
Discovering Polarization Niches via Dense Subgraphs with
Attractors and Repulsers

Adriano Fazzone
CENTAI Institute

Turin, Italy
adriano.fazzone@centai.eu

Tommaso Lanciano
Sapienza University

Rome, Italy
lanciano@diag.uniroma1.it

Riccardo Denni
Sapienza University

Rome, Italy
denni@diag.uniroma1.it

Charalampos E. Tsourakakis
Boston University, USA

ISI Foundation, Turin, Italy
ctsourak@bu.edu

Francesco Bonchi
CENTAI Institute, Turin, Italy
Eurecat, Barcelona, Spain

bonchi@centai.eu

ABSTRACT

Detecting niches of polarization in social media is a first step to-
wards deploying mitigation strategies and avoiding radicalization.
In this paper, we model polarization niches as close-knit dense
communities of users, which are under the influence of some well-
known sources of misinformation, and isolated from authoritative
information sources. Based on this intuition we define the problem
of finding a subgraph that maximizes a combination of (𝑖) density,
(𝑖𝑖) proximity to a small set of nodes 𝐴 (named Attractors), and
(𝑖𝑖𝑖) distance from another small set of nodes 𝑅 (named Repulsers).

Deviating from the bulk of the literature on detecting polariza-
tion, we do not exploit text mining or sentiment analysis, nor we
track the propagation of information: we only exploit the network
structure and the background knowledge about the sets 𝐴 and 𝑅,
which are given as input. We build on recent algorithmic advances
in supermodular maximization to provide an iterative greedy al-
gorithm, dubbed Down in the Hollow (dith), that converges fast
to a near-optimal solution. Thanks to a novel theoretical upper
bound, we are able to equip dithwith a practical device that allows
to terminate as soon as a solution with a user-specified approx-
imation factor is found, making our algorithm very efficient in
practice. Our experiments on very large networks confirm that our
algorithm always returns a solution with an approximation factor
better or equal to the one specified by the user, and it is scalable.
Our case-studies in polarized settings, confirm the usefulness of
our algorithmic primitive in detecting polarization niches.

PVLDB Reference Format:

Adriano Fazzone, Tommaso Lanciano, Riccardo Denni, Charalampos E.
Tsourakakis, and Francesco Bonchi. Discovering Polarization Niches via
Dense Subgraphs with Attractors and Repulsers. PVLDB, 15(13): 3883 -
3896, 2022.
doi:10.14778/3565838.3565843
PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/tlancian/dith.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.
doi:10.14778/3565838.3565843

Figure 1: In the Greek parliament Twitter-sphere network

(see Section 5.4 for dataset description)we search for far-right

polarization niches, by querying for a dense cluster that is far

from the light blue node (repulser), representing the center-

left newspaper Efimerida Syntakton and close to the pink

node (attractor), representing the far-right tabloid Makeleio.
The solution found by our method is a dense cluster of ten

Golden dawn leaders (red nodes), which, in October 2020,

have been charged with running a criminal organization.

1 INTRODUCTION

Social media have become the main stage for societal debates in
recent times. This emerging participatory environment, where ev-
eryone can easily access information and participate in the societal
debate by expressing their own opinion, is heavily employed by au-
thorities, official organizations, old-media outlets, as well as all sort
of low-quality information, or even misinformation, sources. Hand
in hand with the quality of the information propagating in social
media, stands another important issue: the increase of polarization
and partisanship around controversial issues. Users tend to interact
with like-minded individuals and consume partisan information
which reinforces their own ideological viewpoint [7, 24]: this is the
so-called “echo chamber” effect [14]. Detecting misinformation cam-
paigns and echo chambers, blocking bots, and limiting excessive po-
larization, have thus become urgent societal and technological prob-
lems, which are witnessing an uptake of the research on developing
detection and intervention methods [6, 23, 25, 28, 41, 42, 47, 63].

In this paper, as a prerequisite towards deploying interventions,
we study the problem of identifying niches of users which are well
connected among them, exposed to low-quality information, and

3883

https://doi.org/10.14778/3565838.3565843
https://github.com/tlancian/dith
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565838.3565843
https://www.acm.org/publications/policies/artifact-review-and-badging-current

isolated from authoritative sources. Consider, as a concrete exam-
ple, the vaccination debate around COVID-19, where hesitancy
builds up in communities around presumed authoritative sources
which instead spread conspiracy-theory-based misinformation, and
in which official medical authorities and academic sources have
no penetration. We tackle the challenge of detecting these niches
of users as a dense subgraph discovery problem. Differently from
the literature, we do not exploit text mining or sentiment analysis,
nor we track the propagation of information: we only use the net-
work structure and the background knowledge about a small set
of nodes 𝐴 (Attractors), to which we want our solution to be close,
and a small set of nodes 𝑅 (Repulsers) from which we want our
solution to be far. In our setting, the attractors 𝐴 might be nodes
that are known to be misinformation sources, while the repulsers
𝑅 might be authoritative information sources. We aim at finding a
close-knit dense community of users which are socially close to 𝐴
and far from 𝑅: this might be a polarization niche which is strongly
influenced by radicalizing content sources and isolated from au-
thoritative sources. Figures 1 and 2 show examples of application
of our algorithmic primitive to the Greek Twitter-sphere network.

Based on this intuition, we define the Dense Subgraphs with
Attractors and Repulsers Problem (DSAR) whose objective is
to maximize a combination of density, proximity to 𝐴, and distance
from 𝑅, regulated by two scalars (𝜆1 and 𝜆2) which control the im-
portance of proximity and distance, respectively. Our problem is, at
the same time, a generalization of the Densest Subgraph Problem
(DSP)1, and a special instance of a particular generalization of DSP
on node-weighted graphs. Such a variant, that we dub Heavy and
Dense Subgraph Problem (HDSP), was proposed by Goldberg in
his seminal 1984 paper [27, Section 6]: although it has been used
in applications (e.g., [32]), not much algorithmic progress has been
made on HDSP since Goldberg’s 1984 paper. Specifically, Goldberg
shows that for HDSP, as for DSP, an exact solution can be com-
puted in polynomial time by solving the maximum-flow problem.
However, being based on max-flow computations, the algorithm is
too slow to run on medium/large instances.

We thus focus our attention on devising an iterative greedy algo-
rithm that converges fast to a near optimal solution, exploiting very
recent algorithmic advances in supermodular maximization [13].
In order to explain in detail our technical contributions, we first
need to provide some technical background.
Technical Background. DSP is a foundational formulation of
dense subgraph discovery [26] that maximizes the average degree
over all possible subgraphs. Goldberg [27] gave one of the first
polynomial-time algorithms for the densest subgraph problem, via
a reduction to 𝑂 (log𝑛) instances of maximum flow, where each
candidate value of maximum average degree yields a unique maxi-
mum flow instance. Gallo, Grigoriadis, and Tarjan [22] solved DSP
with a single Parametric-MaxFlow computation. Charikar [12] gave
an alternative polynomial-time solution for the problem by formu-
lating a linear program which solves it exactly. Charikar also gave
a linear-time, 1

2 -approximation algorithm (known as “peeling”)
that greedily removes the node with the smallest degree, and then
reports the maximum density seen among these subgraphs. This
algorithm was also studied in [5].

1When 𝜆1 = 𝜆2 = 0 DSAR corresponds exactly to DSP.

Recently, Boob et al. [11] proposed Greedy++, an algorithm
inspired by multiplicative weights update [4]. The algorithm simply
runs Charikar’s peeling routine for several iterations, and updates
the vertex priorities based on the results from the previous iteration.

Very recently, Chekuri, Quanrud, and Torres [13], building
over [11], showed that Greedy++ converges to a solution with an
arbitrarily small approximation factor, and that it naturally extends
to a broad class of supermodular functions. In the remaining of the
paper we shall refer to the algorithm in [13] as Super-Greedy++.
Our contributions.We exploit the recent algorithmic advances
of [13] for devising our Down in the Hollow (dith) algorithm for
HDSP (and thus for our DSAR problem). We prove an upper bound
which enables a termination criterion that makes dith much more
efficient in practice. Specifically, we employ a user-specified input
parameter 𝛾 , that allows our algorithm to terminate first if a solu-
tion that is a (1 − 𝛾) approximation of the optimum is found. To
prove the correctness of this modification, we define an LP program
for HDSP, thus providing another exact algorithm alternative to
Goldberg’s [27].

More in details, the contributions of this paper can be sum-
marised as follows:
• We define the novelDense SubgraphswithAttractors and

Repulsers Problem (DSAR), where the solution is required to
be dense, close to a given set of nodes 𝐴, and far from another
set of nodes 𝑅. We show that our problem can be seen as an
instance of HDSP, thus solvable in polynomial time.
• We dust off the HDSP problem which, to the best of our knowl-
edged, hasn’t been studied since Goldberg’s 1984 paper [27],
and revive it through the lenses of very recent advances in
supermodular maximization, obtaining an iterative greedy
algorithm that converges fast to a near-optimal solution.
• We prove an upper bound which allows our algorithm to termi-

nate as soon as a solution with a user-specified approximation
factor is found, making our algorithm very efficient in practice.
This also represents an advancement over the state of the art
[11, 13] for the classic Densest Subgraph Problem: in fact,
before our work it was possible to know the approximation
factor only in an imprecise way (in terms of big-𝑂 notation).
• To prove the correctness of the bounds required by the early-
stop device, we define an LP program for HDSP: thus, as a
side effect, we provide another exact algorithm for this classic
problem. We also show that the standard peeling algorithm
has an approximation factor better than 1

2 for any instance of
HDSP where all weights on nodes are strictly positive.
• Our experiments on large networks confirm that our algorithm

always returns a solution with an approximation factor better
or equal to the one specified by the user, and it is scalable. Our
case-studies in polarized settings, confirm the usefulness of
our algorithmic primitive in detecting polarization niches.

2 BACKGROUND AND RELATEDWORK

Detecting polarization in social media. Several researchers
have studied the problem of detecting polarization in social media.
Some approaches use content information and adopt text-analysis
approaches [15, 43, 51], while others use graph-based approaches [2,

3884

9, 16, 24, 46, 48, 52]. Among the graph-based approaches, different
types of information are taken into consideration to create the
network for further analysis: some researchers use (positive or
negative) interactions among the users codified in signed edges
of a signed network [2, 9, 52], others exploit information cascades
generated by re-tweets [44, 46], others use multiple data sources
such as interactions, content and re-tweets [16, 24].

Our work departs from this literature, as we are developing al-
gorithmic primitives that provide insights into the polarization
niches using two targeted sets of nodes that are either (i) strong
proponents of diametrically opposed opinions, or (ii) misinforma-
tion vs. authoritative and reliable information sources. Contrarily
to other graph-based approaches, we do not consider any content
or interactions information.

Local Community Search. Given a graph𝐺 = (𝑉 , 𝐸) and a query
set of nodes𝑄 ⊆ 𝑉 , the community search problem requires to find
a cluster of nodes 𝑆 which contains (completely or partially) 𝑄 and
whose induced subgraph optimizes some measures of cohesiveness,
e.g., density [8, 18, 33, 37, 54, 56, 61] or conductance [58, 64]. Our
problem can also be seen as a variant of the community search
problem in which, instead of having as input only one set of nodes,
we have two sets: one to which we want the solution to be close,
and one to which we want the solution to stay away.

Many authors have adopted random-walk-based approaches [3,
10, 36, 37, 57, 61] for community search: indeed, the problem of
finding other vertices related to a given seed of vertices is the basic
idea of Topic Sensitive PageRank (𝑇𝑆𝑃𝑅) [31, 34]. In our experiments
in Section 5.3, we are inspired by this literature to devise two non-
trivial baselines for our problem, to compare with our method.

Submodular minimization. A function 𝑓 : 2𝑉 → R defined
on a ground set 𝑉 is submodular if for any 𝑆,𝑇 ⊆ 𝑉 : 𝑓 (𝑆 ∪ 𝑇) ≤
𝑓 (𝑆) + 𝑓 (𝑇) − 𝑓 (𝑆 ∩ 𝑇). Alternatively, for every 𝐴 ⊂ 𝐵 ⊂ 𝑉 and
𝑥 ∈ 𝑉 \𝐵, 𝑓 is submodular if 𝑓 (𝐴∪{𝑥})− 𝑓 (𝐴) ≥ 𝑓 (𝐵∪{𝑥})− 𝑓 (𝐵).

A function 𝑓 is supermodular if and only if −𝑓 is submodular,
i.e., when the inequalities in the above definitions are reversed.

If 𝑓 is both supermodular and submodular, then 𝑓 is modular,
and the inequalities become equalities. We refer to a set function
𝑓 : 2𝑉 → R as normalized if, and only if, 𝑓 (∅) = 0, and as
non-negative if, and only if, 𝑓 (𝑆) ≥ 0,∀𝑆 ⊆ 𝑉 . A set function
𝑓 : 2𝑉 → R is monotone non-decreasing (resp. non-increasing)
if ∀𝑆 ⊆ 𝑇 ⊆ 𝑉 , 𝑓 (𝑆) ≤ (resp. ≥) 𝑓 (𝑇). It is straightforward to
show that if 𝑓 : 2𝑉 → R is a normalized, non-negative, and su-
permodular set function, then it is also monotone non-decreasing.
Furthermore, if 𝑓 , 𝑔 : 2𝑉 → R are two supermodular, non-negative,
normalized and monotone non-decreasing functions defined on
the same ground set 𝑉 , then any non-negative linear combination
𝑐1 𝑓 (𝑆) + 𝑐2𝑔(𝑆), 𝑐1, 𝑐2 ∈ R≥0 satisfies the same properties.

In general, submodular functions may require a representa-
tion that is exponential in size, and therefore we assume that
we are given access to a value oracle which given a set 𝑆 re-
turns 𝑓 (𝑆). The classic problem of maximizing a monotone (i.e.,
𝑆 ⊆ 𝑇 =⇒ 𝑓 (𝑆) ≤ 𝑓 (𝑇)) submodular function under a cardinality
constraint is solvable with a greedy algorithm which iteratively
adds the element with largest marginal contribution into the so-
lution obtains a 1 − 1/𝑒 approximation, which is optimal unless
using exponentially-many queries or P=NP [20, 49]. Maximizing

Figure 2: Again the Greek parliament Twitter-sphere net-

work as in Figure 1, but switching the roles of Efimerida
Syntakton (light blue node), which now is the attractor, and

Makeleio (pink node), which now is the repulser. In this case

the solution (dark blue nodes) is a very dense subgraph of 15

nodes composed by the main news outlets of Greece.

submodular functions appears in a variety of domains and applica-
tions, including combinatorial auction theory [19], sensor network
placement [30], influence maximization [35], data streams [45], and
machine learning [38].

Similarly to other problems in dense subgraphs discovery [13, 62],
the problem we tackle in this paper is an instance of submodular
minimization, which is solvable in strongly polynomial time, under
the value oracle model [55]. However, the runtime of such an exact
polynomial time algorithm is 𝑂 (𝑛6) [55].

3 PROBLEM STATEMENT

We are given an undirected graph 𝐺 = (𝑉 , 𝐸) and two distinct sets
of nodes 𝐴, 𝑅 ⊂ 𝑉 , 𝐴 ∩ 𝑅 = ∅, representing cognitively-grounded
nodes which have a clear and diametric stance on a controversial
topic [1]. For example, there exists news media that are well known
to be right- or left-leaning in terms of politics; similarly, there exist
Twitter accounts that clearly state their stance with respect to a
controversial topic, e.g., abortions. The two sets 𝐴 and 𝑅, can also
represent sources of information such that are either trustworthy,
or spread misinformation respectively. An extreme special case
of such anchored nodes are propaganda accounts, which are not
interested at all in a civil exchange of arguments for the sake of
truth but are rather propagators of a perspective that typically
serves their interests, using even spread of misinformation [29].

While polarization has been studied in a variety of recent works,
we lack the algorithmic tools to discover polarization niches. We
introduce an algorithmic primitive whose goal is to find a dense
cluster of nodes 𝑆 , where each node in 𝑆 is simultaneously close to
the set 𝐴 of Attractors and far from the set 𝑅 of Repulsers.

As the function of distance between one node 𝑠 ∈ 𝑆 and the set
of nodes 𝑅 we consider 𝑑 : 𝑉 × 2𝑉 → N, such that:

𝑑 (𝑠, 𝑅) =

0, if 𝑠 ∈ 𝑅
min𝑟 ∈𝑅 𝑑𝑠𝑝 (𝑠, 𝑟), otherwise

where 𝑑𝑠𝑝 (𝑠, 𝑟) represents the classic shortest-path distance be-
tween two nodes. As the function of proximity between one node
𝑠 ∈ 𝑆 and the set of nodes 𝐴 we adopt 𝑝 : 𝑉 × 2𝑉 → N, such that
𝑝 (𝑠, 𝐴) = Δ(𝐴) − 𝑑 (𝑠, 𝐴) where Δ(𝐴) = max𝑣∈𝑉 𝑑 (𝑣, 𝐴).

3885

We are now ready to define the problem we tackle in this paper.

Problem 1 (Dense Subgraphs with Attractors and Re-
pulsers Problem (DSAR)). Given a graph 𝐺 = (𝑉 , 𝐸), two sets
of nodes 𝐴, 𝑅 ⊂ 𝑉 , 𝐴 ∩ 𝑅 = ∅, and scalars 𝜆1, 𝜆2 ∈ R+, find

𝑆∗ = argmax
𝑆⊆𝑉

𝑒 (𝑆) +
𝑠∈𝑆 (𝜆1 𝑝 (𝑠, 𝐴) + 𝜆2 𝑑 (𝑠, 𝑅))

|𝑆 |

where 𝑒 (𝑆) = |𝐸 (𝑆) | is the number of edges in the subgraph induced
by 𝑆 , and 𝑑, 𝑝 : 𝑉 × 2𝑉 → N are respectively distance and proximity
functions as defined above.

Discussion on the objective function.Our objective function is a
linear combination of the density, the proximity to the attractors 𝐴,
and the distance from the repulsers 𝑅. In addition to the input sets
𝐴 and 𝑅, each problem instance is defined by the scalars 𝜆1, 𝜆2 ∈ R+,
which control the relative importance of proximity and distance,
respectively. The quantitative relation between 𝜆1 and 𝜆2 directly
affects the characteristics of the solution.

Since the distance function 𝑑 (𝑠, 𝑅) considers the minimum dis-
tance of 𝑠 from any node in 𝑅, our objective function favours nodes
that are far from all the repulsers. If instead of the minimum we
would have used the sum of distances from all repulsers, we could
ended up, e.g., selecting nodes that are far frommost of the repulsers
but very close to one of them. This would not be adequate for our
motivating problem of finding niches of users which are isolated
from authoritative information sources. On the other hand, for what
concerns proximity to 𝐴, our objective function favors nodes that
are close to at least one of the attractors: again, this is consistent
with our motivating problem of finding niches of users which are
close, and thus influenceable, from a source of misinformation.

In the definition of the proximity function 𝑝 (𝑠, 𝐴), we use the
value Δ(𝐴) to ensure non-negativity. We could have used any up-
per bound to Δ(𝐴) for the same purpose (e.g., the diameter of 𝐺),
without obtaining any effect on the definition of the problem. We
use Δ(𝐴) for a simple opportunistic reason: as we will see later
in Section 4, we need to compute for each node in the graph its
distance from 𝐴 in any case.

To aggregate among all the nodes 𝑠 ∈ 𝑆 , we adopt the average of
the distance and the proximity functions, (weighted by 𝜆1 and 𝜆2),
which is consistent with the density term, defined as half the aver-
age degree within the solution 𝑆 . The use of the average makes that
there is no need to provide the size of the solution as input, given
that the optimum is found balancing between the three functions
at the numerator and the size of the solution itself.

4 COMPLEXITY AND ALGORITHMS

We first show that our problem is a special instance of a generaliza-
tion of DSP first introduced by Goldberg in his seminal 1984 paper
[27, Section 6], that we dub Heavy and Dense Subgraph Problem.

Problem 2 (Heavy and Dense Subgraph Problem (HDSP)).
Given an undirected graph (𝐺,𝑉 , 𝐸,𝑤𝑉 ,𝑤𝐸) with no self-loops, where
𝑤𝑉 : 𝑉 → R+ and𝑤𝐸 : 𝐸 → R+, find 𝑆∗ ⊆ 𝑉 such that

𝑆∗ = argmax
𝑆⊆𝑉

𝑒 (𝑆) +𝑤𝑉 (𝑆)
|𝑆 | ,

where 𝑒 (𝑆) =
𝑒∈𝐸 (𝑆) 𝑤𝐸 (𝑒) and𝑤𝑉 (𝑆) =

𝑠∈𝑆 𝑤𝑉 (𝑠).

Algorithm 1: Goldberg for DSAR
Input :𝐺 (𝑉 , 𝐸),𝑤𝐸 : 𝐸 → R+, 𝜆1 ≥ 0, 𝜆2 ≥ 0, 𝐴 ⊂ 𝑉 ,

𝑅 ⊂ 𝑉
Output :𝑆∗ ⊆ 𝑉

1 𝑤𝑉 ← Vertex-Weights-Calculator(𝐺, 𝑤𝐸 , 𝜆1, 𝜆2, 𝐴, 𝑅) ;
2 𝑆∗ ← Goldberg−HDSP(𝐺, 𝑤𝐸 , 𝑤𝑉) ;
3 return 𝑆∗;

Algorithm 2: Vertex-Weights-Calculator
Input :𝐺 (𝑉 , 𝐸),𝑤𝐸 : 𝐸 → R+, 𝜆1 ≥ 0, 𝜆2 ≥ 0, 𝐴 ⊂ 𝑉 ,

𝑅 ⊂ 𝑉
Output :𝑤𝑉 : 𝑉 → R+

1 𝑉 ← 𝑉 ∪ {𝑥};
2 foreach 𝑎 ∈ 𝐴 do 𝐸 ← 𝐸 ∪ {(𝑎, 𝑥)},𝑤𝐸 [(𝑎, 𝑥)] ← 0;
3 Run Dijkstra Algorithm using 𝑥 as source;
4 Δ(𝐴) ← max𝑣∈𝑉 𝑑𝑠𝑝 (𝑣, 𝑥);
5 foreach 𝑣 ∈ 𝑉 \ {𝑥} do𝑤𝑉 [𝑣] ← 𝜆1 · (Δ(𝐴) − 𝑑𝑠𝑝 (𝑣, 𝑥));
6 𝑉 ← (𝑉 \ {𝑥}) ∪ {𝑦} ;
7 foreach 𝑟 ∈ 𝑅 do 𝐸 ← 𝐸 ∪ {(𝑟,𝑦)},𝑤𝐸 [(𝑟,𝑦)] ← 0;
8 Run Dijkstra algorithm using 𝑦 as source;
9 foreach 𝑣 ∈ 𝑉 \ {𝑦} do𝑤𝑉 [𝑣] ← 𝑤𝑉 [𝑣] + 𝜆2𝑑𝑠𝑝 (𝑣,𝑦);

10 return𝑤𝑉 ;

The HDSP generalization of the DSP is solvable exactly in poly-
nomial time [27]. Thus, we obtain the same result for DSAR. We
state this as the next lemma.

Lemma 1. The DSAR problem (Problem 1) is a special instance of
the HDSP problem (Problem 2).

Proof. It is easy to see that we can obtain Problem 1 as a spe-
cial case of Problem 2, by setting 𝑤𝐸 (𝑒) = 1 for every 𝑒 ∈ 𝐸, and
𝑤𝑉 (𝑣) = 𝜆1𝑝 (𝑣, 𝐴)+𝜆2𝑑 (𝑣, 𝑅) for every 𝑣 ∈ 𝑉 . The objective of Prob-
lem 1, for unweighted graphs, is clearly lower bounded by the ob-
jective value obtained for 𝑆 = 𝑉 , and it is (trivially) upper-bounded

by (
𝑛
2)+𝜆1𝑛2+𝜆2𝑛2

1 ≤ (1+𝜆1 +𝜆2)𝑛2 = 𝑂 (𝑛2) for any constant values
of 𝜆1, 𝜆2. Furthermore, it is straight-forward to prove that any two
distinct values are separated by Ω(min(1,𝜆1,𝜆2)

𝑛2) = 𝑂 (𝑛−2). □

We use Goldberg’s algorithm, that performs 𝑂 (log𝑛) queries of
the form ∃𝑆 : 𝑒 (𝑆) + 𝑤𝑉 (𝑆) ≥ 𝜃 |𝑆 | using binary search on 𝜃 , to
find an optimal set 𝑆∗. Goldberg’s logarithmic upper bound on the
number of queries holds also for non-negativeweighted graphswith
polynomially bounded edgeweights, i.e., 1

poly(𝑛) ≤ 𝑤 (𝑒) ≤ poly(𝑛)
for all edges 𝑒 ∈ 𝐸.

Therefore it is possible to solve Problem 1 in polynomial time
using Algorithm 1, that first computes the node weights using
Algorithm 2, and then runs Goldberg’s HDSP max-flow algorithm.
The next proposition states the complexity of our algorithm.

Proposition 1. Problem 1 is solvable in𝑂 (𝑇max-flow (𝑛,𝑚) · log𝑛)
time, where 𝑇max-flow (𝑛,𝑚) is the runtime of a maximum flow com-
putation in the standard RAM model.

Notice that the total run time is dominated by the exactmaximum
flow computation; the best known exact algorithm for themaximum
flow problem runs in 𝑂 (𝑛𝑚) [50], which makes the exact solution
prohibitive for even medium-scale datasets.

3886

This motivates us to develop an iterative greedy algorithm that
converges fast to a near-optimal solution.

4.1 The Down in the Hollow (dith) algorithm

Chekuri, Quanrud, and Torres [13] recently introduced the follow-
ing problem.

Problem 3 (Densest Supermodular Subset problem (DSS)).
Given a normalized, non-negative, monotone, and supermodular set
function defined over a ground set 𝑉 (𝑓 : 2𝑉 → R+), find 𝑆∗ ⊆ 𝑉

such that

𝑆∗ = argmax
𝑆⊆𝑉

𝑓 (𝑆)
|𝑆 | .

Our next lemma shows that the HDSP problem is a special case
of the DSS problem. This is a direct consequence of properties of
supermodular functions, as discussed in Section 2.

Lemma 2. HDSP (Problem 2) is a special instance of DSS (Problem
3).

Proof. It suffices to prove that the functions defined in Problem
2, 𝑒 : 2𝑉 → R≥0 and𝑤𝑉 : 2𝑉 → R≥0 are supermodular, normalized
and non-negative set functions. By definition, both 𝑒 and 𝑤𝑉 are
non-negative. Note that if 𝑆 = ∅, 𝑒 (𝑆) = 𝑤𝑉 (𝑆) = 0. Furthermore,
function 𝑒 is a supermodular function. We conclude the lemma
showing that𝑤𝑉 is modular. In fact, ∀𝑆,𝑇 ⊆ 𝑉 it holds that

𝑤𝑉 (𝑆) +𝑤𝑉 (𝑇) =
∑︁
𝑠∈𝑆

𝑤𝑉 (𝑠) +
∑︁
𝑡 ∈𝑇

𝑤𝑉 (𝑡) =

=
∑︁

𝑥∈𝑆∪𝑇
𝑤𝑉 (𝑥) +

∑︁
𝑦∈𝑆∩𝑇

𝑤𝑉 (𝑦) = 𝑤𝑉 (𝑆 ∪𝑇) +𝑤𝑉 (𝑆 ∩𝑇).

□

DSP DSAR HDSP DSS

Figure 3: Problem hierarchy.

Figure 3 visualizes the hierarchy of problems in this work. To solve
DSAR we can rely on any algorithm for HDSP: however, neither
the max-flow algorithm, nor the𝑂 (𝑛6) algorithm for supermodular
maximization [55], scale to large real-world networks. Thanks to
Lemma 2, we can adapt the framework by Chekuri et al. [13] for
DSS, whose main result is reported next, to our setting. We use the
following notation: we denote the marginal gain 𝑓 (𝑆 ∪ {𝑣}) − 𝑓 (𝑆)
with 𝑓 (𝑣 |𝑆), while 𝑂𝑃𝑇 denotes the maximum of 𝑓 (𝑆)/|𝑆 | over all
𝑆 ⊆ 𝑉 .

Theorem 4.1 (Chekuri-Quanrud-Torres). Let 𝑓 : 2𝑉 → R≥0
be a normalized, non-negative, and monotone supermodular function
over the ground set 𝑉 = [𝑛]. Let 𝜖 ∈ (0, 1). Super-Greedy++ out-

puts a (1 − 𝜖)-approximate solution for DSS after 𝑇 > 𝑂

Δ𝑓 log𝑛
𝑂𝑃𝑇𝜖2

iterations where, Δ𝑓 = max𝑣∈𝑉 𝑓 (𝑣 |𝑉 \ {𝑣}).

Algorithm 3: Down in the Hollow (dith)
Input :𝐺 (𝑉 , 𝐸),𝑤𝐸 : 𝐸 → R+, 𝜆1 ≥ 0, 𝜆2 ≥ 0, 𝐴 ⊂ 𝑉 ,

𝑅 ⊂ 𝑉 , 𝛾 ∈ (0, 1), 𝑇 ∈ N \ {0}
Output :𝑆∗ ⊆ 𝑉

1 𝑤𝑉 ← Vertex-Weights-Calculator(𝐺, 𝑤𝐸 , 𝜆1, 𝜆2, 𝐴, 𝑅) ;
2 𝑆∗ ←HDSP-Super-Greedy++(𝐺, 𝑤𝐸 , 𝑤𝑉 , 𝛾,𝑇) ;
3 return 𝑆∗;

Algorithm 4: HDSP-Super-Greedy++.
Input :𝐺 (𝑉 , 𝐸),𝑤𝐸 : 𝐸 → R+,𝑤𝑉 : 𝑉 → R+, 𝛾 ∈ (0, 1),

𝑇 ∈ N \ {0}
Output :𝑆∗ ⊆ 𝑉

1 foreach 𝑣 ∈ 𝑉 do ℓ
(0)
𝑣 ← 0;

2 𝑆∗ ← 𝑉 , 𝑛 ← |𝑉 | ;
3 𝐿𝐵 ← 𝑒 (𝑆∗)+𝑠∈𝑆∗ 𝑤𝑉 (𝑠)

𝑛 ,𝑈𝐵 ← +∞;
4 𝑡 ← 0;
5 while

𝐿𝐵
𝑈𝐵

< (1 − 𝛾) ∧ 𝑡 < 𝑇 do

6 𝑡 ← 𝑡 + 1;
7 𝑆𝑡,1 ← 𝑉 ;
8 for 𝑖 ← 1 to 𝑛 do

9 if

𝑒 (𝑆𝑡,𝑖)+

𝑠∈𝑆𝑡,𝑖 𝑤𝑉 (𝑠)
|𝑆𝑡,𝑖 | > 𝐿𝐵 then

10 𝑆∗ ← 𝑆𝑡,𝑖 ;
11 𝐿𝐵 ← 𝑒 (𝑆∗)+𝑠∈𝑆∗ 𝑤𝑉 (𝑠)

|𝑆∗ | ;

12 𝑣𝑡,𝑖 ← argmin𝑣∈𝑆𝑡,𝑖 ℓ
(𝑡−1)
𝑣 + 𝛿𝑆𝑡,𝑖 (𝑣) +𝑤𝑉 (𝑣);

13 ℓ
(𝑡)
𝑣𝑡,𝑖 ← ℓ

(𝑡−1)
𝑣𝑡,𝑖 + 𝛿𝑆𝑡,𝑖 (𝑣𝑡,𝑖) +𝑤𝑉 (𝑣𝑡,𝑖);

14 𝑆𝑡,𝑖+1 ← 𝑆𝑡,𝑖 \ {𝑣𝑡,𝑖 };

15 𝑈𝐵 ← min

𝑈𝐵,

max𝑣∈𝑉 ℓ
(𝑡)
𝑣

𝑡

;

16 return 𝑆∗;

We develop the algorithm dith for the DSAR problem, that is
shown as pseudocode in Algorithm 3. Our algorithm uses, as a
blackbox, our version of Super-Greedy++ adapted to work for
HDSP. In the pseudocode of Algorithm 4, 𝑆𝑡,𝑖 (line 7) is the set
of vertices at the 𝑖-th step of the 𝑡-th iteration. In particular, for
every subset 𝑆 ⊆ 𝑉 and for every 𝑣 ∈ 𝑆 , the marginal gain 𝑓 (𝑣 |
𝑆 \ {𝑣}) := 𝑓 (𝑆) − 𝑓 (𝑆 \ {𝑣}) equals to 𝑓 (𝑣 | 𝑆 \ {𝑣}) = 𝛿𝑆 (𝑣) +
𝜆1 · 𝑝 ({𝑣}, 𝐴) + 𝜆2 · 𝑑 ({𝑣}, 𝐵), where 𝛿𝑆 (𝑣) is the degree of 𝑣 in the
graph induced by 𝑆 .

Algorithm 3 runs in near-linear time per iteration, and this is
stated as the next lemma.

Lemma 3. Algorithm 3 can be implemented to run in
𝑂 ((𝑚 + 𝑛 log𝑛)𝑇) in the standard RAM model. Here, 𝑛,𝑚,𝑇 are the
number of nodes, edges, and rounds respectively.

Proof. Algorithm 3 invokes two subroutines. The computa-
tional complexity of Algorithm 2 is dominated by the cost of comput-
ing all the needed shortest-path distances by means of Dijkstra’s al-
gorithm,which is𝑂 (𝑚+𝑛 log𝑛) [21]. For Algorithm 4we implement
a priority queue to find efficiently the vertex that gives theminimum
marginal gain at each iteration of the peeling process. Before the
beginning of the 𝑡-th peeling process, where 𝑡 = [𝑇] := {1, . . . ,𝑇 },
each vertex is inserted in an empty priority queue with the key

3887

𝑓 (𝑣 | 𝑉 \ {𝑣}) = 𝛿 (𝑣) + 𝜆1 · 𝑝 (𝑣, 𝐴) + 𝜆2 · 𝑑 (𝑣, 𝐵) + ℓ (𝑡−1)𝑣 . At each
iteration of the peeling process, the vertex with the smallest key is
extracted from the priority queue. Consequently, to this extraction,
the keys of all vertices in the priority queues that are adjacent to
the extracted vertex are decreased by precisely the edge weight
connecting the two vertices.

We observe that the computational cost of the algorithm is dom-
inated by the cost of the operations on the priority queue. In par-
ticular, in a complete peeling process, the algorithm will perform
𝑛 insert operations, 𝑛 minimum extraction operations, and𝑚 key
decrement operations. The number of key decrement operations
follows from the observation that one key decrement is performed
for each edge at most. By using a Fibonacci heap as priority queue,
a complete peeling process terminates in 𝑂 (𝑚 + 𝑛 log𝑛) compu-
tational steps. Since the number of times the peeling process is
performed is bounded by 𝑇 , we have the lemma. □

The next corollary on the performance of Algorithm 4 is obtained
from Theorem 4.1.

Corollary 4.2. Given any instance of Problem 2, Algorithm 4 out-
puts a solution that is at least at a factormin{(1−𝛾), (1−𝜖)} from the

optimum, where 𝜖 = 𝑂

√︃
Δ log𝑛
𝑂𝑃𝑇 ·𝑇

, with Δ = max𝑣∈𝑉 𝛿 (𝑣) +𝑤𝑉 (𝑣),

and 𝑂𝑃𝑇 the value of the optimal solution.

Proof. The corollary follows from Theorem 4.1, and the follow-
ing observation.

Case I: If the algorithm terminates because 𝑡 ≥ 𝑇 then, according
to Theorem 4.1, 𝑆∗ is a (1−𝜖)-approximate solution for the problem.

Case II: If the algorithm terminates because 𝐿𝐵
𝑈𝐵
≥ (1 − 𝛾), then

𝐿𝐵 ≥ (1 − 𝛾)𝑈𝐵 ≥ (1 − 𝛾)𝑂𝑃𝑇 . Note that 𝐿𝐵 is the value of the set
𝑆∗, which is the output of the algorithm. The algorithm returns a
(1 − 𝛾) solution. □

The correctness of the lower bound 𝐿𝐵 computed by Algorithm 4
is immediate; any subset 𝑆 ⊆ 𝑉 is a feasible solution. In the fol-
lowing we prove the correctness of the upper bound computed by
Algorithm 4. We define as𝑈𝐵𝑡 the value of the variable𝑈𝐵 at the
end of the 𝑡-th peeling iteration in Algorithm 4, for 𝑡 ∈ [𝑇]. Our
proof is based on linear programming duality. We follow Charikar’s
LP formulation for the DSP [11, 12], where the only variation is the
addition of nodes’ weights in the objective function. It is straightfor-
ward to notice that this LP formulation gives an exact polynomial-
time algorithm for HDSP, which is an alternative to Goldberg’s [27].
For sake of brevity we provide here only the dual, where 𝑓𝑒 (𝑢) is
the dual variable associated with the first 2𝑚 constraints of the
form 𝑦𝑒 ≤ 𝑥𝑢 . We refer to the following LP as Dual(𝐻𝐷𝑆𝑃), and
its optimum is equal to the optimal value 𝜌∗

𝐻𝐷𝑆𝑃
of the primal.

minimize 𝐷

subject to 𝑓𝑒 (𝑢)+𝑓𝑒 (𝑣) ≥ 𝑤𝐸 (𝑒), ∀𝑒 = 𝑢𝑣 ∈ 𝐸
ℓ𝑣 := 𝑤𝑉 (𝑣) +

∑︁
𝑒∋𝑣

𝑓𝑒 (𝑣) ≤ 𝐷, ∀𝑣 ∈ 𝑉

𝑓𝑒 (𝑢), 𝑓𝑒 (𝑣) ≥ 0 ∀𝑒 = 𝑢𝑣 ∈ 𝐸

Theorem 1. 𝑈𝐵𝑡 is an upper bound to the optimal value of Prob-
lem 1 ∀𝑡 ∈ [𝑇].

Proof of Theorem 1. We will prove the theorem by showing
that for every 𝑡 , there exists a feasible solution of the dual that has
value equal to𝑈𝐵𝑡 . We will prove this by induction.
When 𝑡 = 1, we have that

𝑈𝐵1 = max
𝑣∈𝑉

∑︁

𝑗∈𝑁 (𝑣)
𝑤𝐸 ((𝑣, 𝑗)) +𝑤𝑉 (𝑣)

 ,
where 𝑁 (𝑣) is the set of neighbors of a vertex 𝑣 . When a node 𝑢 is
removed, for all the remaining edges 𝑒 = (𝑢, 𝑣) incident to it, we
set 𝑓𝑒 (𝑢) = 𝑤𝐸 (𝑒). After the end of the peeling, we set equal to 0
all variables 𝑓𝑒 (𝑢) to which a value has not been assigned. We set
the dual variable 𝐷 = max𝑣∈𝑉

𝑗∈𝑁 (𝑣) 𝑤𝐸 ((𝑣, 𝑗)) +𝑤𝑉 (𝑣)

. The

assigned values cause the variables to satisfy the constraints. The
value of the solution is just equal to𝑈𝐵1.

As we see, in line 14 of Algorithm 4, 𝑈𝐵𝑡+1 is equal to
min{𝑈𝐵𝑡 ,max𝑣∈𝑉

ℓ𝑡+1𝑣

𝑡+1 }.
Case I: If 𝑈𝐵𝑡+1 = 𝑈𝐵𝑡 , then the claim follows trivially from the
inductive hypothesis.
Case II: If𝑈𝐵𝑡+1 = max𝑣∈𝑉

ℓ𝑡+1𝑣

𝑡+1 , by the convexity structure of the
polytope representing the feasible space of the dual problem, we
have that any convex combination of dual feasible solutions is still
a feasible solution for the dual. Note that the average is a convex
combination. For each 𝑖 ∈ {1, . . . , 𝐻 } consider the dual feasible
solutions (𝐷𝑖 , 𝑓

𝑖
𝑒 (𝑣) ,∀𝑒 ∈ 𝐸,∀𝑣 ∈ 𝑒). Now, let us focus on this

average: ∀𝑒 ∈ 𝐸,∀𝑣 ∈ 𝑒 , 𝑓 𝑖𝑒 (𝑣)
𝐻

. Let us set 𝐷 equal to the 𝑣 that

maximizes the following quantity:𝑤𝑉 (𝑣) +

𝑣∋𝑒

𝑖∈{1,...,𝐻 }

𝑓 𝑖𝑒 (𝑣)
𝐻

.

Let’s call the value assigned to 𝐷 with 𝐷∗. The solution
𝐷∗, 𝑓

𝑖
𝑒 (𝑣)
𝐻
∀𝑒 ∈ 𝐸,∀𝑣 ∈ 𝑒

is feasible since ∀𝑒 ∈ 𝐸,∀𝑣 ∈ 𝑒 𝑓𝑒 (𝑣) ≥ 0

and𝑤𝑉 (𝑣) +

𝑣∋𝑒

𝑖∈{1,...,𝐻 }

𝑓 𝑖𝑒 (𝑣)
𝐻
≤ 𝐷∗.

Observe that, setting 𝐻 = 𝑡 + 1,

max
𝑣∈𝑉

𝑤𝑉 (𝑣) +
∑︁
𝑣∋𝑒

∑︁
𝑖∈{1,...,𝑡+1}

𝑓 𝑖𝑒 (𝑣)
𝑡 + 1

 =

= max
𝑣∈𝑉

 (𝑡 + 1)𝑤𝑉 (𝑣)
(𝑡 + 1) +

∑︁
𝑣∋𝑒

∑︁
𝑖∈{1,...,𝑡+1}

𝑓 𝑖𝑒 (𝑣)
𝑡 + 1

 =

= max
𝑣∈𝑉

(𝑡 + 1)𝑤𝑉 (𝑣) +

𝑣∋𝑒

𝑖∈{1,...,𝑡+1} 𝑓

𝑖
𝑒 (𝑣)

𝑡 + 1

= max

𝑣∈𝑉
ℓ𝑡+1𝑣

𝑡 + 1

The inductive step is proved. □

Corollary 4.2 implies the following corollary for DSAR (Prob-
lem 1).

Corollary 4.3. Given any instance of Problem 1, Algorithm 3
outputs a solution that is at least at a factor min{(1 − 𝛾), (1 −

𝜖)} from the optimum, where 𝜖 = 𝑂

√︃
Δ log𝑛
𝑂𝑃𝑇 ·𝑇

, with Δ =

max𝑣∈𝑉 𝛿 (𝑣) + 𝜆1𝑝 ({𝑣}, 𝐴) + 𝜆2𝑑 ({𝑣}, 𝑅), and 𝑂𝑃𝑇 the value of the
optimal solution.

Combining the above, we obtain the following result concerning
the performance of our algorithm:

3888

Fact 1. Given any instance of Problem 1, if Algorithm 3 terminates
before 𝑇 iterations, then it returns a (1 − 𝛾)-approximate solution for
the problem.

It is worth recalling that all the results obtained for DSAR (Prob-
lem 1) hold also for the classic Densest Subgraph Problem (DSP),
as it corresponds to the case 𝜆1 = 𝜆2 = 0.

Remarks.Algorithm 4 is an adaptation of the Super-Greedy++ for
the HDSP problem with an efficient termination criterion. Our algo-
rithm provides at each iteration a valid certificate of the quality of
the best solution found for the HDSP instance in input. This certifi-
cate is obtained by executing a small number of computations, that
compute the value of a feasible solution for the dual of the HDSP
input instance. Notice that this enriches Super-Greedy++, whose

approximation guarantee 𝑂
√︃

Δ𝑓 log𝑛
𝑂𝑃𝑇 ·𝑇

depends on the unknown

value𝑂𝑃𝑇 , and the constants are hidden by the big-O notation. The
presence of the condition 𝐿𝐵

𝑈𝐵
< (1 − 𝛾) in line 5 of Algorithm 4,

together with the presence of the input parameter 𝛾 , allows the
algorithm to stop its execution once the provided level of quality
(represented by 𝛾) is reached, avoiding useless further iterations.
This is in contrast with Super-Greedy++, where the total num-
ber of iterations is always performed and no quantitative numeric
evaluation of the solution quality is provided.

In all the performed experiments, our Algorithm 3 terminated
by providing in output solutions with an approximation factor no
worse than the one requested in input (through the parameter 𝛾),
before reaching the maximum number of 𝑇 iterations.

4.2 Single-iteration peeling algorithm

As already mentioned in Section 1, Charikar’s peeling algorithm is
well-known for providing an efficient 12−approximation for DSP [11,
12]. We next present an analysis of its application to HDSP. This
corresponds to running only one iteration of our Algorithm 3 (i.e.,
𝑇 = 1), except for the computation of the upper bound to the input
problem instance (that requires only constant time). This algorithm
is also used in the experiments in Section 5, where it is named
dith-1.

Lemma 4. Charikar’s greedy peeling algorithm for the HDSP (i.e.,
Algorithm 3 with 𝑇 = 1) achieves an approximation factor

1

min

1 + 𝜌∗

𝑤MIN
𝑉

, 2 − 𝑤MIN
𝑉

𝜌∗HD

 ,
where 𝜌∗ = max𝑆⊆𝑉

𝑒 (𝑆)
|𝑆 | , 𝜌

∗
HD = max𝑆⊆𝑉

𝑒 (𝑆)+𝑤𝑉 (𝑆)
|𝑆 | , and 𝑤MIN

𝑉

is the smallest weight that has a vertex.

Proof. Chekuri et al. [13] show that if 𝑓 is a non-negative mono-
tone supermodular set function such that 𝑓 (∅) = 0, then the adap-
tion of Charikar’s algorithm to the DSS problem has an approxi-
mation ratio of at least 1

𝑐 𝑓
, where 𝑐 𝑓 := max𝑆⊆𝑉

𝑣∈𝑆 𝑓 (𝑣 |𝑆\{𝑣})

𝑓 (𝑆) .
Since HDSP problem is a special version of DSS, let us calculate 𝑐 𝑓

for HDSP. We have that

𝑐 𝑓 = max
𝑆⊆𝑉

𝑣∈𝑆

𝛿𝐺 (𝑆) (𝑣) +𝑤𝑉 (𝑣)

𝑒 (𝑆) +𝑤𝑉 (𝑆)

= max
𝑆⊆𝑉

2𝑒 (𝑆) +𝑤𝑉 (𝑆)
𝑒 (𝑆) +𝑤𝑉 (𝑆)

=

= max
𝑆⊆𝑉

1 + 𝑒 (𝑆)

𝑒 (𝑆) +𝑤𝑉 (𝑆)

= max

𝑆⊆𝑉

1 + 𝑒 (𝑆)

𝑒 (𝑆) +𝑤𝑉 (𝑆)
|𝑆 |
|𝑆 |

≤

≤ max
𝑆⊆𝑉

1 + 𝑒 (𝑆)

𝑤𝑉 (𝑆)
|𝑆 |
|𝑆 |

≤ 1 + 𝜌∗

𝑤MIN
𝑉

,

where 𝜌∗ = max𝑆⊆𝑉
𝑒 (𝑆)
|𝑆 | and𝑤MIN

𝑉
is the smallest weight that has

a vertex. For the other direction, we obtain

𝑐 𝑓 = max
𝑆⊆𝑉

2𝑒 (𝑆) +𝑤𝑉 (𝑆)
𝑒 (𝑆) +𝑤𝑉 (𝑆)

= max
𝑆⊆𝑉

2𝑒 (𝑆) + 2𝑤𝑉 (𝑆) −𝑤𝑉 (𝑆)
𝑒 (𝑆) +𝑤𝑉 (𝑆)

=

= max
𝑆⊆𝑉

2 − 𝑤𝑉 (𝑆)

𝑒 (𝑆) +𝑤𝑉 (𝑆)

= max

𝑆⊆𝑉

2 − 𝑤𝑉 (𝑆)

𝑒 (𝑆) +𝑤𝑉 (𝑆)
|𝑆 |
|𝑆 |

≤

≤ max
𝑆⊆𝑉

2 −

|𝑆 |𝑤MIN
𝑉

𝑒 (𝑆) +𝑤𝑉 (𝑆)

= 2 −

𝑤MIN
𝑉

𝜌∗HD
,

where 𝜌∗HD = max𝑆⊆𝑉
𝑒 (𝑆)+𝑤𝑉 (𝑆)

|𝑆 | . □

Note that, for every 𝑆 ⊆ 𝑉 such that 𝑆 ≠ ∅, 𝑤𝑉 (𝑆) ≥ |𝑆 |𝑤MIN
𝑉

,

therefore 0 ≤ 𝑤MIN
𝑉

𝜌∗HD
≤ |𝑆 |𝑤MIN

𝑉

𝑒 (𝑆)+|𝑆 |𝑤MIN
𝑉

≤ 1.

Equivalently, 1 ≤ min

1 + 𝜌∗

𝑤MIN
𝑉

, 2 − 𝑤MIN
𝑉

𝜌∗HD

≤ 2.

Given to the relation between HDSP and DSAR, we can state the
following corollary.

Corollary 4.4. Consider an instance (𝐺,𝑤𝐸 , 𝐴 ⊆ 𝑉 , 𝑅 ⊆ 𝑉 , 𝜆1 ≥
0, 𝜆2 ≥ 0) for the DSAR problem. Let 𝑣 ∈ 𝑉 be the node that minimizes
ℎ(𝑣) := 𝜆1𝑝 (𝑣, 𝐴) + 𝜆2𝑑 (𝑣, 𝑅).

The extension of the Charikar’s algorithm for the DSAR problem
has an approximation factor of

1

min

1 + 𝜌∗

ℎ (𝑣) , 2 −
ℎ (𝑣)
𝜌∗DSAR

 ,
where 𝜌∗ is the density of the densest subgraph and 𝜌∗DSAR is the value
of the optimum solution.

By setting 𝑇 = 1 in Lemma 3, we see that the run time is 𝑂 (𝑚 +
𝑛 log𝑛).

5 EXPERIMENTS

In this section we provide an extended experimental analysis that
examines multiple aspects of our problem statement. In particular,
in §5.1 we present characteristics of the solutions for different prob-
lem instances (i.e., varying 𝜆1 and 𝜆2), in §5.2 we analyze scalability
and convergence of our algorithms, in §5.3 we compare the perfor-
mance of our algorithms against a variety of non-trivial baselines.
Finally, in §5.4 we present two case studies on real-word datasets.
Settings. All the experiments run on an Intel Xeon 2.3GHz with
48GB of RAM and a Linux Ubuntu 20.04 LTS Operating System. We
exclude from the reported runtimes of all algorithms and baselines
the time required by the subroutineVertex-Weights-Calculator.
Furthermore, in order to provide an intuitive comparison between

3889

different problem instances, in the whole section we report the min-
max normalized values for Avg. Degree, Avg. Proximity and Avg.
Distance, taking respectively as maximum values the Avg. Degree of
the Densest Subgraph, the Proximity of any node in 𝐴, and the Dis-
tance of the furthest node in the graph from 𝑅. Finally, with 𝜌dith.01
we are indicating the average degree of a 0.99-approximation of the
densest subgraph computed by dith (𝛾 = 0.01) on the considered
network.

Datasets. Table 1 lists the datasets used with the subsection in
which they are used. In §5.1 and §5.3, where the characteristics
of the solutions is an important factor, we use datasets related to
the motivating application of this work: the detection of polarized
niches. Specifically, we take the largest connected component from
five networks from Garimella et al. [24], that represent the follow-
networks on Twitter among users debating on controversial topics
over a specific period of time: two nodes (users) are connected
by an undirected edge if there is at least one follow relationship
between them in Twitter. Garimella et al. partition the set of users
into two parts [24], that have an opposite opinion around each
topic of interest; we use these partitions to guide our selection of
attractors and repulsers, by choosing nodes from different parts
respectively. In §5.2, to prove the efficiency of our method and
its fast convergence, we take the largest connected component
of the undirected and unweighted network employed in [11]: we
take those for which Goldberg’s algorithm failed to run in order to
show that our method can provide a near-optimal solution with a
certificate of its approximation quality, and the others to show that
dith scales efficiently as the size of networks increases. For what
concern the latter, we report results only for those networks whose
runtime of Algorithm 1 was lower than 2 hours. Finally, in the use
cases in §5.4, we employ two small social networks for which the
identity of the nodes is known. We exploit this information in order
to provide meaningful sets 𝐴 and 𝑅, showing how the polarized
niches can be effectively found.

5.1 Characteristics of the solutions

We next discuss the effect of 𝜆1 and 𝜆2 on the characteristics of the
solutions of DSAR. Notice that different values of 𝜆1 and 𝜆2 define
different problem instances, and thus are not directly comparable.
Also, the actual values of 𝜆1 and 𝜆2 do not affect the computational
complexity of the problem as it remains solvable in polynomial
time, but they affect the actual runtime. We create 1 000 random
instances for any possible combination of 𝜆1 and 𝜆2, with 𝜆1, 𝜆2 ∈
{𝑖 · 𝜆𝑚𝑎𝑥

25 : 𝑖 ∈ {0, 1, . . . , 25}, 𝜆𝑚𝑎𝑥 = 6𝜌dith.01} and |𝐴|, |𝑅 | ∈
{1, 5, 10, 20, 50, 100}, and we solve them with Algorithm 3, setting
𝛾 = 0.01 and 𝑇 = 10 000. 𝐴 and 𝑅 are chosen uniformly at random
from the two parts of the partitions provided by [24]. We report
in each cell of the heatmap (representing a single combination
of 𝜆1 and 𝜆2) the average values over the relative 36 000 different
instances for the following metrics: approximation factor, runtime,
Norm. Avg. Degree, Norm. Avg. Proximity and Norm. Avg. Distance.
The results are similar for all datasets, and thus we report the
representative results for the baltimore dataset (Figure 4).

In all of its executions dith terminated before 𝑇 = 10 000 it-
erations, therefore, according to Fact 1 each provided solution is
a (1 − 𝛾)-approximation of the optimal solution. The algorithm

Table 1: Datasets used in the experimental analysis.

Id Dataset |𝑽 | |𝑬 |

§5
.2

W1 webtrackers [39] 27665729 140613747
O1 orkut [39] 3072441 117184899
L1 livejournal-affiliations [39] 7489073 112305407
W2 wiki-topcats [40] 1791489 25444207
C1 cit-patents [40] 3764117 16511740
W3 web-Stanford [40] 255265 1941926
E1 ego-twitter [40] 81306 1342310
C2 com-dblp [40] 317080 1049866
C3 com-Amazon [40] 334863 925872
S1 soc-Slashdot0902 [40] 82168 582533
S2 soc-Slashdot0811 [40] 77360 546487
S3 soc-Epinions [40] 75877 405739
E2 email-Enron [40] 33696 180811
E3 ego-facebook [40] 4039 88234
P1 ppi [60] 6944 42774

§5
.1
,§
5.
3 L2 leadersdebate [24] 9566 344088

G1 gunsense [24] 1821 103840
B1 baltimore [24] 1441 28291
R1 russia_march [24] 1189 16471
B2 beefban [24] 799 6026

§5
.4 G2 greek_parliament [59] 185 17185

V1 vaxnovax [17] 200 5806

is extremely fast, taking at most 13msec on average for solving a
single instance; in addition, increasing 𝜆1 or 𝜆2 decreases the total
runtime. We report also results in terms of normalized Avg. Degree,
Avg. Proximity and Avg. Distance. By ranging the values of 𝜆1 and
𝜆2, we observe how Problem 1 gives different importance to the
terms of the objective: the three heatmaps related to these metrics
are complimentary with each other, showing both the existence of
solutions that excel in only one of them, and solutions that try to
combine the 3 different components. This flexibility can be of ut-
most importance to satisfy the desired characteristics of the output
by the user.

5.2 Scalability and convergence

Scalability. Results of Section 4 prove theoretically the greater
efficiency of our method w.r.t. the state-of-the-art. In order to show
it empirically, we perform experiments either over the real-world
large graphs used in [11] and syntectic graphs.

For what concerns the synthetic graphs, we generate them ac-
cording to a simple Stochastic Block Model made of 2 blocks, with
parameters set such that they result densely connected inside, and
sparsely connected between them (further details in caption of
Figure 5). This model mimics controversial graphs made of two
groups of users with a different stance on a specific topic, and al-
lows us to place 𝐴 and 𝑅 separated in the 2 different blocks of the
graph, generating problem instances more coherent with our moti-
vating application. We generate 10 different graphs for each value
of |𝑉 | (ranged from 10 to 50000) and we sample 𝐴 and 𝑅 at random
with the constraint that they must belong to different blocks of the
Stochastic Block Model.

For what concerns the real-world graphs, we employ each graph
in 10 different problem instances, with 𝐴 and 𝑅 sampled at random.
In both class of graphs, for any single problem instance we set 𝜆1 =
𝜆2 = 1 , since according to our analysis reported in Section 5.1 it was
the most expensive setup in terms of runtime for our algorithms,
and |𝐴| = |𝑅 | = 1. We compare dith (setting 𝛾 = 0.01 and 𝑇 =

10 000) with Algorithm 1, that solves Problem 1 to the optimum.

3890

