
Mining Bursting Core in Large Temporal Graphs
Hongchao Qin

Beijing Institute of Technology

qhc.neu@gmail.com

Rong-Hua Li

Beijing Institute of Technology

lironghuascut@gmail.com

Ye Yuan

Beijing Institute of Technology

yuan-ye@bit.edu.cn

Guoren Wang

Beijing Institute of Technology

wanggrbit@126.com

Lu Qin

University of Technology Sydney

Lu.Qin@uts.edu.au

Zhiwei Zhang

Beijing Institute of Technology

cszwzhang@outlook.com

ABSTRACT
Temporal graphs are ubiquitous. Mining communities that are

bursting in a period of time is essential for seeking real emergency

events in temporal graphs. Unfortunately, most previous studies

on community mining in temporal networks ignore the bursting

patterns of communities. In this paper, we study the problem of

seeking bursting communities in a temporal graph. We propose a

novel model, called the (𝑙, 𝛿)-maximal bursting core, to represent

a bursting community in a temporal graph. Specifically, an (𝑙, 𝛿)-
maximal bursting core is a temporal subgraph in which each node

has an average degree no less than 𝛿 in a time segment with length

no less than 𝑙 . To compute the (𝑙, 𝛿)-maximal bursting core, we first

develop a novel dynamic programming algorithm that can reduce

time complexity of calculating the segment density from 𝑂 (|T |)2
to𝑂 (|T |). Then, we propose an efficient updating algorithm which

can update the segment density in𝑂 (𝑙) time. In addition, we develop

an efficient algorithm to enumerate all (𝑙, 𝛿)-maximal bursting cores

that are not dominated by the others in terms of 𝑙 and 𝛿 . The results

of extensive experiments on 9 real-life datasets demonstrate the

effectiveness, efficiency and scalability of our algorithms.

PVLDB Reference Format:
Hongchao Qin, Rong-Hua Li, Ye Yuan, Guoren Wang, Lu Qin, Zhiwei

Zhang. Mining Bursting Core in Large Temporal Graphs. PVLDB, 15(13):

3911 - 3923, 2022.

doi:10.14778/3565838.3565845

1 INTRODUCTION
In temporal graphs, each edge can be represented as a triple

(𝑢, 𝑣, 𝑡), where 𝑢, 𝑣 are two end nodes of one edge and 𝑡 denotes the
interaction time between 𝑢 and 𝑣 [3, 18]. The interaction patterns

in a temporal graph are often known to be bursty, e.g., human

communication events last for a short time [3, 18]. Here, the bursty

patterns denote a number of events occurring in and lasting for

a short time. In this paper, we study a particular bursty pattern

on temporal networks, called the bursting core, which is a dense

subgraph pattern that occurs in a short time. In other words, we

aim to identify subgraphs from a temporal graph in which each

node rapidly accumulates its adjacent edges. Specifically, a bursting

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.

doi:10.14778/3565838.3565845

core is a temporal subgraph in which each node has an average

degree no less than a given constant in a lasting time segment.

There are evidences that the timing of many human activities,

ranging from communication to entertainment and work patterns,

follow non-Poisson statistics, characterized by bursts of rapidly

occurring events separated by long periods of inactivity [3].

Therefore, the popular topics in temporal networks are changing

over time, but every popular topic will last for a period of time. By

mining the bursting communities in such temporal social networks,

we can identify a group of users that densely interact with each

other in a lasting and bursting time. The common topics discussed

among the users in a bursting community may represent an activity

that recently spreads over the networks. Our case studies are

presented in Section 5 (see Figs. 9 and 12), which gives two examples

of such bursting communities in a communication network Enron
and a collaboration network DBLP, revealing real activities and

communities in the temporal networks. Therefore, identifying

bursting communities is useful for finding such emerging activities

in a temporal network.

In the literature, there exist a few studies on mining cohesive

subgraphs in temporal graphs. For example, Wu et al. [38] proposed

a temporal core model to find cohesive subgraphs in a temporal

graph; Ma et al. [27] identified the densest subgraphs in a weighted

temporal graph; Qin et al. [29] devised an efficient algorithm to

seek periodic cliques in a temporal graph. The above studies did

not consider the bursting patterns of the community; thus, their

techniques cannot be applied to solve our problem. Recently, Chu

et al. [11] studied the problem of mining the densest and bursting

subgraphs in temporal graphs. However, to search the bursting

communities, the model of the densest and bursting subgraph has

three limitations: (i) The original global densest subgraphs may

contain outliers that are not dense regions of the graph, so they

cannot be directly treated as communities [30, 34]. (ii) Mining the

densest and bursting subgraph is NP-hard [11]; thus, it is difficult

to handle large temporal graphs. (iii) The densest and bursting

subgraph model can only return the subgraph with the highest

density; therefore, it is difficult to find other dense and bursting

subgraphs in the temporal graph [11].

To the best of our knowledge, we are the first to study the

bursting core mining problem, i.e., the problem of finding a cohesive

temporal subgraph in which each node bursts out in a short time.

Contributions. In this paper, we formulate and provide efficient

solutions for finding bursting cores in a temporal graph. In

particular, we make the following main contributions.

3911

https://doi.org/10.14778/3565838.3565845
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565838.3565845

(i) Novel Model. We propose a novel concept, called the (𝑙, 𝛿)-
maximal bursting core, to characterize the bursting community in

temporal graphs. Each node in the (𝑙, 𝛿)-maximal bursting core has

an average degree no less than 𝛿 in a time segment with length

no less than 𝑙 . We also define a new concept called the pareto-

optimal (𝑙, 𝛿)-maximal bursting core, which denotes the set of (𝑙, 𝛿)-
maximal bursting cores that are not dominated by other (𝑙, 𝛿)-
maximal bursting cores in terms of the parameters 𝑙 and 𝛿 . The

pareto-optimal (𝑙, 𝛿)-maximal bursting cores can provide a good

summary of all the bursting communities in a temporal graph over

the entire parameter space.

(ii) New Algorithms. We have proved that the (𝑙, 𝛿)-maximal

bursting core satisfies the properties of uniqueness, containment

and reduction, thus we can apply the peeling-based core decompo-

sition framework to seek the (𝑙, 𝛿)-maximal bursting core. However,

when invoking the peeling algorithm, the bursty status of the node

must be checked once an edge is deleted. Therefore, the main

technical challenge is to determine whether a node𝑢 has an average

degree no less than 𝛿 in a time segment with length no less than 𝑙 ,

i.e. to compute the maximum average sequential numbers of the

degree sequence. We show that the naive algorithm for solving this

issue requires𝑂 (|T |2) time, where |T | is the number of timestamps

in the temporal network. To improve the efficiency, we first propose

a dynamic programming algorithm which takes 𝑂 (|T |) to solve

this issue. Then, we develop a more efficient updating algorithm

which can update the maximum average sequential numbers in

𝑂 (𝑙) time. In addition, we also propose an efficient algorithm to

find the pareto-optimal (𝑙, 𝛿)-maximal bursting cores.

(iii) Extensive Experiments. We conduct comprehensive experi-

ments using 9 real-life temporal graphs to evaluate the proposed

algorithm under different parameter settings. The results indicate

that our algorithms significantly outperform the baselines in terms

of community quality. We also perform a case study on the Enron
dataset. The results demonstrate that our approach can identify

manymeaningful and interesting bursting communities that cannot

be found by the other methods. In addition, we also evaluate the

efficiency of the proposed algorithms, and the results demonstrate

the high efficiency of our algorithms. For example, on a large-scale

temporal graph with more than 1M nodes and 10M edges, our

algorithm can find a bursting community in 26.95 seconds.

Organization. Section 2 introduces the model and formulates our

problem. The algorithms to efficientlymining bursting communities

are proposed in Section 3 and 4. Experimental studies are presented

in Section 5, and the related work is discussed in Section 6. Section

7 draws the conclusion of this paper.

2 PRELIMINARIES
Let G = (V, E,T) be an undirected temporal graph, where V
and E denote the set of nodes and temporal edges, an arithmetic

time sequence T = {𝑡1, 𝑡2 ...𝑡 | T | } denotes the set of all timestamps

in which 𝑡𝑖 − 𝑡𝑖−1 is a constant for each integer 𝑖 . Each temporal

edge 𝑒 ∈ E is a triplet (𝑢, 𝑣, 𝑡), where 𝑢, 𝑣 are nodes in V , and

𝑡 ∈ T is the interaction time between 𝑢 and 𝑣 . The de-temporal
graph of G denoted by 𝐺 = (𝑉 , 𝐸) is a simple graph that ignores

all the timestamps associated with the temporal edges. More

t (u, v)

1 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

2 (v5, v6)(v5, v7)(v6, v7)

3 (v1, v2)(v1, v4)(v1, v5)
(v2, v4)(v2, v5)(v4, v5)

4 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

5 (v1, v2)(v1, v3)(v1, v4)(v1, v5)(v2, v3)
(v2, v4)(v2, v5)(v3, v4)(v3, v5)(v4, v5)

6 (v5, v6)(v5, v7)(v6, v7)

(a) Temporal edges in G

v1v2

v3 v4
v5

v6

v7

(b) The de-temporal graph𝐺

v1v2

v3 v4
v5 v5

v6

v7 v1v2

v4
v5

v1v2

v3 v4
v5

v1v2

v3 v4
v5 v5

v6

v7

G1 G2 G3 G4 G5 G6

(c) The six snapshots of G

Figure 1: Basic concepts of the temporal graph

formally, for the de-temporal graph 𝐺 of G, we have 𝑉 = V and

𝐸 = {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑡) ∈ E}.
By sorting the temporal edges in a chronological order, the

temporal graph can be represented as a link stream [21]. The widely-

used approach to extract interesting patterns from a temporal graph

relies on series of snapshots [2, 21]. The 𝑖-th snapshot of G is a

de-temporal graph 𝐺𝑖 = (𝑉𝑖 , 𝐸𝑖) where 𝑉𝑖 = {𝑢 | (𝑢, 𝑣, 𝑖) ∈ E} and
𝐸𝑖 = {(𝑢, 𝑣) | (𝑢, 𝑣, 𝑖) ∈ E}. Each timestamp is an integer, because

the UNIX timestamps are integers in practice. For convenience, we

use T = {1, 2, ...|T |} to represent timestamps {𝑡1, 𝑡2 ...𝑡 | T | } in the

rest of this paper. Fig.1 (a) illustrates a temporal graph G with 42

temporal edges and T = [1 : 6]. Fig.1 (b) illustrates the de-temporal

graph 𝐺 of G in Fig.1 (a). Fig.1 (c) illustrates all the six snapshots

of G in Fig.1 (a).

Here, we introduce some necessary concepts. Let 𝑛 = |V| and
𝑚 = |E | be the number of nodes and temporal edges, 𝑁𝑢 (𝐺) =
{𝑣 | (𝑢, 𝑣) ∈ 𝐸} be the set of neighbor nodes of 𝑢, and 𝑑𝑒𝑔𝐺 [𝑢] =
|𝑁𝑢 (𝐺) | be the degree of 𝑢 in 𝐺 . For a given set of nodes 𝑆 ⊆ 𝑉 , a
subgraph 𝐺𝑆 = (𝑉𝑆 , 𝐸𝑆) is referred to as an induced subgraph of 𝐺

from 𝑆 if 𝑉𝑆 = 𝑆 and 𝐸𝑆 = {(𝑢, 𝑣) |𝑢, 𝑣 ∈ 𝑉𝑆 , (𝑢, 𝑣) ∈ 𝐸}.
The nodes in bursting cores have a feature in common that they

have high degrees in the induced subgraphs of some continuous

time periods, as shown in the definitions below.

Definition 1 (temporal subgraph). Given a temporal graph
G = (V, E,T), a continuous time interval 𝑇 = [𝑡𝑠 : 𝑡𝑒] ⊆ [1 : |T |]
and a given set of nodes 𝑆 ⊆ V , a temporal subgraph can be denoted
by G𝑆 (𝑇) = (𝑆, E𝑆 (𝑇),𝑇), and it is an induced temporal graph of G
from temporal edges E𝑆 (𝑇) = {(𝑢, 𝑣, 𝑡) |𝑢, 𝑣 ∈ 𝑆, 𝑡 ∈ 𝑇, (𝑢, 𝑣, 𝑡) ∈ E}.

Based on Definition 1, a temporal subgraph G𝑆 (𝑇) is an induced

graph from nodes set 𝑆 in time interval 𝑇 , and it can also extract a

series of snapshots. The snapshot of temporal subgraph in time 𝑖

is the induced subgraph of 𝑉𝑖 ∩ 𝑆 , thus it can be denoted by 𝐺𝑉𝑖∩𝑆 .
For each node 𝑢 ∈ 𝑆 , 𝑑𝑒𝑔𝐺𝑉𝑖∩𝑆

[𝑢] = |𝑁𝑢 (𝐺𝑉𝑖∩𝑆) | = |𝑁𝑢 (𝐺𝑖) ∩ 𝑆 |.

Definition 2 (degree seqence). Given a temporal subgraph
G𝑆 (𝑇), for node𝑢 ∈ 𝑆 , the degree sequence of𝑢 in G𝑆 (𝑇), abbreviated
as DS(𝑢,G𝑆 (𝑇)), is a sequence of 𝑢’s degree in each snapshot
of G𝑆 (𝑇). Each item in the degree sequence can be denoted by
DS(𝑢,G𝑆 (𝑇)) [𝑖] = |𝑁𝑢 (𝐺𝑖) ∩ 𝑆 |.

3912

Definition 3 (𝑙-segment density). Given an integer 𝑙 , a time
interval 𝑇 = [𝑡𝑠 : 𝑡𝑒] and DS(𝑢,G𝑆 (𝑇)), the 𝑙-segment density of 𝑢
in this degree sequence, abbreviated as SD(𝑢,G𝑆 (𝑇)), is the average
degree of 𝑢 in DS(𝑢,G𝑆 (𝑇)) while the length of the segment is no
less than 𝑙 , which can be denoted by

SD(𝑢,G𝑆 (𝑇)) =
∑𝑡𝑒

𝑖=𝑡𝑠
|𝑁𝑢 (𝐺𝑖)∩𝑆 |
𝑡𝑒−𝑡𝑠+1 , in which 𝑡𝑒 − 𝑡𝑠 + 1 ≥ 𝑙

Based on Definition 3, the maximum 𝑙-segment density of

𝑢 in G𝑆 (abbreviated as MSD(𝑢,G𝑆)), is the 𝑙-segment density

SD(𝑢,G𝑆 (𝑇)) such that there are no 𝑆 ′ ⊆ V , 𝑇 ′ ⊆ [1 : |T |]
satisfying SD(𝑢,G𝑆 ′ (𝑇 ′)) > SD(𝑢,G𝑆 (𝑇)).

Below, we give a definition to describe the node which has

average degree no less than 𝛿 in a time segment of length no less

than 𝑙 in a given temporal subgraph.

Definition 4 ((𝑙, 𝛿)-bursting node). Given a temporal graph
G, an integer 𝑙 and a real value 𝛿 , node 𝑢 is an (𝑙, 𝛿)-bursting node
in G ifMSD(𝑢,G) ≥ 𝛿 .

Note that, we set a constraint that the length of the considering

segment is no less than 𝑙 . This is because that we want to find the

node which has high degree in a continuous time. If we loosen

the constraint, some nodes may be highly connected in just one

timestamp and we may obtain outliers that are not located in the

dense regions of the graph (as shown in Figure 7(c) of Section 5).

According to Definition 4, we introduce a structure which can

cluster the (𝑙, 𝛿)-bursting nodes.

Definition 5 ((𝑙, 𝛿)-maximal bursting core). Given a temporal
graph G = (V, E,T), an integer 𝑙 ≥ 2 and a real value 𝛿 > 0,
an (𝑙, 𝛿)-maximal bursting core (abbreviated as (𝑙, 𝛿)-MBC) is an
induced temporal graph G𝐶 in which 𝐶 ⊆ V , satisfying
(𝑖) each node in𝐶 is an (𝑙, 𝛿)-bursting node in G𝐶 , which means that
∀𝑢 ∈ 𝐶 ,MSD(𝑢,G𝐶) ≥ 𝛿 holds.
(𝑖𝑖) there is no subset of nodes 𝐶′ ⊇ 𝐶 that satisfies each node in 𝐶′

is an (𝑙, 𝛿)-bursting node in G𝐶′ .

Below, we use an example to illustrate the above definitions.

Example 1. Consider the temporal graph in Fig. 1. Given 𝑙 = 3, 𝛿 =

3. As shown in Fig. 1(c), we can get that DS(𝑣5,G) = [4, 2, 3, 4, 4, 2].
As 𝑙 = 3, the maximum 𝑙-segment density MSD(𝑣5,G) = (3 +
4 + 4)/3 = 3.66. Given 𝑆 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}, we can get that
DS(𝑣5,G𝑆) = [4, 0, 3, 4, 4, 0], MSD(𝑣5,G𝑆) = (3 + 4 + 4)/3 = 3.66.
Thus, 𝑣5 is a (3, 3)-bursting node in G𝑆 . Considering 𝑣3 in 𝑆 , we can
get thatDS(𝑣3,G𝑆) = [4, 0, 0, 4, 4, 0],MSD(𝑣3,G𝑆) = (0+4+4)/3 =
2.66. So, 𝑣3 is a not (3, 3)-bursting node in G𝑆 . Therefore, G𝑆 is not a
(3, 3)-MBC. However, given 𝐶 = {𝑣1, 𝑣2, 𝑣4, 𝑣5}, we can find that all
the nodes in 𝐶 are (3, 3)-bursting nodes, because all the nodes have
the maximum 𝑙-segment density of 3 considering 𝑇 = [3 : 5]. So, G𝐶
is a (3, 3)-MBC with 𝐶 = {𝑣1, 𝑣2, 𝑣4, 𝑣5}. □

Problem 1 (Bursting Core). Given a temporal graph G, an integer

𝑙 ≥ 2 and a real value 𝛿 > 0, the goal of mining one bursting core

is to compute the (𝑙, 𝛿)-MBC in G.
Based onDefinition 5, (𝑙, 𝛿)-MBC is a bursting communitywhich

can identify important events in the temporal graph, but it may

be not easy to find proper parameters of 𝑙 and 𝛿 for practical

applications. Intuitively, a good bursting community will have large

𝑙 and 𝛿 values. But large 𝑙 and 𝛿 values may result in losing answers.

However, based on the theory of Pareto Optimality, we are able to

compute the bursting cores that are not dominated by the other

cores in terms of parameters 𝑙 and 𝛿 . Below, we introduce a new

concept, POMBC, to define those bursting cores.

Definition 6 (Pareto Optimal (𝑙, 𝛿)-MBC). Given a temporal
graph G, an (𝑙, 𝛿)-MBC in G is a Pareto Optimal (𝑙, 𝛿)-MBC
(abbreviated as POMBC), if there does not exist an (𝑙 ′, 𝛿 ′)-MBC
in G such that 𝑙 ′ > 𝑙, 𝛿 ′ ≥ 𝛿 or 𝑙 ′ ≥ 𝑙, 𝛿 ′ > 𝛿 .

Based on Definition 6, each (𝑙, 𝛿)-MBC will be contained in one

of the POMBCs since they are maximal. Finding all the POMBCs
in a temporal graph helps to set the value of parameters (𝑙, 𝛿) for
the (𝑙, 𝛿)-MBC. The parameter 𝑙 in our model is indeed as small

as possible since the proposed model aims to find a subgraph in

which each node has a high average degree of length 𝑙 . However,

in real-world applications, we do not know how to set the proper

parameters (𝑙, 𝛿) Because if (𝑙, 𝛿) are largewemay get empty results,

and if (𝑙, 𝛿) are small we will get too many unnecessary nodes in

(𝑙 ′, 𝛿 ′)-MBC. Thus, we introduce another studied problem below.

Problem 2 (Pareto-Optimal Bursting Core). Given a temporal

graph G, the goal of mining Pareto-optimal bursting cores is to

enumerate all the POMBCs in G.
Challenges. The problem of mining one bursting core is similar to

mining traditional 𝑘-core. However, it is not sufficient by adopting

the traditional core decomposition method directly, since we need

to find the maximum average sequential numbers when peeling

the (𝑙, 𝛿)-MBCs. The peeling method iteratively removes the nodes

which are not (𝑙, 𝛿)-bursting nodes, and then determines whether

the remaining nodes are (𝑙, 𝛿)-bursting nodes until no nodes can

be deleted. Therefore, many nodes will be checked whether are

(𝑙, 𝛿)-bursting nodes again and again. The time complexity of the

naive method to check whether the node is (𝑙, 𝛿)-bursting node

for one time is 𝑂 (|T |2) since we need to check all segments with

length no less than 𝑙 . Thus, the status of the node must be checked

while one edge is deleted, the times of the checking steps are𝑂 (𝑚).
So, the whole time complexity is 𝑂 (𝑚 |T |2). Clearly, this approach
may involve numerous redundant computations for checking some

nodes which are definitely not contained in an (𝑙, 𝛿)-MBC.
To list all the POMBCs, the naive method is to enumerate

parameter pairs (𝑙, 𝛿) and outputs the one which cannot be

dominated. This way is difficult since it is hard to set the proper 𝛿

which is a real value. However, another possible way is to consider

one dimension, such as 𝑙 first, and then find the maximal 𝛿 . Next,

we keep 𝛿 unchanged and find the maximal 𝑙 . So, the challenge is

how to acquire the answers with less redundant computations.

3 ALGORITHMS FOR MINING MBC
In this section, we first introduce a basic decomposition framework

to mine the (𝑙, 𝛿)-MBC. Next, we develop a dynamic programming

algorithm which can compute the segment density efficiently, and

then propose an improved algorithm with several novel pruning

techniques.

3.1 The MBC Algorithm
We can observe that (𝑙, 𝛿)-MBC has the following three properties.

3913

Property 1 (Uniqeness). Given parameters 𝑙 > 1 and 𝛿 > 0,
the (𝑙, 𝛿)-MBC of the temporal graph G is unique.

Proof. We prove this lemma by a contradiction. Suppose that

there exist two different (𝑙, 𝛿)-maximal bursting cores in G, denoted
by 𝐶1 and 𝐶2 (𝐶1 ≠ 𝐶2). Let us consider the node set 𝐶′ = 𝐶1 ∪𝐶2.
Following Definition 5, every node in 𝐶′ is a (𝑙, 𝛿)-bursting node
in G(𝐶′), because it is a (𝑙, 𝛿)-bursting node in G𝐶1

∪ G𝐶2
. Since

𝐶1 ≠ 𝐶2, we have 𝐶1 ⊂ 𝐶′ and 𝐶2 ⊂ 𝐶′ which contradicts to the

fact that 𝐶1 (or 𝐶2) satisfies the maximal property. □

Property 2 (Containment). Given an (𝑙, 𝛿)-MBC of the tem-
poral graph G, the (𝑙 ′, 𝛿 ′)-MBC with 𝛿 ′ ≥ 𝛿 , 𝑙 ′ ≥ 𝑙 is a temporal
subgraph of (𝑙, 𝛿)-MBC.

Proof. According to Definition 5, an (𝑙, 𝛿)-MBC𝐶 is a maximal

temporal subgraph, and any node in𝐶 has segment density at least

𝛿 with length no less than 𝑙 . For 𝛿 ′ ≥ 𝛿 , 𝑙 ′ ≥ 𝑙 , each node in (𝑙 ′, 𝛿 ′)-
maximal bursting core will also have segment density at least 𝛿 with

length no less than 𝑙 . Since the 𝐶 is a maximal temporal subgraph,

(𝑙 ′, 𝛿 ′)-maximal bursting core must be contained in 𝐶 . □

We first give the definition of 𝑘-core, and then show the third

property. The 𝑘-core of the de-temporal graph of G can be

denoted by 𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐), which is a maximal subgraph such that

∀𝑢 ∈ 𝐺𝑐 : 𝑑𝑒𝑔𝐺𝑐
[𝑢] ≥ 𝑘 .

Property 3 (Reduction). Given an (𝑙, 𝛿)-MBC of the temporal
graph G, the nodes in (𝑙, 𝛿)-MBC must be contained in the 𝑘-core
(𝑘 = 𝛿) of the de-temporal graph 𝐺 .

Proof. According to Definition 5, any node 𝑢 in an (𝑙, 𝛿)-MBC
G𝐶 has segment density at least 𝛿 with length no less than 𝑙 (𝑙 ≥ 2).
So, 𝑢 must have degree at least 𝛿 in at least one snapshot 𝐺∗. As
each𝐺∗ ⊆ 𝐺 , each𝑢 in𝐶 must have degree no less than 𝛿 . Since the

𝑘-core (𝑘 = 𝛿) of the de-temporal graph𝐺 is the maximal subgraph

such that each node has degree no less than 𝛿 ,𝐶 must be contained

in the 𝑘-core (𝑘 = 𝛿) of 𝐺 . □

Core Decomposition Framework. Following Property 3, we first
compute the 𝑘-core (𝑘 = 𝛿) of the de-temporal graph of G, denoted
by 𝐺𝑐 . Given the properties of Uniqueness and Containment, we
can apply the core decomposition framework to compute the (𝑙, 𝛿)-
MBC. Next, we check whether node 𝑢 is an (𝑙, 𝛿)-bursting node, as
defined in Definition 4. Specifically, we compute the 𝑘-core 𝐺𝑐 in

𝐺 first, and then check whether node 𝑢 is an (𝑙, 𝛿)-bursting node
for all 𝑢 ∈ 𝐺𝑐 . If 𝑢 is not an (𝑙, 𝛿)-bursting node, we delete 𝑢 from

the results. Since the deletion of 𝑢 may result in 𝑢’s neighbors no

longer being the (𝑙, 𝛿)-bursting node, we need to iteratively process
𝑢’s neighbors. The process terminates if no node can be deleted.

The details are provided in Algorithm 1.

Algorithm 1 first computes the 𝑘-core (𝑘 = 𝛿) of the de-temporal

graph 𝐺 (lines 1-2), denoted by 𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐). Then, it initializes a
queue Q to store the nodes to be deleted, a set𝐷 to store the deleted

node, a collection MSD to store maximum 𝑙-segment density for

each node (line 3) and 𝑑𝑒𝑔 to store the degree of nodes in 𝐺𝑐 (line

5). Next, for each𝑢 in𝑉𝑐 , it invokes Algorithm 2 to check whether𝑢

is an (𝑙, 𝛿)-bursting node or not (line 6). If 𝑢’s maximum 𝑙-segment

density MSD[𝑢] is less than 𝛿 , 𝑢 is not an (𝑙, 𝛿)-bursting node

Algorithm 1: MBC(G, 𝑙, 𝛿)
Input: Temporal graph G = (V, E, T) , parameters 𝑙 and 𝛿
Output: (𝑙, 𝛿)-MBC in G

1 Let𝐺 = (𝑉 , 𝐸) be the de-temporal graph of G;
2 Let𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐) be the 𝑘-core (𝑘 = 𝛿) of𝐺 ;

3 Q ← [∅];𝐷 ← [∅];MSD← [∅];
4 for𝑢 ∈ 𝑉𝑐 do
5 𝑑𝑒𝑔[𝑢] ← |𝑁𝑢 (𝐺𝑐) | ; /* compute the degree of all nodes in𝐺𝑐 */

6 MSD[𝑢] ← ComputeMSD(G, 𝑙,𝑢,𝑉𝑐) ;
7 ifMSD[𝑢] < 𝛿 then Q.𝑝𝑢𝑠ℎ (𝑢) ;
8 while Q ≠ [∅] do
9 𝑣 ← Q.𝑝𝑜𝑝 () ; 𝐷 ← 𝐷 ∪ {𝑣};

10 for 𝑤 ∈ 𝑁𝑣 (𝐺𝑐) , s.t. 𝑑𝑒𝑔[𝑤] ≥ 𝛿 andMSD(𝑤) ≥ 𝛿 do
11 𝑑𝑒𝑔[𝑤] ← 𝑑𝑒𝑔[𝑤] − 1;

12 if 𝑑𝑒𝑔[𝑤] < 𝛿 then Q.𝑝𝑢𝑠ℎ (𝑤) ;
13 else
14 MSD[𝑤] ← ComputeMSD(G, 𝑙, 𝑤,𝑉𝑐 \𝐷) ;
15 ifMSD[𝑤] < 𝛿 then Q.𝑝𝑢𝑠ℎ (𝑤) ;

16 return G𝑉𝑐 \𝐷 ;

and it will be pushed into a queue Q (lines 6-7). Subsequently, the

algorithm iteratively processes the nodes in Q. In each iteration,

the algorithm pops a node 𝑣 from Q and uses 𝐷 to maintain all the

deleted nodes (line 9). For each neighbor node𝑤 of 𝑣 , the algorithm

updates𝑑𝑒𝑔[𝑤] (line 11). If the revised𝑑𝑒𝑔[𝑤] is smaller than 𝛿 ,𝑤 is

clearly not an (𝑙, 𝛿)-bursting node. As a consequence, the algorithm
pushes𝑤 into Q which will be deleted in the next iterations (line

12). Otherwise, the algorithm invokes Algorithm 2 to determine

whether 𝑤 is an (𝑙, 𝛿)-bursting node (lines 14-15). The algorithm

terminates when Q is ∅. At this moment, the remaining nodes𝑉𝑐 \𝐷
is the (𝑙, 𝛿)-bursting nodes of G, and the algorithm returns temporal

subgraph G𝑉𝑐\𝐷 (line 16).

Example 2. Recall the temporal graph in Fig. 1. Given 𝑙 = 3,
𝛿 = 3. Algorithm 1 first computes the 𝑘-core (𝑘 = 𝛿) of de-temporal
graph 𝐺 . So, 𝑉𝑐 = {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. Then, for each node 𝑢 in 𝑉𝑐 , it
checks whether 𝑢 is an (𝑙, 𝛿)-bursting node. Consider 𝑣3, we can get
DS(𝑣3,G𝑉𝑐) = [4, 0, 0, 4, 4, 0], and cannot find a segment of at least
3 length in which the density is no less than 3. Next, 𝑣3 will be pushed
into Q. In line 9, 𝑣3 is added into set 𝐷 and all of its neighbors will be
checked in line 10. Now the remained nodes are {𝑣1, 𝑣2, 𝑣4, 𝑣5}, and we
can find that the 𝑑𝑒𝑔 and MSD of them are no less than 3. Therefore,
Algorithm 1 returns G𝑉𝑐\𝐷 with 𝑉𝑐 \ 𝐷 = {𝑣1, 𝑣2, 𝑣4, 𝑣5}. □

Complexity of Algorithm 1. The time and space complexity of

Algorithm 1 by invoking Algorithm 2 to computeMSD is𝑂 (𝑚 |T |)
and 𝑂 (𝑚) respectively.

Different from the traditional core decomposition algorithm,

Algorithm 1 needs to check whether the node is an (𝑙, 𝛿)-bursting
node in each iteration. Below, the implementation details of

ComputeMSD are described.

3.2 Dynamic Programming of Computing MSD
Recall that by Definition 4 and 5, if MSD(𝑢,G𝐶) ≥ 𝛿 , then

𝑢 is an (𝑙, 𝛿)-bursting node. To compute MSD, we first get 𝑢’s

degree sequence DS(𝑢,G𝐶) inside the candidate (𝑙, 𝛿)-MBC for

𝑖 ∈ [1 : |T |]. For convenience, we denote DS(𝑢,G𝐶) by DS[𝑢] =
{|𝑁𝑢 (𝐺𝑖) ∩ 𝐶 |, 𝑖 ∈ [1 : |T |]}, MSD(𝑢,G𝐶) by MSD[𝑢]. To get

MSD[𝑢], the naive method is to consider all the segments of

longer than 𝑙 , but the time complexity of such a naive method is

3914

𝑂 (|T |2). Below, we propose a dynamic programming algorithm

that transforms the problem into finding the maximum slope in

a cumulative sum curve, which can reduce the computational

overhead to linear complexity.

Definition 7 (cumulative sum curve). Given node 𝑢’s degree
sequence DS(𝑢,G𝐶) (abbreviated as DS[𝑢]), the 𝑖-th item in the
cumulative sum curve of𝑢 (abbreviated as CSC[𝑖]) is the sum of front
𝑖-th position of DS[𝑢], i.e. CSC[𝑖] = ∑𝑖

1
DS[𝑢] [𝑖], 𝑖 ∈ [1 : |T |].

Without loss of generality, we set CSC[0] = 0. Then, the points

{(0, CSC[0]), (1, CSC[1])... (|T |, CSC[|T |])} can be drawn as a

curve in the Cartesian Coordinate System, and we denote this curve

by CSC. For example in Fig. 2(a), DS[𝑢] = [4, 2, 3, 4, 4, 2, 2, 6, 1]
and the CSC sequence is [0, 4, 6, 9, 13, 17, 19, 21, 27, 28]. Below, we
define the slope in the curve by considering two points in CSC.

Definition 8 (slope). Given integers 𝑖, 𝑗 ∈ [1 : |T |], 𝑖 < 𝑗 , the
slope of curve CSC from 𝑖 to 𝑗 can be denoted by slope(𝑖, 𝑗, CSC) =
CSC[𝑗]−CSC[𝑖−1]

𝑗−𝑖+1 , where 𝑖, 𝑗 are the 𝑠𝑡𝑎𝑟𝑡 and 𝑒𝑛𝑑 of the slope.

For convenience, we abbreviate slope(𝑖, 𝑗, CSC) as slope(𝑖, 𝑗) in
the following paper while the symbol CSC can not be confused.

Lemma 1. For a degree sequence DS[𝑢], a time interval [𝑡𝑠 : 𝑡𝑒],
the segment density of the subsequence in [𝑡𝑠 : 𝑡𝑒] equals the slope of

curve CSC from 𝑡𝑒 to 𝑡𝑠 . Formally,
∑𝑡𝑒

𝑖=𝑡𝑠
DS[𝑢] [𝑖]

𝑡𝑒−𝑡𝑠+1 = slope(𝑡𝑠 , 𝑡𝑒).

Definition 9 (maximum 𝑡-truncated 𝑙-slope). Given a curve
CSC of node 𝑢, a truncated time 𝑡 ∈ [𝑙 : |T |], the maximum 𝑡-
truncated 𝑙-slope MTS[𝑢] [𝑡] = {max(slope(𝑖, 𝑡)) |𝑖 ∈ [0 : 𝑡 − 𝑙]}.

According to Lemma 1 and Definition 9, MTS[𝑢] [𝑡] is the

maximum slope which ended at time 𝑡 and the length of the

corresponding segment is no less than 𝑙 . For convenience, MTS[𝑢]
is the collection of {MTS[𝑢] [𝑡] |𝑡 ∈ [𝑙 : |T |]} .

Corollary 1. The problem of finding the MSD[𝑢], can be
transformed to computing max(MTS[𝑢]) in CSC of 𝑢.

Next, the problem is how to compute all the MTS[𝑢] [𝑡], 𝑡 = [1 :
|T |]. One idea is to maintainMTS[𝑢] [𝑡 + 1] by theMTS[𝑢] [𝑡] and
the changes of the curve from time 𝑡 to 𝑡 + 1. Below, considering
the MTS[𝑢] [𝑡] and the newly joined point (𝑡 + 1, CSC[𝑡 + 1]), we
can maintain MTS[𝑢] based on the following observations.

Observation 1. We can compute a lower convex hull (abbreviated
as CH) in CSC of𝑢 which ended at time 𝑡 −𝑙 , the slope of the tangent
from point (𝑡, CSC[𝑡]) to the CH is the maximum 𝑙-segment density
of node 𝑢 ended at time 𝑡 .

Observation 2. If the point (𝑎, CSC[𝑎]) and (𝑏, CSC[𝑏]) are
on the maintained lower convex hull, suppose that 𝑎 < 𝑏 < 𝑐 , CH will
add node (𝑐, CSC[𝑐]) and remove node (𝑏, CSC[𝑏]) if (CSC[𝑐] −
CSC[𝑏])/(𝑐 − 𝑏) ≤ (CSC[𝑏] − CSC[𝑎])/(𝑏 − 𝑎).

Observation 3. For one ended time 𝑡 , if CSC[𝑡]−CSC[𝑏]
𝑡−𝑏 ≥

CSC[𝑏]−CSC[𝑎]
𝑏−𝑎 , then the slope of CSC[𝑡] to CSC[𝑎] will not be

maximum, and node (𝑎, CSC[𝑎]) should be removed from CH .

Following the observations above, we devise an algorithm to

maintain the lower convex hull CH ended at time 𝑡 − 𝑙 , and the

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[t]
MSD

(a) 𝑡 = 4

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[t]
MSD

(b) 𝑡 = 5

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[t]
MSD

(c) 𝑡 = 6

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[t]
MSD

(d) 𝑡 = 7

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[t]
MSD

(e) 𝑡 = 8

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[t]
MSD

(f) 𝑡 = 9

Figure 2: Running example of computing maximum 𝑙-
segment density for a degree sequence of [4, 2, 3, 4, 4, 2, 2, 6, 1]
with 𝑙 = 4. The data on x-axis and y-axis represent the time 𝑡
and the cumulative sum.

Algorithm 2: ComputeMSD(G, 𝑙, 𝑢,𝐶)
1 CSC ← [∅]; CSC[0] ← 0;DS[𝑢] ← [∅] ;
2 for 𝑡 ← 1 : | T | do
3 Let𝐺𝑡 be the snapshot of G at timestamp 𝑡 ;

4 DS[𝑢] [𝑡] ← |𝑁𝑢 (𝐺𝑡) ∩𝐶 | ;
5 CSC[𝑡] = CSC[𝑡 − 1] + DS[𝑢] [𝑡];
6 CH← [∅], 𝑖𝑠 ← 0, 𝑖𝑒 ← −1,MTS[𝑢] ← [∅];
7 for 𝑡 ← 𝑙 : | T | do
8 while 𝑖𝑠 < 𝑖𝑒 and slope(CH[𝑖𝑒], 𝑡 − 𝑙, CSC) ≤

slope(CH[𝑖𝑒 − 1],CH[𝑖𝑒], CSC) do
9 𝑖𝑒 ← 𝑖𝑒 − 1;

10 𝑖𝑒 ← 𝑖𝑒 + 1; CH[𝑖𝑒] ← 𝑡 − 𝑙 ;
11 while 𝑖𝑠 < 𝑖𝑒 and slope(CH[𝑖𝑠], 𝑡, CSC) ≥

slope(CH[𝑖𝑠],CH[𝑖𝑠 + 1], CSC) do
12 𝑖𝑠 ← 𝑖𝑠 + 1;
13 MTS[𝑢] ← MTS[𝑢] ∪ {slope(CH[𝑖𝑠], 𝑡, CSC) };
14 returnmax(MTS[𝑢]) ;

15 Procedure slope(𝑖, 𝑗, CSC)
16 return (CSC[𝑗] − CSC[𝑖])/(𝑗 − 𝑖)

MTS[𝑢] [𝑡] can be computed in a recursive way as the following

algorithm shows.

Algorithm of Computing MSD. Algorithm 2 first initializes

CSC[𝑡] of 𝑢 for all timestamps (lines 1-5). As the nodes set 𝐶 may

be changed in Algorithm 1, the degree of 𝑢 can be computed in

line 4. Next, it maintains an array CH to record the indexes of

each points in the lower convex hull, 𝑖𝑠 to record the 𝑠𝑡𝑎𝑟𝑡 index

of CH, 𝑖𝑒 to record the 𝑒𝑛𝑑 index of CH and MTS[𝑢] to record

MTS (line 6). For time 𝑡 from 𝑙 to |T |, it dynamically computes

MTS[𝑢] [𝑡] of 𝑢 (lines 7-13). In lines 8-9, 𝑖𝑒 reduces by 1 if the

slope(CH[𝑖𝑒], 𝑡 − 𝑙) is no larger than slope(CH[𝑖𝑒 − 1],CH[𝑖𝑒]),
because the rear node point will be above the convex hull CH by

the end of 𝑡 − 𝑙 following Observation 2. If there is no such point in

the end, the 𝑒𝑛𝑑 index 𝑖𝑒 increases by 1 and CH[𝑖𝑒] is assigned by

𝑡 − 𝑙 . In lines 11-12, the head index adds up by 1 if slope(CH[𝑖𝑠], 𝑡)
is no larger than slope(CH[𝑖𝑠],CH[𝑖𝑠 + 1]), because it will have
an upper convex hull in the curve of CH at the start of CH[𝑖𝑠]

3915

according to Observation 3. We will get a arrayMTS ofMTS[𝑢] [𝑡]
with 𝑡 ranges from 𝑙 to |T |. Finally, it returns max(MTS[𝑢]) after
all the iterations (line 14).

Example 3. Fig. 2 shows the toy example of computing maximum
𝑙-segment density for 𝑢’s degree sequence of [4, 2, 3, 4, 4, 2, 2, 6, 1] with
𝑙 = 4. Clearly, T = [1 : 9], CSC = [0, 4, 6, 9, 13, 17, 19, 21, 27, 28].
According to Corollary 1, the procedure starts at 𝑡 = 4 because we need
satisfy that the length of the segment is no less than 𝑙 . At this time,
there is only one item in CH. When 𝑡 = 5, the 𝑖𝑒 index of CH adds
up by 1 (line 10), but the 𝑖𝑠 index is remained 0 because slope(0, 5) =
(17−0)/(5−0) = 3.4 is no larger than slope(0, 1) = (4−0)/(1−0) =
4.0 (lines 12). And max(MTS[𝑢] [𝑡]) is currently MTS[𝑢] [5] = 3.4.
Next, 𝑡 = 6, according to Observation 2, the 𝑖𝑒 index of CH reduces by
1 because slope(1, 2) = 2.0 is no larger than slope(0, 1) = 4.0 (lines
8-9). Then, the newly 𝑖𝑒 is 1 and CH[𝑖𝑒] is assigned by 𝑡 − 𝑙 = 2 (line
10). Now CH is [0, 2], 𝑖𝑠 = 0, 𝑖𝑒 = 1. In the next step, the 𝑖𝑠 index adds
up by 1 because slope(0, 6) = 19/6 > slope(0, 2) = 6/2 (line 12).
So, the final CH and MTS[𝑢] [6] can be shown at Fig. 2(c). Likewise,
when 𝑡 = 7 𝑡𝑜 9, the CH will be maintained by the similar processes.
It should be noted that when 𝑡 = 7, slope(3, 8) = 3.6, which is larger
thanMTS[𝑢] [5]. Finally,MSD[𝑢] = max(MTS[𝑢] [𝑡]) = 3.6, which
is the density of the 4𝑡ℎ to 8𝑡ℎ items [4, 4, 2, 2, 6]. □

Complexity of Algorithm 2. For a temporal graph G with |T |
timestamps, the time and space complexity of Algorithm 2 are

𝑂 (|T |) and 𝑂 (|T |) respectively.

3.3 An improved MBC+ algorithm
Although Algorithm 1 is efficient in practice, it still has two

limitations. (i) It still needs to call ComputeMSD procedure for

all nodes in 𝑉𝑐 (line 6 in Algorithm 1). In the worst case, the time

complexity of this process can be near to |T |𝑚. We can observe that

if we delete a certain node𝑢, the𝑑𝑒𝑔[𝑣] of𝑢’s neighbor 𝑣 will reduce,
and we can monitor it at once to check whether 𝑑𝑒𝑔[𝑣] < 𝛿 . Once
𝑑𝑒𝑔[𝑣] < 𝛿 , we do not need to call the procedure ComputeMSD for

𝑣 any more. (ii) It still needs to compute all the maximum 𝑙-segment

density dynamically for each deletion of the edges. We can observe

that in each call of ComputeMSD, the degree of 𝑢 reduces only

one andMSD[𝑢] may not change. So, the ComputeMSD algorithm

clearly results in significant amounts of redundant computations

for the iterations for all 𝑡 from 𝑙 to |T |.
To overcome this limitation, we propose an improved algorithm

called MBC+. The striking features of MBC+ are twofold. On

one hand, it needs not to call procedure ComputeMSD for each

node in advance. Instead, it calculates SD of the candidate node

on-demand. On the other hand, when deleting a node 𝑢, MBC+
does not re-compute MSD for a neighbor node 𝑤 of 𝑢. Instead,

MBC+ dynamically updates the computedMSD for each node𝑤 ,

thus substantially avoiding redundant computations. The detailed

description of MBC+ is shown in Algorithm 3.

To Overcome Limitation (i). Algorithm 3 first computes the 𝑘-

core (𝑘 = 𝛿) 𝐺𝑐 in the de-temporal graph (line 2). Next, it explores

the nodes in 𝑉𝑐 based on an increasing order by the degrees in

𝐺𝑐 (line 5). When processing a node 𝑢, the algorithm first checks

whether 𝑢 has been deleted or not (line 6). If 𝑢 has not been

removed, MBC+ invokes Algorithm 2 to compute MSD[𝑢] (lines

Algorithm 3: MBC+(G, 𝑙, 𝛿)
Input: Temporal graph G = (V, E, T) , parameters 𝑙 and 𝑘
Output: (𝑙, 𝛿)-MBC in G

1 Let𝐺 = (𝑉 , 𝐸) be the de-temporal graph of G;
2 Let𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐) be the 𝑘-core (𝑘 = 𝛿) of𝐺 ;

3 Let 𝑑𝑒𝑔[𝑢] be the degree of𝑢 in𝐺𝑐 ;

4 Q ← [∅];𝐷 ← [∅];MSD← [∅];MTS← [∅];DS ← [∅];
5 for𝑢 ∈ 𝑉𝑐 in an increasing order by 𝑑𝑒𝑔[𝑢] do
6 if𝑢 ∈ 𝐷 then continue;
7 (MTS[𝑢],DS[𝑢]) ← ComputeMSD∗ (G, 𝑙,𝑢,𝑉𝑐 \𝐷) ; /*

all the same to Alg. 2 except that it returns (MTS[𝑢],DS[𝑢]) */
8 MSD[𝑢] ← max(MTS[𝑢]) ;
9 ifMSD[𝑢] < 𝛿 then {Q.𝑝𝑢𝑠ℎ (𝑢) ;𝑑𝑒𝑔[𝑢] ← 0;}

10 while Q ≠ ∅ do
11 𝑣 ← Q.𝑝𝑜𝑝 () ;𝐷 ← 𝐷 ∪ {𝑣};
12 for 𝑤 ∈ 𝑁𝑣 (𝐺𝑐) \𝐷 , s.t. 𝑑𝑒𝑔[𝑤] ≥ 𝛿 do
13 𝑑𝑒𝑔[𝑤] ← 𝑑𝑒𝑔[𝑤] − 1;

14 if 𝑑𝑒𝑔[𝑤] < 𝛿 then {Q.𝑝𝑢𝑠ℎ (𝑤) ; continue;}
15 ifMSD[𝑤] is not existed then continue;
16 for 𝑡 , s.t.(𝑣, 𝑤, 𝑡) ∈ E do
17 DS[𝑤] [𝑡] ← DS[𝑤] [𝑡] − 1;

18 MSD[𝑤] ← UpdateMSD(𝑤, 𝑡, 𝑙,DS,MTS) ;
19 ifMSD[𝑤] < 𝛿 then {Q.𝑝𝑢𝑠ℎ (𝑤) ;𝑑𝑒𝑔[𝑤] ← 0;}

20 return G𝑉𝑐 \𝐷 ;

21 Procedure UpdateMSD(𝑤, 𝑡, 𝑙,DS,MTS)
22 CSC ← [∅]; 𝑡𝑠 ← max(0, 𝑡 − 2𝑙) ; 𝑡𝑒 ← min(𝑡 + 2𝑙, | T |) ; CSC[0] ← 0;

23 for 𝑖 ← 0 : 𝑡𝑒 − 𝑡𝑠 do
24 CSC[𝑖 + 1] = CSC[𝑖] + DS[𝑤] [𝑡𝑠 + 𝑖];
25 CH← [∅], 𝑖𝑠 ← 0, 𝑖𝑒 ← −1;
26 for 𝑗 ← 𝑙 : 𝑡𝑒 − 𝑡𝑠 + 1 do
27 while 𝑖𝑠 < 𝑖𝑒 and slope(CH[𝑖𝑒], 𝑗 − 𝑙, CSC) ≤

slope(CH[𝑖𝑒 − 1],CH[𝑖𝑒], CSC) do
28 𝑖𝑒 ← 𝑖𝑒 − 1;

29 𝑖𝑒 ← 𝑖𝑒 + 1; CH[+ + 𝑖𝑒] ← 𝑡 − 𝑙 ;
30 while 𝑖𝑠 < 𝑖𝑒 and slope(CH[𝑖𝑠], 𝑗, CSC) ≥

slope(CH[𝑖𝑠],CH[𝑖𝑠 + 1], CSC) do
31 𝑖𝑠 ← 𝑖𝑠 + 1;
32 if 𝑗 ≥ 𝑡 − 𝑡𝑠 then
33 MTS[𝑤] [𝑗 + 𝑡𝑠 − 𝑙] ← slope(CH[𝑖𝑠], 𝑗, CSC) ;

34 returnmax(MTS[𝑤]) ;

7-8). It should be noted that ComputeMSD∗ is all the same to

ComputeMSD except that it returns (MTS[𝑤],DS[𝑢]) (replace
line 14 of Algorithm 2). Next, if MSD[𝑢] is no larger than 𝛿 , 𝑢 is

not an (𝑙, 𝛿)-bursting node. Thus, the algorithm pushes 𝑢 into the

queue Q (line 9). Subsequently, the algorithm iteratively deletes

the nodes in Q (lines 10-19). When removing a node 𝑣 , MBC+
explores all 𝑣 ’s neighbors (line 12). For a neighbor node𝑤 , MBC+
first updates the degree of𝑤 (line 13), i.e., 𝑑𝑒𝑔[𝑤]. If the updated
degree is less than 𝛿 , 𝑤 is not an (𝑙, 𝛿)-bursting node (line 14). In

this case, the algorithm pushes it into Q and continues to process

the next node in Q (the degree pruning rule). Otherwise, ifMSD[𝑤]
has already been computed, the algorithm invokes UpdateMSD to

update MSD[𝑤] (line 19). If the updated MSD[𝑤] is less than 𝛿 ,𝑤
is not an (𝑙, 𝛿)-bursting node and the algorithm pushes 𝑤 into Q
(line 19). We can see that ifMSD[𝑤] has not been computed yet, the

algorithm does not need to update MSD[𝑤]. In this case, MSD(𝑤)
will be calculated in the next iterations of line 7. It also should be

noted that the DS is always updated, because if the nodes have

been deleted by the degree constraint,DS will be newest in G𝑉𝑐\𝐷
(line 7), otherwise if the nodes have been deleted by the (𝑙, 𝛿)-dense
constraint, DS will be updated in line 17. Finally, MBC+ outputs
G𝑉𝑐\𝐷 as the result.

3916

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[9]
MSD

(a) 𝑡 ′ = 1

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[9]
MSD

(b) 𝑡 ′ = 4

0 2 4 6 8
0

5

10

15

20

25

30
DS
CSC
CH
MTS[9]
MSD

(c) 𝑡 ′ = 9

Figure 3: Updated situations of Fig. 2(f) after DS[𝑤] [𝑡 ′]
reduces by 1. The data on x-axis and y-axis represent the
time 𝑡 and the cumulative sum.

To Overcome Limitation (ii). In the following, we introduce

the UpdateMSD procedure. Suppose that before updating, the

maximum 𝑙-segment density of𝑤 exists from time 𝑡𝑠 to 𝑡𝑒 . At this

time, if DS[𝑤] [𝑡 ′] reduces by 1, then there exist three situations:

(𝑖) 𝑡 ′ < 𝑡𝑠 ; (𝑖𝑖) 𝑡𝑠 ≤ 𝑡 ′ ≤ 𝑡𝑒 ; (𝑖𝑖𝑖) 𝑡 ′ > 𝑡𝑒 .

Example 4. Fig. 3 shows the three situations of Fig. 2(f) after
DS[𝑤] [𝑡 ′] reduces by 1. We can see that the current maximum
𝑙-segment density of 𝑤 exists from 𝑡𝑠 = 3 to 𝑡𝑒 = 8. As shown in
Fig. 3(a) in which 𝑡 ′ < 𝑡𝑠 and Fig. 3(c) in which 𝑡 ′ > 𝑡𝑠 , we can see
that theMSD[𝑤] will not change. We can find that the parts of curve
with the maximum slop are all moved down. Also, it can be proved
easily from the definition of 𝑙-segment density that MSD[𝑤] will not
change. Howerver, in Fig. 3(b), DS[𝑤] [4] reduces by 1 and the new
sequence is [3, 2, 3, 3, 4, 2, 2, 6, 1]. The maximum 𝑙-segment density is
3.5, which is the density of the 5𝑡ℎ to 8𝑡ℎ items [4, 2, 2, 6]. So, only
when 𝑡𝑠 ≤ 𝑡 ′ ≤ 𝑡𝑒 should we update the MSD. □

Below we will introduce that it only needs to consider DS
from time 𝑡 − 2𝑙 to time 𝑡 + 2𝑙 to update MSD. We first define

a concept,MTS
2𝑙 [𝑢] [𝑗], which is a maximum 𝑗-truncated 𝑙-slope

of considering only 2𝑙 length of the curve CSC of node 𝑢.

Definition 10 (maximum 𝑡-truncated (𝑙-2𝑙)-slope). Given a
curve CSC of node 𝑢 by Definition 7, a truncated time 𝑡 ∈ [𝑙 :

|T |], the maximum 𝑖-lower 𝑡-truncated (𝑙-2𝑙)-slopeMTS
2𝑙 [𝑢] [𝑡] =

{max(slope(𝑖, 𝑡)) |𝑖 = [𝑗 − 2𝑙 : 𝑗 − 𝑙]}.

Based on Definition 10, MTS
2𝑙 [𝑢] [𝑡] is the maximum slope

which only considersMTS[𝑢] [𝑗] with the slope ends at 𝑗 and starts

in [𝑗 − 2𝑙 : 𝑗 − 𝑙]. For convenience, MTS
2𝑙 [𝑢] is the collection

of {MTS
2𝑙 [𝑢] [𝑡] |𝑡 ∈ [𝑙 : |T |]}. Furthermore, it holds the property

below.

Lemma 2. MSD(𝑢,G𝐶) = max(MTS[𝑢]) = max(MTS
2𝑙 [𝑢])

holds for a given curve CSC of 𝑢.

Corollary 2. According to Lemma 2, MSD(𝑢,G𝐶) =

max(MTS[𝑢]). If DS[𝑢] reduces by 1 at time 𝑡 , we only need to
update MTS[𝑢] [𝑡 ′] = MSD[𝑢] [𝑡 ′] with 𝑡 ′ ∈ [𝑡 : 𝑡 + 2𝑙] to get the
updated MSD(𝑢,G𝐶).

Corollary 3. If DS[𝑢] reduces by 1 at time 𝑡 , we only need to
useDS[𝑢] [𝑡 ′] with 𝑡 ′ ∈ [max(0, 𝑡 −2𝑙) : min(𝑡 +2𝑙, |T |)] to update
MTS[𝑢], and then get the updated MSD(𝑢,G𝐶).

According to the above corollaries, the UpdateMSD procedure

first initializes 𝑡𝑠 as the left side of the considered time interval, 𝑡𝑒
as the right side and CSC based on Definition 7 (lines 22-24). The

following step is aimed at computing all the MTS
2𝑙 [𝑤] [𝑗] which

ends at time 𝑗 and starts from time 𝑗 − 2𝑙 to 𝑗 − 𝑙 . The following
process is much same as that in Algorithm 2 (lines 27-31). Note that,

we useMTS[𝑤] [𝑗] to recordMTS
2𝑙 [𝑤] [𝑗] of node𝑤 and it should

be updated only when 𝑗 ≥ 𝑡 − 𝑡𝑠 (line 32). After all the MTS[𝑤] [𝑗]
with 𝑗 from 𝑡 to 𝑡𝑠 have been maintained, the procedure returns

max(MTS[𝑤]) as the updated MSD[𝑤] (line 34).

Lemma 3. For a temporal graph G with |T | timestamps, procedure
UpdateMSD need𝑂 (𝑙) to maintain the maximum 𝑙-segment density.

Complexity of Algorithm 3. The time and space complexity of

Algorithm 3 are𝑂 (𝛼 |T | + 𝛽𝑙) and𝑂 (𝛼 |T | +𝑚) respectively, where
𝛼, 𝛽 are number of nodes and edges in 𝑘-core (𝑘 = 𝛿) of 𝐺 .

4 ALGORITHMS FOR MINING POMBCs
Finding all POMBCs in a temporal network helps us determine

whether there exists an (𝑙 ′, 𝛿 ′)-MBC by arbitrarily given 𝑙 ′, 𝛿 ′. The
parameter 𝑙 in our model should be as small as possible, since

a good bursting community is often with a large 𝛿 and small 𝑙 .

However, in real-world applications, we do not know how to set

proper parameters 𝑙 ′, 𝛿 ′ to mine such good bursting communities.

Because if 𝑙 ′, 𝛿 ′ are too large we may get empty results, and if 𝑙 ′, 𝛿 ′

are too small, we then will obtain too many unnecessary nodes in

the (𝑙, 𝛿)-MBC. Therefore, it is meaningful to finding all POMBCs
efficiently, since they can show whether there exists an (𝑙 ′, 𝛿 ′)-
MBC by arbitrarily given 𝑙 ′, 𝛿 ′.

In this section, we develop an efficient algorithm to record

all POMBCs. The basic idea of our algorithm is as follows. The

algorithm first only considers the 𝑙 dimension, and computes the

maximal 𝛿 , among all the (𝑙, 𝛿)-maximal bursting cores. Then, the

algorithm considers the 𝛿 dimension with 𝛿 = 𝛿 to compute the

currently maximal 𝑙 ′ value. Using the above method, we can find

one POMBC which has the maximal (𝑙, 𝛿) value of all the skyline
cores. The challenge is how to find the other POMBC iteratively.

We can tackle this challenge based on the following results.

Lemma 4. Let (𝑙 ′, 𝛿)-MBC be a POMBC which has the largest 𝛿
among all the POMBCs, if the node is not a (𝑙, 𝛿)-bursting node with
𝑙 > 𝑙 ′, 𝛿 > 0, it can not be contained in another POMBC.

Lemma 5. Let (𝑙 ′, 𝛿 ′)-MBC be a POMBC. If 𝑙∗ > 𝑙 ′ and (𝑙∗, 𝛿∗)-
MBC is another POMBC, (𝑙∗, 𝛿∗)-MBC must be contained in an
induced temporal subgraph from 𝑘-core of 𝐺 in which 𝑘 = 𝛿 ′×𝑙 ′

𝑙∗ .

Based on Lemma 4 and 5, after computing one POMBC (𝑙, 𝛿)-
MBC, as 𝑙 is integer, we can initialize 𝑙 ′ = 𝑙 + 1 to get the next

POMBC. Furthermore, we can reduce the considering graph by the

following corollary.

Corollary 4. Let (𝑙, 𝛿)-MBC and (𝑙 ′, 𝛿 ′)-MBC be two POMBCs.
If 𝑙 ′ > 𝑙 , then nodes in (𝑙 ′, 𝛿 ′)-MBC must be contained in a 𝑘-core of
𝐺 in which 𝑘 = 𝛿×𝑙

𝑙+1 .

The detail of the POMBC algorithm is shown as follows. First,

Algorithm 4 initializes 𝑙 = 2, 𝛿 = 0 to be default, 𝑅 to store the

result and 𝐶 to be the nodes of the considered bursting nodes (line

2). Then, the algorithm considers the 𝑙 dimension and grows 𝑙 to

find all the POMBCs. Next, it computes MSD[𝑢] and 𝑑𝑒𝑔[𝑢] in

3917

Algorithm 4: POMBC(G)
Input: Temporal graph G = (V, E, T)
Output: POMBCs in G

1 Let𝐺 = (𝑉 , 𝐸) be the de-temporal graph of G;
2 𝑙 ← 2;𝛿 ← 0;𝑅 ← [∅];𝐶 ← 𝑉 ;

3 while 𝑙 ≤ |T | do
4 for𝑢 ∈ 𝐶 do
5 (MTS[𝑢],DS[𝑢]) ← ComputeMSD∗ (G, 𝑙,𝑢,𝐶) ;
6 MSD[𝑢] ← max(MTS[𝑢]) ;
7 𝑑𝑒𝑔[𝑢] ← |𝑁𝑢 (𝐺) ∩𝐶 | ;
8 (𝛿,𝐶) ← MaxDelta(G, 𝑙,𝐶,DS,MTS,MSD, 𝑑𝑒𝑔) ;
9 (𝑙,𝐶) ← MaxL(G, 𝑙 + 1, 𝛿,𝐶,𝑑𝑒𝑔) ;

10 𝑅 ← 𝑅 ∪ (𝑙, 𝛿, G𝐶) ;
11 Let𝐺𝑐 = (𝑉𝑐 , 𝐸𝑐) be the 𝑘-core (𝑘 = 𝛿×𝑙

𝑙+1) of𝐺 ;

12 𝐶 ← 𝑉𝑐 ; 𝑙 ← 𝑙 + 1;
13 return 𝑅;

14 ProcedureMaxDelta(G, 𝑙,𝑉 ∗,DS,MTS,MSD, 𝑑𝑒𝑔)
15 while True do
16 Q ← [∅];𝐷 ← [∅]; 𝛿 ←min(MSD) ; 𝛿 ← 2𝑛𝑑 min(MSD) ;
17 for𝑢 ∈ 𝑉 ∗ do
18 Lines 6-19 in Algorithm 3;

19 if 𝐷 ≠ 𝑉 ∗ then
20 𝑉 ∗ ← 𝑉 ∗ \𝐷 ; for𝑢 ∈ 𝐷 doMSD[𝑢] ← ∅ ;

21 else return (𝛿,𝑉 ∗) ;

22 ProcedureMaxL(G, 𝑙, 𝛿,𝑉 ∗, 𝑑𝑒𝑔)
23 while 𝑙 ≤ |T | do
24 Q ← [∅];𝐷 ← [∅];MSD← [∅];MTS← [∅];
25 for𝑢 ∈ 𝑉 ∗ do
26 Lines 6-19 in Algorithm 3.

27 if 𝐷 ≠ 𝑉 ∗ then
28 𝑉 ∗ ← 𝑉 ∗ \𝐷 ;

29 if 𝑙 = | T | then return (𝑙,𝑉 ∗) ;
30 𝑙 ← 𝑙 + 1;
31 else return (𝑙,𝑉 ∗) ;

the induced graph from nodes 𝐶 (lines 4-7). By the given 𝑙 , the

MaxDelta algorithm finds the maximal 𝛿 and the corresponding

core nodes (line 8). Next, given one maximal 𝛿 , theMaxL algorithm

finds the maximal 𝑙 and the final 𝐶 (line 9). The induced temporal

subgraph of 𝐶 from G is a POMBC and (𝑙, 𝛿,G𝐶) is recorded as a

result (line 10). Based on Corollary 4, in the iteration of 𝑙 ← 𝑙+1, the
new POMBC must be contained in a induced temporal subgraph

from 𝑘-core of 𝐺 in which 𝑘 = 𝛿×𝑙
𝑙+1 , so 𝐶 is updated as 𝑉𝑐 for next

loop(lines 10-11). The iterations will terminate when 𝑙 is increased

to |T | (line 3).
Procedure MaxDelta describes the process of finding the largest

𝛿 by parameter 𝑙 . It is a loop until all the nodes have been deleted

(line 15). The algorithm maintains Q to be the deleting queue and

𝐷 to be the deleted nodes. Specifically, 𝛿 and 𝛿 are assigned to the

minimal and second minimal value of MSD[𝑢] for 𝑢 ∈ 𝑉 ∗ (line
16). Then, the nodes are deleted if 𝑑𝑒𝑔[𝑤] < 𝛿 or MSD[𝑤] < 𝛿 ,

which is similar to the process in Algorithm 3 (lines 17-18). Next,

if the deleted nodes set 𝐷 is not equal to the remained nodes set

𝑉 ∗, the remained 𝑉 ∗ is updated by 𝑉 ∗ \ 𝐷 and MSD will pop all

theMSD[𝑢] for 𝑢 in the deleted nodes’ set 𝐷 (lines 19-20). Else, if

𝐷 = 𝑉 ∗, then the remained nodes𝑉 ∗ will have maximal 𝛿 (lines 21).

Furthermore, procedureMaxL can use the remained nodes set of

MaxDelta and the known maximal 𝛿 to find the maximal 𝑙 . It grows

𝑙 to find the largest 𝑙 and it will terminate if 𝑙 increases to |T | (line
23). The unsatisfying nodes are deleted same as that in Algorithm 3

(lines 25-26). MaxL ends at the first time when all the 𝑉 ∗ will be

Table 1: Statistics of datasets
Dataset |𝑉 | = 𝑛 |𝐸 | | E | =𝑚 𝑑max | T | Time scale
Chess 7,301 55,899 63,689 233 101 month

Lkml 26,885 159,996 328,092 14,172 96 month

Enron 86,836 296,952 501,510 2,156 87 month

DBLP 1,729,816 8,546,306 12,007,380 5,980 78 year

YTB 3,223,589 9,376,594 12,218,755 129,819 225 day

FLK 2,302,925 22,838,276 24,690,648 28,276 197 day

MO 24,759 187,986 294,293 5,556 2,351 day

AU 157,222 455,691 549,914 7,325 2,614 day

WT 1,094,018 2,787,967 4,010,611 214,518 2,321 day

deleted or 𝑙 = |T |, it returns the maximal 𝑙 and the remained nodes

set 𝑉 ∗ (lines 27-31).

Speed-up strategies. Although the core reduction pruning in line

11 of Algorithm 4 reduces the temporal graph into a smaller size, the

algorithm is still not efficient. It is because when 𝑙 is small and 𝛿 is

large, we need to try to compute themin(MSD) and 2𝑛𝑑 min(MSD)
in line 16 for lots of time. When 𝑙 is large but 𝛿 is small, the pruning

strategy in line 26 is not powerful. To solve these problems, we

propose two speed-up strategies, which are shown below.

(i) We use a binary search to try the 𝛿 when 𝑙 is small. For small

𝑙 , the first considered 𝛿 =𝑚/2. If such (𝑙, 𝛿)-MBC exists, we set 𝛿

to be
𝑚/2+𝑚

2
, otherwise we set 𝛿 to be

𝑚
4
.

(ii) We use an early termination to try 𝛿 when 𝑙 is large. For large

𝑙 , we set 𝛿 ′ = 𝛿𝑙−1×(𝑙−1)+1
𝑙

in which 𝛿𝑙−1 is the optimal 𝛿 of 𝑙 − 1.
If the (𝑙, 𝛿 ′)-MBC does not exist, then the algorithm performs an

early termination and the optimal 𝛿𝑙 is
𝛿𝑙−1×(𝑙−1)

𝑙
.

The above two strategies can handle the situations when 𝑙 is very

small or very large. The experimental results in Section 5 show that

the pruning strategies can speed up the computations in practice.

Complexity of Algorithm 4. The worst time and space complex-

ity of Algorithm 4 are 𝑂 (𝑚 |T |2) and 𝑂 (𝑛 |T | + 𝑚) respectively.
However, the pruning rule based on Corollary 4 can reduces the

computation time greatly.Wewill show the running time in practice

at Section 5.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

proposed algorithms. We implement eight different algorithms for

comparison: (i) KC [38] is a baseline that computes the 𝑘-core (𝑘 =

𝛿) in the temporal graph. (ii) DS [33] is a baseline algorithm that

searches the Densest Subgraph in the temporal graph. (iii) DBS [11]
is a related algorithm that can find the Densest and Bursting

Subgraph in the temporal graph. (iv) MBC-B is a baseline that

computes (𝑙, 𝛿)-MBC using the framework shown in Algorithm 1,

but it enumerates all subsequences to compute maximum 𝑙-segment

density. (v) MBC is the implementation of Algorithm 1, which uses

Algorithm 2 to compute MSD. (vi) MBC+ is the implementation

of Algorithm 3 to compute (𝑙, 𝛿)-MBC. (vii) POMBC can output

all the POMBCs by Definition 6, and it is an implementation of

Algorithm 4. (viii) POMBC-B is a basic implementation of POMBC
without integrating the pruning rules developed in Corollary 4. All

algorithms are conducted on a Linux kernel 4.4 server with an Intel

Core(TM) i5-8400@3.80GHz processor and 32 GB memory. When

quantity measures are evaluated, the test was repeated over 5 times

and the average is reported here.

3918

Datasets. We use nine different real-world temporal networks

in the experiments. The detailed statistics of our datasets are

summarized in Table 1, where 𝑑max denotes the maximum number

of temporal edges associated with a node, and |T | denotes the
number of snapshots. All snapshots are simple, undirected and

unweighted graphs. Chess1 is a network that represents two chess

players playing games together from 1998 to 2006. Lkml1 is a

communication network of the Linux kernel mailing list from

2001 to 2011. Enron1 is an email communication network between

employees of Enron from 1999 to 2003. DBLP2 is a collaboration
network of authors inDBLP from 1940 to Feb. 2018. Youtube3 (YTB
for short) and Flickr1 (FLK) are friendship networks of users in

Youtube and Flickr, respectively. In addition,MathOverflow3 (MO),
AskUbuntu3 (AU) are temporal networks of interactions on the

stack exchange web site mathoverflow.net and askubuntu.com,

respectively.WikiTalk3 (WT) is a temporal network representing

the interactions among Wikipedia users.

Parameter settings. There are two parameters 𝑙 and 𝛿 in the (𝑙, 𝛿)-
MBC model. We vary 𝑙 from 3 to 11 with a default value of 3 in

the testing, and vary 𝛿 from 3.0 to 11.0 with a default value of 3.0.

Unless otherwise specified, the values of other parameters are set

to their default values when varying a parameter.

Goodness metrics. Since most existing metrics (e.g., modularity)

for measuring community quality are tailored for traditional graphs,

we introduce two goodness metrics evaluating communities for

temporal graphs, which are motivated by density and separability
[39]. Let 𝐶 be a community computed by different algorithms.

Average Density (AD) builds on the idea that good communities

are well connected. It measures the fraction of the temporal edges

that appear between the nodes in𝐶 : AD = [
∑

𝑣𝑖 ∈𝐶 𝑑𝑒𝑔G𝐶 (𝑣𝑖)
|𝐶 |], where

𝑑𝑒𝑔G𝐶 (𝑣𝑖) denotes the number of temporal edges that are associated

with 𝑣𝑖 in the community 𝐶 .

Average Separability (AS) captures the intuition that good

communities have relatively few across edges between 𝐶 and the

rest of the network: AS = [| { (𝑢,𝑣,𝑡) ∈E:𝑢∈𝐶,𝑣∈𝐶 } |/|𝐶 ||𝑆={ (𝑢,𝑣,𝑡) ∈E:𝑢∈𝐶,𝑣∉𝐶 } |/|𝑆 |], which
measures the ratio between the internal average density and the

external average density.

Obviously, our proposed AD and AS can capture the notion of

cohesion within a time frame, since we consider the temporal edges.

To the best of our knowledge, we are the first to extend the definition

of density and separability from static graphs into temporal graphs.

5.1 Effectiveness Evaluation

Exp-1. Effectiveness of KC, DS, DBS and MBC. Fig. 4 shows

the qualities of the communities computed by different algorithms

under the default parameter setting. Similar results can also be

observed using the other parameter settings. As seen in Fig. 4(a),

DBS and DS outperform the others in terms of the AD metric (but

DBS and DS are very time consuming). Considering AD, we can
also observe thatDS is slightly better thanDBS. This is because that
DS obtains the subgraph with the largest density and DBS obtains

the densest subgraph considering the bursting property. MBC is

1
http://www.konect.cc/

2
https://dblp.uni-trier.de/xml/

3
http://snap.stanford.edu/data/index.html

Che
ssLkm

l
Enr
onDBL

PYTB FLK MO AU WT
0

50

100

150

200

250

300 KC
DS

DBS
MBC

(a) AD

Che
ssLkm

l
Enr
onDBL

PYTB FLK MO AU WT
0

20

40

60

80

100

120 KC
DS

DBS
MBC

(b) AS

Figure 4: Effectiveness results of KC, DS and MBC

1960 1980 2000 2020
0

10

20

30

40

50

60

A
D

KC
DS
DBS
MBC

(a) AD

1960 1980 2000 2020

6
8
10
12
14
16
18
20

A
S

KC
DS
DBS
MBC

(b) AS

Figure 5: Results of burstiness testings on DBLP

slightly weaker than DBS, but much better than KC in terms of

AD. Furthermore, the AD values of both DS, DBS and MBC in WT
are much higher than those in the other datasets. The reason is

that the maximum degree inWT is largest among all datasets; thus,

there must exist a community with higher density. In Fig. 4(b), the

MBC community we proposed have a higher AS than DBS and DS
on all datasets. Compared to the other datasets, the AD onMO is

high , but the AS is low. The reason is that AS captures the ratio

between the internal average density and external average density.

Clearly, each node in MBC has a high internal average density.

In conclusion, DBS searches the densest bursting subgraph in the

temporal graph so it has the best AD; MBC has the best AS and

slightly lower AD; KC performs poorly in all the effectiveness tests.

Fig. 5 shows the distributions of average density (AD) and
average separability (AS) for the algorithms while varying the ends

of the time intervals. More specifically, we show the AD and AS
of the subgraph KC, DS, DBS, MBC in (1945,1950], (1946,1951] ...

(2015,2020] on DBLP by observing segments of each 5 years. In

Fig. 5(a), we can see that the curves of the AD for all algorithms

increase from 1960 to 2000, and then decrease from 2000 to 2020.

These results indicate that there indeed exist bursty subgraphs

which are densely-connected rapidly in the real datasets. Note

that, MBC is slightly weaker than DBS in terms of AD, and better

than KC and DS, which is consistent with the results in Fig. 4(a).

In Fig. 5(b), we can observe that MBC is better than the other

algorithms in terms of AS, because MBC can seek more accurate

communities which has low external average density. Interestingly,

the AD of all the algorithms decrease from 1960 to 2020. This is

because in early years the publications and the collaborations are

limited but in recent years the collaborations of the authors are

active, resulting in that there are more external collaborations in

recent years.

Exp-2. Results of the bursty subgraph. Fig. 6 shows the results
of MBC and the bursty 𝑘-truss model on DBLP and Enron. Similar

results can also be observed on the other datasets. In Fig. 6(a),

3919

mathoverflow.net
askubuntu.com

(a) MBC on DBLP (b) MBC on Enron (c) Bursty truss on DBLP

Figure 6: Results of the bursty subgraphs

0 20 40 60 80 100
l

6
8
10
12
14
16
18
20

100
200
300
400
500
600
700l *

(a) Lkml

0 20 40 60 80
l

2.5
5.0
7.5
10.0
12.5
15.0
17.5
20.0

25
50
75
100
125
150
175
200l *

(b) Enron

Figure 7: 𝑙, 𝛿 values of POMBCs on different datasets

0 20 40 60 80 100
l

850

900

950

1000

1050 AD

66
68
70
72
74
76
78
80
82

AS

(a) Lkml

0 20 40 60 80
l

220

240

260

280

300 AD

32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0

AS

(b) Enron

Figure 8: Effectiveness results of POMBCs

we can observe that MBC (𝑙 = 10, 𝛿 = 10) on DBLP contains

many connected components, since the subgraphs may be split into

several parts by the definition of the 𝑘-core model. In Fig. 6(b), we

can seeMBC (𝑙 = 5, 𝛿 = 10) on Enron are connected, but it can also

be grouped by three parts. Fig. 6(c) shows the bursty 𝑘-truss which

is obtained by a simple modification of Definition 5. The bursty

𝑘-truss has almost the same structure as the bursty 𝑘-core, except

that the bursty 𝑘-truss removes some small connected components

in 𝑘-core. This is because in 𝑘-truss, the cross-domain edges will

be removed and then the small components in the subgraph will

also be deleted.

Exp-3. Results of POMBC. Fig. 7 shows the 𝑙, 𝛿 values for each

POMBC on Lkml and Enron. Again, similar results can also be

observed on the other datasets. From Fig. 7(a), we observe that when

𝑙 = 2, an (𝑙, 𝛿)-MBC in Lkml achieves the maximum 𝑙-segment

density which is equal to 18.5. The 𝛿 values drop dramatically

when 𝑙 = 20. As desired, the 𝛿 values in both Fig. 7(a) and Fig. 7(b)

exhibit a staircase shape because of the parato-optimal property.

In Fig. 7(a), we can see that 𝑙 increases from 𝑙 = 21 to 𝑙 = 25 when

𝛿 is unchanged, which shows that there is a POMBC which can

dominate others in terms of parameters 𝑙, 𝛿 . In Fig. 7(b), we can

also observe that the values of 𝑙 ∗ 𝛿 on Enron grow rapidly from

𝑙 = 0 to 𝑙 = 40, and then the values tend to be balanced. This is

because when 𝑙 > 40, the POMBC in Enron is the same subgraph

with changing the lowest 𝑙 constraint. However, the values of 𝑙 ∗ 𝛿
on Lkml continue increasing from 𝑙 = 0 to 𝑙 = 96. This is the reason

that the average degree inside Lkml is much larger than that inside

Enron, so it has different communities with high degrees.

Fig. 8 shows the AS and AD values of POMBCs on Lkml and
Enron. The results on the other datasets are consistent. The AS and

AD values increase as 𝑙 increases from 0 to 30. We can also see

that the curves of the AS and AD values match the curves of 𝑙 ∗ 𝛿
values in Fig. 7. This is because while 𝑙 ∗𝛿 values increase, the inside
degree of the subgraphs increase, which results in the growth of

AS and AD. We can observe that in Fig. 8(b), when 𝑙 = 15 to 𝑙 = 20,

the AD values increase but the AS values decline. It shows that AS
and AD are two metrics that are not all increasing at the same time.

When 𝑙 > 30, AS and AD values change slightly. This is the reason

that when 𝑙 > 30 (𝑖) the POMBC in Enron is the same subgraph;

(𝑖𝑖) 𝑙 ∗ 𝛿 values of the POMBC on Lkml increases, but the quantity
of communities may not enlarge.

Exp-4. Communities results on Enron. We present the com-

munities results on Enron. The Enron dataset consists of emails

sent between employees of Enron from 1999 to 2003. Nodes in the

network are individual employees, and edges are individual emails.

As the results of KC and DS contain too many edges and cannot be

applied to finding the bursting patterns, we compare the results of

DBS and MBC in this section. Fig. 9(a) shows one DBS on Enron
with all the temporal edges (𝑢, 𝑣, 𝑡) inside it. Figs. 9(b-c) show the

DBS on Enron keeping only the temporal edges that exist at no

fewer than 5 and 10 timestamps, respectively. Similarly, Figs. 9(d-

f) show theMBC and theMBC keeping only the temporal edges

which exist at no fewer than 5 and 10 timestamps, respectively. We

can obtain the following observations: (i) The subgraph obtained
by DBS is slightly denser than MBC. Specifically, the AD values

in DBS and MBC are 296.51 and 289.48, respectively. However, the

MBC has higher AS than DBS, as the AS values in 9(a) and 9(d)

are 42.95 and 46.83, respectively. The results indicate the fact that

DBS has higher AD and lower AS thanMBC, which is consistent

with the result of Exp-1. (ii) TheMBC contains more temporal
edges that are frequently connected with each other than
DBS. In DBS, there exist 90 nodes, 2151 edges in Fig. 9(a), 90 nodes,

1027 edges in Fig. 9(b) and 75 nodes, 195 edges in Fig. 9(c) (isolated

nodes are removed). Furthermore, considering the MBC, there are
50 nodes, 1040 edges in Fig. 9(d), 50 nodes, 569 edges in Fig. 9(e) and

49 nodes, 272 edges in Fig. 9(f). We can see that although DBS has

more edges thanMBC (2151 > 1040), after cutting some infrequent

temporal edges whose #𝑡 < 10, DBS has fewer edges than MBC
(195 < 272). (iii) In Figs. 9(a-c), we observe a similar result as
ref [30] that DBS obtains outliers which belong to the other
dense regions of the graph. However, our models in Figs. 9(d-f)

show clearer communities than DBS. Moreover, we can separate

the two dense regions of Fig. 9(c) into a red region and a green

region. We also observe that the red region in Fig. 9(c) is similar

to the red region in Fig. 9(f), which consists of the same kernel

nodes in the community (such as: 851, 1310, 508, 1336, 786, 854...).

These results indicate that our proposed MBC can identify higher

edge-connected and more accurate bursting communities.

3920

(a) DBS (b) DBS (each edge #𝑡 ≥
5)

518

641

30

505

544

1062

1335

580

890

723

448

1310

508

720

1593

807

804
125

532

452

527

1199

954

1178

746

713

3286

919

628

1066

1079

719

540

604

663

835

1068

545

419

928

1067

1063

538

714

786

733

519

489

498

491

642

143

425
985

1070

905

854

825

1323

1336

1331

616

611

856

851

1548

1246

1300

501
674

726

558

1552

1329

142

(c) DBS (each edge #𝑡 ≥ 10)

(d) MBC (e) MBC (each edge #𝑡 ≥ 5)

1066

1310

1593

1079

616 851

914

726

854

1300

1067

448

508

498

905

1329

1068

1336

856

538 663

786

1340

1552

1335

928

1063

733

807 625

642

519
641

491

611

1323
1331

610

877

1313

628

825

714

1548

1376

1070

558

489

501

(f) MBC (each edge #𝑡 ≥ 10)

Figure 9: Communities results on Enron

Table 2: Running time (s) of different algorithms
Dataset KC DS DBS MBC-B MBC MBC+
Chess 0.05 13.45 8.32 1.32 0.78 0.50
Lkml 0.06 35.23 20.32 2.4 1.02 0.36
Enron 0.19 134.2 82.32 13.41 3.54 1.25
DBLP 6.84 1602.32 542.54 187.32 53.90 26.95
YTB 30.53 6653.23 3123.13 759.52 126.92 68.23
FLK 17.53 5234.23 3123.32 876.4 122.87 34.52
MO 0.11 5602.21 2213.21 1200.23 30.15 3.71
AU 0.52 10232.23 3121.31 2599.78 66.89 13.36
WT 2.15 23123.23 8021.31 11865.87 145.23 57.65

5.2 Efficiency Evaluation

Exp-5. Running time of the algorithms. Table. 2 evaluates

the running time of KC, DS, DBS,MBC-B,MBC andMBC+ with
parameters 𝑙 = 3 and 𝛿 = 3. Similar results can also be observedwith

the other parameter settings. From Table. 2, we can see thatMBC+
is much faster thanDS,DBS,MBC-B andMBC on all datasets. Note

that KC is the fastest algorithm, as it has a linear time complexity

of [38]. However, KC is ineffective in finding bursting communities,

as shown in Exp-1. Recall that the theoretical running time ofMBC+
is 𝑂 (𝛼 |T | + 𝛽𝑙) where 𝛼 = |𝑉𝑐 |, 𝛽 = |𝐸𝑐 | denotes the number of

nodes and edges in 𝑘-core (𝑘 = 𝛿) of 𝐺 . Thus, on DBLP, KC takes

6.8 seconds and our proposed MBC+ only consumes 26.9 seconds.

OnWT, we can see that DS takes 23123 seconds, DBS takes 8021
seconds, MBC-B takes 11865 seconds and MBC+ only takes 57

seconds. These results confirm that our proposed algorithms are

indeed very efficient on large real-life temporal networks.

Exp-6. Running time of computing all POMBCs. Table 3 shows
the running time of POMBC-B and POMBC with the default

parameter setting. We can see that POMBC requires approximately

20%-30% of the time of POMBC-B on all the datasets. For example,

POMBC-B needs approximately 17,232 seconds and 43,231 seconds

to compute all the POMBCs inMO and AU datasets but POMBC
only needs 19.9% and 27.0% times, respectively. This is because

the core reduction pruning in line 11 of Algorithm 4 reduces the

temporal graph into a much smaller size, and the speed up strategies

can avoid computing (𝑙, 𝛿)-MBC with small 𝑙 and 𝛿 . Note that both

POMBC-B and POMBC cannot obtain results onWT in 1 day. The

Table 3: Running time (s) of POMBC-B V.S. POMBC
POMBC-B (𝑡1) POMBC (𝑡2) 𝑡2/𝑡1

Chess 245.23 53.24 21.7%

Lkml 682.32 175.32 25.6%

Enron 953.42 280.43 29.4%

DBLP 10232.32 2407.13 23.5%

YTB 24563.23 6153.52 25.1%

FLK 14245.23 3698.13 26.1%

MO 17232.42 3424.12 19.9%

AU 43231.45 11678.23 27.0%

WT >1 day >1 day N/A

3 4 5 6 7 8 9 10 11
10
20
30
40
50
60
70
80
90

AD
AS

(a) vary 𝑙 (DBLP)

3 4 5 6 7 8 9 10 11
10
20
30
40
50
60
70
80
90

AD
AS

(b) vary 𝛿 (DBLP)

Figure 10: Effectiveness of MBC with varying 𝑙, 𝛿 on DBLP

3 4 5 6 7 8 9 10 110

20

40

60

80

R
un
ni
ng
…
tim

e…
(s
)

MBC
MBC+
KC

(a) vary 𝑙 (DBLP)

3 4 5 6 7 8 9 10 11

10

20

30

40

50

R
un
ni
ng
…
tim

e…
(s
)

MBC
MBC+
KC

(b) vary 𝛿 (DBLP)

Figure 11: Running time (s) with varying 𝑙, 𝛿 on DBLP

results above indicate that the pruning rule in Section 4 is indeed

very powerful in practice.

Exp-9. Effectiveness results with varying parameters. Here
we study how the parameters affect the effective performance of

our algorithm. Fig. 10 shows the results of MBC with varying

parameters on DBLP. Similar results can also be observed on the

other datasets. As seen, AD increases with growing 𝑙 and 𝛿 . This is

because AD measures the inside degrees of MBC, and when 𝑙 or 𝛿

values increase, 𝑙 ∗ 𝛿 will be larger and AD will definitely increase.

We also observe that the AS changes slightly in Fig. 10. The reason

may be that when 𝑙 or 𝛿 values increase, both the numerator and

denominator of ASwill increase. Furthermore, as 𝑙 and 𝛿 control the

lower bound of the segment density and directly affect the internal

average density, the AS slightly increases.

Exp-10. Running time with varying parameters. Fig. 11 shows
the running time of KC,MBC andMBC+ with varying parameters

on DBLP. Similar results can also be observed on the other datasets.

As seen,MBC+ is faster thanMBC under all parameter settings. In

Fig. 11(a), the running times of KC and MBC remain unchanged,

but the running time ofMBC+ increases slowly with increasing 𝑙 .

These results confirm that the time complexity of KC and MBC is

independent of 𝑙 , and the time complexity of MBC+ is linear w.r.t.
𝑙 . We also see that the running time ofMBC+ andMBC decrease

with increasing 𝛿 , because all of them need to reduce the graph by

the 𝑘-core based on Property 3, and the size of the 𝑘-core decreases

as 𝛿 increases.

3921

Michael Stonebraker

(a) 𝑙 = 3, 𝛿 = 3

Michael Stonebraker

David Maier

David J. DeWitt

Stanley B. Zdonik

Surajit Chaudhuri

Raghu Ramakrishnan

Mitch Cherniack

Michael J. Franklin

Ugur Çetintemel

Samuel Madden

Alexander Rasin

Magdalena Balazinska

Michael J. Carey Rakesh Agrawal

Joseph M. Hellerstein

(b) 𝑙 = 5, 𝛿 = 5

Michael Stonebraker

Surajit Chaudhuri

Gerhard Weikum

Raghu Ramakrishnan

Sunita Sarawagi

Michael J. Carey

Michael J. Franklin

Laura M. Haas

Rakesh Agrawal

Alon Y. Halevy

Yannis E. Ioannidis

Samuel Madden
Joseph M. Hellerstein

Philip A. Bernstein

(c) 𝑙 = 7, 𝛿 = 7

Figure 12: Case study of (𝑙, 𝛿)-MBCs on DBLP

Exp-11. Case study on DBLP with varying parameters. We

show the (𝑙, 𝛿)-MBCs with varying parameters 𝑙 and 𝛿 on the case

study below. Figs. 12 (a-c) show the three communities of Prof.

Michael Stonebraker obtained byMBCwith 𝑙 = 𝛿 = 3, 5 and 7. Note

that, to be more visualized, we only keep the temporal edges that

exist at more than 5 timestamps, which means that the researchers

at two ends of each edge in Fig. 12 have cooperated for no fewer than

5 years. In Fig. 12(c), we can see that the (7, 7)-MBC comprises close

collaborators of Prof. Stonebraker. Interestingly, some researchers

are not cooperated with Prof. Stonebraker most frequently, such

as Sunita Sarawagi, Surajit Chaudhuri and Michael J. Franklin, but

all of them are top researchers and have published more than 100

papers in their research areas. This is the reason thatMBC can find

the bursting cores which are actually kernels in the communities.

From Figs. 12(a-b), we can see that the (3, 3)-MBC and the (5, 5)-
MBC not only contain the (7, 7)-MBC in Fig. 12(c), but also include

some other close collaborators of Prof. Stonebraker, such as Stanley

B. Zdonik, Ugur Çetintemel and so on. In conclusion, we can use 𝑙, 𝛿

to control theMBC depending on the applications, and the larger

𝑙, 𝛿 are, the more likely MBC is the core of the temporal graph.

6 RELATEDWORK
𝐾-core [7, 9, 15, 16, 37] is an important cohesive subgraph model

that can represent communities in a graph. Such a concept of 𝑘-

core was first proposed by Seidman [35]. Recently, Malliaros et al.

perform an in-depth discussion of core decomposition [28]. Other

notable cohesive subgraph models include 𝑘-truss [20], 𝑘-plex [4,

12], maximal clique [10] and quasi-clique [36]. However, bursting

core mining in temporal graph is a novel task that has not been well

studied before. Below, we review the recent studies on temporal

subgraph analysis and dynamic community mining.

Temporal Subgraph Analysis. Temporal subgraph analysis has

attracted much attention in recent year, including (i) Temporal Core
Model:Galimberti et al. [14] proposed temporal span-cores, in which

each node has minimum degree in a specific time interval; Wu et al.

[38] studied the core decomposition problem in temporal networks;

Yu et al. [42] computed the historical 𝑘-cores in the graph snapshots

over the time window; Li et al. [22] and Li et al. [24] detected

persistent core and continual core in a temporal graph. (ii) Temporal
Clique Model: Qin et al. [29] proposed a model for seeking periodic

cliques in a temporal graph. Yang et al. [40] studied a problem of

finding a set of diversified quasi-cliques from a temporal graph. (iii)
Temporal Subgraph Model: Yang et al. [41] proposed an algorithm

to detect frequent changing components in temporal graph; Huang

et al. [19] investigated the minimum spanning tree problem in

temporal graphs; Gurukar et al. [17] presented a model to identify

the recurring subgraphs that have similar sequence of information

flow. (iv) Temporal Densest Subgraph Model: Ma et al. [27] and

Bogdanov et al. [6] investigated the densest subgraph problem

in weighted temporal graphs. Rozenshtein et al. [32] studied the

problem ofmining densest subgraphs at different time intervals, and

a problem of finding the densest subgraph in a temporal network

[33]. Liu et al. [26] proposed a novel stochastic approach to find the

densest lasting subgraph. Some other works [5, 13] maintained the

average-degree densest-subgraph in a graph streaming scenario.

However, the above works do not study the problem of mining

bursting communities in temporal graphs.

Recently, Chu et al. [11] studied the problem of mining the

densest and bursting subgraphs in temporal graphs. However, to

search the bursting communities, the model of the densest and

bursting subgraph has three limitations compared to MBC we

proposed, as described in Section 1. Furthermore, in Section 5, the

experiments show our algorithm MBC+ performs better than DBS
in the testing of efficiency and effectiveness.

Dynamic Community Mining. In dynamic networks, each edge

is associated with a created timestamp [31]. Different from the

temporal subgraph analysis, the studies on dynamic community

mining aim to maintain communities that evolve over time. For

example, Lin et al. [25] proposed a probabilistic generative model

for analyzing communities and their evolutions; Chen et al. [8]

tracked community dynamics by introducing graph representatives;

Agarwal et al. [1] studied how to find dense clusters efficiently for

dynamic graphs despite rapid changes to microblog streams. Li et

al. [23] devised an algorithm that can maintain the 𝑘-core in large

dynamic graphs. Unlike these studies, our work mainly aims to

detect bursting communities in evolving graphs.

7 CONCLUSION
In this work, we study a problem of mining bursting cores

in a temporal graph. We propose a novel model, called (𝑙, 𝛿)-
MBC, to characterize the bursting core in the temporal graph. To

find all (𝑙, 𝛿)-MBCs, we first develop an dynamic programming

algorithm which can compute the segment density efficiently.

Then, we propose an improved algorithm with several novel

pruning techniques to improve the efficiency. Subsequently, we

develop an algorithm which can compute the pareto-optimal

bursting communities w.r.t. the parameters 𝑙 and 𝛿 . Finally, we

conduct comprehensive experiments using 9 real-life temporal

networks, and the results demonstrate the efficiency, scalability

and effectiveness of our algorithms. In the future, we plan to extend

ourmodel to capture the evolution of the community by considering

the joins and exits of vertices. Furthermore, we can also consider

the graph with bursting labels by first embedding the topic labels

of each timestamp into a list of popular index, and then modifying

the proposed algorithm to calculate the most bursty parts.

ACKNOWLEDGMENTS
This workwas partially supported by (i) National Key R&D Program

of China (Grant No. 2020AAA0108503); (ii) NSFC (Grant Nos.

62202053, 62072034, U1809206, 61932004, 62225203, U21A20516,

61732003 and U2001211); (iii) CCF-Huawei Populus Grove Fund.

Rong-Hua Li and Guoren Wang are the corresponding authors of

this paper.

3922

REFERENCES
[1] Manoj K. Agarwal, Krithi Ramamritham, and Manish Bhide. 2012. Real Time

Discovery of Dense Clusters in Highly Dynamic Graphs: Identifying Real World

Events in Highly Dynamic Environments. Proc. VLDB Endow. 5, 10 (2012), 980–
991.

[2] Sitaram Asur, Srinivasan Parthasarathy, and Duygu Ucar. 2007. An event-based

framework for characterizing the evolutionary behavior of interaction graphs.

In SIGKDD 2007. 913–921.
[3] Albert-Lászlo Barabási. 2005. The origin of bursts and heavy tails in human

dynamics. Nature 435, 7039 (2005), 207–211.
[4] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. Efficient Enumeration

of Maximal k-Plexes. In SIGMOD 2015. 431–444.
[5] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalam-

pos E. Tsourakakis. 2015. Space- and Time-Efficient Algorithm for Maintaining

Dense Subgraphs on One-Pass Dynamic Streams. In STOC 2015. 173–182.
[6] Petko Bogdanov, Misael Mongiovì, and Ambuj K. Singh. 2011. Mining Heavy

Subgraphs in Time-Evolving Networks. In ICDM 2011. 81–90.
[7] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized

Core Decomposition. In SIGMOD 2019. 1006–1023.
[8] Zhengzhang Chen, Kevin A. Wilson, Ye Jin, William Hendrix, and Nagiza F.

Samatova. 2010. Detecting and Tracking Community Dynamics in Evolutionary

Networks. In ICDMW. 318–327.

[9] James Cheng, Yiping Ke, Shumo Chu, and M. Tamer Özsu. 2011. Efficient core

decomposition in massive networks. In ICDE 2011. 51–62.
[10] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu.

2011. Finding Maximal Cliques in Massive Networks. ACM Trans. Database Syst.
36, 4 (2011), 21:1–21:34.

[11] Lingyang Chu, Yanyan Zhang, Yu Yang, Lanjun Wang, and Jian Pei. 2019. Online

Density Bursting Subgraph Detection from Temporal Graphs. Proc. VLDB Endow.
12, 13 (2019), 2353–2365.

[12] Alessio Conte, Donatella Firmani, Caterina Mordente, Maurizio Patrignani, and

Riccardo Torlone. 2017. Fast Enumeration of Large k-Plexes. In SIGKDD 2017.
115–124.

[13] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient Densest

Subgraph Computation in Evolving Graphs. InWWW 2015. 300–310.
[14] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco

Gullo. 2018. Mining (maximal) Span-cores from Temporal Networks. In CIKM
2018. 107–116.

[15] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core

Decomposition and Densest Subgraph in Multilayer Networks. In CIKM 2017.
1807–1816.

[16] Edoardo Galimberti, Francesco Bonchi, Francesco Gullo, and Tommaso Lanciano.

2020. Core Decomposition in Multilayer Networks: Theory, Algorithms, and

Applications. ACM Trans. Knowl. Discov. Data 14, 1 (2020), 11:1–11:40.
[17] Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. 2015. COMMIT: A

Scalable Approach to Mining Communication Motifs from Dynamic Networks.

In SIGMOD 2015. 475–489.
[18] Petter Holme and Jari Saramaki. 2012. Temporal networks. Physics Reports 519

(2012), 97–125.

[19] Silu Huang, Ada Wai-Chee Fu, and Ruifeng Liu. 2015. Minimum Spanning Trees

in Temporal Graphs. In SIGMOD 2015. 419–430.
[20] Xin Huang, Hong Cheng, Lu Qin,Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

K-truss Community in Large and Dynamic Graphs. In SIGMOD 2014. 1311–1322.

[21] Rohit Kumar, Toon Calders, Aristides Gionis, and Nikolaj Tatti. 2015. Maintaining

Sliding-Window Neighborhood Profiles in Interaction Networks. In ECML/PKDD
2015. 719–735.

[22] Rong-Hua Li, Jiao Su, Lu Qin, Jeffrey Xu Yu, and Qiangqiang Dai. 2018. Persistent

Community Search in Temporal Networks. In ICDE 2018. 797–808.
[23] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in

Large Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 26, 10 (2014), 2453–2465.
[24] Yuan Li, Jinsheng Liu, Huiqun Zhao, Jing Sun, Yuhai Zhao, and Guoren Wang.

2021. Efficient continual cohesive subgraph search in large temporal graphs.

World Wide Web 24, 5 (2021), 1483–1509.
[25] Yu-Ru Lin, Yun Chi, Shenghuo Zhu, Hari Sundaram, and Belle L. Tseng. 2008.

Facetnet: a framework for analyzing communities and their evolutions in

dynamic networks. InWWW 2008. 685–694.
[26] Xuanming Liu, Tingjian Ge, and Yinghui Wu. 2019. Finding Densest Lasting

Subgraphs in Dynamic Graphs: A Stochastic Approach. In ICDE 2019. 782–793.
[27] Shuai Ma, Renjun Hu, Luoshu Wang, Xuelian Lin, and Jinpeng Huai. 2017. Fast

Computation of Dense Temporal Subgraphs. In ICDE 2017. 361–372.
[28] Fragkiskos D. Malliaros, Christos Giatsidis, Apostolos N. Papadopoulos, and

Michalis Vazirgiannis. 2020. The core decomposition of networks: theory,

algorithms and applications. VLDB J. 29, 1 (2020), 61–92.
[29] Hongchao Qin, Rong-Hua Li, Guoren Wang, Lu Qin, Yurong Cheng, and Ye Yuan.

2019. Mining Periodic Cliques in Temporal Networks. In ICDE 2019. 1130–1141.
[30] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest

Subgraph Discovery. In SIGKDD 2015. 965–974.
[31] Giulio Rossetti and Rémy Cazabet. 2018. Community Discovery in Dynamic

Networks: A Survey. ACM Comput. Surv. 51, 2 (2018), 35:1–35:37.
[32] Polina Rozenshtein, Francesco Bonchi, Aristides Gionis, Mauro Sozio, and Nikolaj

Tatti. 2018. Finding Events in Temporal Networks: Segmentation Meets Densest-

Subgraph Discovery. In ICDM 2018. 397–406.
[33] Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. 2017. Finding Dynamic

Dense Subgraphs. ACM Transactions on Knowledge Discovery from Data 11, 3

(2017), 27:1–27:30.

[34] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for

Hierarchical Dense Subgraph Discovery. Proc. VLDB Endow. 12, 1 (2018), 43–56.
[35] Stephen B. Seidman. 1983. Network structure and minimum degree. Social

Networks 5, 3 (1983), 269–287.
[36] Charalampos E. Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco

Gullo, and Maria A. Tsiarli. 2013. Denser than the densest subgraph: extracting

optimal quasi-cliques with quality guarantees. In SIGKDD 2013. 104–112.
[37] DongWen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2016. I/O efficient

Core Graph Decomposition at web scale. In ICDE 2016. 133–144.
[38] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and

Hejun Wu. 2015. Core decomposition in large temporal graphs. In IEEE BigData
2015. 649–658.

[39] Jaewon Yang and Jure Leskovec. 2012. Defining and Evaluating Network

Communities Based on Ground-Truth. In ICDM 2012. 745–754.
[40] Yi Yang, Da Yan, Huanhuan Wu, James Cheng, Shuigeng Zhou, and John C. S.

Lui. 2016. Diversified Temporal Subgraph Pattern Mining. In SIGKDD 2016.
1965–1974.

[41] Yajun Yang, Jeffrey Xu Yu, Hong Gao, Jian Pei, and Jianzhong Li. 2014. Mining

most frequently changing component in evolving graphs. World Wide Web 17, 3
(2014), 351–376.

[42] Michael Yu, DongWen, Lu Qin, Ying Zhang,Wenjie Zhang, and Xuemin Lin. 2021.

On Querying Historical K-Cores. Proc. VLDB Endow. 14, 11 (2021), 2033–2045.

3923

