.

2 HASHING AND CONCENTRATION
In the present paper, the crucial component of our algorithms is a

random hash function ℎ : 𝑈 → [0, 1) mapping some key universe

𝑈 , e.g. 64-bit keys, uniformly into 𝑅 = [0, 1). The application is the

following. Let 𝑆 ⊂ 𝑈 be a set of keys and 𝑝 ∈ [0, 1) a threshold

value. Define 𝑋 = 𝑋<𝑝 = |{𝑠 ∈ 𝑆 | ℎ(𝑠) < 𝑝}|, the number of keys

from 𝑆 that hash below 𝑝 . We wish to estimate the size of 𝑆 based

on the size of 𝑋 . Here 𝑝 could be an unknown function of 𝑆 , but 𝑝

should be independent of the random hash function ℎ. Since the

mean 𝜇 of 𝑋 is E [𝑋 ] = |𝑆 | 𝑝 , we may estimate the size of 𝑆 by

𝑋/𝑝 with precision increasing in the concentration of 𝑋 around its

mean. In particular, we are interested in the probability 𝛿 that 𝑋

1
However, it is important to note that no amount of experimenting can prove that

a hashing scheme performs well on all possible data, and finding the problematic

data sets for a given hash family is often a non-trivial task. For Multiply-Shift and

Multiply-Mod-Prime, we have concrete examples of data sets on for which they fail,

as is evident from Figure 1a. Moreover, in [5] the authors provide concrete bad data

sets for MurmurHash3.

deviates from 𝜇 by more than a factor 𝜀 > 0, i.e., the probability

𝛿 = Pr [|𝑋 − 𝜇 | ≥ 𝜀𝜇].
If the hash function ℎ is fully random, we get the classic Chernoff

concentration bounds on 𝑋 (see, e.g, [19]):

Pr [𝑋 ≥ (1 + 𝜀)𝜇] ≤ exp(−𝜀2𝜇/3) for 0 ≤ 𝜀 ≤ 1, (1)

Pr [𝑋 ≤ (1 − 𝜀)𝜇] ≤ exp(−𝜀2𝜇/2) for 0 ≤ 𝜀 ≤ 1. (2)

Unfortunately, we cannot implement fully random hash functions

as it requires space as big as the universe.

2.1 Strongly Universal Hashing
To get something implementable in practice, Wegman and Carter

[22] proposed strongly universal hashing.

Definition 2.1 (Strongly Universal Hashing). A hash function

ℎ : 𝑈 → 𝑅 is strongly universal if for every pair of distinct keys

𝑥,𝑦 ∈ 𝑈 , the distribution of (ℎ(𝑥), ℎ(𝑦)) is uniform on 𝑅2.

Many common hash functions are strongly universal. Worth

mentioning is the Multiply-Shift hash function [11]. The textbook

example of a strongly universal hash function hashing into [0, 1)
is the Multiply-Mod-Prime hash function [7]. The Multiply-Mod-

Prime hash function picks a large prime ℘ and two uniformly ran-

dom numbers 𝑎, 𝑏 ∈ Z℘. Then ℎ𝑎,𝑏 (𝑥) = ((𝑎𝑥 + 𝑏) mod ℘)/℘ is

strongly universal from 𝑈 ⊆ Z℘ to 𝑅 = {𝑖/℘|𝑖 ∈ 𝑍℘} ⊂ [0, 1).
Obviously this hash function is not uniform on [0, 1) as we consid-
ered above, but for any 𝑝 ∈ [0, 1), we have Pr [ℎ(𝑥) < 𝑝] ≈ 𝑝 with

equality if 𝑝 ∈ 𝑅. Below we ignore this deviation from uniformity

on [0, 1).
Assuming we have a strongly universal hash function ℎ : 𝑈 →

[0, 1), we again let 𝑋 be the number of elements from 𝑆 that hash

below 𝑝 . Then 𝜇 = E [𝑋 ] = |𝑆 |𝑝 and because the hash values

are 2-independent, we have Var [𝑋 ] ≤ E [𝑋 ] = 𝜇. Therefore, by

Chebyshev’s inequality,

Pr [|𝑋 − 𝜇 | ≥ 𝜀𝜇] ≤ 1/(𝜀2𝜇). (3)

As 𝜀2𝜇 gets large, the error probability of strongly universal hash-

ing is much higher than the Chernoff bounds with fully random

hashing. However, as described in Section 3.1, it is still possible to

guarantee high concentration by aiming for a constant error prob-

ability like 𝛿 = 1/4 and then using the median over independent

repetitions of the estimation to reduce the error probability.

2.2 Strongly Concentrated Hashing
In this paper we discuss the benefits of hash functions with strong

concentration akin to that of fully random hashing.

Definition 2.2. A hash function ℎ : 𝑈 → [0, 1) is strongly con-
centrated with added error probability E if for any key set 𝑆 ⊆ 𝑈 ,

threshold 𝑝 ∈ [0, 1), and 0 < 𝜀 ≤ 1, the number 𝑋 of elements from

𝑆 hashing below 𝑝 satisfies

Pr [|𝑋 − 𝜇 | ≥ 𝜀𝜇] = 2 exp(−Ω(𝜀2𝜇)) + E,
where 𝜇 = 𝑝 |𝑆 |. If E = 0, we say that ℎ is strongly concentrated.

It is worth noting that a fully random hash function is strongly

concentrated. Another way of viewing the added error probability

E is as follows. We have strong concentration as long as we do not

aim for error probabilities below E, so if E is sufficiently low, we
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(a) The relative error when estimating the size of a set based on
its sample with various hash functions and no repetitions.

(b) The average running time per experiment with the different
hash functions.

Figure 1: Relative error and timing when estimating the size of a set based on a sampled subset. These experiments ran on
synthetic data and did not use independent repetitions.

can simply ignore it. In other words, except for an error term of

E, the hash function performs asymptotically as well as a random

hash function.

What makes this definition interesting in practice is that Aamand

et al. [1] recently presented a practical hash function with small

constant running time that for a universe𝑈 = [𝑢] = {0, . . . , 𝑢 − 1}
is strongly concentrated with added error probability 𝑢−𝛾 for any

constant 𝛾 . For our applications, this term is so small that we can

ignore it as the universe sets we consider are huge.

2.3 Tabulation-1Permutation
The hash function we consider in this paper is Tabulation-

1Permutation, introduced by Aamand et al. [1]. For the applications

of this paper it enjoys the benefits of strong concentration with

a negligible added error probability, comparable in speed to the

fastest hash functions on the market, and simple to implement
2
.

2.3.1 Implementation. Tabulation-1Permutation obtains its power

and speed using certain character tables in fast cache. The scheme

views a keys from a universe𝑈 = [𝑢] = {0, . . . , 𝑢 − 1} as consisting
of a small, constant number 𝑐 of characters from some alphabet Σ,
that is, 𝑈 = Σ𝑐 . For 64-bit keys, this could be 𝑐 = 4 characters of 16

bits each. For our applications, we only consider the case where

the hash values belong to the same universe𝑈 , and interpret them

as numbers in [0, 1) by dividing with 𝑢. Tabulation-1Permutation

needs 𝑐 + 1 character tables mapping characters to hash values. To

compute the hash value of a key, we make one lookup for each of

the 𝑐 + 1 tables and perform 𝑂 (𝑐) fast AC0
operation to extract the

characters and XOR the hash values. The character tables can be

populated with an 𝑂 (log𝑢)-independent pseudo-random number

generator, needing a random seed of 𝑂 (log2 𝑢) bits. Tabulation-
1Permutation is simple to implement and evaluate (see Figure 2). It

takes up a dozen lines of code and is extremely fast. For details on

the inner workings of Tabulation-1Permutation see [1]. For details

regarding its running time in practice, see Section 6 as well as [1,

Section 1.7].

2
We focus our discussion on Tabulation-1Permutation, but recently Houen and Tho-

rup [16] showed that also the Mixed-Tabulation from [9] (which is equally simple to

implement and of similar speed) satisfies such bounds. We will also see experiments

with Mixed-Tabulation.

1 uint64_t T[4][65536];

2 uint64_t P[65536];

3

4 uint64_t Tab1Perm(uint64_t x) {

5 uint64_t y; int i;

6 y = 0;

7 for (i = 0; i < 4; ++i) {

8 y ^= R[i][( uint16_t) x];

9 x = x >> 16;

10 }

11 return y ^ P[( uint16_t) y];

12 }

Figure 2: The C-code for the evaluation of Tabulation-
1Permutation with 4 characters for 64-bit keys.

2.3.2 Strong Concentration. The exact concentration results re-

garding Tabulation-1Permutation [1, Theorem 1.3] are far too gen-

eral for our purposes. We instead state a version simplified for the

purposes of this exposition. Here we identify a hash value from [𝑢]
as a fraction in [0, 1).

Theorem 2.3. Let ℎ : [𝑢] → [0, 1) be a Tabulation-1Permutation
hash function with [𝑢] = Σ𝑐 , 𝑐 = 𝑂 (1), and let 𝛾 > 0 be fixed. For
any key set 𝑆 ⊂ [𝑢], threshold 𝑝 ∈ [0, 1), and 0 < 𝜀 ≤ 1, the number
𝑋 of elements from 𝑆 hashing below 𝑝 satisfies

Pr[|𝑋 − 𝜇 | ≥ 𝜀𝜇] = 2 exp(−Ω(𝜇𝜀2)) + 1/𝑢𝛾 .

Thus, for our applications, we are theoretically guaranteed that

Tabulation-1Permutation will perform asymptotically as well as a

random hash function up to an additive error term of 1/𝑢𝛾 . Impor-

tantly, in said applications the universe size is huge, so the error

term is indeed negligible.

2.3.3 Computer Dependent Versus Problem Dependent Resources.
We view the resources used for Tabulation-1Permutation as com-

puter dependent rather than problem dependent. More precisely,

you should pick the number of characters, 𝑐 , and the size of the

character alphabet, |Σ|, depending on the computer’s architecture.
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For hashing 64-bit keys one often picks either 𝑐 = 4 or 𝑐 = 8 which

yields a space usage of 9×28×8 bytes (less than 20 KB) and 5×216×8
bytes (less than 3 MB), respectively. An important property is that

once the tables are populated they will never be overwritten. This

means that the cache does not get dirty, that is, different computer

cores can access the tables and not worry about consistency.

3 INDEPENDENT REPETITIONS VS STRONGLY
CONCENTRATED HASHING

Suppose we are given a data set 𝑋 ⊆ 𝑈 and a selection 𝑌 ⊆ 𝑋

of some unknown size |𝑌 | = 𝑛. In this section, we discuss the

theoretical guarantees that can be obtained when estimating the

size of 𝑌 using hashing-based sampling. We are given parameters

0 < 𝜀, 𝛿 < 1, and the goal is to create an estimator, 𝑛̂ such that

|𝑛 − 𝑛̂ | ≤ 𝜀𝑛 with probability at least 1 − 𝛿 . For instance, aiming to

avoid big errors over many estimates, we could set 𝜀 = 100%, and

𝛿 = 2
−20

. Given a hash function ℎ : 𝑈 → [0, 1), and a 𝑝 ∈ [0, 1),
we define the sample 𝑆𝑌 = {𝑦 ∈ 𝑌 | ℎ(𝑦) < 𝑝} = {𝑥 ∈ 𝑋 | ℎ(𝑥) <
𝑝} ∩ 𝑌 consisting of the elements from 𝑌 that hash below 𝑝 . Let

further 𝑌<𝑝 = |𝑆𝑌 |.
We will compare the three cases where (1) ℎ is a strongly uni-

versal hash function and we use independent repetitions, (2) ℎ is

truly random, and (3) ℎ satisfies strong concentration bounds. Our

analysis demonstrates that strongly concentrated hash functions

provide simpler algorithms and stronger theoretical guarantees

(akin to those of truly random hash functions) than if we had used

universal hashing and independent repetitions.

3.1 Strongly Universal Hashing and
Independent Repetitions

This is perhaps the most common strategy for getting theoretical

guarantees on the quality of the estimates. In this case, the hash

values of any two distinct keys are independent, so as noted in

Section 2.1, Var

[
𝑌<𝑝

]
≤ E

[
𝑌<𝑝

]
= 𝑛𝑝 for every 0 < 𝑝 < 1. Thus,

applying Chebyshev’s inequality (as we did in (3)),

Pr [|𝑛̂ − 𝑛 | ≥ 𝜀𝑛] ≤ 1/(𝜀2𝑝𝑛)

To get the desired error probability 𝛿 , one option would be to set3

𝑝 = 1/(𝛿𝜀2𝑛). However, if 𝛿 is small, e.g., 𝛿 = 1/𝑢, then the sample 𝑆

becomes much too large. To solve this issue, the standard approach

is, as in [3], to apply classic median trick. Instead of aiming for a

small error probability right away, we start by aiming for a constant

error probability 𝛿0. Here we use 𝛿0 = 1/4 for simplicity. Then it

suffices to set 𝑝 = 4/(𝜀2𝑛). With this choice of 𝑝 and 𝛿0, we now

sample 𝑟 independent estimators for 𝑛, 𝑛̂1, . . . , 𝑛̂𝑟 , for some 𝑟 to

be determined later, by repeating the algorithm 𝑟 times with fresh

randomness. Our final estimator 𝑛̂ is then the median of 𝑛̂1, . . . , 𝑛̂𝑟 .

Now, for each 1 ≤ 𝑖 ≤ 𝑟 , Pr[|𝑛̂𝑖 − 𝑛 | ≥ 𝜀𝑛] ≤ 1/4 and these

events are independent. If |𝑛̂ − 𝑛 | ≥ 𝜀𝑛, then |𝑛̂𝑖 − 𝑛 | ≥ 𝜀𝑛 for at

least half of the 1 ≤ 𝑖 ≤ 𝑟 . By the standard Chernoff bound (1), this

probability can be bounded by

Pr [|𝑛̂ − 𝑛 | ≥ 𝜀𝑛] ≤ exp(−(𝑟/4)/3) = exp(−𝑟/12).
3
As 𝑛 is unknown to us, it is problematic to choose 𝑝 depending on 𝑛 when designing

the estimator in practice. One way to handle this, is to through bottom-𝑘 sampling.

We will discuss this in detail in Section 4.1 but for simplicity of the exhibition, we

ignore this subtlety for now.

Setting 𝑟 = 12 ln(1/𝛿), we get the desired error probability 𝛿 . The

expected number of hash values stored is then

𝑟𝑝𝑛 = 48 ln(1/𝛿)/𝜀2 = Θ(ln(1/𝛿)/𝜀2).

3.2 Utopia: Fully Random Hashing
Suppose that we could implement a fully random hash function

ℎ : 𝑈 → [0, 1). In that case, sampling using ℎ would yield excellent

guarantees. Indeed, the Chernoff bounds (1) and (2) yield that

Pr[|𝑛̂ − 𝑛 | ≥ 𝜀𝑛] ≤ 2 exp(−𝜀2𝑝𝑛/3). (4)

Thus, to get error probability 𝛿 , we just choose 𝑝 = 3 ln(2/𝛿)/(𝜀2𝑛),
storing 3 ln(2/𝛿)/𝜀2 hash values in expectation. There are several

reasons why this is much better than the above approach using

2-independence and independent repetitions. It avoids the inde-

pendent repetitions, so instead of applying 𝑟 = Θ(log(1/𝛿)) hash
functions to each key we just need one. Moreover, with indepen-

dent repetitions, we are tuning the algorithm depending on 𝜀 and

𝛿 , whereas with a fully-random hash function, we get the concen-

tration from (4) for every 0 < 𝜀 ≤ 1.

The only caveat is that fully-random hash functions cannot be

implemented in practice. In some applications, cryptographic hash

functions, or popular hash functions such as MurmurHash3 [2]

have been applied. On datasets which have high entropy, such hash

functions will perform well and appear “random”, however, there

is no guarantee that this will hold for every choice of data set.

Importantly, it is impossible to predict how such a hash function

will do on a particular structured data set.

3.3 Strongly Concentrated Hashing
Abandoning the infeasible fully randomhashing, let insteadℎ : 𝑈 →
[0, 1) be a strongly concentrated hash function with error term E.
It then follows as above that for 0 < 𝜀 ≤ 1,

Pr [|𝑛̂ − 𝑛 | ≥ 𝜀𝑛] = 2 exp

(
−Ω

(
𝑝𝑛𝜀2

))
+𝑂 (E). (5)

To obtain the error probability 𝛿 = 𝜔 (E), we again need to set

𝑝 = 𝑂 (log(1/𝛿)/(𝜀2𝑛)), thus storing 𝑂 (log(1/𝛿)/𝜀2) hash values

in expectation. Within a constant factor this means that we use

the same total number using 2-independence and independent

repetitions, and we still retain the following advantages from the

fully random case.

• By avoiding repetitions, we save a factor Θ(log(1/𝛿)) in
running time.

• We avoid tuning the algorithm for a given 𝜀 and 𝛿 . Instead

we get the concentration from (5) for every 0 < 𝜀 ≤ 1.

3.3.1 Instantiating with Tabulation-1Permutation. Let us relate the
above discussion to the Tabulation-1Permutation hash function by

Aamand et al. [1]. It follows by Theorem 2.3 that sampling using

Tabulation-1Permutation would imply that for any 𝛾 > 0,

Pr [|𝑛̂ − 𝑛 | ≥ 𝜀𝑛] = 2 exp

(
−Ω

(
𝑝𝑛𝜀2

))
+𝑂 (1/𝑢𝛾 ) .

Since the universe size 𝑢 is usually huge, the error term 𝑂 (1/𝑢𝛾 ) is
negligible. Hence, from a practical perspective, the concentration

is as good as fully random up to constant factors in the exponent

of the exponential tail.
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4 BOTTOM-𝑘 SAMPLING
In the previous section, we have chosen 𝑝 depending on 𝑛 in order

to obtain the desired (𝜀, 𝛿)-type bound. This may seem problematic

as 𝑛 is the quantity we wish to estimate. In practice, 𝑝 is often

just a fixed number (which could be determined by the allotted

resources), and then the quality of the error of course depends on 𝑛.

However, if we insist on getting estimators such that Pr[|𝑛̂ − 𝑛 | >
𝜀𝑛] ≤ 𝛿 , for some specific 0, 𝜀, 𝛿 ≤ 1, then we can use the idea of a

bottom-𝑘 sample, i.e., a sample that consists of the 𝑘 elements from

a given set 𝑋 with the smallest hash values. Using such a sample

requires a more careful analysis. We will analyse algorithms for

the two problems of estimating the number of distinct elements in

a stream and for estimating set intersection, when using strongly

concentrated hashing to create the bottom-𝑘 sample.

For the distinct elements problem, several other very efficient

algorithms and estimators are known, e.g., the HyperLogLog Al-

gorithm [14]. For more details, a thorough survey by Harmouch

and Naumann [15] provides experimental data on the choice of

algorithm. The analysis we provide here, merely serves as a proof

of concept and a warm up for our analysis of Broder’s algorithm

for set intersection [6] with strongly concentrated hashing.

4.1 Counting Distinct Elements with Strongly
Concentrated Hashing

Consider a sequence (or stream) of keys 𝑥1, . . . , 𝑥𝑠 ∈ 𝑈 from some

universe 𝑈 , where each element may appear multiple times. The

problem of counting distinct elements in such a stream is the follow-

ing. Using only little space, we wish to estimate the number 𝑛 of dis-

tinct keys in the stream. We are given parameters 0 < 𝜀, 𝛿 < 1, and

the goal is to create an estimator, 𝑛̂ such that (1−𝜀)𝑛 ≤ 𝑛̂ ≤ (1+𝜀)𝑛
with probability at least 1 − 𝛿 .

In our estimation, we follow the classic approach of Bar-Yossef

et al. [3], which was later revised by Beyer et al. [4] to introduce

their unbiased version of the estimator. We proceed as follows. Let

ℎ : 𝑈 → [0, 1) be a random hash function, and assume for simplicity

that ℎ is collision-free over 𝑈 . For some 𝑘 > 1, assumed to be

significantly smaller than 𝑛, we process each element 𝑥𝑖 in order,

maintaining the 𝑘 smallest distinct hash values ℎ(𝑥𝑖 ) of the stream.

Let 𝑥 (𝑘) be the key with the 𝑘th smallest hash value under ℎ, and

let ℎ (𝑘) = ℎ

(
𝑥 (𝑘)

)
. As in [3], our estimator for 𝑛 is then 𝑛̂ = 𝑘/ℎ (𝑘) .

It is worth noting that [3] suggests several other estimators, but

the points we will make below apply to all of them. We call this the

bottom-𝑘 estimator for counting distinct elements.

The point of using a hash function ℎ is that all occurrences of

a given key 𝑥 in the stream get the same hash value. Thus, if 𝑆 is

the set of distinct keys, ℎ (𝑘) is the 𝑘th smallest hash value from 𝑆 .

In particular, 𝑛̂ depends only on 𝑆 , not on the frequencies of the

elements of the stream.

We would like 𝑛̂ = 𝑘/ℎ (𝑘) to be concentrated around 𝑛. For any

probability 𝑝 ∈ [0, 1], let 𝑋<𝑝
denote the number of elements from

𝑆 that hash below 𝑝 . Let 𝑝− = 𝑘/((1 + 𝜀)𝑛) and 𝑝+ = 𝑘/((1 − 𝜀)𝑛).
Note that both 𝑝− and 𝑝+ are independent of the random hash

function ℎ. Now,

𝑛̂ = 𝑘/ℎ (𝑘) ≤ (1 − 𝜀)𝑛 ⇐⇒ 𝑋<𝑝+ < 𝑘 = (1 − 𝜀)E
[
𝑋<𝑝+

]
, (6)

𝑛̂ = 𝑘/ℎ (𝑘) > (1 + 𝜀)𝑛 ⇐⇒ 𝑋<𝑝− ≥ 𝑘 = (1 + 𝜀)E
[
𝑋<𝑝−

]
. (7)

These observations form a good starting point for applying prob-

abilistic tail bounds. Indeed, if ℎ : 𝑈 → [0, 1) is a strongly con-

centrated hash function with error term E, then instantiating the

bottom-𝑘 estimator with ℎ, it follows from (6) and (7) that for

0 < 𝜀 ≤ 1,

Pr [𝑛̂ ≤ (1 − 𝜀)𝑛] = exp

(
−Ω

(
𝑘𝜀2

1 − 𝜀

))
+ E,

Pr [𝑛̂ ≥ (1 + 𝜀)𝑛] = exp

(
−Ω

(
𝑘𝜀2

1 + 𝜀

))
+ E,

so

Pr [|𝑛̂ − 𝑛 | ≥ 𝜀𝑛] = 2 exp

(
−Ω

(
𝑘𝜀2

))
+𝑂 (E) . (8)

To obtain the error probability 𝛿 = 𝜔 (E), we pick 𝑘 =

𝑂 (log(1/𝛿)/𝜀2). We thus store 𝑘 = 𝑂 (log(1/𝛿)/𝜀2) hash values. In

the alternative implementation with 2-independence, we would in-

stead apply Chebychev, pick 𝑘 = 𝑂 (1/𝜀2) for a constant error prob-
ability, and then boost the error probability to 𝛿 using 𝑂 (log(1/𝛿))
independent repetitions and the median trick. Within a constant

factor this means that we store the same total number, and we still

retain the advantages from the fully random, namely avoiding the

independent repetitions and tuning the algorithm to 𝜀 and 𝛿 .

4.2 Implementing Bottom-𝑘 and an Alternative
Implementing the bottom-𝑘 estimator in practice requires main-

taining the 𝑘 smallest hash values. The most obvious and widely

used approach is to use a priority queue. For instance, this is used

in the survey of Harmouch and Naumann [15]. If the input arrives

in random order, we need to update the priority queue 𝑂 (𝑘 log𝑛)
times, so the total running time is 𝑂 (𝑛 + 𝑘 log𝑘 log𝑛). With the

reasonable assumption that 𝑘 = 𝑂 (𝑛/log2 𝑛), this is 𝑂 (𝑛).
Unfortunately, it is not reasonable to assume that the data arrive

in random order and thus, for hash functions that are not strongly

concentrated we might need to update the priority queue much

more. But for strongly concentrated hash functions, a straightfor-

ward argument shows that the priority queue need only be updated

𝑂 (𝑘 log𝑛) times no matter the input.

Threshold Estimator. Alternatively, we could use a related, but

different sketch of Bar-Yossef et al. [3], which is more efficient. The

algorithm identifies the smallest 𝑏 such that the number 𝑋<1/2𝑏
of

keys hashing below 1/2𝑏 is at most 𝑘 . For the online processing of

the stream, this means that we increment 𝑏 whenever 𝑋<1/2𝑏 > 𝑘 .

At the end, we return 2
𝑏𝑋<1/2𝑏

. The analysis of this estimator is

similar to the analysis of the bottom-𝑘 estimator. Using strongly

concentrated hashing, we get the same advantage of avoiding in-

dependent repetitions: In [3] they achieve error probability 𝛿 by

running Θ(log(1/𝛿)) independent experiments, each storing up

to 𝑘 = Θ(1/𝜀2) hash values, whereas we achieve the same error

probability by running only a single experiment with a strongly con-

centrated hash function storing 𝑘 = 𝑂 (log(1/𝛿)/𝜀2) hash values.

The total number of hash values stored is the same, but asymptoti-

cally, we save a factor Θ(log(1/𝛿)) in time.
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5 SET SIMILARITY WITH STRONGLY
CONCENTRATED HASHING

Another setting where the 𝑘 smallest hash values of a key set is

often used is for the problem of set similarity. Consider two subsets
𝐴, 𝐵 ⊂ 𝑈 of a universe 𝑈 = [𝑢] = {0, 1, . . . , 𝑢 − 1}. A common

metric for similarity between two such sets is the Jaccard similarity,
𝐽 (𝐴, 𝐵) = |𝐴 ∩ 𝐵 | /|𝐴 ∪ 𝐵 |. In this section, we estimate the Jaccard

similarity using strongly concentrated hashing, applying similar

techniques to the previous section.

We consider Broder’s [6] original algorithm for set similarity

which we now sketch. As in the previous section, letℎ : [𝑢] → [0, 1)
be a hash function assumed to be collision free. We define the

bottom-𝑘 sample MIN𝑘 (𝑆) of a set 𝑆 ⊆ [𝑢] to be the 𝑘 elements of

𝑆 with the smallest hash values under ℎ. Assume that 𝑘 ≤ 𝑛 = |𝑆 |. If
ℎ is fully random, then MIN𝑘 (𝑆) is a uniformly random subset of 𝑆

of size 𝑘 , and if 𝑇 ⊆ 𝑆 , we may estimate the frequency 𝑓 = |𝑇 | /|𝑆 |
as |MIN𝑘 (𝑇 ) ∩MIN𝑘 (𝑆) | /𝑘 . In [6], Broder uses this observation

to estimate the Jaccard similarity between two sets 𝐴, 𝐵 ⊂ [𝑢] as
follows. Given the bottom-𝑘 samples from 𝐴 and 𝐵, the bottom-

𝑘 sample of their union may be constructed as MIN𝑘 (𝐴 ∪ 𝐵) =

MIN𝑘 (MIN𝑘 (𝐴) ∪ MIN𝑘 (𝐵)). Then the Jaccard similarity is esti-

mated as 𝐽 (𝐴, 𝐵) = |MIN𝑘 (𝐴 ∪ 𝐵) ∩MIN𝑘 (𝐴) ∩MIN𝑘 (𝐵) |/𝑘 .
For the hash function, ℎ, Broder [6] first considers fully random

hashing and this particular case is very well understood. In this

case MIN𝑘 (𝑆) is a fully random sample of 𝑘 distinct elements from

𝑆 . However, fully random hashing is not implementable in practice.

Broder also sketches some alternatives with realistic hash func-

tions. Continuing this line of work, Thorup [20] showed that using

strongly universal hashing, we get the same expected error as with

fully random hashing. Writing 𝑓 = 𝐽 (𝐴, 𝐵) and ˆ𝑓 = 𝐽 (𝐴, 𝐵), his
precise result is that E

[
|𝑓 − ˆ𝑓 |

]
= 𝑂 (1/

√︁
𝑓 𝑘). Similarly to the prob-

lem of counting distinct elements, in order to obtain an estimator

satisfying a similar bound with some high probability at least 1 − 𝛿 ,

we have to perform 𝑂 (log(1/𝛿)) independent repetitions and use

the median of the estimators as the final estimate. Our next result

shows that when implementing the hashing using a scheme with

strong concentration bounds, like Tabulation-1Permutation, we

obtain a similar error bound by running the algorithm just a single

time, but with a sketch which is 𝑂 (log(1/𝛿)) times larger. Again,

the total space usage is the same, but we eliminate the need for

independent repetitions and save a factor of 𝑂 (log(1/𝛿)) in time.

Our analysis follows the simple union-bound approach from

[20]. It is simpler to study the case where we are sampling from

a set 𝑆 and want to estimate the frequency 𝑓 = |𝑇 |/|𝑆 | of a subset
𝑇 ⊆ 𝑆 . Let ℎ (𝑘) be the 𝑘th smallest hash value from 𝑆 as in the

above algorithm for estimating distinct elements. For any 𝑝 let 𝑌 ≤𝑝

be the number of elements from𝑇 with hash value at most 𝑝 . Then

|MIN𝑘 (𝑇 ) ∩ MIN𝑘 (𝑆) | = |𝑇 ∩ MIN𝑘 (𝑆) | = 𝑌 ≤ℎ (𝑘 )
which is our

estimator for 𝑓 𝑘 .

Theorem 5.1. For 𝜀 ≤ 1, if ℎ is strongly concentrated with added
error probability E, then

Pr

[
|𝑌 ≤ℎ (𝑘 ) − 𝑓 𝑘 | > 𝜀 𝑓 𝑘

]
= 2 exp(−Ω(𝑓 𝑘𝜀2)) +𝑂 (E). (9)

Proof. Let 𝑛 = |𝑆 |. We already saw in (8) that for any 𝜀𝑆 ≤ 1,

𝑃𝑆 = Pr

[
|1/ℎ (𝑘) − 𝑛/𝑘 | ≥ 𝜀𝑆𝑛/𝑘

]
≤ 2 exp(−Ω(𝑘𝜀2

𝑆
))+𝑂 (E) . Thus,

with 𝑝− = 𝑘/((1 + 𝜀𝑆 )𝑛) and 𝑝+ = 𝑘/((1 − 𝜀𝑆 )𝑛), we have ℎ (𝑘) ∈
[𝑝−, 𝑝+] with probability 1−𝑃𝑆 , and in that case,𝑌 ≤𝑝− ≤ 𝑌 ≤ℎ (𝑘 ) ≤
𝑌 ≤𝑝+

.

Let 𝜇− = E
[
𝑌 ≤𝑝− ] = 𝑓 𝑘/(1 + 𝜀𝑆 ) ≥ 𝑓 𝑘/2. By strong concentra-

tion, for any 𝜀𝑇 ≤ 1, we get that

𝑃−𝑇 = Pr

[
𝑌 ≤𝑝− ≤ (1 − 𝜀𝑇 )𝜇−

]
≤ 2 exp(−Ω(𝜇−𝜀2𝑇 )) + E
= 2 exp(−Ω(𝑓 𝑘𝜀2𝑇 )) + E .

Thus

Pr

[
𝑌 ≤ℎ (𝑘 ) ≤ 1 − 𝜀𝑇

1 + 𝜀𝑆
𝑓 𝑘

]
≤ 𝑃−𝑇 + 𝑃𝑆 .

Likewise, with 𝜇+ = E
[
𝑌 ≤𝑝+ ] = 𝑓 𝑘/(1 − 𝜀𝑆 ), for any 𝜀𝑇 , we get

𝑃+𝑇 = Pr

[
𝑌 ≤𝑝+ ≥ (1 + 𝜀𝑇 )𝜇+

]
≤ 2 exp(−Ω(𝜇+𝜀2𝑇 )) + E
= 2 exp(−Ω(𝑓 𝑘𝜀2𝑇 )) + E .

and

Pr

[
𝑌 ≤ℎ (𝑘 ) ≥ 1 + 𝜀𝑇

1 − 𝜀𝑆
𝑓 𝑘

]
≤ 𝑃+𝑇 + 𝑃𝑆 .

To prove the theorem for 𝜀 ≤ 1, we set 𝜀𝑆 = 𝜀𝑇 = 𝜀/3. Then
1+𝜀𝑇
1−𝜀𝑆 ≤ 1 + 𝜀 and

1−𝜀𝑇
1+𝜀𝑆 ≥ 1 − 𝜀. Therefore,

Pr

[
|𝑌 ≤ℎ (𝑘 ) − 𝑓 𝑘 | ≥ 𝜀 𝑓 𝑘

]
≤ 𝑃−𝑇 + 𝑃+𝑇 + 2𝑃𝑆

≤ 8 exp(−Ω(𝑓 𝑘𝜀2𝑇 )) +𝑂 (E)
= 2 exp(−Ω(𝑓 𝑘𝜀2𝑇 )) +𝑂 (E) .

This completes the proof of (9). □

As for the problem of counting distinct elements in a stream,

in the online setting we may again modify the algorithm above to

obtain a more efficient sketch. Assuming that the elements from 𝑆

arrive in a stream, we again identify the smallest 𝑏 such that the

number of keys from 𝑆 hashing below 1/2𝑏 , 𝑋 ≤1/2𝑏
, is at most 𝑘 .

We increment 𝑏 by one whenever 𝑋 ≤1/2𝑏 > 𝑘 and in the end we

return 𝑌 ≤1/2𝑏 /𝑋 ≤1/2𝑏
as an estimator for 𝑓 . The analysis of this

modified algorithm is similar to the analysis provided above.

Remark. The case of set similarity illustrates the crucial impor-

tance of using a common hash functionℎ as a source of randomness.

In a distributed setting, different entities may generate the samples

MIN𝑘 (𝐴) and MIN𝑘 (𝐵). As long as they agree on ℎ, they only need
to communicate the samples to estimate the Jaccard similarity of

𝐴 and 𝐵. As noted before, for Tabulation-1Permutation ℎ can be

shared by exchanging a random seed of 𝑂 ((log𝑢)2) bits.

Remark. In the above, we have specifically analysed an estimator

for the frequency 𝑓 = |𝑇 |/|𝑆 |. On a high level, the analysis used

strong concentration to (1) bound the sample threshold 𝑝 = ℎ (𝑘)
and (2) bound the number of keys from𝑇 hashing below 𝑝 . A union

bound then led to the final result. This argument is very robust:

Letting the sample 𝑋 = MIN𝑘 (𝑆), we could equally well use the

estimate |𝑆 ∩𝑋 |/𝑝 for |𝑆 |, |𝑇 ∩𝑋 |/𝑝 for |𝑇 |, and |𝑆 ∩𝑋 |/|𝑇 ∩𝑋 | for
|𝑆 |/|𝑇 | an obtain analogue bounds with a similar analysis. In fact,

the estimator |𝑆 ∩𝑋 |/𝑝 = 𝑘/ℎ (𝑘) for |𝑆 | is exactly the estimator for

the number of distinct elements that we encountered in Section 4.1.
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Table 1: Overview of our experiments. All experiments are designed to compare the tabulation-based hash functions with
various other hashing schemes when estimating cardinality. The type of the experiment indicates whether the other hashing
schemes use a single sketch, or 5 independent repetitions and the median trick. The tabulation-based hash functions always
use a single sketch. When using the median trick, the size of each sketch is reduced by a factor of 5, so the total space usage is
always the same.

Dataset Algorithm Measurement Cardinality Sketch-size Experiments Type Plots

Synthetic Bottom-𝑘

Error

10
6

24,500 2 × 10
3

Single Rep. 3a

5 × 10
5

24,500 5 × 10
4

Single Rep. 3b, 3c

5 × 10
5

24,500 3 × 10
4

Median-Trick 5a

Time

5 × 10
7

3500 10 Single Rep. 4a

5 × 10
7

3500 10 Median-Trick 4b

Synthetic

Threshold

sampling

Error

5 × 10
6

8 × 10
5

5 × 10
4

Single Rep. 6a, 6b

2.5 × 10
5

1.6 × 10
5

5 × 10
4

Single Rep. 6c

2.5 × 10
5

1.6 × 10
5

3 × 10
4

Median-Trick 5b

Time

10
9

8 × 10
5

10 Single Rep. 7a

5 × 10
6

8 × 10
5

10 Median-Trick 7b

Real-world Geometric Threshold Error 6.5 × 10
5

28,000 3 × 10
4

Both 8a, 8d

Real-world Demographic Threshold Error 12,775 7000 5 × 10
4

Both 8b, 8e

Real-world Atmospheric Threshold Error 20,000 7000 5 × 10
4

Both 8c, 8f

6 EXPERIMENTAL EVALUATION
In this section we experimentally evaluate hash functions with

strong concentration bounds in the context of cardinality esti-

mation. In particular, we use the recently announced Tabulation-

1Permutation [1] and Mixed-Tabulation [16]. Our experiments ad-

dress the following questions:

• Is it possible, in practice, to avoid independent repetitions

by using hash functions with strong concentration bounds

and still get reliable results?

• What are the implications on the running time of car-

dinality estimation algorithms, when using Tabulation-

1Permutation?

In our experiments, we restrict the space usage of our algorithms

to some parameter 𝑘 . When using the fast Multiply-Mod-Prime

and Multiply-Shift hash functions, we report both the results of

performing a single repetition per experiment with a sample of

size 𝑘 , and the results of performing 𝑟 independent repetitions

per experiment each with a sample of size 𝑘/𝑟 and outputting the

median of the 𝑟 estimations
4
. For all experiments with repetitions

we choose
5 𝑟 = 5.

We expect the first type of experiment to have about 𝑟 times

better running time, and the second type of experiment to produce

more reliable results. On the other hand, when using Tabulation-

1Permutation we only perform 1 repetition per experiment, ef-

fectively demonstrating that the estimation is still reliable even

without the independent repetitions.

4
In practical applications (e.g., streaming) it is rarely possible to “reuse” the space 𝑘

which explains why we allocate space 𝑘/𝑟 for each repetition.

5
This was sufficient to remove the outliers with these schemes and we would not

expect more repetitions to improve the estimators, just slow down the running time.

A brief synopsis of our experiments is presented in Table 1.

In what follows, we first discuss our experimental setup and the

implementation details. Second, we present our results for synthetic

data and the bottom-𝑘 algorithm discussed in previous sections.

Third, we present similar results for synthetic data and a standard

threshold-sampling cardinality estimation algorithm. Finally, we

present our results on real-world datasets.

6.1 Experimental Setup
6.1.1 Hardware. Weperformed our experiments on two computers.

The first has an Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz, 16

GB RAM, and is running on 64bit Windows 10. The second has

an Intel(R) Core(TM) i5-8350U CPU @ 1.7 GHz, 8 GB RAM, and is

running on 64bit Ubuntu 18.04.4 LTS.

6.1.2 Datasets. We use both synthetic and real-world datasets. No-

tice that theoretically we guarantee that, when using hash functions

with strong concentration bounds, the probability of a big error

is negligible (“big” is quantified in relation to the sample size). In

order to test such a claim, one needs to run many experiments and

show that the result is always reliable. Therefore, the quality of the

results is tested against small datasets, so that we can repeat the

same experiment sufficiently many times.

Our synthetic datasets for testing accuracy are simply consecu-

tive integers. Their cardinalities range between 2.5×105 and 5×106.
The synthetic datasets for testing running times have cardinalities

ranging between 5 × 10
6
and 10

9
. There are good reasons for not

running the accuracy and time experiments on the same data sets.

First, we can afford to run the timing experiments on larger data

sets as we do not need that many experiments to test the speed.

Second, the data for which the strongly universal hash functions

give big outliers is consecutive integers, and it is likely that on such
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data we would not get an accurate evaluation of their speed. This

issue is removed by using random data, but on random data there

will be no big outliers.

Concerning our real-world datasets, we have:

• geometric datasets; we are using the Openadresses dataset,

which is a public database connecting the geographical

coordinates with their postal addresses
6
. The cardinality of

this dataset is about 6.5 × 10
5
.

• datasets with demographic characteristics of people
7
, ex-

tracted from the census bureau database
8
. Its cardinality is

12,775.

• high entropy datasets extracted from atmospheric noise

measurements
9
, with cardinality 20,000.

6.1.3 Algorithms. We use two different algorithms for cardinality

estimation. First, we have the bottom-𝑘 algorithm [4] discussed

in previous sections; in this case, we expect that the 𝑘-th smallest

hash value is approximately
𝑘
𝑛 . The second algorithm, threshold-

sampling, can be seen as the dual approach; that is, we keep all

elements with hash values at most 𝑝 = 𝑘
𝑛 , expecting the number of

such elements to be𝑘 . In our experiments we use the proper value of

𝑝 which depends on 𝑛, but generally we do not know 𝑛 in advance.

6.1.4 Hash-Functions. For each algorithm, we test it using some

of the most popular and fast hash functions employed in practice.

Their output is always 64-bit unsigned integers. In particular, we

use Tabulation-1Permutation [1], Mixed-Tabulation [16], Multiply-

Mod-Prime [7], Multiply-Shift [10], and MurmurHash3 [2]. We

use Multiply-Mod-Prime and Multiply-Shift as they are very fast

strongly universal hash functions. MurmurHash3 is also used as

it is known to perform well in practice, even though it does not

provide theoretical guarantees (e.g. in [5] the authors show how to

break MurmurHash3).

We did not experiment with random polynomials of degree 100,

or the cryptographic hash function BLAKE3 because they proved

to be more than 60 and 155 times slower than any other method,

respectively.

6.1.5 Number of experiments. We demonstrate the need for prov-
ably reliable hash functions by performing a different number of

experiments per dataset. When performing more than 10
4
exper-

iments, the reliability of Tabulation-1Permutation becomes clear,

while with fewer experiments it is possible to erroneously consider

other hash functions reliable as well.

6.1.6 Randomness. The random seed needed for all hash functions

was drawn from https://www.random.org/. For tabulation based

methods, the seed was filled using a random degree 100 polynomial.

6.1.7 Implementation. We have used C++ 11 for implementation.

6.1.8 Evaluation Metrics. As the measure of estimation accuracy,

we report the relative error. The relative error of an estimate 𝑛̂

of a quantity 𝑛 is defined as
𝑛−𝑛̂
𝑛 . We also report the 6th central

moment of the relative errors of different experiments, as a measure

6
https://openaddresses.io, Last accessed 16/9/2022

7
https://archive.ics.uci.edu/ml/datasets/Census+Income, Last accessed 16/9/2022

8
https://www.census.gov/data.html, Last accessed 16/9/2022

9
https://www.random.org/, Last accessed 16/9/2022

of dispersion that is more sensitive to big errors, compared to the

variance (2nd central moment). For measuring running time, we

report the average time per experiment.

6.2 The Bottom-𝑘 Algorithm on Synthetic Data
In this subsection, we present our results on applying the bottom-𝑘

algorithm to synthetic data. These experiments are of two different

kinds. The first uses one repetition per experiment for all hash

functions, and the second uses the median trick with Multiply-Shift

and Multiply-Mod-Prime.

6.2.1 One Repetition Per Experiment. We ran experiments on im-

plementations of the Bottom-𝑘 algorithm, only using a single sketch

for each hash function. The experiments are listed as rows 1, 2, and

4 of Table 1. All experiments had 𝑘 = 24,500. The datasets used are

structured datasets containing consecutive integers.

Testing for accuracy, for the dataset with cardinality 10
6
(row

1 of Table 1) all experiments were within a 3% relative error (Fig-

ure 3a). In fact, Multiply-Mod-Prime and Multiply-Shift gave the

best estimates, with the 6th central moment of the relative errors of

their respective experiments being considerably smaller compared

to the other hash functions. It is to be expected that not too many

outliers were observed since 2× 10
3
experiments per hash function

is not sufficient to detect the outliers. On the other hand, for the

dataset with cardinality 5 × 10
5
(row 2 of Table 1) both Multiply-

Mod-Prime and Multiply-Shift have some experiments with huge

errors (about 45% and 55%, respectively). See Figure 3b.

Testing running times, we tested on a dataset of cardinal-

ity 5 × 10
7
(row 4 of Table 1) with 𝑘 = 3500 (Figure 4a).

Tabulation-1Permutation (11.2ms on average) and Multiply-Shift

(11.5ms) had very similar running times, with Mixed-Tabulation

(19.4ms) and Multiply-Mod-Prime (20.1ms) being slower, and

MurmurHash3(32.5ms) being significantly slower.

6.2.2 Applying the Median Trick. We performed experiments

where independent repetitions and the median trick were used

for the instantiations with Multiply-Shift, Multiply-Mod-Prime,

and MurmurHash3, while the implementation with the Tabulation-

based methods still used just a single sketch.

For accuracy, we performed 3 × 10
4
experiments on a dataset of

cardinality 5 × 10
5
(row 3 of Table 1). The results are shown in Fig-

ure 5a. We see that the estimates, when using Tabulation methods

are generally more concentrated around the actual cardinality.

For speed, we ran the algorithms on datasets of cardinality 5×107
with 𝑘 = 3500 (row 5 of Table 1). As seen in Figure 4b, we obtain

a significant improvement of Tabulation-1Permutation (11ms on

average) and Mixed-Tabulation (22ms) over Multiply-Mod-Prime

(109ms), Multiply-Shift (48ms) and Murmurhash3 (182ms), whose

proportionate running times remain largely unchanged.

6.3 Threshold-Sampling on Synthetic data
In this subsection, we present our experiments on the threshold-

sampling algorithm when using synthetic data. We first consider

an implementation with one repetition per experiment for all hash

functions. Secondly, we consider using the median trick with the

non-Tabulation-based hash functions.
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(a) Cardinality: 106

Experiments per hash-function: 2 × 10
3

(b) Cardinality: 5 × 10
5

Experiments per hash-function: 5 × 10
4

(c) Cardinality: 5 × 10
5

Experiments per hash-function: 5 × 10
4

Figure 3: Relative error of the single-repetition experiments using the bottom-𝑘 algorithm (𝑘 = 24,500). Each dot represents
an experiment, and the 𝑥-coordinate is the relative error. The more opaque the dots are, the more experiments had the
corresponding relative error. The vertical blue lines limit the results of the Tabulation methods. On the 𝑦-axis we also report
the 6th central moment of the relative errors for each hash function.

(a) Single-repetition experiments with structured synthetic
datasets (consecutive integers). Cardinality = 5 × 10

7, 𝑘 = 3500. (b) Experiments on random synthetic datasets. With Multiply-
Mod-Prime and Multiply-Shift, (𝑟, 𝑘) = (5, 700) . With Tabulation-
1Permutation, (𝑟, 𝑘) = (1, 3500) . Cardinality = 5 × 10

7

Figure 4: Timing of bottom-𝑘 experiments (synthetic data).

(a) Bottom-𝑘 : Cardinality = 5 × 10
5

For Multiply-Mod-Prime and Multiply-Shift we have (𝑟, 𝑘) =

(5, 4900) . For Tabulation-1Permutation (𝑟, 𝑘) = (1, 24,500) .

(b) Threshold-sampling: Cardinality = 2.5 × 10
5

For Multiply-Mod-Prime and Multiply-Shift we have (𝑟, 𝑝) =

(5, 0.128) . For Tabulation-1Permutation (𝑟, 𝑝) = (1, 0.64) .

Figure 5: Relative error of 3×10
5 experiments for each hash-function, using the bottom-𝑘 and the threshold-sampling algorithm

on random synthetic data. Multiply-Mod-Prime and Multiply-Shift used 5 repetitions per experiment, whereas the rest ran just
once per experiment with a 5 times larger sketch. The plots should be interpreted as those in Figure 3.

6.3.1 One Repetition Per Experiment. We performed experiments

on implementations of the threshold-sampling algorithm using only

a single sketch for each hash functions. Details of the experiments

are listed as rows 6, 7, and 9 of Table 1.

For accuracy, we performed experiments on a datasets with cardi-

nality 5× 10
6
(row 6 of Table 1). The results are plotted in Figure 6a.

Only Multiply-Mod-Prime and Multiply-Shift gave results with

large outlier errors (larger than 5% and 2%, respectively, compared

to errors significantly less than 1% for the rest of the hash functions).

If we zoom in (Figure 6b, effectively ignoring the outliers) these two

hash functions are far more accurate than all others. This is actually

not at all surprising, as we remark in Section 6.5. Rather it is a direct

consequence of the estimators having the same variance. We also

performed experiments for datasets with cardinality 2.5 × 10
5
(row
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(a) Cardinality: 5 × 10
6

Experiments per hash-function: 5 × 10
4

(b) Cardinality: 5 × 10
6

Experiments per hash-function: 5 × 10
4

(c) Cardinality: 2.5 × 10
5

Experiments per hash-function: 5 × 10
4

Figure 6: Relative error of the single-repetition experiments using the threshold-sampling algorithm, using structured synthetic
datasets (consecutive integers). The plots should be interpreted as those in Figure 3.

7 of Table 1). The results are plotted in (Figure 6c). Here, we see a

similar picture, but the errors are much higher (about 10% relative

error for Multiply-Mod-Prime, and 20% for Multiply-Shift).

Concerning the running time, we run datasets of cardinality

10
9
(row 9 of Table 1). The results can be seen in Figure 7a: from

fastest to slowest we have Multiply-Shift (132ms on average),

Tabulation-1Permutation (187ms), Multiply-Mod-Prime (278ms),

Mixed-Tabulation (314ms), and MurmurHash3 (531ms).

6.3.2 Applying the Median Trick. We performed experiments us-

ing independent repetitions and the median trick with the non-

Tabulation-based hash functions, while the Tabulation-based ones

still used a single sketch.

For accuracy, we performed 3 × 10
4
experiments with a dataset

of cardinality 2.5 × 10
5
(row 8 of Table 1). We used the threshold

𝑝 = 0.128 for Multiply-Mod-Prime and Multiply-Shift and 𝑝 = 0.64

for Tabulation-1Permutation. The results are shown in Figure 5b.

Note that the threshold 𝑝 when performing 5 repetitions is 5 times

smaller. This ensures that the elements of each of the 5 independent

sketches only use a fifth of the total allowed space 𝑘 . We observe

that the estimates are better concentrated with tabulation methods.

Testing for speed, we ran experiments on datasets of cardinality

5 × 10
6
(row 10 of Table 1). Here, Tabulation-1Permutation (1.9ms

on average) and Mixed-Tabulation (2.5ms) are significantly faster

than Multiply-Shift (3.5ms), Multiply-Mod-Prime (6.8ms), and Mur-

murHash3 (9.6ms). The results can be seen in Figure 7b.

6.4 Experiments on Real-World Data
In this subsection, we present our experiments with real-world

data. The experiments are listed as rows 11 through 16 of Table 1.

We performed experiments using both the bottom-𝑘 sampling and

threshold sampling. As we have already seen several estimates of

the running times (and they are predictable from experiment to

experiment since the different hash functions use the same compu-

tations regardless of the keys), we here focus on accuracy.

6.4.1 One Repetition Per Experiment. In the setting with a single

sketch for all the hash functions, the results were as follows.

For accuracy, when running on both the geometric dataset

and the demographic dataset, Tabulation-1Permutation, Mixed-

Tabulation and MurmurHash3 were giving similar results, without

any large outliers. On the other hand, Multiply-Mod-Prime and

Multiply-Shift did have outliers similar to what we saw for the

synthetic data sets. See Figure 8a and Figure 8b, respectively. In

particular, for the demographics dataset some of these deviations

were as big as 10% for both Multiply-Mod-Prime and Multiply-Shift.

On the other hand, when we experiment on the atmospheric

dataset (Figure 8c), which has high entropy, the results are different.

For this data all the estimators behave similarly and there are no

large outliers. E.g., we see that (without repetitions) the 6th cen-

tral moments are almost equal. As noted, this is not unexpected

assuming the atmospheric data is indeed almost fully random.

6.4.2 Applying the Median Trick. When using the median trick

for the estimator of the non-Tabulation based methods, (while still

using a single repetition for the Tabulation based methods), we

see that the big outliers with Multiply-Mod-Prime and Multiply-

Shift disappeared. However, neither of these hash functions nor

MurmurHash3 give as reliable estimates as the Tabulation methods

with a single repetition. See Figure 8d, 8e and 8f for the results.

6.5 Remark on Concentration
An interesting observation related to the errors when running only

a single sketch for all hash functions is the following: If we only

focus our attention on the successful experiments, i.e., the outcomes

with relative error less than 𝜀, then on some data sets, Multiply-Mod-

Prime and Multiply-Shift appear more accurate than Tabulation-

1Permutation (see for instance Figure 3a and Figure 3c). Running

only a few experiments, this could lead to the false impression that

these hash functions are always better than hash functions like

Tabulation-1Permutations. However, the variance of the estimators

are the same for all the seeded hash functions. This means that if we

obtain these ’to good to be true’ estimates most of the time, we must

inevitably have some cases where the estimates are far off. This

is precisely the behaviour that we see with Multiply-Mod-Prime

and Multiply-Shift. On the other hand, as seen in Figure 3a and

Figure 3c, the Tabulation-based hash functions provide estimates

that reliably lie within an acceptable error margin, not extremely

close to the precise cardinality, yet with no wild outliers.

7 CONCLUSION
In this paper we showed that the use of hash functions with strong

concentration bounds, like Tabulation-1Permutation and Mixed-

Tabulation, can speed up sampling based algorithms by avoiding

time consuming independent repetitions, and still provide accurate

statistical estimates with high probability. Our results are backed
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(a) Single repetition experiments on structured synthetic data
(consecutive integers). Cardinality = 10

9, 𝑝 = 8 × 10
−4. (b) Experiments on random synthetic datasets. With Multiply-

Mod-Prime and Multiply-Shift, (𝑟, 𝑝) = (5, 0.032) . With
Tabulation-1Permutation (𝑟, 𝑝) = (1, 0.16) . Cardinality=5 × 10

6.

Figure 7: Timing of threshold-sampling experiments (synthetic data).

(a) Accuracy on geometric dataset (single
experiment).
Cardinality: 6.5 × 10

5

Experiments: 3 × 10
4

(b) Accuracy on demographics dataset (sin-
gle sketch).
Cardinality: 12,775
Experiments: 5 × 10

4

(c) Accuracy on atmospheric dataset (single
experiment).
Cardinality: 20,000
Experiments: 5 × 10

4

(d) Accuracy on geometric dataset (median
trick).
Cardinality: 6.5 × 10

5

Experiments: 3 × 10
4

(e) Accuracy on demographics dataset (me-
dian trick).
Cardinality: 12,775
Experiments: 5 × 10

4

(f) Accuracy on atmospheric dataset (median
trick).
Cardinality: 20,000
Experiments: 5 × 10

4

Figure 8: Accuracy experiments on the real-world datasets. We used threshold sampling for the geometric and atmospheric
data sets and bottom-𝑘 sampling for the demographic data set. The plots are interpreted as Figure 3.

up by experiments showing that it is faster and more reliable to

sample with these hashing schemes compared to using classic 2-

independent hash functions like Multiply-Shift and Multiply-Mod-

Prime and independent repetitions. It is also significantly faster than

using commonly used hash functions like MurmurHash3, which

provided reliable estimates in our experiments (even without in-

dependent repetitions) but have no similar theoretical guarantees.

We further saw that without independent repetitions, the simple

2-independent hash functions failed to provide reliable sampling on

several real world data sets. These bad real-word instances motivate

an interesting direction for future work, namely to explore whether

there are other applications of hashing in industrial databases that

are not as reliable as they should be because they employ too weak

hash functions. As no amount of experimenting can prove that a

hashing scheme works well for all possible input, they also suggest

the importance of a continued theoretical study to find fast hash

functions that are powerful enough for important applications.
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