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ABSTRACT

Traditional cost-based optimizers are efficient and stable to gener-
ate optimal plans for simple SQL queries, but they may not generate
high-quality plans for complicated queries. Thus learning-based
optimizers have been proposed recently that can learn high-quality
plans based on past experiences. However, learning-based optimiz-
ers cannot work well for dynamic workloads that have different
distributions with training examples.

In this paper, we propose a hybrid optimizer that adopts the
advantages and avoids the shortcomings of these two types of
optimizers, which first generates high-quality candidate plans from
each type of optimizers and then selects the best plan from the
candidates. There are two challenges. (1) How to generate high-
quality candidates? We propose a hint-based candidate generation
method that leverages the learning-based method to generate highly
beneficial hints and then uses a cost-based method to supplement
the hints to generate complete plans as candidates. (2) How to
evaluate different candidate plans and select the best one? We
propose an uncertainty-based optimal plan selection model, which
predicts the execution time and the uncertainty for each plan. The
uncertainty reflects the confidence of the execution time prediction.
We select the plan using the uncertainty model. Experiment results
on real datasets showed that our method outperformed the state-
of-the-art baselines, and reduced the total latency by 25% and the
tail latency by 65% compared to PostgreSQL.
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1 INTRODUCTION

Query optimization is a fundamental problem that has been widely
studied for many years in DBMS [2, 34, 37, 43]. Besides traditional
cost-based optimizers, learning-based optimizers have been pro-
posed recently. These two types of optimizers have their limitations
and advantages. To alleviate their limitations, we propose a hybrid
optimizer that takes the essence and discards the dregs.
Cost-based Optimizer. The advantage of cost-based optimizers
is efficient and stable to generate a good plan based on a cost
estimation model. However, they may select sub-optimal plans for
complicated queries with multiple joins, because the cost may not
well capture the plan quality (especially due to accumulate cost
errors for multiple joins).

Learning-based Optimizer. Learning-based optimizers have been
proposed recently [21, 29-31, 42, 44, 48-50, 53], which utilize ma-
chine learning techniques to learn high-quality plans from past
experiences. For example, DQ [21], ReJoin [30] and RTOS [50] use
reinforcement learning to select a good join order. Neo [31] uses
Tree-CNN to achieve an end-to-end learning-based optimizer. The
advantage of learning-based optimizers is that they can optimize
complicated queries by learning from training examples. They work
well for static workloads (i.e., the testing workloads have similar
distributions with training workloads), but they cannot support
dynamic workloads well where the testing workloads are out of
distributions with the training workloads.

Adaptive Hybrid Optimizer. To address the limitations of the two
types of optimizers, it is challenging to design a hybrid optimizer
that adopts their advantages and avoids their shortcomings. An
intuitive solution is to obtain an optimized plan for each type of
optimizers and compare them to get a better one. However, this
straightforward method still cannot address the adaptability prob-
lem of learning-based optimizers (i.e., cannot get good plans for
dynamic workloads). To address this problem, we propose to lever-
age the hint functionality provided by the DBMS optimizer to adap-
tively generate plans. First, we use the learning-based optimizers to
generate a leading prefix of a plan as a hint, based on which we use
the hint functionality provided by optimizers to generate a complete
plan as a candidate. Finally, we compare the candidates with those
generated by the cost-based optimizers and select the better one.
Note that the hints usually have better quality than complete plans,
because learned optimizers are usually error-prone for complicated
queries (multiple joins) when training data is not enough or not
similar to query workloads. Thus, we combine the two types of
optimizers to get an efficient, stable, adaptive optimizer.
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Figure 1: Cost-based vs Learning-based vs Hybrid Optimizers.

Motivating Example. As shown in Figure 1, given a query Q,
the cost-based optimizer generates a plan (with a join order abcd)
with the smallest cost (100), but the real execution time is not
optimal because of the cost estimation error. The learning-based
optimizer selects the plan (with a join order cbda) with the best
estimated performance (50s). However, this plan is also not good,
because this query is not captured in training examples. The plans
generated with multiple joins are error-prone if the query is out-
of-distribution. Fortunately, we observe that those well-performed
plans share similar prefixes of join orders. Prefixes are very impor-
tant in common left-deep plans. Hence, it is possible to generate
plans by recommending good prefixes. For example, we use the
learned model to find a good prefix cb rather than a complete join
order and feed it to the cost-based optimizer to supplement the
subsequent plan, and the plan cbda is obtained. ¢b is a good prefix
for a learned model, cbda(90s) and cbad(120s) are better plans than
abdc(140s) because of the inaccurate estimation of join ab by the
cost model. The predicted execution time of cbad (80s) is smaller
than the cost-based optimizer’s plan abcd (150s), and its cost (120)
is also smaller than the complete join order cbda (300) produced by
the learning-based optimizer. The execution time of the plan cbad
is the smallest (90s). Hence, we propose to discover good candidate
plans by utilizing leadings (prefixes of plans) as hints and select the
best plan from different candidates.

Challenges. There are two main challenges in designing a hybrid
optimizer. The first is how to generate high-quality candidate plans
using hints. We propose a method by computing the benefits of
hints. Considering the large space of possible hints, we model them
as a tree and use the Monte-Carlo Tree Search (MCTS) to efficiently
explore good hints. For each hint on the tree, we compute a benefit
score, and the hints with high benefit scores are potentially expected
to generate good candidate plans. The second is how to evaluate
different candidate plans and select the best one. We propose an
uncertainty-based optimal plan selection model, which predicts the
execution time of each candidate plan as well as an uncertainty
that measures the confidence of this plan, and selects the plan by
considering the both factors.

Contributions. We summarize our contributions as below.

(1) We propose an adaptive hybrid optimizer that combines the cost-
based and learning-based optimizer through the hint functionality.
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(2) We design a hint-based candidate plans generation approach,
which uses the MCTS to accelerate the generation process, while
still producing high-quality plans.

(3) We design an uncertainty-based optimal plan selection approach,
which considers the uncertainty of the learning-based plans to avoid
wrong selection of plans due to inaccurate estimates of the learned
method (e.g. out-of-distribution queries). This method can select the
optimal plan from the candidates produced by the learning-based
and cost-based optimizer.

(4) Experiment results on real datasets showed that our system out-
performed the state-of-the-art baselines, reduced the total latency
by 25% and the tail latency by 65% compared to PostgreSQL.

2 THE FRAMEWORK OF HYBRIDQO

In this section, we first introduce some preliminaries and then
propose the overall framework of our system HybridQoO.

2.1 Preliminaries

Leading Hint is a partial prefix plan (a.k.a. leading) of a complete
plan, which is a type of hint that is supported in many database
systems (e.g., PostgreSQL, MySQL, Oracle, etc.). Formally, given
an SQL query Q, we use plQ to denote a leading hint with length .
When [ = |Q| (the query length), it represents a complete join order.
Given a query, DBAs can specify a leading hint (e.g., a sequence
of joined tables for this query) and the optimizer will extend the
leading hint to generate a complete plan.

Example 1: Consider the query Q as shown in Figure 1, which
contains 4 tables {a,b,c,d} with the join relationa>< b < c>ad. Ifa
DBA wants to specify that tables c and b are joined first. She can
provide a leading hint of length 2 to the optimizer, i.e., pZQ = (¢, b).
In PostgreSQL, by providing “/*+ leading(c b) */ SELECT .., the
optimizer will generate an execution plan with ¢ and b joining
first, where “leading(c b)” is the hint syntax in PostgreSQL. Other
database systems also support this functionality. O

Remark. In this paper, given the leading hint (sequence pé) of tables),
we just consider the left-deep join, which is a structure frequently
used in existing database optimizer (e.g., MySQL, PostgreSQL).
Leading Hint Tree. Given a query Q, the number of possible
leading hints can be very large, which can be naturally organized as
a tree. To discover appropriate hints efficiently, we build the leading
hint tree, denoted by Tp to accelerate the leading hint search. In
this part, we describe the learning tree structure, and introduce
how to adaptively construct it and search on it later in Section 3.1.
A leading hint tree T is a tree of height |Q|, where each node
of Tp is a table in Q. Ty begins with a root node r without any
hint applied to the query, and the children of the root are all tables
in Q. For each node v, its children are all the tables that can be
joined with v, except the ones that have been joined with it, i.e.,
the ancestors of v. Hence, each node v corresponds to a leading
hint, that is, the path from r to v with length |Q|. Each leaf node
corresponds to a complete join order. It is expensive to construct a
full leading hint tree, we will discuss it later in Section 3.1.
Example 2: As shown in Figure 2, given the query Q with the
join schema a >« b >« ¢ > d, a leading hint tree of height 4 can be
constructed. Since there are 4 tables, the second level contains the
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Figure 2: System Framework of HybridQO.

nodes (tables) a, b, ¢ and d. Since b can be joined with a and c, a
and c are the children of b. For the purple node c, it corresponds to
a leading hint (b, ¢). For the red leaf node d, it corresponds to the
leading hint (b, c, a, d), which is also a complete join order. m]

2.2 HybridQO Framework

2.2.1 Overview of HybridQ0. Our basic idea is to combine the
learning-based optimizer and the cost-based optimizer to select
a good plan. To this end, we first select some good leading hints
from the leading hint tree. As it is expensive to fully traverse the
leading hint tree, we propose a learning-based leading hint selec-
tion method i.e., MCTS, to select leading hints. Then, we use the
hint functionality in DBMS to generate complete plans as candidate
plans. Next, we leverage a learning-based uncertainty model to se-
lect the best plan from candidate plans. Finally, we run the selected
plan to answer the query and use this plan (and its running time)
as a training example to update the two learning models. As shown
in Figure 2, the entire framework consists of three key modules.
[1. Candidate plans generation.] As we know, a well-performed plan
depends on a good join order, and we observe that good join orders
usually share similar prefixes. Thus we build a leading hint tree for
a given query. Then we first select leading hints from the leading
hint tree by MCTS which is a typical tree search algorithm. We
will discuss how to use MCTS to select leading hints later. For each
selected leading hint, i.e., the left-deep join orders of the prefixes, we
leverage the cost-based optimizer in DBMS to produce a complete
query plan. For each hint, we generate a candidate plan.

[2. Optimal plan selection.] Secondly, we leverage a learning-based
uncertainty model to select the best plan among these candidate
plans, because the estimated cost may not be accurate enough due
to the bias of statistics information. Especially, the model not only
predicts the query performance, but also computes the uncertainty
of the prediction. The uncertainty measures how confident is the
model for the prediction. Therefore, intuitively, we should select
the optimal plan with high performance as well as low uncertainty.

[3. Incremental model training and updating.] After the plan is se-
lected, we execute the query with this plan, and the result (with
execution time) will be used as a training example to improve the

model incrementally. Then the updated model can be utilized to
select the candidate plans and the optimal one.

Challenges. There are two main challenges w.r.t. our HybridQO
framework. (1) Given the large search space of possible join orders
(leading hints), how to efficiently perform on the leading hint tree to
discover potentially well-performed plans. (2) Given the candidate
plans, how to design a model that can simultaneously predict the
accurate performance as well as the uncertainty.

2.2.2  Hint-based Candidate Plans Generation. Given a query Q, we
summarize how to generate well-performed candidate plans using
Tp. Recap that on the tree, each leaf node corresponds to a complete
join order, but it is prohibitively expensive to enumerate all possible
orders and estimate their performance. Hence, MCTS is applied
to discover good orders. To evaluate the performance of a join
order(leaf nodes), as shown in Figure 2, we utilize an RNN-based
join order estimator to predict the performance. The training data
of the model is derived from the extracted complete join order of a
plan that has been executed in DBMS.

With the help of Ty and the join order estimator, we can utilize
the learned-based estimator to obtain some good complete orders.
Afterwards, a straightforward way is to leverage the cost-based
optimizer to supplement the physical operators, producing some
complete query plans and then selecting the best one. However,
there are two limitations. (1) The learned-based estimator is based
on a join order rather than a complete plan, so the estimated per-
formance can just be used to filter out these bad orders, but not
a very precise estimation. (2) These join orders obtained from the
learned-based estimator are error-prone, because, for a complete
order, an error in the middle node will propagate the error. Fortu-
nately, we find that those good join orders usually share similar
prefixes (leadings), and thus to address these limitations, we select
H good leading hints from the tree, based on which H candidate
plans are generated. Obviously, there is a trade-off to select a good
value of H — a larger H provides more plan options, provides high
possibilities to get the optimal plan, but also takes longer plan gen-
eration time; while a smaller H takes shorter plan generate time
but has low possibilities to get the optimal plan. We will discuss
how to select H later.
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Algorithm 1: HybridQO Framework
Input: A query Q to be executed.
Output: An optimal query plan.
Candidate join orders O = MCTS(Q, Tp, JoinOrderEstimator);
Candidate hints H = CandHints(O), H = |H|;
3 P = 0;// set of candidate plans.
for each hinth € H do
p = CostOptimizer(h);
L Add p to P;
for each p € P do
Ty, Up = PlanEsModel(p);
L // estimate the performance and uncertainty of a plan.

[

)

[

® 3

10 p* = OptimalPlanSel({(T, Up)lp € P3);

1 Tp+ = Execute(p®);

12 Update PlanEsModel by (p*, Tp+);

13 Update JoinOrderEstimator by (ExtractOrder(p®), Tp+);
14 return p*;

As the leading hints are shorter than the complete order, the

second limitation can be alleviated. Then we use the cost-based
optimizer to supplement these hints, so as to generate relatively
well-performed candidate plans. Thus the first limitation is also
be addressed when we further conduct more precise performance
estimation on these candidate plans, which will be introduced next.
Advantage. Based on the aforementioned modules, we elaborate
the key advantage of HybridQO. For an incoming query, if its distri-
bution has been captured by the learning-based model from previ-
ous examples, the join order estimator and optimal plan selection
model can work together to generate the optimal plan confidently
(with low uncertainty). However, in practice, it is common that
the query is out-of-distribution. Thus, although the learning-based
model may output some high performance plans, the predictions
are likely to be inaccurate (with high uncertainties). In this case,
we tend to drop these plans and use the ones that are generated
by the cost-based optimizer, which relies on the statistics informa-
tion rather than the training examples. In a nutshell, our proposed
framework can well handle the dynamic online scenario, which
can generate well-performed query plans whatever the newly coming
queries are out-of-distribution or not.
Overall Algorithm. Algorithm 1 shows the overall process of
HybridQO. Given a query Q, HybridQO first leverages the MCTS
and join order estimation model to discover some good orders on
the leading hint tree (Line 1), and then select H hints from these
orders (Line 2). For each hint, we use the cost-based optimizer to
generate a complete query plan as candidates (Line 5-6). Then given
each candidate plan, we use the plan estimation model to estimate
the performance as well as the uncertainty (Line 8), based on which
we select the optimal plan (Line 10). Next, we execute the query
using the plan (Line 11). Afterwards, we use the execution result to
incrementally update the above two models. Note that the steps are
conducted separately with the online plan selection and execution,
which does not influence the query efficiency.
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3 CANDIDATE PLANS GENERATION

In this section, we aim to leverage the cost-based optimizer to
generate H well-performed candidate plans from H hints, and thus
these hints should be also well-performed.

3.1 MCTS in Candidate Plans Generation

In this subsection, we illustrate how to conduct MCTS to efficiently
search good join orders and then generate good hints, so as to gen-
erate well-performed candidate plans. Since the search space of all
possible orders is large, we use MCTS to search on Tp, The moti-
vation of using MCTS is that it follows an exploration-exploitation
strategy, where we will focus more on the directions that have led
to join orders with high estimated performance (i.e., exploitation),
and will also pay attention to the directions that are rarely picked
(i.e., exploration). To achieve this, we first define the node utility
U (v), which takes both exploration and exploitation into account,
so as to guide the tree search.

Node utility U (v) is computed based on the following two factors,
considering the exploitation and exploration respectively.
[1. Node benefit B(v)]: each node v has a benefit score B(v) which
indicates the expected performance of a complete join order passing
through o. Thus, the higher 8(v), the more likely we are to select
the hint corresponding v as a candidate. For a leaf node, 8(v) is
directly computed by the normalized estimated performance of the
join order corresponding to v. We will introduce how to estimate
the performance using the join order estimator in Section 3.2. Then
for a non-leaf node v, suppose that L(v) denotes the set of leaf nodes
that are children of v and have been estimated by the join order
estimator. Then B(v) = |L(1—U)| Yo el(v) B('). Note that if a leaf
node is visited and estimated multiple times, we will also consider
these estimation results in the above benefit computation.
[2. Access frequency F (v) ]: we use F (v) to denote the number of
times that the node v has been visited during the tree search all the
way to the leaf nodes. Focusing on the node with high benefit is
likely to result in the local optimum, so we also attempt to visit the
nodes with low ¥ (v).

Considering the factors above, following the commonly-used
upper confidence bound (UCB) [3] based solution, we define U (v)
as follows by combining the node benefit and access frequency.

In(F
U(v) =B(v) + Y\/% (1)

where oy denotes the father node of v and y is the hyper-parameter
to achieve the trade-off between exploration and exploitation. Con-
sequently, we will iteratively pick the node with the highest util-
ity to expand the search on Tp. Intuitively, we can see that the
UCB-based solution well handle the exploitation-exploration trade-
off, where it not only focuses more on the nodes with large ben-
efit (i.e., B(v)), but also the ones with low access frequency (i.e.,

In(F
%). Next, more concretely, we use an example to show

how to conduct the MCTS based on the definition of node utility.

Monte-Carlo tree search. Figure 3 shows the entire MCTS work-
flow in HybridQO. Note that although we can build the entire Tg
at the beginning, it is not necessary because the size of Tp is large,
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Figure 3: Candidate Plan Generation Framework with MCTS and Learning-based Join Order Prediction.

and we can continuously expand the tree during the search. For
each node v, we show a triple (8(v), ¥ (v), U (v)) on the example.
Initially, we initialize the triple of the root node as (0,0,0), and then
MCTS produces only one path from the root node to the leaf node
in a single search, and repeats it several times. The workflow of
MCTS consists of the following 5 steps.

[Step 1. Node selection] This step iteratively selects the child node
with the largest utility from the root, which repeats until a node has
a child that has not been expanded. As shown in Figure 3, the search
starts from the root. Next, v; is the child of the root with the largest
utility (0.64), and v is selected. Then, since U (v2) > U (v3), vy is
selected. Afterwards, since v has a node a that has not expanded,
the node selection process stops and comes to the next step.

[Step 2. Tree expansion] For the child nodes of v that have not been
expanded yet, we randomly select a child to expand. Since this is a
new node, its children must not have been expanded, and thus we
continue to expand iteratively until a leaf node. For example, v4 is
a not expanded child node of v3, and we create v4. Then we create
v5, which is a leaf node corresponding to a join order (b, ¢, a, d).
[Step 3. Join order estimation] It is used to predict the execution
time of the plan, i.e., corresponding to a join order, where v is the
leaf node. For example,we estimate that fej (v5) = 90s, and B(vs) =
0.7. This benefit value will be utilized to update the utilities of its
ancestors. We will discuss the join order estimator in Section 3.2.
[Step 4. Utility update] Based on the benefits of leaf nodes, we
will update the triples of non-leaf nodes, and thus further MCTS
search can be improved. For example, currently we are at the leaf
node o5 corresponding to the path [v1, va, v4, v5]. Hence, the access
frequency of vy plus one, i.e., ¥ (v2) = 2. At the same time, we
update B(v2) = LZOJ = 0.65, and its utility is updated to U (vz) =
0.72. Iteratively, we can update the triple of v1 to (0.6,3,0.67).
[Step 5. Termination] The above 4 steps iterate and many join orders
as well as the benefits of hints are estimated. With the number of
iterations increasing, the benefit estimation will be more accurate.
However, it is not practical to visit all nodes of Ty because of the
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large size. Hence, we limit the search number by a budget b. Once
the budget is used up, the search terminates.

Top-H candidate hints. After the MCTS process terminates, we
select the top-H nodes with the largest benefit scores (i.e., B) as
the candidate hints. For example, as shown in Figure 3, suppose
that H = 3, and we select hints (b, ¢), (b, a) and (d, ¢) as candidates
with leading length is 2, because hopefully they can lead to good
join orders that can generate well-performed query plans.

3.2 Performance Prediction for Join Orders

In this section, we build a join order estimator to predict the query
performance. In general, it feeds the features of the query and the
join order into an RNN, and outputs the estimated performance.

Query encoding aims to encode the query Q, which considers
the features of join predicates (E{Q) and filter predicates (Eg) of Q.

EJQ is a n X n matrix, where n is the number of

tables. Each element E{Q

are joined in Q) or 0 (the i-th and the j-th table are not joined). E{Q
is a vector of length m, where m is the number of columns in the
database. E]Q [k] denotes the selectivity of the filter predicate in Q
for the k-th column, with a default value of 1. Consequently, we

represent the feature of Q, denoted by Eg, by concatenating E]Q

More concretely,

[4, j] is either 1 (the i-th and the j-th table

(we will flatten this 2-D matrix) and Eg
Example 3: As shown the query Q in Figure 3, since a joins with b
=1and E/ [1,3] = 0. Since Q has

Q

the predicate a.score>60 with a selectivity 0.6, so Eg [1]=06. O
Join order representation. As discussed in Section 2.1, each
join order corresponds to a sequence of n = |Q| tables, denoted
by [#1, ta, ..., tn]. Naturally, we can use Long short-term memory
(LSTM) to capture the sequence characteristics of each join order.
More concretely, we first embed each table as e(t;), which will be

but does not join with ¢, E{g [1,2]



learned automatically from training data. Then we apply LSTM to
encode the join order, which consists of several steps. At i-th step,
the hidden state vector h; represents current state and the mem-
ory cell m; preserves the information over (e(t1), e(t2), ..., e(t;)).
LSTM uses an LSTMUnit to get the state h; and the memory m;
based on the input e(#;) and the previous state representation
(hi—1,mj_1), i.e., (hj,m;) = LSTMUnit(e(t;), hi—1,mij—1), and the
join order representation Eg = hp,.

Performance prediction. Finally, the join order estimator will
output the estimated performance of an order corresponding to
a leaf node . To be specific, B(v) =FC (Concat(Eg, Ep)), which
is computed by concatenating the query encoding and join order
representation, followed by a fully connected layer.

4 OPTIMAL PLAN SELECTION

In this section, we leverage the uncertainty-aware plan performance
predictor to generate the estimated execution time ¢; and the corre-
sponding uncertainty u; for each candidate plan p;. Then we select
the optimal plan from these candidates according to ¢; and u;.

4.1 Feature extraction and encoding

Given a tree structure execution plan p of the query Q, we first
encode each node (operator) of the plan. Then all the nodes are
encoded into a tree according to the structure of the plan. The node
encoding mainly consists of three parts: operator encoding, table
Encoding, and cost model encoding.

Operator encoding E, (v) is a one-hot vector that encodes the
physical operation of a node v in the plan. This physical operator
may be a join operator (e.g., nest loop join, hash join or merge join),
a scan operator (e.g., Seq Scan, Index Scan, Index Only Scan, Bitmap
Index Scan), or an aggregation operator. To be specific, E, (v) [i] = 1
indicates that node v is associated with the i-th physical operator
and other elements in E, (v) are 0. For example, in Fig. 4, for node
Nest(a,b) means that table a and table b are joined by nest loop join
(1-th join operator), so E,(v)[1] = 1.

Table encoding. We use E; (v) to denote the table(s) involved in the
node v. To this end, given a table a, we first use a one-hot vector e(a)
of length n to encode it. For a binary operator (e.g. join operator),
suppose that it involves 2 tables a,b. We concatenate e(a),e(b) to
form a vector of length 2n to represent E;(v). For a unary operator
(e.g., a scan opeartor), suppose that it involves a single table c, so we
concatenate a 0-vector e(0) to form E; (v) of length 2n. For example,
in Fig. 4, the node seq(a) denotes a Sequential Scan operator on
table a, i.e., E;(v) = Concat(e(a), e(0)).

Cost model encoding. The cost and cardinality of the node v in
the plan are denoted by a vector E.(v) = (Cost(v),Card(v)) of
length 2. The cost/cardinality is estimated by the optimizer based
on statistics, which can accelerate the training process.

Node encoding. We concatenate the operator encoding, table en-
coding, cost model encoding of node v in the plan p, and get the
node encoding En (v) = Concat(E,(v), E¢(v), Ec(v)). Then we can
use the encodings of all nodes as the features of the tree. In the
next subsection, based on these features, we will show how to use
Tree-LSTM to compute the plan representation.
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4.2 Tree-LSTM-based Plan Representation

Tree-LSTM [40] is a dynamically constructed neural network that
captures the structural features of the target data. In this section, we
will first introduce the motivation for using Tree-LSTM, and then
describe how to represent the execution plan using Tree-LSTM.

The execution plan p is a tree structure. During the execution
of the plan, the computation of each node v depends on the results
of its child nodes, which is a recursive process. Since the physical
operator of the execution plan involves no more than 2 tables.
The physical operators corresponding to nodes v in plan p consist
of a triple, i.e., the left child I(v), the right child r(v) and node v
itself, i.e., (I(v), r(v),v). For leaf node operations (e.g. scan) a triple
can be made by setting the left and right child to 0. If we use the
traditional LSTM algorithm, we are required to flatten the nodes
in the plan into a sequence directly. We will lose the structure
information of the plan. In contrast, Tree-LSTM can be computed
directly on the tree-structure plan, and the structural information
of each node is naturally extracted. We use a Tree-LSTM Unit[40] to
give a plan representation vector R, for a plan. For each node v in
the tree, it takes as input the information of the left child node I(v),
the right child node r(v), and v itself to obtain a neural network
representation of the subtree corresponding to v. We set hy, my as
the representation of state and memory for the node v respectively.

Then, we perform a depth-first search (DFS) on the tree to
access each node and compute the representation of the tree.
For each node v, we get (h(I(v)), m(1(v))), (h(r(v)), m(r(v))) first.
Then input these representations of children with En(v) into Tree-
LSTM Unit to get the neural network output of v, (h(v), m(v)) =
Tree-LSTMUnit(h(1(v)), m(I(v)), h(r(v)), m(r(v)), EN (v)).

The state of the root node is represented as the plan represen-
tation R, = h(root). As shown in Fig. 4, we perform a DFS on the
tree. The leaf node corresponding to the operator Seq(b) is firstly
computed by Tree-LSTM Unit. Finally, the root node of the plan,
i.e., Nest(c d) will be computed by Tree-LSTM Unit. h(root) is the
final representation of the plan p.

4.3 Multi-head Performance Estimator

Query encoding Eg and the representation Ry, are the input of the
output layer denoted by x = (Eg, Rp), based on which, HybridQo
not only predicts the execution time of query Q under plan p,
but also gives the confidence for this prediction, i.e., the uncer-
tainty [15].

The uncertainty output by the neural network is composed of
Epistemic Uncertainty and Aleatoric Uncertainty [15, 18]. (1) Epis-
temic Uncertainty Ug is caused by the fact that the parameters of the
neural network model are not good enough, such as lacking of the
knowledge of the out-of-distribution data. (2) Aleatoric Uncertainty
Uy is caused by the noise in the training data. For example, the
execution time of the same plan varies because of the cache, or the
same selectivity feature brings different cardinality estimates, etc.
In general, the uncertainty of the model is a combination of two
uncertainties, U = (Ug, Un).

Inspired by previous works [35], we propose multi head perfor-
mance estimator (MHPE), which outputs the execution time of the
plan along with Ug and Uy, respectively.
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Figure 4: Optimal Plan Selection with An Uncertainty Model.

Epistemic Uncertainty. For performance prediction, the output
layer (i.e., fully connected layer) is used to predict the execution
time T (x) of the plan, and we call such an output layer as a head
H,i.e., T(x) = H(x). MHPE includes k heads, which are randomly
initialized and independently select the training data. Each head
H; gives its prediction t;(x) = H;(x) for the plan. For an out-of-
distribution data instance, different H; will give inaccurate estimates
and therefore generate high variance of the estimates. The final
prediction time is the mean of the different heads’ predictions, i.e.,
T(x)=t= Z'HT’(X) and the uncertainty is the variance of the
predictions given the k heads, i.e., Ug = w

Aleatoric Uncertainty. Uy (x) captures the noise (variance) of
the input data x and the true label y of MHPE. We compute Uy (x)
using a separate model with input x. Similar to a head, given an
output layer (e.g., a fully connected layer) for computing aleatoric
uncertainty,Us (x) = FC(x). The value of Ux(x) is inferred from
previous N training data. According to the previous work [33], y;
is the label (running time) of the data (x;), then the loss function is

(yi — T(x;))?
2U4(x;)

i log Ua(x) (2)

1
loss(0) = N 5

i=1

where 6 is the parameter of MHPE. We optimize 6 to minimize the
loss. In real scenarios, mini-batch gradient descent is used, i.e., one
batch is sampled at a time for training, instead of using all.

4.4 Uncertainty-based Optimal Plan Selection

MHPE outputs the execution time and uncertainty (T(p), U(p)) =
fo(Eg, Rp) for each plan p. We need to choose the best plan to give
to the DBMS for the final execution.

Given H learning-based plan p;, i € [1, H] generated by hints
and a cost-based plan p., we need to determine if a condition such
as the workload shift has occurred, making the learning-based plan
unreliable. We first filter out the learning-based plans with high
uncertainty to obtain the remaining H” accurately estimated plans,
each of which is denoted by p;i . Then we selected the optimal plan
p;° = argmin i T(p;i ) from them. Finally, we compare the chosen

pl’o with the cost-based plan p. and choose the plan with the lowest
estimated execution time to the executor for execution. When all
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candidate plans have too high uncertainty, we consider Q as a new
query and choose cost-based plan p. by default.

A natural important problem is how high the uncertainty value
U(p) is high, so as to determine whether the estimation of the
plan p is inaccurate or not. Hence, to measure the uncertainty
explicitly, we introduce Q-error to build a mapping between the
two measurements using previous training examples, and then
use the mapping to keep (drop) low (high) uncertainty queries.
Q-error is to represent the error between the estimated execution
time T(p) and the true execution time Acc(p) of a model for a plan

. T(g),A . .
p, i.eQ-error(p) = % — 1. Obviously, the higher

the Q-error, the higher the uncertainty is, and thus we want to
filter out plans with large Q-error. Since Q-error has the explicit
meaning, e.g.Q-error(p) > 1 means that the real execution time
can be over twice longer than the estimated time. We can use
Q-error as a bridge to filter out uncertain queries.

To be specific, given an uncertainty U (p), we want to predict the
Q-error of p, but p has not been executed. We consider aleatoric
uncertainty and epistemic uncertainty, respectively. We first take
aleatoric uncertainty as an example.

We resort to several plans (say 10 queries) that have been
executed and have similar aleatoric uncertainty with p. We get
their Q-errors and compute the median as the Q-error of p,
denoted by Q-error,,cqian(p). Finally, we filter the plans with
Q-erroreqian(p) greater than a threshold, say 1, to avoid choos-
ing a plan which is predicted inaccurately. Then, we use the epis-
temic uncertainty to filter the plans following the above process.

4.5 Model training and updating

As shown in Figure 2, HybridQO collects all training data with a
memory pool M. For a query g, after a plan p is selected, the DBMS
executes the query g according to the plan p, and the execution
time of the plan p is t(p). The triple D; = (g, p, t(p)) constitutes a
training instance, and all D; are collected in M.

For every 10 executed queries, HybridQO will perform a training
process. For each training process, HybridQ0 samples bs triples
from M to form a batch B. For each training sample in B, the features
are extracted according to the requirements of MHPE and the join
order estimator in MCTS, respectively, and then the two neural
networks are trained. The training process is asynchronous and the



Table 1: Datasets

Workload Database Data Size(GB) Scenario Relations
JoB IMDB 3.6 Static 4-17
JOB-EXT IMDB 3.6 Static 3-11
JOB-D IMDB 3.6 Dynamic 4-17
Stack Stack 100 Static 4-12

Table 2: The original and current scenario settings for differ-
ent methods.

Plans/query Pretrain Incremental learning
HybridQo 1 False Yes
PostgreSQL 1 False No
AlphaJoin Many — 1 True — False No — Yes
RTOS Many — 1 True — False No — Yes
BAO 1 False Yes

model is updated directly after the training is completed to avoid
blocking the online workload.

5 EXPERIMENT

In this section, we conduct experiments mainly answering the fol-
lowing questions: (1) Can HybridQO reduce the total latency of the
query execution on both static and dynamic workloads without pre-
training? (Section 5.2) (2) Do the short leading hints help HybridQ0?
(Section 5.3.1) (3) Whether HybridQO can adaptively select the good
plans for the static and dynamic workload? (Section 5.3.2)

5.1 Experimental Setup

Environment. We built HybridQO in PostgreSQL 12.4, using the
pg_hint_plan [1] plugin to provide the functionality of the leading
hint. The server is a machine with 64 GB of RAM, a 4.00 GHz i9 CPU,
and an NVIDIA 1080ti GPU. The neural networks are implemented
using Pytorch.

Datasets and Workloads. As shown in table 1, our experiment
contains 4 workloads on 2 databases. IMDB is a real-world database
and is short for Internet Movie DataBase. It contains a plethora
of information about movies as well as related facts about actors,
directors, production companies and is 3.6GB. Stack [29] is the
database of 170 different StackExchange websites and is 100GB.
Each workload consists of 20,000 randomly generated queries which
will be sequentially fed into the database. The query is generated
by using the query in the original dataset (e.g., 113 queries in the
JOB) as a template. The four workloads are generated as follows.

e JOB [23]: It’s a static workload. When generating 20,000
queries of this workload, all 113 queries in original JOB are
used as templates. Each time a template is randomly se-
lected, its join relationship is preserved, and the predicates
in it are randomly replaced to generate a new random query.
The replacement of the predicate is to randomly extract the
cell values on the corresponding column from the database
for replacement, to ensure that the generated query can
find the corresponding values. The number of relations in
each query ranges from 4 to 17.
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e JOB-EXT [31]: It’s a static workload. Similar to JOB, we
generated the queries based on the join graph in the original
JOB-EXT workload and generated predicates from randomly
sampled data. The number of relations in each query ranges
from 3 to 11.

e JOB-D:It’s a dynamic workload generated from the origi-
nal JOB [23]. When generating 20,000 queries of dynamic
workload, we need to capture the dynamic changes of the
queries. Thus we generate queries with both new templates
and old templates. We dynamically add templates. First,
we add one template and use this template to generate 200
queries. Then, we add the second template, and use the
first two templates to generate 200 queries. Iteratively, we
can add all 113 templates and generate 20K queries. The
number of relations in each query ranges from 4 to 17.

e Stack [29]: It’s a static workload. This workload contains
queries generated from 25 different templates based on the
Stack database. We extend the workload to 20000 queries.
The number of relations in each query ranges from 4 to 12.

Baselines. The baselines are shown as below:

e PostgreSQL: We use the optimizer of PostgreSQL (version
12.4) itself with default settings.

e AlphaJoin [53]:AlphaJoinis alearned join order selection
method. Similar to HybridQO, it uses MCTS to perform a
search of join order. The difference is that it recommends
the complete join order and directly uses the optimal join
order estimated by the neural network.

e RTOS [50]: RTOS is a DQN-based method that also uses the
Tree-LSTM to encode the query plan, and then directly
predicts a complete join order that is expected to be optimal.

e BAO [29]: BAO uses the physical operator hint to guide the
traditional optimizer generating plan which is similar to
HybridQO. We use its open-source code. We use the recom-
mended parameters, e.g. retrain the neural network every
100 queries with window size set to 2000.

Experimental scenario. The table 2 describes the changes to the
settings for running and training of each algorithm. (1) The training
workload is not prepared in advance to pretrain the neural network,
so it is no longer necessary to consider the training workload and
the future workload to be identically distributed. (2) The optimizer
generates only one plan for execution. The learning-based opti-
mizer can no longer generate multiple plans for the same query for
exploration. (3) Once a plan has been executed, we add the plan
and its execution time to the experience for incremental learning.
This scenario is close to traditional database users’ habits.

Hyper-parameter setting. For AlphaJoin and HybridQO, every
10 queries are executed, the neural network is trained using 128
training data sampled from the previous experience.

For HybridQO, we set the length of the leading hint as 2. The
number of candidate hints is set to 5. The time budget for MCTS is
20ms. We filter out the plans with estimated Q-error larger than 1
considering the uncertainty.

Timeout and latency normalization. To avoid the impact of bad
plans, we set the timeout of queries. Specifically, we set the timeout



Table 3: Total latency (h) of executing 20k queries.

JOB  JOB-EXT JOB-D Stack

HybridQo 6.40 7.35 6.70 6.68
PostgreSQL 8.54 9.33 8.76 7.49
AlphaJoin  12.17 15.04 12.28 12.60

RTOS 8.05 10.92 11.05 9.93
BAO 7.51 8.37 8.17 7.24

to 3 times of the time predicted by the learning-based optimizer. We
also set a global maximum timeout to 120s if 3 times of predicted
time is too large. To facilitate the training of the learning model,
we normalize the execution time of [0s,120s] to the interval [0,1].

5.2 The performance of HybridQO0

In this section, we analyze the performance of different optimizers
on each workload by evaluating the total latency and tail latency.

Total latency. An important consideration is the total latency of
each workload, which indicates the average performance of the
optimizer. Table 3 records the total latency after finishing all 20,000
queries. HybridQO outperforms PostgreSQL, AlphaJoin, BAO and
RTOS on different workloads. HybridQO spends a total of 6.40 hours
on JOB, which is less than PostgreSQL (8.54 hours). Compared to
PostgreSQL, HybridQO saves 8'584_5_5'4 = 25.1% latency. On the hard-
est workload Stack, HybridQO also saves 7"17?;96'6 = 11.9% latency
compared to PostgreSQL.

Figure 5 shows the total latency curves of HybridQo,
PostgreSQL, BAO, RTOS and AlphaJoin when finishing the same
number of queries on different workloads. We can find that
HybridQO can achieve performance close to PostgreSQL at the very
beginning (e.g.first 1000 queries) on all 4 workloads. The reason is
that HybridQO is able to integrate well with traditional cost-based
plans and avoid selecting inaccurately estimated plans.

After executing about 1500 queries on JOB, HybridQO begins to
spend less time than PostgreSQL, indicating that HybridQO starts to
generate better plans than PostgreSQL. On JOB-EXT, this number is
about 2500 queries. However, after executing about 7000 queries on
JOB-D, HybridQO starts to spend less time to finish the same number
of queries, indicating that dynamic scenarios are more difficult to
give good execution plans for the learning-based optimizer. Note
that AlphaJoin, which also uses MCTS, does not converge to a
good model on the workload of 20,000 random queries. It indicates
that our test scenario (no pretrain, one plan for one query) will bring
challenges to the convergence efficiency of a learned optimizer that
generates a complete join order. When completing 20,000 queries,
RTOS performs better than PostgreSQL on JOB, but worse than
PostgreSQL on JOB-D, indicating that dynamic workloads are more
challenging for these optimizer that requires pre-training. BAO is
better than PostgreSQL, RTOS and AlphaJoin on JOB, JOB-D and
JOB-EXT, but worse than HybridQO, indicating that HybridQO can
get better plans and choose fewer bad plans with recommended
join order hints and uncertainty-based plan selection.

Tail latency. The tail performance can reflect the stability of
an optimizer. We choose 50%,75%,99%,99.5% as the reported per-
centiles. Figure 6 shows the performance of HybridQO, PostgreSQL,
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AlphaJoin, RTOS and BAO at different percentile with 20,000 queries
executed on different workloads. We find that HybridQO outper-
forms other methods on JOB, JOB-EXT,JOB-D and Stack at most
percentiles. BAO is the best learning-based optimizer in the base-
lines. On JOB, HybridQ0’s 99.5% latency is 18.72 seconds, saving
% = 65.52% latency compared to PostgreSQL’s 54.29 sec-
onds and saving W = 32.71% latency compared to BAQ’s
27.82 seconds. Thus, HybridQO significantly reduces the tail latency.
As for the 50% latency on JOB, HybridQQO’s latency is 0.216 seconds,
saving % = 25.25% latency compared to PostgreSQL’s
0.289 seconds and saving % = 27.02% latency compared
to BAO’s 0.296 seconds. On Stack, since the database is very large
(100GB), HybridQO outperforms PostgreSQL on 50% and 75% per-
centiles. The latency of HybridQ0 on 99% and 99.5% percentiles
are similar to those of PostgreSQL. HybridQO is better than BAO on
99% and 99.5% latency, because HybridQO chooses good plans and
the uncertainty-based plan selection can filter out some bad plans.

5.3 Evaluation on HybridQO
In this section, we observe the effect of different parts of HybridQoO.

5.3.1 Leading hints v.s. complete join order. We analyze whether
recommending a leading hint of length 2 is more beneficial for a
learning-based optimizer to produce good plans in a short time
compared to recommending a complete join order. We first analyze
the quality of the search space for leading hints of different lengths .
For a given length k, we randomly generate leading hints of length
k on JOB workload. Comparing the execution time of these leading
hint-based plans with the default plans generated by PostgreSQL,
we obtain the relative performance distribution for leading hints
of different lengths. Figure 7(a) shows the relative performance
distribution of leading hints with lengths of 2,3,7,11. We find that
for randomly generated leading hints, there is a 23% probability
that leading hints of length 2 can generate plans that are not worse
than PostgreSQL. In contrast, there is only a 6% probability that a
leading hint of length 11 will produce a plan that is not worse than
PostgreSQL. This shows that short leading hints are less likely to
generate wrong plans and have a better search space.

Then, on the static workload JOB and dynamic workload JOB-D,
we test the impact of different leading lengths (2,3,7,all), and the
results show that HybridQO can perform better than PostgreSQL
on all lengths. We can see from Figure 7(b) and Figure 7(c) that the
shorter the length, the better performance, because the hint with a
short length indicates that our MCTS can search in a small search
space, which is likely to discover good hints with only a small
number of training examples. For example, on JOB (JOB-D), length
2 spends 6.40 hours (6.68 hours), which is better than that of length
7 on both workload types (6.90 hours and 7.54 hours respectively).

5.3.2  Adaptivity of Plan Selection. We examine whether HybridQ0
can adaptively select cost-based and learning-based plans for dy-
namic workloads and static workloads. For every 1000 queries, we
define the chosen rate R. as the rate of queries that choose the
leading hint-based plan finally to 1000 queries(i.e.line “Chosen” in
Figure 8). For those queries, for which HybridQO chooses leading
hint-based plan finally, we define the win rate R,, as the rate of
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and JOB, we find that the R, and R, of JOB-D are both lower, indicat-
ing that dynamic workload is more difficult to learn compared with
the static workload. Note that the dynamic workload continuously
introduces new templates, which makes the learning-based opti-
mizer fail to estimate the execution time accurately, and thus there
is a sudden drop in R,,. We find that R; decreases at the same time,
which indicates that HybridQO is able to sense out-of-distribution

(a) JOB (b) JOB-D

Figure 8: The chosen rate and win rate of leading hint-based
plan on JOB and JOB-D.

queries whose leading hint-based plans outperform the cost-based
plans to them all.(i.e.line “Win” in Figure 8).

As shown in Figure 8, we find that R; and R, are increasing on
both JOB and JOB-D, which indicates that our model becomes more
and more accurate for estimating the execution time of the plans
and helps the plan selection in HybridQO. When comparing JOB-D
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queries and adaptively select cost-based plans.
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Figure 9: The impact of total latency(h) on JOB
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Does the plan selection help HybridQ0? We verify whether the
uncertainty-based plan selection in HybridQO can help HybridQO
avoid selecting plans with incorrect estimated execution time.
HybridQO +NoPS directly selects the plan with the lowest estimated
execution time. Figure 9 compares the performance of HybridQo
+NoPS, HybridQO and PostgreSQL. We can find that HybridQO
+NoPS is worse than PostgreSQL for a long period, and surpasses
PostgreSQL at 17000 queries. This shows that the uncertainty-
based plan selection can help HybridQO filter out some plans with
incorrect estimated execution time to reduce the total latency.

We find that the method of HybridQO +NoPS is similar to
AlphaJoin. A major difference is that AlphaJoin recommends a
complete join order while HybridQO +NoPS recommends a leading
hint of length 2. However, AlphaJoin cannot perform better than
PostgreSQL at 20,000 queries which indicates that short leading
hints make it easier for HybridQO +NoPS to generate good plans.

Does uncertainty respond to estimation error? We analyze
whether uncertainty value can really reflect the estimation error.
Figure 10 shows the relationship between uncertainty and estima-
tion error on the JOB workload. Q-error is used to represent the
estimation error. Dividing the uncertainty intervals with a size of
0.1, we report the Q-error distribution for each uncertainty interval.
As shown in Figure 10(a), we find that the median of Q-error(q)
distribution increases as Ug (q) increases. For more than 75% plans
p with Ug(p) < 0.1, Q-error(p) does not exceed 1. We can ob-
tain similar conclusions for epistemic uncertainty. This shows that
epistemic uncertainty and aleatoric uncertainty can capture the
estimation errors and help HybridQO filter out bad plans in advance.

5.3.3  Model selection . Here, we verify the effectiveness of choos-
ing Tree-LSTM and MCTS as our models.

Compared MCTS with DON. The MCTS is utilized to discover
good hints. For MCTS, we add a DQN-based method as an alterna-
tive. As shown in Figure 5, we have shown that comparing with
RTOS (a DQN-based method), our method has better performance
because the DQN-based method aims at finding a complete join
order that is expected to be optimal, which is error-prone when
there exist a large number of possible join orders. In addition, we
also extract the prefixes of the well-performed complete join orders
(output by the DQN-based method) as the hints, so as to gener-
ate candidate plans in our HybridQO. The experimental results are
shown in Figure 11(b). The DQN-based method perform worse than
MCTS because it is hard to generate good complete orders accu-
rately, and thus the hints extracted from them are also not good.
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Figure 11: Total latency (hour) of executing 20K queries of
JOB when using multi-layer perceptron, linear regression and
DON to replace the HybridQ0’s model.

Table 4: The planning time(s) and total latencyf(s).

PostgreSQL HybridQo
PG Total MCTS PG MHPE Total
350.81 30765.26 | 441.50 384.21 356.43 23056.73

Compared Tree-LSTM with linear regression and multi-layer
perceptron. Given these candidate plans generated based on hints,
the Tree-LSTM is utilized to select an optimal one among these
candidates. We test linear regression (LR) and multi-layer percep-
tron (MLP) as alternatives. We can see from Figure 11(a) that MLP
outperforms LR, because MLP uses the neural network to predict
the performance, which has a more powerful learning ability than
LR. Our Tree-LSTM model achieves a better performance than MLP
because it can capture the tree structure of the query plan, leading
to a more accurate predication.

5.3.4  Planning time. In this section, we discuss the impact of the
extra plan search time brought by HybridQO on the total latency.
Table 4 shows the total running time of each part in HybridQO and
PostgreSQL in finishing 20,000 queries on JOB.

Unlike PostgreSQL, which requires only one plan generation
process, HybridQO’s planning time consists of 3 parts.

e MCTS. The candidate leading hints is generated by MCTS.
For each query, we define a maximum search time of 20ms.
The total search time is 441.50s.

e PG. PostgreSQL generates the corresponding plan based
on the candidate leading hints. The plans are generated in
parallel, and the total wall time is 384.21s.

e MHPE. The execution time and uncertainty of each plan
are estimated by MHPE. The plans are combined into a
batch feeding into the neural network for computation.
The total neural network time is 356.43s.

Compared with 350.81s PostgreSQL, HybridQO uses 441.5 +
384.21 + 356.43 = 1182.14s on planning, which is 3.3 times longer
than the planning time of PostgreSQL. However, compared to the
total latency, the planning time of HybridQO only accounts for 3.84%
of the total latency of PostgreSQL. The planning time of HybridQO
accounts for a small proportion of the total latency for many OLAP
scenarios (such as real workloads JOB and Stack), far less than the
improvement by HybridQ0. MCTS and MPHE can also be further
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Figure 12: Total Latenc (hour) of HybridQ0 when it chooses
different number of candidate leading hint.

optimized to reduce latency by using highly optimized C++ code.
For those short running queries (e.g., some OLTP scenarios), which
do not have much room for improvement. A straightforward solu-
tion is that for such workloads, we just use the cost-based optimizer
in the database for query optimization rather than HybridQo.

5.3.5 Effect of the number of candidate leading hints . As shown
in Figure 12, in terms of the number of candidate hints, the num-
ber 3 performs better than that of 1 (5.9% in JOB, 8.9% in JOB-D).
The number 5 is better than that of 3, but the improvement is not
large (3.5% in JOB, 2.9% in JOB-D). Obviously, more candidates are
likely to improve the recall of good plans, thus improving the query
performance. However, as the number of candidates (> 3) continu-
ously increases, the improvement becomes smaller. As discussed in
Section 5.3.4, more number of candidate hints require more parallel
computing resources for PostgreSQL to generate the plan, so 3-5 is
a suitable range of number of candidate hints.

6 RELATED WORK

Learning based plan generation Learning-based plan generation
methods have shown excellent performance in recent years. They
can be classified into two categories based on whether they support
dynamic workloads. One kind of learning-based methods need to
collect training data and are trained in advance to do well on similar
workload in the future. DQ [21] and ReJoin [30] first use DRL with
a preliminary neural network model to learn the join process on
a given workload. RTOS [50] and Neo [31] further improve the
previous work by using graph neural networks(Tree-LSTM, Tree-
CNN) to effectively model the structural information of plan trees.
DQ, ReJoin, RTOS and NEO all require users to collect training data
in advance and only give predictions on similar workloads, which
poses a great limitation for practical applications. Another kind of
learning-based methods can collect training data directly online
and quickly give good plans [29, 42]. Skinner-DB [42] relies on a
specific in-memory database that supports efficient switching plans.
It uses RL to select the join order during query processing. The most
similar work to ours is BAO [29], which uses the physical operator
hint to guide the traditional optimizer generating plan. It also uses
MAB combined with neural networks to select the final plan. Our
approach uses a leading hint for the join order. The search space of
join order is larger than the search space of the physical operator,
making it more difficult to generate good hints. Finally, HybridQo
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uses an uncertainty-aware performance prediction method to avoid
selecting bad plans.

Learning-based cardinality estimation Learning-based cardi-
nality estimation methods can be classified into two categories:
data-based and query-based [39]. Previous work [39] provides a
specific comparison of data-based and query-based cardinality es-
timators in terms of performance and accuracy. The data-based
cardinality estimator [14, 44, 48, 49] can learn the correlation be-
tween data directly from the data. The data-based approach has
a high accuracy of prediction. However, due to the huge learning
space, it leads to slow training, and the efficiency of model infer-
ence is not high. The query-based approach [19, 28, 32, 38] requires
the user to provide the execution plan corresponding to the future
workload and to give the execution time as training data. These
kinds of methods are efficient in terms of inference. But the accu-
racy of these methods is limited by the quality of training queries,
making it difficult to handle OOD queries.

Uncertainty learning Uncertainty is a very important research
topic in machine learning [15, 33]. Uncertainty not only focuses on
the results of the learned model but also on the model’s confidence
in the results. In general, there are a number of methods can be used
to measure uncertainty [10, 12, 16, 22, 36]. Uncertainty is important
in scenarios where safety is a concern, such as manipulating the car
to avoid collisions [17], uncertainty regions in image detection [18],
reinforcement learning for action selection for EE problems [8, 11,
35, 41, 47], etc.

Learning model and database. Recently, many works have uti-
lized ML methods to optimize the database, like query genera-
tion [54], query rewrite [56], knob tuning [25], index construc-
tion [9, 20], view management [13, 51], and database systems [24,
26] (see [55] for a survey). Also, there exist some works that utilize
database techniques to improve the efficiency [6, 45, 46, 52] and
effectiveness [4, 7, 27] of the ML models (see [5] for a survey)

7 CONCLUSION

In this paper, we have proposed an adaptive hybrid optimizer that
combined the cost-based and learning-based optimizer through
the hint functionality provided by the DBMS optimizer, which can
produce well-performed query plan in both static and dynamic
workload scenarios. We proposed to utilize hints to achieve the
hybrid optimizer. To overcome the large space of possible hints,
we designed a benefit-based hint generation approach, which used
the MCTS to accelerate the process of generating good hints. We
also designed an uncertainty-based plan selection approach, which
considered the uncertainty of the learning-based plans to cope with
the out-of-distribution queries. Experimental results showed that
our system outperformed state-of-the-arts significantly.

In this paper, we focus on optimizing OLAP workloads and leav-
ing optimizing OLTP workloads as a future work.
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