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ABSTRACT

We propose Sage, a system for uncertain network analysis. Algo-
rithms for uncertain network analysis require large amounts of
memory and computing resources as they sample a large number
of network instances and run analysis on them. Sage makes un-
certain network analysis simple and efficient. By extending the
edge-centric programming model, Sage makes writing sampling-
based analysis algorithms as simple as writing conventional graph
algorithms in Pregel-like systems. Moreover, Sage proposes four
optimization techniques, namely, deterministic sampling, hybrid
gathering, schedule-aware caching, and copy-on-write attributes,
that exploit common properties of uncertain network analysis. Ex-
tensive evaluation of Sage with eight algorithms on six real-world
networks shows that the four optimizations in Sage jointly improve
performance by up to 13.9× and on average 2.7×.
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1 INTRODUCTION

Networks are hard to understand because of their complex struc-
tures. What makes them even harder to understand is their uncer-
tainty. Many networks that are of interest to us have uncertain
structures or probabilistic connections. For example, biological net-
works such as protein interaction networks [62] are constructed
from experimental observations, thus their connectivity may be
erroneous or probabilistic [83]. In mobile ad-hoc networks, mo-
bile devices may travel and connect or disconnect from each other,
which may be modeled as uncertain networks [5, 15]. Figure 1(a)
shows an example uncertain network with edge existence probabil-
ities and five sample networks (b–f) derived from this network.

To make sense of uncertain networks, probabilistic and approxi-
mate analysis algorithms have been studied [6, 13, 14, 19, 25, 28, 29,
32, 38, 41, 45, 47, 50, 51, 59–62, 67, 75, 79, 80, 86, 89]. While these
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Figure 1: Example uncertain network (a) and its sample net-

works (b–f); the numbers are the edge existence probabilities.

algorithms differ in detail, many of them share a common struc-
ture of 1) sampling network instances, 2) running analysis on the
sampled networks, and 3) aggregating the analysis results [6, 13, 14,
19, 29, 32, 41, 45, 47, 50, 61, 62, 67, 75, 79, 86]. Sampling networks
and running their analyses cause significant overhead of storing
the sampled networks and performing computations on all these
networks. Thus, writing efficient analysis algorithms for uncertain
networks requires considerable engineering effort. To ease this
difficulty, we propose Sampling-Aware Graph Engine, or Sage, a
system and programming model for uncertain network analysis.

While existing systems such as Pregel [54] help with large-scale
network analysis, making use of them for uncertain networks
is by no means straightforward. Their programming models do
not support network sampling nor are they efficient in handling
sampled networks in terms of storage and computations. With
the availability of uncertain networks in many application do-
mains [18, 20, 31, 71, 72, 77, 83], their analysis is becoming in-
creasingly important. Despite this, the lack of a simple means for
expressing the problems has hindered their use. We propose Sage
that makes uncertain network analysis simple and efficient. Its
high-level programming constructs help to express uncertain net-
work algorithms, which are then accelerated with the optimizations
provided in Sage. The contribution of this paper is as follows.
A System and Programming model. To the best of our knowl-
edge, Sage is the first system with a programming model that
supports uncertain network analysis. The programming model, i.e.,
data and computation model, is designed to express all existing
sampling-based algorithms that we reviewed. Moreover, we care-
fully design the programming model so that Sage can incorporate
the domain-specific optimizations that we propose. As the opti-
mizations significantly reduce storage and computation overhead,
they are essential to making uncertain network analysis practical.
Domain-specific system optimizations. The main sources of
overhead in uncertain network analysis are three-fold: 1) the mem-
ory and storage overhead of maintaining millions of sampled net-
works, 2) the computation overhead of processing those large num-
ber of sample networks, and 3) the overhead of storing and ac-
cessing a large amount of vertex attributes of all sample networks.
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We propose four optimizations to address these problems, namely,
deterministic sampling, hybrid gathering, schedule-aware caching,
and copy-on-write vertex attributes that take advantage of the
common properties of uncertain network analysis. For example,
deterministic sampling mitigates the memory and storage overhead
of maintaining sampled networks by dynamically and determin-
istically sampling the existence of edges, while schedule-aware
caching reduces the amount of I/O to access vertex attributes.
Extensive evaluation. All the optimizations presented in this pa-
per have been implemented in our prototype system. Eight core
algorithms for uncertain network analysis are succinctly imple-
mented in Sage. We evaluate the algorithms with six real-world
networks – three social networks, one biological network, and two
computer application networks. Our optimizations improve overall
performance by a maximum 13.9×, and 2.7× on average, while re-
ducing the memory usage to 23.7% on average over the baseline that
represents a state-of-the-art uncertain network analysis system.

The rest is organized as follows. Section 2 gives the background
on the algorithms and systems for uncertain network analysis. Sec-
tion 3 presents Sage’s programming model and Section 4 describes
its design and architecture with a focus on our optimizations. Sec-
tion 5 evaluates the Sage prototype system and Section 6 concludes.

2 BACKGROUND AND RELATEDWORK

Algorithms for uncertain networks have different compute char-
acteristics from conventional network analyses. For uncertain net-
works, the simple method of regarding uncertainties (or probabili-
ties) as edge weights and running conventional analysis algorithms
does not work. That is, when aggregating the existence proba-
bilities of multiple paths leading to a vertex, we must consider
their joint probability, which is extremely expensive to compute
for large graphs. Moreover, most conventional network algorithms
consider edge weights or their aggregation (i.e., vertex attributes)
to be independent, and thus we cannot transform edge probabili-
ties to edge weights and apply conventional network algorithms.
As such, to design a programming model for uncertain network
analysis, we reviewed existing algorithms and studied their char-
acteristics in detail. We find that most of the algorithms are based
on randomly sampling networks and iteratively aggregating the
results [6, 13, 14, 19, 29, 32, 41, 45, 47, 50, 61, 62, 67, 75, 79, 86]. Here
we report the results of our review of core algorithms, that is, top-𝑘
reliability search, distance computation, 𝑘-nearest neighbors, and
𝑘-core decomposition, for uncertain network analysis. Then we
review other related work on uncertain network analysis.
Top-k reliability search. Reliability computation is a fundamental
problem in uncertain network analysis [25, 32, 62, 76, 86]. Top-𝑘
reliability search is used in protein interaction networks to find the
proteins that are biologically related to a given protein [10, 62, 86]
or in peer-to-peer file-sharing networks to select reliable peers for
file transfer [39]. Reliability computes the probability that a source
vertex 𝑠 is connected to other vertices. Top-k reliability search
finds 𝑘 vertices with the connections of the highest reliabilities (or
probabilities) from a source vertex 𝑠 . More formally, for an uncertain
network G and a vertex 𝑠 in G, reliability of the connection from 𝑠

to a vertex 𝑣 is denoted as 𝑅G (𝑠, 𝑣) and computed as follows [86]:

𝑅G (𝑠, 𝑣) =
∑
𝐺∈Ω (G) 𝑃 (G⇒𝐺)𝑅𝐺 (𝑠, 𝑣)

where 𝐺 is a possible network instance, or a sample network, that
is obtained by randomly retaining the edges of G with each edge’s
probability and Ω is the set of all possible sample networks. 𝑅𝐺 (𝑠, 𝑣)
is 1 if 𝑠 can reach 𝑣 in𝐺 and 0 otherwise. 𝑃 (G⇒𝐺) is the probabil-
ity of obtaining 𝐺 from the random sampling. If the probabilities
of all the edges in G are mutually independent, 𝑃 (G⇒𝐺) is com-
puted as the product of the probabilities of the edges in 𝐺 and the
complement of the probabilities of the edges not in𝐺 . For example,
in Figure 1, 𝐺1 is a sample network of the uncertain network G. If
the existence probabilities of all edges are independent, the proba-
bility 𝑃 (G⇒𝐺1) is the product of the existence probabilities of the
edges in 𝐺1 (𝑉1→𝑉2, 𝑉2→𝑉5, and 𝑉4→𝑉5) and the complement
probabilities of the other edges in G.

As top-𝑘 reliability search is #P-complete, a sampling-based al-
gorithm is used [86]. That is, 𝑁 possible networks 𝐺1, ..., 𝐺𝑁 are
sampled from G and on each network 𝐺𝑖 , we compute 𝑅𝐺𝑖

(𝑠, 𝑣)
for 𝑣∈𝐺𝑖 . Then, 𝑅G (𝑠, 𝑣) is estimated to be 1

𝑁

∑
𝐺𝑖

𝑅𝐺𝑖
(𝑠, 𝑣) and 𝑘

vertices with the highest estimated 𝑅G (𝑠, 𝑣) are selected. For ex-
ample, consider the network G in Figure 1 again. Estimated in the
way described above,𝑉2,𝑉5, and𝑉6 in Figure 1 are the top 3 reliable
vertices with reliability 0.8. For 𝑉3 and 𝑉4, their reliability is 0.2 as
one possible network out of five has connected paths to the vertices.
Path distances and nearest neighbors. Computing distances
from a source vertex and finding the k-nearest neighbors are im-
portant primitives for uncertain network analysis. They are core
operations for link prediction, clustering, and graph mining [2, 4, 11,
48, 62]. With probabilistic edge connections in uncertain networks,
distances are often measured by median, majority, or most probable
distances in the sampled networks [62].

The k-nearest neighbors algorithm computes path distances from
a source vertex to find k vertices with the shortest distances. In un-
certain networks, the approach is similar to reliability search where
𝑁 possible networks are sampled and the distances are computed
on each sample network. Then, the distances are aggregated to
compute the median, majority, or most probable distance for each
vertex to find the k nearest vertices. An optimized approach where
each possible network is incrementally sampled is possible [62].
That is, we first compute the distances of vertices that are within 𝜏
proximity of the source vertex by sampling the edges within this
proximity. The computed distances are aggregated to test if all k-
nearest neighbors are identified. If more paths need to be explored,
the value of 𝜏 is incremented, and in the next iteration more edges
are sampled in each partially sampled network. This pattern of
partial sampling and aggregating analysis results is common in
uncertain network analysis [28, 41].
Other uncertain network algorithms. Finding dense subgraphs
is an important primitive in uncertain network analysis. In partic-
ular, k-core decomposition, which finds the maximal subgraph of
vertices having k or more neighbors, has been widely studied for un-
certain networks [6, 61]. K-core decomposition may be used to find
maximal cliques [12] or to compute influence maximization [13].

Aside from the graph analytic algorithms we have discussed so
far, graph mining is another class of graph problem that has been
well studied [24, 30, 78]. Graph mining finds matching subgraphs
to a given query graph to enumerate the matches or count them.
Graph mining algorithm for uncertain networks is an important
problem on its own and have also been studied [9, 25, 28, 51, 90].
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class Vertex {
virtual void Init(); // initialize vertex attributes.
virtual void Scatter(); // send messages to neighbors.
virtual void Gather(Vertex src, GEdge e);}; // read src and update this Vertex.

class GVertex {
virtual void Reduce(Vertex v);// reduction of Vertex v in all sample networks

// for this GVertex instance.
virtual void ReduceDone();}; // invoked when the reduction is done.

class Global {
virtual void Reduce(GVertex gv); // reduction of all GVertex instances.
virtual void ReduceDone();}; // invoked when the reduction is done.

1

Figure 2: Vertex API in Sage. Vertex is a vertex in a sample

network and GVertex is a vertex in an uncertain network.

However, as exemplified by Arabesque [73], a graph mining system
proposed separately from graph analysis systems such as Pregel,
graph mining systems requires a different set of programming
constructs and optimizations. Hence, we leave the support for graph
mining algorithms as future work.
Related graph processing systems. Programming models and
systems for network analysis have been extensively studied [8, 17,
21, 35, 37, 42, 52–55, 57, 58, 63, 65, 66, 68, 82, 84, 87]. However, we
are not aware of any programming model developed exclusively for
uncertain networks. Also, we are aware of only one (incomplete)
system by Zou at el. [88] developed for uncertain network analysis.
Their system implements one optimization for uncertain network
analysis that reduces redundant vertex computations of sampled
networks; we describe the optimization and its limitation as well
as our solution in Section 4.3. However, they do not have a proper
programming model for uncertain network analysis and thus, they
evaluate their prototype with conventional graph algorithms by
simply running them for all sampled networks. In reality, uncertain
network algorithms cannot be implemented in this way as they
require vertex-wise aggregation over all sample networks, possibly
multiple times, during their executions. In contrast, Sage is a com-
plete system with a proper programming model, domain-specific
optimizations, and programming APIs.

3 PROGRAMMING MODEL IN SAGE

In this and the following sections, we present the core components
of Sage, the programming model and system for uncertain network
analysis that we propose. We first describe its programming model.

We design Sage’s programming model by extending the asyn-
chronous edge-centric computation model [66]. We made this de-
sign decision based on two principles that we felt imperative. First,
the programmingmodel should be able to express existing uncertain
network algorithms. Second, the model should be able incorporate
the optimizations that we propose, which are essential in reducing
the analysis overhead, thus, making them practical. Regarding the
former, upon careful review of existing algorithms, we observed that
the analysis of individual sampled networks can be expressed in the
edge-centric model. Thus, we extended our programming model to
allow aggregation of sampled networks’ analysis results (as shown
in Section 3.1). We confirmed (by reviewing analysis algorithms
and implementing them in Sage) that by repeating the analysis
and aggregation, the programming model can express all the core
uncertain network algorithms that we reviewed and evaluated.

Regarding the latter, our programming model and execution
mechanism (described in Section 4.1) make implementation of the
domain-specific optimizations possible. More specifically, first, the
edge-centric model allows to separately process the messages for

Algorithm 1: Semantics of Sage programs
1 while active vertex exists do
2 foreach 𝑠 ∈ SampleNetworks do
3 foreach 𝑣 ∈ 𝑠.𝐴𝑐𝑡𝑖𝑣𝑒𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ( ) do
4 𝑣.Scatter()

5 foreach 𝑠 ∈ SampleNetworks do
6 foreach𝑢 → 𝑣 ∈ 𝑠.𝐸𝑑𝑔𝑒𝑠 ( ) do
7 if 𝑢 triggered 𝑣 in𝑢 .Scatter() then
8 𝑣.Gather(𝑢 ,𝑢 → 𝑣)

9 if active vertex not exists then
10 foreach 𝑔𝑣 ∈ All GlobalVertices do
11 foreach 𝑣 ∈ 𝑔𝑣.𝑆𝑎𝑚𝑝𝑙𝑒𝑉𝑒𝑟𝑡𝑖𝑐𝑒𝑠 ( ) do
12 𝑔𝑣.Reduce(𝑣)

13 𝑔𝑣.ReduceDone()

14 if active vertex not exists then
15 foreach 𝑔𝑣 ∈ All GlobalVertices do
16 Global.Reduce(𝑔𝑣)

17 Global.ReduceDone()

each incoming edge of a vertex, while the vertex-centric model
requires the grouping of all messages and delivering them at once.
Hence, we can process all sample networks’ messages for the same
edge altogether. This largely improves the locality of vertex access,
which is exploited in our vertex cache (explained in Section 4.4),
and the opportunity to eliminate redundant computations among
the sample networks, which is exploited in our hybrid gathering
optimization (explained in Section 4.3). Second, by exploiting the
asynchronism in our programmingmodel, we do not materialize the
messages between vertices, which relieves the massive overhead of
creating and storing all sample networks’ messages for all vertices.
These optimizations (and others) are explained in Section 4.

We now describe our vertex data model and then our program-
ming model using top-k reliability search as an example.

3.1 Vertex Data Model

Sage provides two vertex interfaces, Vertex and GVertex as shown
in Figure 2. Sage programs need to subclass the two classes to im-
plement the analysis algorithms. (Note that the keyword virtual re-
quires the functions to be overridden.) The GVertex class represents
the vertices in the uncertain network and the Vertex class repre-
sents those in the sample networks. The Vertex class is used for run-
ning analysis on each sample network in a message-passing manner.
The Scatter() and Gather() functions implemented in the analy-
sis programs are invoked by Sage for the Vertex instances that are
active and that have received messages, respectively. Scatter()
may send messages to neighbor vertices and Gather() receives the
messages to update vertex attributes. Their semantics are similar
to those of conventional graph systems and are described in Sec-
tion 3.2 in detail. In GVertex, the analysis results are aggregated in
Reduce(), which is invoked individually for all sample networks’
vertices for the GVertex instance. Then Reduce() in the Global
class performs global aggregation over all GVertex instances.

Algorithm 1 describes the high-level semantics of Sage programs.
In each iteration (lines 1–17) Sage runs a single step of the edge-
centric computation for all sample networks, i.e., sending messages
over the edges of the networks in Scatter() (lines 2–4) and pro-
cessing the messages to update vertex attributes in Gather() (lines
5–8). After this step, if no vertices are active Sage performs the
reductions in lines 9–17. First, vertex-wise reduction of the analysis
results in all sample networks is performed (lines 10–13). After this
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class TopkVertex: Vertex {
bool visited = false;
void Scatter() {

if (visited == false) {
visited = true; TriggerGatherOnNeighbors(); }}

void Gather(Vertex src, GEdge edge) { ActivateSelf(); } };
class TopkGVertex: GVertex {
int pathcount;
void Reduce(Vertex v) { if (v.visited) pathcount++; } };

class TopkGlobal: Global {
PriorityQueue<K> topkVertices; // storing K vertices with highest path count.
void Reduce(GVertex gv) { topKVertices.Insert(gv, gv.pathcount); } };

1

Figure 3: Top-k reliability search in Sage.

reduction, if no active vertex exists, network-wise reduction for
all vertices in the uncertain network is done (lines 14–17). Note
that reductions may activate some of the inactive vertices in the
sample networks, for which edge-centric computation is executed
in the following iteration. If there are no active vertices after the
two reductions are completed, the analysis terminates.

3.2 An Example: Top-k Reliability Search

Top-k reliability search, shown in Section 2, is implemented as
sampling networks, running BFS (breadth first search) from the
source on each sample network, and counting for each vertex the
number of sample networks with connected paths. Then, it finds
the k vertices with the highest path counts. We use the algorithm
as an example to show the workings of our programming model.

In Sage, top-k reliability search is written as in Figure 3. TopkVer-
tex implements BFS that runs for each sample network. First,
visited flags of all vertices in the sample networks are set to false.
Then the source vertex is activated and its Scatter() is called. In
Scatter(), the flag of the vertex is set and its neighbor vertices are
triggered for Gather(), where triggering is similar to sending mes-
sages in edge-centric systems, except that the messages are not ex-
plicitly created but the neighbors are only “triggered”. In Gather(),
we activate the target vertex of gather with ActivateSelf(), so
that the vertex becomes active in the next iteration and Scatter()
runs for this vertex. The invocation of Scatter() and Gather() is
repeated until all vertices of all sample networks become inactive.
When all vertices are inactive, Reduce() in TopkGVertex runs to
count the total number of sample networks with connected paths
for each GVertex instance. Thereafter, Reduce() in TopkGlobal
finds the vertices (GVertex instances) with the 𝑘 highest counts as
the top-𝑘 reliable connections.

As in Pregel, Sage programs terminate when all vertices (in
all sample networks) are inactive after an iteration. In Gather(),
ActivateSelf() may be called to activate the vertices of the sam-
ple networks in the next iteration. Also, in the reduce functions, i.e.,
GVertex::Reduce() or Global:: Reduce(), wemay call Activate
(GVertex) to activate the vertex in all the sample networks (though
this is not used in the top-k reliability search example). In addition
to monitoring the activation status of each vertex, Sage internally
keeps track of the triggering vertices that called TriggerGatherOn-
Neighbors() in Scatter() and the triggered vertices for which
Gather() needs to be called in each iteration. The use of these
information is described in detail in Section 4.3.

3.3 Limitation of Sage’s Programming Model

Our programming model can express a large subset of uncertain
network algorithms that are based on randomly generating sample

Figure 4: High-level architecture of Sage

networks and analyzing those sample networks [6, 13, 14, 19, 29,
32, 41, 45, 47, 50, 61, 62, 67, 75, 79, 86]. However, there are four
categories of algorithms that cannot be expressed with our pro-
gramming model. They are 1) algorithms that do not use sampling
for the analysis [80, 89], 2) algorithms that find and analyze with a
small number of representative sample networks [59, 60] (for which
Sage’s API cannot help find the representative networks and the
optimizations will have only limited effect due to its small number),
3) analysis of networks that have (cyclic) conditional probabilities
of edge existences [33], and 4) graph mining algorithms that find
subgraphs with certain conditions. As we described in Section 2,
graph mining requires a different set of programming constructs
from those of graph analysis, we leave the support for graph mining
algorithms as future work. For the third one (conditional proba-
bility), we need to consider the joint probability of those edges to
obtain a sample network by applying sophisticated sampling algo-
rithms such as Gibbs sampling. If a network does not have a cycle,
we can sort the edges topologically and sample the edges in that
order, which may be supported in Sage with limited parallelism.

Sage adopts the edge-centric computation model, which is used
in many graph processing systems [8, 65, 66]. It is as expressive as
the vertex-centric model as it can explicitly aggregate the vertex
messages to emulate the vertex-centric model [27]. The asynchro-
nism in our programming model (i.e. updates by gather operations
may be arbitrarily ordered) does not limit its expressiveness; Sage
programs can store two versions of vertex attributes for the current
and previous supersteps and explicitly maintain those values.

4 DESIGN AND ARCHITECTURE OF SAGE

The overall architecture of Sage is shown in Figure 4. The sys-
tem largely consists of two parts, the computation engine and the
storage engine. When a user program starts, the storage engine
loads the uncertain network from disk to memory. The storage
engine also caches and manages the vertex attributes of GVertex
and Vertex as well as the activation status stored in disk. The com-
putation engine provides two programming interfaces, namely, the
edge-centric interface and the aggregation interface, with which
Sage interacts with user programs to run the analysis algorithms.

Within Sage, we propose four novel optimization techniques for
efficient analysis, namely, deterministic sampling, hybrid gathering,
schedule-aware caching, and copy-on-write attributes. We first
describe the inner-workings of the edge computations and their
scheduling in Sage. Then we describe the four optimizations.
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4.1 Edge Computations

In each iteration (i.e., superstep), conventional graph systems enu-
merate active vertices and run scatter on them to send messages
along the edges. The messages are then gathered on the target
vertices. The messages and activation status of current and next
supersteps are stored in bitmaps or other data structures.

Sage runs the edge computations in a similar way but with a
few differences in order to correctly and efficiently execute the
computations for a large number of sample networks. This requires
maintaining activation status of all vertices for all sample networks,
both of which may be in the few to many million range. Also, as the
messages between vertices are not materialized in Sage, it needs to
keep track of the sender and receiver vertices in all sample networks
to correctly support the edge-centric computation semantics.

For the edge computations, Sage enumerates the vertices in the
global active vertex set, which is the set of vertices that are active in
any sample network, and invokes the scatter on them. For each enu-
merated vertex, scatter is invoked exactly for the sample networks
where the vertex is active. In the scatter function, Sage simply trig-
gers the neighbor vertices that the gather needs to be performed on,
rather than actually creating and sending messages. As scatter and
gather are performed for all sample networks, sending messages
for all those networks in the conventional manner requires a large
memory space. When processing gather on the triggered vertices,
Sage reads the attributes of the source vertex of the gather that is
to be performed. For the gather operation, Sage enumerates the
vertices in the global triggered vertex set, which is the set of vertices
being triggered in any sample network, and invokes the gather
on them. As with scatter, for each enumerated vertex, gather is
invoked for the sample networks where the vertex is triggered.

As described above, Sage needs to maintain the global vertex
status as well as the per-sample vertex status for efficient processing
of edge computation. The global vertex status is stored in DRAM
as its size is proportional to the number of vertices in the uncertain
network and thus requires a small amount of memory (maximum
2.5MB for the networks in Table 4). The per-sample vertex status is
stored in SSD as its size is proportional to the number of all vertices
in all samples and thus large in size (maximum 920GB for the COG
dataset with 500,000 samples in Table 3). Sage maintains three in-
memory data structures for global vertex status: Global Activation
Bitmap, Global Triggered Bitmap, and Global Triggering Bitmap.
Also, Sage stores on disk for each vertex its status in the sample
networks – its activation status and triggering status (whether
or not the vertex triggered gather in the corresponding sample
network) that are stored as the Sample Network Activation Bitmap
and the Sample Network Triggering Bitmap, respectively.

Figure 5 shows the vertex status for running the reliability search
on the five sample networks in Figure 1. It shows on top and bottom,
respectively, the global vertex status in memory and the per-sample
vertex status on disk, while the middle bubbles show the operations
that are making use of the status bitmaps. It shows the operations
and activation status, in part, of the first three iterations; scatter for
superstep 1, trigger gathering for superstep 2, and gather/activation
for superstep 3. Note that the Sample Network Bitmaps for a vertex
are stored together with the vertex attributes as the bitmaps and
the attributes are accessed at the same time.

Figure 5: Bookkeeping of vertex status in Sage. Vertex

bitmaps (top), sample network bitmaps (bottom), and the

operations using the bitmaps (middle) are shown.

Scheduling of Edge Computations. The edge computations, i.e.,
the scatter and gather computations, are scheduled by the Edge
Computation Scheduler component (EScheduler, for short) in Fig-
ure 4 and executed by worker threads. Scatter computations are
scheduled to execute and complete before gather operations exe-
cute. Both scatter and gather are executed in the order of the vertex
IDs. Scatter operations are ordered by the IDs of the scattering ver-
tices, while gather operations are first ordered by the target vertices
and then by the source vertices. As the operations are executed in
ascending order of vertex IDs, the vertices that will be accessed in
the future can be quite accurately estimated. This is not a coinci-
dence because we purposely designed the scheduling of the edge
computation to be coordinated with the efficient vertex caching
method that we propose, which is executed in the Vertex Cache
component in Figure 4 and described in detail in Section 4.4. That
is, the computations are scheduled such that the future references
of vertex attributes are accurately predicted.

Having described the basic inner-workings of Sage, we now
discuss the systemic challenges in uncertain network analysis and
our optimizations for them. In uncertain network analysis, the main
sources of overhead are 1) the memory and storage overhead of
maintaining sampled networks (e.g. terabytes of memory/storage
for millions of sample networks), 2) the computation overhead of
processing a large number of sample networks (e.g. trillions of
gather/scatter operations in each superstep for one million sample
networks and one million edges), and 3) the overhead of storing and
accessing a large amount of intermediate data, i.e., vertex attributes
of all sample networks (e.g. tens of terabytes of vertex attributes
for one million vertices and one million sample networks).

We propose four optimizations to address these problems –
deterministic sampling for the memory/storage overhead of mate-
rializing sample networks, hybrid gathering for the computation
overhead of massive number of sample networks, and efficient
caching (schedule-aware caching and copy-on-write attributes) for
the overhead of storing/accessing all sample networks’ vertex at-
tributes. The following sections describe these four optimizations.

4.2 Deterministic Network Sampling

In uncertain network analysis, generating sample networks is
an important part of the analysis. Few studies have considered
the issue of materializing sample networks. A few have proposed
ways to generate samples, but never discuss the storage overhead
involved [26, 29, 56, 81]. The lone existing (incomplete) system for
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(a) K-S test for graph orderings (b) K-S test for hash functions

Figure 6: Statistical testing of deterministic sampling: results

showD-statistic smaller than the threshold (red bar)meaning

that the samples are identical to uniform random samples.

uncertain networks materializes all generated samples [88]. This
certainly incurs large memory overhead requiring, for example,
18 terabytes of memory space for the P2P network (described in
Table 2) with one million sample networks.

To alleviate this overhead in Sage, we propose a technique called
deterministic network sampling, or simply, deterministic sampling,
that regenerates the sample networks, in effect, replacing memory
and storage overhead with slight CPU overhead. The key idea is
to exploit the property of pseudorandom number generators that
deterministically generate the same sequence of numbers when
given the same seed value. This is implemented in the Deterministic
Network Sampler component in Figure 4. Consider the sequence of
sample networks generated in Figure 1. For each graph, the exis-
tence of an edge is determined by the random number generated
for the edge. Take for example, the edge between vertices 𝑣1 and
𝑣2, whose value is 0.8. If the random value generated for this edge
is below 0.8, the edge exists, as in 𝐺1; if the random value is above
0.8, the edge is disconnected, as in 𝐺5.

In deterministic sampling, we do not generate and maintain all
the samples, but check the edges using a pseudorandom number
generator whose seed is set to 𝐻 (𝑠) + 𝐻 (𝑡), for any edge 𝑠 → 𝑡 ,
where 𝑠 and 𝑡 are the source and target vertex IDs, respectively,
and 𝐻 () is a uniform hash function. Since a pseudorandom number
generator with the same seed always generates the same sequence
of random values, we can easily check any edge of any sample graph.
For example, to check the existence of an edge between vertices
𝑣3 and 𝑣4 for 𝐺3, we simply check the third random value of the
pseudorandom number generator with the seed of 𝐻 (3) + 𝐻 (4).

The key benefit of this technique is that it saves memory and
storage space. The space required is independent of the number
of sample networks allowing us to use a large number of samples.
The downside of the approach is the CPU overhead for random
number generation. However, we find that deterministic sampling is
generally far more efficient as we show later with the experiments.

While deterministic sampling helps to minimize the use of mem-
ory and storage, we need to verify whether it is statistically sound.
That is, we need to test if our deterministic random number gener-
ation has the same probability distribution as a pseudorandom num-
ber generator. Thus, we conduct a two-sample Kolmogorov–Smirnov
(K-S) test [40], which is used to test whether the underlying proba-
bility distributions for two sets of samples differ.

To this end, we generate 1,000 random numbers for the edges of
a network in the following two ways. First, we use the conventional
method of generating random values from one seed for all edges.
Second, we use our deterministic sampling method and generate
random values for each edge using 𝐻 (𝑠) + 𝐻 (𝑡) as the seed value.
We repeat the random number generation for three real-world

Algorithm 2: Hybrid Gathering
Input: 𝑆 ,𝑇 , 𝑒 , 𝐵𝑒 , 𝑅, and 𝑁 . 𝑆 and𝑇 are the attributes of source (𝑠) and target (𝑡 ), 𝑒 is

the edge between 𝑠 and 𝑡 , 𝐵𝑒 is 𝑒’s existence bitmap for sample networks, 𝑅 is 𝑠’s
triggering bitmap for sample networks, and 𝑁 is the number of samples.

Output:𝑇 .𝑇 is target vertex’s attributes.
1 if 𝐴𝑡𝑡𝑟𝑇 𝑦𝑝𝑒 (𝑆 ) = 𝐴𝑡𝑡𝑟𝐵𝑖𝑡𝑚𝑎𝑝𝑇𝑏𝑙 then
2 if 𝐴𝑡𝑡𝑟𝑇 𝑦𝑝𝑒 (𝑇 ) = 𝐴𝑡𝑡𝑟𝐵𝑖𝑡𝑚𝑎𝑝𝑇𝑏𝑙 then
3 𝑇 = CollectiveGather(𝑆 ,𝑇 , 𝑒 , 𝐵𝑒 , 𝑅);
4 if 𝑆𝑖𝑧𝑒 (𝑇 ) > 𝐴𝑡𝑡𝑟𝑆𝑖𝑧𝑒 ∗ 𝑁 then

5 𝑇 = ConvertToArray(𝑇 )

6 return𝑇 ;

7 if 𝐴𝑡𝑡𝑟𝑇 𝑦𝑝𝑒 (S) = 𝐴𝑡𝑡𝑟𝐵𝑖𝑡𝑚𝑎𝑝𝑇𝑏𝑙 then 𝑆=ConvertToArray(𝑆 ) ;
8 if 𝐴𝑡𝑡𝑟𝑇 𝑦𝑝𝑒 (T) = 𝐴𝑡𝑡𝑟𝐵𝑖𝑡𝑚𝑎𝑝𝑇𝑏𝑙 then 𝑇=ConvertToArray(𝑇 ) ;
9 return𝑇 = IterativeGather(𝑆 ,𝑇 , 𝑒 , 𝐵𝑒 , 𝑅, 𝑁 )

graphs (the characteristics of the graphs are described in detail in
Section 5), each with three different graph orderings (i.e. vertex ID
assignment) [43, 74] and four hash functions for 𝐻 (). Then, we ap-
ply the K-S test for the generated values and compute Kolmogorov’s
D statistic value for the 99.9% confidence level for each of the tests,
of which the results are shown in Figure 6. (We report only a subset
of the results in the interest of space, but the results not plotted here
show similar trends.) The results clearly show that the computed
Kolmogorov’s D statistic is far smaller than the threshold (denoted
by the 99.9% red bar), indicating that the samples are drawn from
identical distributions with 99.9% confidence level.

4.3 Hybrid Gathering

We now present our optimization for the edge computations de-
scribed in the previous section. Recall that sampling occurs from
the same uncertain network. Thus, many sample networks have
similar structures and many of their edges execute the exact same
computations during the superstep computations. For example, in
the sample networks of Figure 1, four of the five sample networks
𝐺1, 𝐺2, 𝐺3, and 𝐺4 have a similar structure in that they all have a
common path 𝑉1→𝑉2→𝑉5. Thus, running BFS on these graphs
executes the same computations for vertices 𝑉1, 𝑉2, and 𝑉5.

Previously, Zou et al. [88] proposed to eliminate redundant edge
computations to improve the performance of uncertain network
analysis. Their technique maintains the mappings of an attribute
to a bitmap for each vertex, where the attribute is that of the ver-
tex and the bitmap represents the sample networks sharing the
attribute value of the vertex. Then the edge computations for the
same attribute pairs of the source and target are computed once col-
lectively and the attribute mapping is updated accordingly. We call
this collective gathering as opposed to the conventional method of
iteratively running gather operations for sample networks (which
we call iterative gathering).

Collective gathering reduces the amount of computation for
analyses where a small number of distinct values are used for each
vertex, as in top-k reliability search. However, for analyses that
generate a relatively large number of distinct values per vertex,
collective gather may incur significant performance overhead (up
to 10× slowdown over iterative gathering in our evaluation) as the
size of the attribute-bitmap tables may become large. Since it is
difficult to estimate the number of vertex attribute values for an
analysis algorithm beforehand, it is difficult to determine whether
collective gathering should be used or not for better performance.

In Sage, we propose a hybrid approach that combines the best
of the two gathering methods. Our technique, namely, hybrid gath-
ering, selectively applies the cheaper of the two for each edge. That
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Figure 7: An example scheduling of gather operations. The

priority update after running Gather(𝑣2→𝑣4) is shown.

is, if the number of attribute values for a gather operation is larger
than a threshold, Sage applies iterative gathering; otherwise, collec-
tive gathering is used. For hybrid gathering, Sage maintains vertex
attributes either as an attribute-bitmap table for collective gather or
as an attribute array for iterative gather. As the number of attributes
for a vertex generally increases as analysis proceeds, we initially
store the attributes in the attribute-bitmap table, but then switch
to the array representation once we find that the attribute-bitmap
table of the vertex is larger than its array representation.

Algorithm 2 describes hybrid gather in Sage. If the attributes of
the source and target are stored in the attribute-bitmap table, we
apply collective gather (lines 1–3). After the gather, if the attribute-
bitmap table is larger than the corresponding attribute array (the
threshold), we convert it to the array representation (lines 4–5). We
apply iterative gather if either the source or target stores the at-
tributes in the attribute array (line 9), after converting the attribute-
bitmap table to an array temporarily for the source (line 7) or per-
manently for the target (line 8). We find that hybrid gather is as fast
as the faster of the two gathering methods.

Although hybrid gathering may seem simple and straightfor-
ward, dynamically determining the gathering method for individual
vertices is not feasible without Sage’s programming model and its
efficient execution mechanism described in Section 4.1. For exam-
ple, if the vertex computation model is used, the messages sent
by source vertices must be aggregated before being delivered to
the target vertices. Thus, even if the source and target vertices are
stored in a bitmap representation, the aggregated message may not
be. This forces the target vertices to be converted to the array rep-
resentation, which makes hybrid gathering ineffective. Moreover,
if the messages sent between vertices are materialized (unlike in
Sage), the overhead of conversion will be much higher because
multiple messages created by a vertex need to be converted. In
contrast, in Sage, the converted attributes for a vertex can be stored
in the cache and used for multiple gather operations. Hence, hybrid
gathering is made feasible because of the efficient edge computation
in Sage that does not require message materialization.

4.4 Vertex Cache

To execute the scatter and gather operations, the attributes of a
vertex on disk need to be retrieved to the vertex cache in main
memory. For scatter, the attributes of the active vertices are accessed
exactly once and thus those vertices are sequentially retrieved to
the cache and then evicted. For gather, however, the attributes of a

Algorithm 3: Priority Update after Gather Operation
1 Input: the source 𝑠 and target 𝑡 of gather, Output: updated priority of 𝑠 .
2 if 𝑠.𝑛𝑏𝑟𝐿𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒𝑟 (𝑡 ) exist then
3 if isTriggered(𝑠) and 𝑡 < 𝑠 then
4 𝑠.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = −𝑚𝑖𝑛 (𝑠, 𝑠.𝑛𝑏𝑟𝐿𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒𝑟 (𝑡 ) )
5 else 𝑠.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = −𝑠.𝑛𝑏𝑟𝐿𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒𝑟 (𝑡 ) ;
6 else

7 if isTriggered(𝑠) and 𝑡 < 𝑠 then 𝑠.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = −𝑠 ;
8 else 𝑠.𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = −𝑖𝑛𝑓 ;

vertex may be accessed multiple times. For example, after running
Gather(𝑠→𝑡), the source 𝑠 can be accessed later as a source or
target of another gather and target 𝑡 can be a source of another
gather. If 𝑠 or 𝑡 are accessed later, we want to keep them in the cache
so that they need not be retrieved again later. Naturally, as the size
of the vertex cache is limited, we need to prioritize the vertices and
retain those that are accessed in the immediate future rather than
those that are accessed in the distant future. An accurate prediction
of future accesses will improve the cache hit ratio and the overall
performance. In Sage, the Vertex Cache component in Figure 4
manages the cache. It takes advantage of the orderly execution of
the edge computations by EScheduler, who orders the scatter and
gather operations by the vertex IDs. Thus, future accesses of vertex
attributes are accurately predictable. Our schedule-aware caching
policy estimates the future accesses of vertices, which are encoded
and stored as priority scores in cache entries.

The upper figure in Figure 7 shows the execution of gather oper-
ations of the second superstep for the sample networks in Figure 1,
where the 𝑥-axis represents logical time and where at 𝑇𝑖 gather
operations for target vertex 𝑖 are executed. The lower figure shows
the vertex cache before and after executing Gather(𝑣2→𝑣4) at log-
ical time 𝑇4. Before running the gather operation, our vertex cache
stores the attributes of 𝑣2, 𝑣3, and 𝑣4, and their priority −𝑇4. The
priority values represent the logical time points when the vertices
are accessed; e.g., 𝑣3 is accessed at time𝑇4 for Gather(𝑣3→𝑣4) and
thus its priority is set to −𝑇4. After running Gather(𝑣2→𝑣4), the
priorities of 𝑣2 and 𝑣4 are re-computed so that they represent the
future access time of the vertices. Since 𝑣2 is accessed at time 𝑇5 as
the source of Gather(𝑣2→𝑣5), its priority is updated to −𝑇5.

More generally, the priorities are computed in the following
manner. Consider the gathering of 𝑠 to 𝑡 (𝑠→𝑡 ) executed at time 𝑇𝑡
(which equals 𝑡 ). If vertex 𝑠 or 𝑡 is fetched to the cache at that point,
their priority is set to −𝑇𝑡 (or −𝑡 ). After the gather is performed, the
priorities of vertex 𝑠 and 𝑡 are updated according to the estimation of
their next access time. Let us first consider the source of the gather.
Vertex 𝑠 may be accessed as a target of a future gather if 𝑠 is larger
than 𝑡 ; 𝑠 may be a source of another gather as well. Algorithm 3
considers these cases and correctly updates the priority of 𝑠 after
Gather(𝑠→𝑡). If 𝑠 has an outgoing neighbor whose ID is larger
than 𝑡 (𝑠 .𝑛𝑏𝑟𝐿𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒𝑟 (𝑡)), then 𝑠 may be accessed as a source of
another gather at logical time 𝑠 .𝑛𝑏𝑟𝐿𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒𝑟 (𝑡) (line 2–4). If 𝑠 is
triggered and 𝑡<𝑠 then 𝑠 will also be accessed as a target of a gather
at logical time 𝑇𝑠 . The minimum of the two estimated access times
(𝑠 and 𝑠 .𝑛𝑏𝑟𝐿𝑒𝑎𝑠𝑡𝐿𝑎𝑟𝑔𝑒𝑟 (𝑡)) is used to update 𝑠’s priority (line 3). If
𝑠 is accessed only as a target of another gather, its priority is either
set to −𝑠 or −𝑖𝑛𝑓 𝑖𝑛𝑖𝑡𝑦 (line 6–7). To efficiently find the smallest
neighbor larger than 𝑡 , we precompute such a vertex for the target
𝑡 of each edge 𝑠→𝑡 and store the vertex with the edge data.
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Table 1: Evaluated Algorithms

Algorithm Description

Top-k reliability search (TopK) Finds the k most reliably connected vertices from a given source vertex as shown in Figure 3 [86].
K-nearest neighbors (kNN) Finds k vertices that are closest to a given vertex by incrementally running Dijkstra’s algorithm [62].
Personalized PageRank (PPR) Computes the importance of vertices for a given source vertex. The scores for each vertex in sample networks are averaged.
K-core decomposition (kCore) Finds the maximal subgraph consisting of the vertices with degree K or larger. Our implementation computes probabilistic (𝑘 ,𝜂) cores [6].
Influence maximization (IM) Finds the vertex with the highest influence for a given set of vertices based on the LT (linear threshold) model.
Breadth-First Search (BFS) Finds the median number of hops from a source vertex.
Shortest paths (SP) Finds the median distance of each vertex from a given source vertex.
Network clustering (CL) Finds densely-connected clusters of vertices by running the reliability search algorithm and recursively dividing the network [28, 41].

Table 2: Summary of Evaluated Networks

Network |𝑉 | |𝐸 | Domain Vertex Attr. Size

Facebook (FB) 63.7K 817K Social Network 31MB–99GB
Youtube (YT) 1.13M 2.99M Social Network 554MB–1.7TB
Skitter (SKT) 1.70M 11.09M Computer Network 828MB–2.6TB
COG (COG) 223K 31.41M Bio Network 109MB–345GB
Orkut (ORK) 3.07M 117.2M Social Network 1.5GB–4.7TB
eDonkey P2P (P2P) 5.8M 147.8M Computer Network 2.8GB–9.0TB

Now consider the target vertex 𝑡 . If 𝑡 triggered other vertices
in the current superstep, it may be accessed as a source of future
gather. If so, we search 𝑡 ’s neighbor vertices to find the vertex 𝑣

that is triggered in the current superstep and has the (smallest) ID
larger than 𝑡 and then set 𝑡 ’s priority to be −𝑣 .

If a single worker thread is used, the gather operations are to-
tally ordered as shown in the upper figure of Figure 7. In this case,
our scheme accurately predicts the vertex accesses. In contrast, if
multiple worker threads execute gather operations, the execution
may not be totally ordered by the vertex IDs. While this makes ver-
tex access less predictable, our evaluation shows that our caching
policy improves the hit ratio by an average and maximum of 6 and
18 percentage points, respectively, compared to the LRU scheme.

Note that for gather operationswithin one superstep, our caching
policy is (almost) identical to Belady’s algorithm of evicting those
that are accessed furthest in the future with the highest priority [3],
which is proven optimal. When we use multiple worker threads for
gather operations, our policy does not perform optimal eviction,
which is a trade-off between parallelism and cache performance.

4.5 Copy-on-Write Attributes

Many analyses start by setting the attributes of all vertices to be
the same value. As analyses proceed, some vertices update their
attributes but others may retain the initial value for many itera-
tions, even until the end of the analysis. In k-nearest neighbors,
the distances of all vertices are initially set to infinity and many of
them still hold infinity distance after the k neighbors are identified.

Sage exploits this common initial attribute of vertices to reduce
the storage overhead and improve performance by storing the ini-
tial value once and letting all the vertices share the common initial
value. Then Sage applies copy-on-write when the attributes of the
vertices are updated. This optimization is automatically applied if
the Init() function with no argument in Vertex class is overrid-
den. Our evaluation shows that this optimization is effective for
traversal-based algorithms such as top-k reliability search.

5 EVALUATION

This section shows the evaluation of our Sage prototype system
with eight core algorithms for uncertain network analysis. We first
describe the evaluation settings. Then we show the performance
gains brought by the overall and individual optimizations in Sage.

5.1 Algorithms and Datasets

We implemented a prototype of Sage with all the optimizations
in Section 4. To evaluate Sage, we use eight uncertain network
algorithms, namely, top-k reliability search (TopK), k-nearest neigh-
bors (kNN), Personalized PageRank (PPR), k-core decomposition
(kCore), influence maximization (IM), Breadth-First Search (BFS),
shortest paths (SP), and network clustering (CL), as summarized in
Table 1. These were chosen as they are representative sampling-
based algorithms that efficiently perform their respective analysis.
For the TopK, kNN, and kCore computation, the evaluated algo-
rithms are, to the best of our knowledge, the most efficient and
general algorithms [6, 34, 62, 86]. Aside from the algorithms we
chose, we are also aware of other efficient algorithms that take a
slightly different approach. For TopK, the algorithm by Khan et
al. [32] builds an offline index (which can be costly to compute for
multiple source vertices) to efficiently process online queries. This
online processing part runs a sampling-based reliability search (sim-
ilar to our implementation) and thus, can be expressed in Sage. For
kCore, there is an index-based implementation [75, 79] to efficiently
answer online queries for all 𝑘 and 𝜂 (probability threshold) values.
However, this implementation has different applications than the
general kCore computation [6].

For PPR, the one we implement is considered the definitive ver-
sion although there are a few approximate algorithms [14, 38]. The
IM problem may be computed based on either the IC (Indepen-
dent Cascade) model or the LT (Linear Threshold) model [31]. The
former does not require a sampling-based method but the latter
does (for counting influenced neighbor vertices and deciding the
influence status of a vertex). Our IM implementation represents a
subset of the IM algorithms that are based on the LT model [31].
BFS and SP are similar to TopK and kNN with 𝑘 set to infinity. The
evaluated CL algorithm is the most scalable one that can run on
networks with millions of vertices [7, 19, 49].

We evaluate the algorithms with six real-world networks in
the public domain [44, 64, 70] as shown in Table 2. Four of these,
YT, SKT, COG, and ORK, were used in earlier uncertain network
studies [23, 75, 79, 88],while FB and P2P are from domains where
uncertain network analysis is commonly applied. They represent
networks from three domains, specifically, FB, YT, and ORK are
friendship networks from the social network domain, while COG
is a biological network representing interactions between proteins.
SKT and P2P are computer networks, with SKT being an Internet
routing network and P2P a peer-to-peer file-sharing network. Note
that the size of these networks are similar to those that are used in
the majority of previous studies on uncertain network analysis [22,
23, 26, 32, 33, 47, 56, 61, 62, 75, 79, 85, 86, 88].
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Figure 8: Memory usage of Sage-MemOpt and the baseline system. The gray horizontal dotted line indicates the size of DRAM

on the evaluated machine. The plots above this line are estimated (i.e., manually computed) values.

Of these networks, FB and COG contain data to calculate the edge
probabilities. Specifically, FB contains the frequency of the commu-
nications between two connected vertices. COG has the confidence
scores for the protein interactions. For these two networks, we esti-
mated the edge existence probabilities from the given data and use
them in our experiments. For the others, we synthetically generate
the probabilities with uniform random distribution. In addition, as
two algorithms, kNN and SP, require edge lengths we generate edge
lengths in the range of 1∼100 with Zipfian distributionwhere longer
lengths have higher probabilities. Throughout the experiments with
these networks, we make use of 100 to 100,000 sample networks
in 10× increments, which are the numbers used in the majority of
existing studies [1, 14, 22, 26, 32, 33, 46, 56, 61, 62, 67, 85, 86, 88]. The
size of the total vertex attributes with 100–100,000 sample networks
for the algorithms (when our optimizations are not applied) are
shown in the table. Aside from these experiments, in Section 5.3.6
we consider the scalability of Sage, where we experiment with
larger synthetic networks of 100 million to 2 billion edges while
considering 100,000 to 5 million sample networks. Note that the
largest synthetic network in our evaluation are 10× larger than
the largest network evaluated in existing uncertain network stud-
ies [32, 51]. Also the maximum sample size in our evaluation (5M) is
5× larger than the largest sample size (1M) in previous studies [46].

5.2 Hardware and System Settings

For all the evaluations, we use a machine with Intel Xeon E5-2690 v4
running at 2.6GHz with fourteen cores. The machine has 128GB
DRAM and a 1TB NVMe SSD (Samsung 970 PRO). As we strictly
control the size of the vertex cache, the memory used for running
the experiments is much smaller than 128GB. We report the ac-
tual memory usage measured with GNU time [16]. We use fourteen
threads that process both the computation and I/O.

We evaluate Sage and our four proposed optimizations – deter-
ministic sampling, hybrid gathering, schedule-aware caching, and
copy-on-write attributes. Because the optimizations affect both the
memory footprint and the execution times of the algorithms, we
evaluate Sage with three settings, namely, baseline system, Sage-
MemOpt, and Sage-ExecOpt. They are configured as the following.
Baseline system: This is Sage without the four optimizations.
The baseline system stores materialized sample networks in main
memory in compressed form. That is, the existence of each edge
for the sample networks is encoded as a single bit in a bitmap, and
the bitmaps for all the edges are kept in memory. The baseline sets

the vertex cache size to 5% of the total vertex attribute size of all
sample networks. The cache applies LRU eviction policy.
Sage-MemOpt: This is Sage with all four optimizations. With
Sage-MemOpt, we focus on evaluating the amount of memory that
Sage can optimize. We set its vertex cache size to be the same as
the baseline (i.e., 5% of the total vertex attributes), but deterministic
sampling largely reduces the memory usage of Sage-MemOpt.
Sage-ExecOpt: This is Sage with all four optimizations and with
the same memory usage as the baseline. With Sage-ExecOpt, we
evaluate the performance gain of Sagewhen given the same amount
of memory as the baseline. To level memory consumption with the
baseline, Sage-ExecOpt first increases the vertex cache size. If the
memory consumed is still lower than the baseline even with the
maximum cache size (i.e., the size of the total vertex attributes),
Sage-ExecOpt materializes the sample networks for a subset of ver-
tices for which their edge existence bitmaps are stored in memory.

5.3 Evaluation Results

In discussion the results, we first justify the performance of the
baseline system and then compare its evaluation results with that
of Sage-MemOpt and Sage-ExecOpt.

To demonstrate the efficiency of the baseline system, we com-
pare its performance with existing graph processing systems –
PowerGraph [17], X-Stream [66], and Ligra [69]. As comparison
with existing systems is not the main focus of our evaluation, we
do not describe the details of the results. However, we do want to
point out two facts from the results. First, most of the uncertain
network algorithms cannot be implemented in these systems be-
cause of their programming model limitations. Uncertain network
algorithms commonly require vertex-wise aggregation (such as
finding minimum) over all sample networks, which is not directly
supported in conventional graph systems. Moreover, some algo-
rithms perform vertex-wise aggregation multiple times during their
execution and their aggregation re-activates a subset of the vertices,
which cannot be expressed in conventional systems. Second, even
for the algorithms implemented with some modifications to the
existing systems, which were limited to SP and PPR, our baseline
shows, on average, 2.5× faster performance than the fastest of the
three systems. The details of the experimental results are in the
longer version of this paper with supplementary material (available
in our artifact repository). We now present the evaluation results
of Sage-MemOpt and Sage-ExecOpt in comparison to the baseline.
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Figure 9: Speedup of Sage-MemOpt and Sage-ExecOpt relative to the baseline (bar plots), and the execution times of Sage-

MemOpt in line plots. The o-shaped plots are Sage-MemOpt with reduced cache size to fit in 128GB of memory.

5.3.1 Overall Performance (Memory and Execution). Wefirst demon-
strate the amount of memory that is saved by Sage-MemOpt. Fig-
ure 8 compares the amount of memory consumed by the baseline
and Sage-MemOpt. The gray horizontal dotted line indicates the
size of DRAM (128GB) in themachine. For the points that are plotted
above this line (128GB), we calculated and plotted the theoretical
memory consumption of the baseline and Sage-MemOpt. The base-
line runs successfully with 100 and 1K (1,000)1 sample networks
for all the algorithms and datasets. With 10K sample networks, the
baseline ran out of memory (OOM) for 33% of the cases (16 out
of 48) and with 100K sample networks 75% of the cases (36 out of
48) ran out of memory. In contrast, Sage-MemOpt runs success-
fully with 100, 1K, and 10K sample networks. With 100K samples,
Sage-MemOpt failed for 25% of the cases (12 out of 48). For these
OOM cases, we were able to successfully run Sage-MemOpt by
reducing the size of the vertex cache so that the entire memory
fits into 128GB (with increasing the disk size for a subset of the
OOM cases up to 6GB to store the vertex attributes). We report
these results when we discuss execution performance. When we
reduced the cache size for the baseline system in a similar man-
ner, it failed to run with OOM for all the large networks (COG,
ORK, and P2P) with 100K samples because of the memory overhead
of the edge existence bitmaps. Overall, excluding the OOM cases,
Sage-MemOpt uses only 1.6–63.6% (23.7% on average) of memory
compared to the baseline. Moreover, the reduced amount generally
increases as the number of sample networks increase. For example,
with 100K sample networks, Sage-MemOpt consumes only 13.7%
of the baseline’s memory usage on average.

Now let us examine the performance of the baseline, Sage-
MemOpt, and Sage-ExecOpt. Figure 9 shows the performance of
Sage-MemOpt and Sage-ExecOpt relative to that of the baseline in
bar graphs and the absolute execution times of Sage-MemOpt in
line graphs. The OOM cases for the baseline and Sage-ExecOpt are
shaded in dark gray, while the plotted red circles are the 12 cases
where Sage-MemOpt ran out of memory with the 100K samples
and thus, retrofitted into 128GB by reducing the cache size. We first
1For convenience, hereafter, 1𝐾 = 1000

Figure 10: Execution time normalized to full use of determin-

istic sampling (left 𝑦-axis) and memory usage (right 𝑦-axis)

for running four algorithms on COG with applying deter-

ministic sampling to a subset (0–100%) of edges.

notice that Sage-MemOpt outperforms the baseline by up to 6.8×
(IM with YT and 10K samples) and on average by 1.5× even though
it uses much less memory. We find that while deterministic sam-
pling trades off memory overhead with computation overhead, the
speedup brought by other optimizations exceeds the re-sampling
overhead. Moreover, Sage-ExecOpt outperforms the baseline by
up to 13.9× (IM with YT and 1K samples) and on average by 2.7×.
We also observe that for the COG dataset, the performance gain
by Sage-ExecOpt is much smaller than that of other datasets. For
COG, Sage-ExecOpt is only 1.3× faster than the baseline on average,
and in the worst case (SP with 100 samples), Sage-ExecOpt is 11%
slower than the baseline (although with 1K or larger sample sizes
Sage-ExecOpt consistently performs better than the baseline). This
is because COG has a large number of edges with very low existence
probabilities (average 0.18). That makes the overhead of determin-
istic sampling high for repeatedly generating random numbers for
non-existent edges, for which edge computations do not need to
run. As such, the performance improvements from deterministic
sampling depend on the characteristics of uncertain networks. Thus
we next explore how the cost and benefit of deterministic sampling
vary for different kinds of uncertain networks.
5.3.2 Deterministic Sampling. Deterministic sampling need not be
fully deployed. That is, only part of the edges may be generated
using deterministic sampling while the rest are pre-sampled. To
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(a) YT (b) COG

Figure 11: Execution times of SP with seven different edge

length setup with iterative, collective, and hybrid gather nor-

malized to that of iterative gather. The 𝑥-axis is the average

number of attributes per vertex for the seven runs.

investigate the execution time and memory trade-off with partially
deploying deterministic sampling, we conduct the following set
of experiments. The edges of the vertices are sorted by their in-
degrees in ascending order and then the first 𝑥% (from 0–100%
in 20% increments) of the edges are generated using deterministic
sampling, while the rest, i.e. (100−𝑥)% of the edges are pre-sampled.

Figure 10 shows the execution times and the memory usage
of the experiments for YT and COG with all Sage optimizations
enabled with cache size of 5% and 10K samples. We compare the
results of YT and COG because the results of YT are similar to those
of other networks but those of COG are different as previously
described. Recall that for COG, because of its low edge existence
probabilities, the re-sampling overhead of deterministic sampling
is high, resulting in a different memory and computation trade-off.

For both YT and COG, as a larger subset of the edges are ap-
plied with deterministic sampling, Sage uses less memory in all
four algorithms. However, the execution times increase at much
different rates for the four algorithms and also for YT and COG.
Between the two networks, the execution times of COG generally
increase at much faster rates than YT because of the high overhead
of deterministic sampling in COG. Among the four algorithms, the
execution times of TopK and CL increase faster than those of kNN
and kCore. This is because the latter are more compute-intensive
than the former and thus the overhead of re-sampling is relatively
low compared to the execution of the gather operations. For ex-
ample, consider the experimental results of TopK and kCore for
COG. For both the algorithms, deterministic sampling reduces the
amount of memory from 81GB to only 1.3GB (62× improvement).
While the execution time for TopK increased by 5.3×, the time
for kCore increased by only 1.5× because re-sampling is relatively
cheap for kCore. These experiments show that for the networks and
algorithms where deterministic sampling incurs high computation
overhead, we can apply the technique to a subset of edges and con-
trol the trade-off between execution time and memory overhead.
5.3.3 Hybrid Gathering. We study the performance impact of hy-
brid gathering. As its performance is affected by the number of
distinct attributes in each vertex, we evaluate hybrid gathering with
varying number of per-vertex attributes and compare its perfor-
mance with iterative gathering and collective gathering. That is,
we set up experiments that run shortest paths with an increasing
number of distinct edge lengths. The edge lengths of the seven runs
are randomly selected to be one of the integer values in ranges 1–1,
1–2, 1–5, 1–10, 1–25, 1–50, and 1–100. We used Zipfian distribution
with longer length given higher probability. As the ranges of edge

Figure 12: Hit ratio of LRU and our schedule-aware caching.

Figure 13: Performance gains by copy-on-write attributes.

Execution times without using this feature (w/o CoW At-

tributes) are shown in parentheses below the 𝑥-axis.

lengths increase, the number of distinct path distances in sample
networks also increases making collective gathering less effective.

Figure 11 shows the results of the experiments for YT and COG
with 1K sample networks. The 𝑥-axis is the average number of
attributes per vertex and 𝑦-axis is the execution time normalized
to that of iterative gather. The average number of vertex attributes
ranges between 3.6∼31.4 for YT and 3.7∼78.7 for COG. Below the 𝑥-
axis, we show the actual execution times of iterative gather in paren-
thesis.We can see that when the number of attributes is small (<14.6
for YT and <18.8 for COG) collective gather performs better than
iterative gather. For these cases, hybrid gathering executes as fast
as collective gathering except for YT with 14.6 attributes, in which
case, the repeated attribute type conversion overhead for the source
vertex of the gather is relatively large. When the number of vertex
attributes is large, iterative gathering is faster. For these cases, hy-
brid gathering is as fast as iterative gathering, except for YT with
31.1 average attributes, again, due to the conversion overhead.

For all the evaluated algorithms, hybrid gathering performs as
fast as the faster of the two methods as in the case study. In par-
ticular, for TopK, CL, and BFS collective gathering performs faster
than iterative gathering, on average, by 16.4%, 16.0%, and 13.1%,
respectively. For these three algorithms, hybrid gathering achieved
the same performance as collective gathering as all the vertices
maintained the attribute-bitmap tables and no vertex is converted
to the attribute array representation. For the other algorithms (kNN,
PPR, kCore, IM, and SP), collective gathering runs slower than it-
erative gathering. For these algorithms, we confirmed that hybrid
gathering quickly converts to the attribute array representations for
most of the vertices resulting in performance of iterative gathering.

5.3.4 Schedule-Aware Caching. Our caching scheme exploits the
execution schedule of edge computations and thus, gives much
higher cache performance than the naive LRU policy. Here we
quantify the performance gain brought by our caching scheme. To
that end we vary the attribute cache size to be 5–20% of the total
vertex attribute sizes and run the benchmark algorithms with both
LRU and our schedule-aware caching scheme. Figure 12 shows the
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Table 3: Execution time and disk usage with large samples

FB COG
Samples TopK kNN TopK kNN

100K 116s, 8G 147s, 50G 3.1h, 28G 6.9h, 183G
500K 572s, 38G 789s, 251G 15.9h, 140G 37.5h, 920G
1M 1147s, 76G 1703s, 501G 32.6h, 279G N/A, 1.8T
3M 3485s, 228G N/A, 1.5T 99.4h, 836G N/A, 5.5T
5M 5873s, 380G N/A, 2.5T N/A, 1.4T N/A, 8.9T

results of the experiments. It shows that schedule-aware caching
results in average and maximum of 6 and 18 percentage points
higher hit ratio over LRU (including the results not shown in Fig-
ure 12 due to space). This results in performance improving by up
to 25% over LRU and by 8% on average (results not shown due to
space). Note that the hit ratio of LRU in Sage is already 9 percentage
points higher than the baseline due to the data compression effect
by hybrid gathering and copy-on-write attributes. Schedule-aware
caching further improves the hit ratio by 6 percentage points.
5.3.5 Copy-on-Write Attributes. We investigate the performance
impact of copy-on-write attributes. When this optimization is not
applied, we allocate and initialize all the attributes before running
the first superstep. Copy-on-write attributes reduces the overhead
of this initialization at the beginning of analysis. Figure 13 shows
the performance of running the benchmark algorithms with and
without copy-on-write attributes with 1K samples. It shows that the
optimization improves performance by up to 1.53× and on average
by 1.15×; the disk space is saved by 21.4% on average. This optimiza-
tion is most effective for P2P as it consists of several disconnected
sub-networks and thus many of the vertices are not reachable when
running traversal-based algorithms. The performance for P2P is
improved by 1.3× on average using only 6.7% of the disk space.
5.3.6 Scalability of Sage. To understand how Sage scales with the
number of sample networks and the uncertain network size, we run
two more sets of experiments in much larger scale than the earlier
experiments. For these experiments, we only consider TopK and
kNN as their memory and disk usage, which is mainly determined
by the vertex attribute size, are representative of other algorithms.
That is, TopK has a vertex attribute size of 1 byte, as is the case for
BFS and CL. The attribute size for kNN is 8 bytes, as are for kCore
and IM, which is similar to that of SP (4 bytes) and PPR (16 bytes).

The first experiments evaluate algorithms with large sample net-
works. To the best of our knowledge, the largest number of sample
networks used for uncertain network analysis is 1M (M:million) [46].
Thus, we choose to evaluate even larger sample networks, specifi-
cally, up to 5M. For this evaluation, we use the real networks, FB
and COG, that provide the uncertainty information in the dataset.

Table 3 shows the results. For FB, both TopK and kNN success-
fully ran with 100K, 500K, and 1M sample networks. With 3M and
5M sample networks, kNN fails to execute due to the disk space
limit. Running kNNwith 3M and 5M samples requires 1.5 and 2.5TB
of disk space but our machine has only 1TB SSD. To verify that the
disk size is the limiting factor, we re-executed kNN for 3M samples
with an additional 1TB SSD, that is, with 2TB disk space. In this
case, Sage successfully executed the algorithm in 6893 seconds.

For COG, TopK with 100K–3M samples and kNN with 100K and
500K samples successfully executed. Similar to FB, the failing cases
are due to the large size of vertex attributes. That is, TopK with 5M
samples and kNN with 1M–5M samples failed to run because of the
disk space limit as they require 1.4TB–8.9TB disk space that is larger

Table 4: Execution time and disk usage with large networks

Unif. Prob Zipf. Prob
|V|, |E| TopK kNN TopK kNN

1M, 100M 253s, 1.5G 0.8h, 8.3G 248s, 1.5G 0.6h, 8.3G
5M, 0.5B 1341s, 7.3G 1.4h, 41.5G 1338s, 7.3G 1.1h, 41.5G

10M, 1B 2723s, 14.6G 2.8h, 83.0G 2667s, 14.6G 2.2h, 83.0G
20M, 2B 5718s, 29.3G 5.9h, 166G 5547s, 29.3G 4.6h, 166G

than the one 1TB storage space of our machine. Considering the
failed cases of FB and COG, the limiting factor of Sage’s scalability
for large sample networks is the disk space for storing the vertex
attributes of the sample networks.

In the second set of experiments, we evaluate the algorithms
with much larger uncertain networks than those used in earlier
experiments. For these experiments we generate synthetic graphs
with up to 20M vertices and 2B (B:billion) edges using the RMAT
algorithm [36]. We use the uniform and Zipfian distributions to
generate the edge existence probabilities. As previous studies most
commonly use 1K sample networks for analysis [26, 32, 46, 56, 62,
86, 88], we evaluate with 1K sample networks as well.

Table 4 shows the results. We observe that Sage runs successfully
for up to 20M vertices and 2B edges for both TopK and kNN. Also
the execution times for the Zipfian distribution cases are shorter
than those of the uniform distribution cases, and more so for kNN.
This is because the sample networks with Zipfian distribution have
more connected edges and the 𝑘 neighbors are identified in early
iterations. For running kNN for the largest network with 20M
vertices and 2B edges, Sage requires 62GB of memory for storing
the uncertain network, 46GB for maintaining the vertex cache, and
4GB for storing other data structures such as vertex status bitmaps.
The total required memory is 112GB, which is smaller than the
128GB memory of our machine. For any larger network, Sage will
run out of memory. Running analysis for such extremely large
networks requires partitioning the networks and processing them
on a cluster of machines, which we leave as future work.

6 CONCLUSIONS

This paper presented Sage, a system and programming model for
uncertain network analysis. Existing algorithms for uncertain net-
works typically run analysis on sampled network instances and
aggregate the analysis results. Sage makes it easy to express these
algorithms with its vertex data model and programming interface.
In addition, Sage proposes four optimization techniques, namely,
deterministic sampling, hybrid gathering, schedule-aware caching,
and copy-on-write attributes, which substantially reduce memory
usage and improve performance. Through our extensive evalua-
tion with six graphs and eight algorithms, we showed that the four
optimizations jointly improve performance by up to 13.9× and on
average 2.7× while only consuming, on average, 23.7% of the mem-
ory space compared to the baseline. Moreover, all the evaluated
algorithms are succinctly expressed in Sage with its high-level
programming model tailored for uncertain network analysis.
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