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ABSTRACT

When exploring a new dataset, Data Scientists often apply analysis

queries, look for insights in the resulting dataframe, and repeat to

apply further queries. We propose in this paper a novel solution

that assists data scientists in this laborious process. In a nutshell,

our solution pinpoints the most interesting (sets of) rows in each

obtained dataframe. Uniquely, our definition of interest is based

on the contribution of each row to the interestingness of different

columns of the entire dataframe, which, in turn, is defined using

standard measures such as diversity and exceptionality. Intuitively,

interesting rows are ones that explain why (some column of) the

analysis query result is interesting as a whole. Rows are correlated

in their contribution and so the interesting score for a set of rows

may not be directly computed based on that of individual rows.

We address the resulting computational challenge by restricting

attention to semantically-related sets, based on multiple notions of

semantic relatedness; these sets serve as more informative explana-

tions. Our experimental study across multiple real-world datasets

shows the usefulness of our system in various scenarios.
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1 INTRODUCTION

Exploratory Data Analysis (EDA) is an essential process performed

by data scientists and analysts in order to up-close examine a new

dataset, better understand its nature and characteristics, and extract

preliminary insights from it. EDA is typically performed in scientific

notebooks [38] using a dataframe library [53] which allows users

to interactively transform and analyze datasets via programmatic

query operations (such as filter, aggregation, join, pivot, etc.). In

each exploratory step, the analyst runs a query over the previously
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obtained dataframe, examines the resulting dataframe to derive

intermediate insights, and decides on the next exploratory step.

EDA is a challenging process, where arguably the most signifi-

cant challenge lies in scanning the (possibly many) query results

obtained in each step to identify interesting patterns and trends.

These discoveries are crucial both for gathering insights and con-

ceiving the next exploratory steps. To illustrate the difficulty faced

by analysts in interpreting the results of exploratory steps, consider

the following example EDA scenario.

Example 1.1. Data scientist Clarice works on a dataset of song

information, published by Spotify
1
.

The dataset (see samples in Figure 1) contains a popularity score

for each song, alongside 37 descriptive features (e.g., artist name,

year, decade) as well as audio-analysis features such as loudness,

danceability, and others.

Clarice is first interested in the question “what makes songs

popular?”. She, therefore, composes a filter operation showing songs

that have a high popularity score (> 65). Applying this operation

yields a dataframe with 7000 rows and 37 columns (see Figure 1a

for a small sample). Clarice now needs to examine these results

in order to understand what is interesting about them. One such

notion of interestingness may be captured by the question “In what

way are these popular songs different than the rest of the songs

in the dataset?" Clarice therefore needs to sift through the rows,

apply additional data transformations, and data visualizations.

Clarice then decides to focus her analysis only on recent songs

(released after 1990) and investigate their characteristics. To do so,

she first filters the original dataframe to output songs released after

1990, and then performs a group-by operation to view the mean

loudness and danceability values for each year.

A sample of the result of this group-by step appears in Figure 1b.

This step results in a much smaller dataframe than before, including

about 30 rows and 3 columns. However, interesting patterns and

trends are still not clearly visible – are there any particular years

with more ‘quiet’ songs than the other? is there a trend where newer

songs are more ‘loud’ and ‘danceable’? Answering these questions

still requires a substantial effort.

In this paper, we present fedex (Efficient Data Exploration

Explanations), an EDA explanation framework that assists users in

analyzing and understanding the results of their exploration steps.

fedex explains exploratory steps using a twofold process: (1) as an

analyst would do, fedex inspects the resulted dataframe and dis-

cover interesting aspects of it. For example, does it show outliers?

Or perhaps a highly diverse set of values in one of the columns?;

1
https://www.kaggle.com/c/bfh-spotify-challenge/overview
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name main_artist year decade . . . danceability loudness popularity
Maybe I’m Amazed... Paul McCartney 1970 1970 . . . 0.471 -10.407 66
Life on Mars?... David Bowie 1971 1970 . . . 0.442 -14.635 71
Time in a bottle Jim Croce 1972 1970 . . . 0.544 -11.952 67
Desperado - 2013... Eagles 1973 1970 . . . 0.228 -12.749 67
. . . . . . . . . . . . . . . . . . . . . . . .

(a) Filter results

year loudness danceability
1991 -11.076072 0.555551
2014 -7.826855 0.586153
1992 -10.694651 0.555135
2013 -8.238654 0.593881
. . . . . . . . .

(b) Group-by results

Figure 1: Result samples of filter and group-by operations over the Spotify “Song Popularity Dataset”. Figure 1a shows partial

results of a filter operation that leaves in only songs with ‘popularity’ scores above 65. Figure 1b depicts partial results of a group-by

operation, showing for each year – since 1990 – the mean ‘loudness’ and ‘danceability’ values.
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Explanation: See that the column ’decade’ presents a significant change
in distribution. In particular, ’2010s’ (in green) is 17 times more frequent:

3.5% before and 61% after.
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(a) Explanation for the filter step (Figure 1a)
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Explanation: See that the column ’loudness’ presents a significant diversity.
In particular, groups with ’decade’=’1990s’ (in green) have a relatively
low ’loudness’ value: 1.2 standard deviation lower than the mean (-8.7)

(b) Explanation for the group-by step (Figure 1b)

Figure 2: Multi-modal explanations generated by fedex. Figure 2a explains the filter results in Figure 1a. Our framework has identified

that the highest contribution to the interestingness score is due to songs made in the 2010s – they form 61% of the popular songs, compared

to only 3.5% in the entire dataset, leading to the insight that new songs tend to be more popular than older songs. Figure 2b explains group-by

results in Figure 1b. Our explanation points out that songs made in the 90s tend to be less loud than later songs.

(2) since naturally, not all underlying tuples equally contribute to

the interesting pattern discovered, fedex detects which data sub-

sets cause the resulted dataframe to be interesting. Therefore, a

good explanation for an exploratory step is a set-of-rows from the

dataframe which significantly contributes to a highly interesting

aspect of the results dataframe. Importantly, fedex tailors the ex-

planation to the context of the generated dataframe, i.e., the EDA

operation or query and the source dataframe. fedex then presents

this set-of-rows in a hybrid format via the notebook interface as

coherent, easy-to-read captioned visualizations. This allows users

to quickly understand and derive immediate insights from each

exploratory step they make.

Example 1.2 (fedex Explanations). Figure 2 shows the explana-

tions produced by fedex, for the two exploratory steps on the

Spotify dataset in Example 1.1 (see Figure 1). For the filter step,

which focuses only on songs with a popularity score greater than

65, fedex detects that in the ‘decade’ column there exists a high, in-

teresting deviation from the input dataframe (namely, the dataframe

Clarice applied the filter on). It then detects that most of the devi-

ation is due to songs from the 2010s. Using a side-by-side bar plot,

fedex highlights the difference in the number of songs from the

2010s decade before and after the filter, showing that newer songs

from the last decade tend to be more popular than older songs. As

for the group-by step, showing the mean ‘loudness’ and ‘dance-

ability’ values for each release year, fedex identifies an interesting

pattern in the column ‘loudness’, whose values greatly differ from

one another. It then detects that the large diversity in values occurs

mainly due to years in ‘1990s’, highlighting that the songs released

in the 1990s are significantly less loud than songs made in later years.

Multiple approaches exist for assisting data exploration, such

as recommending the next exploratory steps [50, 65], query auto-

completion [39, 40], visualization [41, 76, 78] and even insights [3,

72] recommendations. These works reduce the manual effort of

composing queries, yet to the best of our knowledge, fedex is

the first system to automatically generate explanations for output

dataframes in the context of exploratory steps.

Our main contributions can be summarized as follows.

• We devise fedex, a novel explainability framework for data ex-

ploration, using a hybrid, twofold approach: (1) fedex uses mea-

sures of interestingness [31, 63] to detect interesting columns in

the resulted output dataframe. (2) fedex then applies a notion

of contribution of a set of rows, inspired by previous work [79],

to identify meaningful subsets of the input dataframe that sig-

nificantly contribute to the interestingness score of one of the

columns in the output dataframes. We define an explanation

candidate as a tuple (𝑅,𝐴), where 𝑅 is a set of rows in the input

dataframe that contribute to the interestingness of a column 𝐴

in the step’s output dataframe.

• A naive computation of explanation candidates would imply ex-

ponential complexity as we would have to traverse all possible

pairs of columns and row subsets. Therefore, fedex employs

the following efficient process for finding the most promising
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explanations in terms of both interestingness and contribution,

which are also semantically meaningful: First, fedex uses a

two-step greedy approach to calculate the most promising ex-

planation candidates: (1) it identifies the interesting columns,

utilizing a sampling-based calculation of interestingness, which

significantly accelerates the computation while maintaining

the quality of the results. On the resulted interesting columns,

it then (2) computes the contribution of only selected sets of

rows (rather than all of them) by partitioning the rows into

semantically meaningful sets-of-rows. This is done by several

automatic partitioning methods which dramatically reduce the

number of candidate and keep only the meaningful ones. Fi-

nally, fedex uses the skyline operator [13] over the compact

set of semantically-meaningful explanation candidates, to re-

trieve only the dominating ones, in terms of contribution and

interestingness scores. Each skyline explanation is presented

to the user via a dedicated captioned visualization.

• We have implemented a prototype version of fedex (available

in [71]), performed comprehensive user studies, and simulated

experiments. The results indicate that our approach is 1.7 times

more helpful than commonly used baselines on average, allows

users to get approximately 4 more insights on average than

unassisted EDA, and runs at interactive speed for large data.

2 RELATEDWORK

As mentioned above, multiple lines of work have studied solutions

to assist data scientists in data exploration, focusing mainly on the

aspect of formulating and composing exploratory operations. For

example, systems for query suggestions [50, 65], simplified EDA

interfaces for non-programmers [4, 10, 69, 70], query formulation

assistance [39, 40], and EDA guidance tools [36, 62]. We focus here

on the challenge of explaining the results of the exploratory steps

and assisting users in quickly understanding them. In this context,

we survey three lines of related work: (1) interestingness assess-

ment in data exploration, (2) query explanation frameworks, and

(3) automatic visualizations and insights discovery.

Modeling and predicting interest in exploratory sessions.

Modeling interestingness in EDA, i.e., assessing whether a resulted

view of an EDA operation is interesting or not, is a known chal-

lenge: previous work showed that interestingness in EDA is multi-

faceted [28, 46], often subjective [21] and dynamically changing,

even in the same exploratory session [49].

Consequently, several works attempt to model or predict user

interests in EDA sessions: works such as [45, 49] propose predicting

the most suitable notion of interestingness by mining logs from

previous EDA sessions. The system described in [49] is used to

dynamically select, before the user employs another EDA operation,

the most suitable among a set of existing interestingness measures,

whereas in [45] a learning-to-rank model is used to construct an ad

hoc interestingness notion. Another line of work proposesmodeling

user interests by collecting live feedback: systems such as [24, 56]

ask the user, e.g., to annotate presented tuples as “interesting” or

“non-interesting”, while explore-by-example systems [23, 66] ask the

users to provide examples for interesting tuples in advance.

While fedex employs measures of interestingness, the end goal

is fundamentally different. Rather than using these measures to rec-

ommend interesting operations or views as in previous work, fedex

uses the measures to evaluate the users’ operations and generates

explanations based on sets-of-rows that impact the interestingness.

This allows fedex to identify why a user’s operation is interesting.

Furthermore, in Section 4.2 we show that explanations generated

by directly applying interestingness measures are generally less

useful compared to those generated by fedex.

Explaining query results. Explaining the results of SQL queries

for debugging purposes has been extensively researched within

the database community. Prominently, such research works uti-

lize data provenance, as well causality-stemmed notions such as

intervention and influence, in order to identify tuples whose ex-

istence or absence affects the result of the inspected query. For

example, [15, 29] explain the existence of particular tuples in the

query result, whereas works e.g. [11, 12, 17, 73] explain the ab-

sence of particular tuples. Explaining aggregation results has been

suggested in [2], and outliers in [61, 67, 79]. In addition, works

e.g., [22, 42, 48] propose augmenting provenance with additional

sources of information such as counter-balancing patterns [48],

related tables [42], and natural language questions [22]. Last, data

debugging tools also utilize notions of causality and intervention,

e.g., to detect erroneous tuples that significantly impact an aggre-

gation result [6], and to detect faults in predictive models that may

be caused by non-conforming data subsets [27].

The main difference from fedex is that these works explain

which input tuples affect the direct output of a query (i.e., why

certain tuples appear/do not appear in the results), whereas the

goal of our work is focused on explaining why an EDA operation

is interesting, by detecting sets-of-rows that positively impact the

interestingness of users’ exploratory steps.

Automatic visualization generation & insights discovery. In

recent years, a plethora of visualization generation systems have

been devised [8, 9, 45, 57, 76, 78, 81], taking a dataset as input and

generating useful data visualizations (e.g., histograms, line plots,

heatmaps). Many such systems utilize a notion of utility or impor-

tance, and scan the input dataset to show the top-k visualizations

obtaining the highest score [57, 76, 78].

Using roughly similar methods, previous works propose solu-

tions for facts and insights discovery. Given an input dataset, these

solutions can automatically detect several types of useful insights,

such as outliers [34, 72], rare categories [32], conditional correla-

tions [51, 52], and trend-lines [3, 25, 72]. Other solutions propose

insights discovery for specific use-cases such as user rating data [74],

smart meters data [44], OLAP [1] and data fusion [26].

A step further, systems like [18, 77] generate random interesting

facts (in a similar manner to, e.g., [25, 72]), then organize them in a

comprehensive medium such as fact sheets [68, 77] and infograph-

ics [18] or use them as guidance in interactive exploration [70].

Similarly, fedex also assists users in discovering insights from

the data. However, rather than generating random, arbitrary facts

from the dataset (as e.g., [57, 72, 76–78]), fedex generates insights

that explain each exploratory step made by the user. The methods

used in fedex are also different than previous work, and ours is the

only work, to our knowledge, that derives insights by interweav-

ing interestingness and causality assessment. In our experimental
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evaluation, we compare the explanations of fedex to visualizations

and insights generated by [76] and [77], and show that fedex is

significantly more effective in explaining exploratory steps.

3 EXPLANATION FRAMEWORK

We begin with a brief overview of our data model for notebook-

based exploration, then detail each of the components in fedex.

3.1 Model for Notebook-based EDA

Asmentioned, the notebook interface allows users to explore datasets

interactively using a dataframe module [53]. The user typically

loads a dataset as a dataframe from an external source (e.g., a CSV

file, spreadsheet, or an SQL query result from a database server),

then interacts with them by employing programmatic exploratory

operations, such as filter, group-by, aggregate, etc. The results of

EDA operations are also dataframes; these dataframes may be

viewed and/or used as input for subsequent exploration steps.

Dataframe. Formally, a dataframe 𝑑 is equivalent to a single rela-

tional table or view. It comprises of a multiset of rows over a schema

A(𝑑). Each row 𝑟 ∈ 𝑑 represents either a tuple or a group (in case

𝑑 is resulted from a group-by operation). Correspondingly, an at-

tribute𝐴 ∈ A(𝑑) specifies either a table attribute, or an aggregated

column. Furthermore, we refer to a dataframe column by 𝑑 [𝐴], i.e.,
the multiset of all rows’ values associated with the attribute 𝐴 in

dataframe 𝑑 .

EDA operations. We consider popular, commonly used (see [80])

of filter, join, group-by, and union. Additional, advanced EDA and

OLAP operations such as pivot, diff, and roll-up can be supported

by a simple extension of our model. We further denote a full ex-

ploratory step by 𝑄 = (𝐷𝑖𝑛, 𝑞, 𝑑𝑜𝑢𝑡 ), i.e., applying operation 𝑞 on

an input dataframe(s) 𝑑𝑖𝑛 (𝐷𝑖𝑛), resulting in an output dataframe

𝑑𝑜𝑢𝑡 . Multiple input dataframes (|𝐷𝑖𝑛 | > 1) may be used when the

operation is a join or union.

The following example demonstrates theworkflow of a notebook-

based EDA process.

Example 3.1. Reconsider the Spotify songs dataset from Example

1.1. After a user loads it into a dataframe 𝑑0, she performs the first

exploratory step by employing a filter operation 𝑞1 equivalent to

the SQL query ’select * from 𝑑0 where popularity>65’ This results in

a new dataframe 𝑑𝑜𝑢𝑡 = 𝑞1 (𝑑0), shown in Figure 1a, that includes

the subset of rows that comply to the criterion of “popularity>65”.

The group-by operation from our running example, specified by

𝑞2, is equivalent to the query ‘select AVG(loudness), AVG(danceability)

from 𝑑0 where year>=1990 group by year’.

The resulting dataframe (depicted in Figure 1b) shows the mean

values for loudness and danceability per year, starting from 1990.

3.2 Interestingness of Exploration Steps

Measuring interestingness of data analysis operations has been

intensively discussed in previous work (see [28, 31] for surveys).

These works define numerous abstract facets of interestingness,

such as novelty, surprisingness, exceptionality, and diversity. Of-

ten such notions are implemented differently, depending on the

data and task [57, 76, 78]. fedex can take an existing or a cus-

tom, user-defined notion of interestingness (See Section 3.8). As

default measures, fedex utilizes two interestingness functions cor-

responding to the notion of exceptionality and diversity. Similar

implementations of such functions were proven useful in the con-

text of EDA tasks [5, 49, 75, 76]. These two measures are applicable,

as described below, for all the EDA operations supported by fedex

(filter, join, group-by, and union).

Since applying 𝑞 does not equally affect all columns in the output

dataframe 𝑑𝑜𝑢𝑡 , following [49, 50], we assess the interestingness of

the step𝑄 = (𝐷𝑖𝑛, 𝑞, 𝑑𝑜𝑢𝑡 ) separately for each column in the output

dataframe 𝑑𝑜𝑢𝑡 . We denote by 𝐼𝐴 (𝑄) the interestingness score of step
𝑄 , by an interestingness function 𝐼 , w.r.t. attribute 𝐴.

Exceptionality (Filter/Join/Union). Inspired by [63, 75, 76], we

introduce an exceptionally measure that is particularly suitable for

filter and join steps, as follows. For the case of a filter operation

𝑞𝑓 , this measure intuitively deems the filter result interesting if it

produces an output dataframe which significantly deviates from

the input dataframe. Namely, the filter operation caused a signif-

icant change in the distribution of the values of a given column.

We, therefore, quantify the deviation of the step 𝑄 = (𝑑𝑖𝑛, 𝑞𝑓 , 𝑑𝑜𝑢𝑡 )
w.r.t Attribute 𝐴 ∈ A(𝑑𝑜𝑢𝑡 ) by measuring the differences between

the values of 𝑑𝑖𝑛 [𝐴] and 𝑑𝑜𝑢𝑡 [𝐴], which are the columns associated

with attribute 𝐴 in dataframes 𝑑𝑖𝑛 and 𝑑𝑜𝑢𝑡 (resp). Concretely, we

use the two-sample Kolmogorov–Smirnov (KS) test [60], a well-

known statistical test used to assess whether two samples originate

from the same probability distribution. First, we define the column

probability distribution 𝑃𝑟 (𝑑 [𝐴]) based on the relative frequency

of its values (i.e., for each value 𝑣 ∈ 𝑑 [𝐴], 𝑃𝑟 (𝑣) is the proba-

bility to choose 𝑣 uniformly at random). We then calculate the

exceptionality-based interestingness score:

𝐼𝐴 (𝑑𝑖𝑛, 𝑞𝑓 , 𝑑𝑜𝑢𝑡 ) := 𝐾𝑆 (𝑃𝑟 (𝑑𝑖𝑛 [𝐴]), 𝑃𝑟 (𝑑𝑜𝑢𝑡 [𝐴])) (1)

The same measure is also suitable for quantifying the interesting-

ness of the join and union operations since, oftentimes, the results

of a join (or union) contain a different number of tuples than in

the original input dataframes (e.g., if not all tuples in the input

dataframes match on the join condition).

For a join operation 𝑞 𝑗 and a column 𝐴 in the output dataframe

𝑑𝑜𝑢𝑡 , the interestingness is measured by 𝐼𝐴 (𝑑′𝑖𝑛, 𝑞 𝑗 , 𝑑𝑜𝑢𝑡 ), where 𝑑
′
𝑖𝑛

is the corresponding input dataframe in 𝐷𝑖𝑛 , s.t. 𝐴 ∈ A(𝑑′𝑖𝑛) and
𝐼𝐴 is calculated as in Equation 1.

For a union operation 𝑞𝑈 , the interestingness of a column 𝐴 is

defined by max𝑑𝑖𝑛∈𝐷𝑖𝑛
𝐼𝐴 (𝑑𝑖𝑛, 𝑞𝑈 , 𝑑𝑜𝑢𝑡 ), namely the maximal KS

difference of the output column 𝑑𝑜𝑢𝑡 [𝐴] and each of the input

dataframes to be unionized.

Diversity (group-by). We have also implemented an interesting-

ness function that captures diversity [7, 31]. It is particularly suit-

able for group-by operations, since, intuitively, a group-by step

that yields a dataframe with a highly diverse set of aggregated

values, implies a large difference between the groups. Therefore,

our interestingness function quantifies the diversity of a column in

the output dataframe of a group-by operation 𝑞𝑔 by calculating the

coefficient of variation (CV) [7] of the aggregated values:

𝐼𝐴 (𝑑𝑖𝑛, 𝑞𝑔, 𝑑𝑜𝑢𝑡 ) := 𝐶𝑉 (𝑑𝑜𝑢𝑡 [𝐴]) =
1

𝑎
·
√︂∑(𝑎𝑖 − 𝑎)2

𝑛 − 1

(2)
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Table 1: Notations Summary

Notation Description

𝑑 , A[𝑑 ] Dataframe, Dataframe Schema

𝑑 [𝐴], 𝐴 ∈ A[𝑑 ] Dataframe column

𝑞 EDA operation specifications

𝑑𝑖𝑛 (𝐷𝑖𝑛 ), 𝑑𝑜𝑢𝑡 Input Dataframe(s), Output Dataframe

𝑄 = (𝐷𝑖𝑛, 𝑞,𝑑𝑜𝑢𝑡 ) Exploratory step

𝐼𝐴 (𝑄 ) Interestingness of step𝑄 w.r.t attribute 𝐴

𝑅 ⊆ 𝑑 Set-of-Rows in a dataframe 𝑑

𝐶 (𝑅,𝐴,𝑄 ) Contribution of a set-of-rows 𝑅 to interesting-

ness of a column 𝐴 in step𝑄

R = {𝑅1, 𝑅2, . . . , 𝑅̂} Row partition of a dataframe to sets-of-rows

𝐶 (𝑅,𝐴) Standardized contribution of a set-of-rows 𝑅 ∈
R, compared to the rest of the row-sets in R

(𝑅,𝐴) ∈ 𝐸𝐶 The set of explanation-candidates, each is a pair

of set-of-rows and a single column in 𝑑𝑜𝑢𝑡

𝐸 ∈ 𝐸𝑋 A dominating explanation in terms of contribu-

tion and interestingness

Where the sum in the numerator is over 𝑎1, 𝑎2, . . . , 𝑎𝑛 which

are the aggregated values in column 𝐴 after employing 𝑞𝑔 , 𝑎 is

mean value, and 𝑛 is the number of groups. The following example

demonstrates the usage of the exceptionality and diversitymeasures

as defined above, to evaluate the interestingness of the filter and

group-by operations shown in Figure 1.

Example 3.2. Consider again the filter and group-by results de-

picted in Figure 1. For the group-by results (Figure 1b), it is clearly

visible that the values in column ‘loudness’ are more diverse than

that of ‘danceability’, which shows value distribution tightly around

0.55. Indeed, the diversity-based score of the column ‘loudness’ is

0.13, whereas the score of the column ‘danceability’ is 0.04. Hence,

our framework will focus on the former column to explain the inter-

estingness of the view (See Figure 2b). As for the filter results, while

this is not visible in the sample in Figure 1a, the highest deviation

was measured for the column ‘decade’, obtaining an interestingness

score of 0.56, followed by the columns ‘year’ and ‘loudness’, for

which the scores are 0.54 and 0.41, respectively.

3.3 Contribution of Sets of Rows

Given an exploratory step 𝑄 = (𝐷𝑖𝑛, 𝑞, 𝑑𝑜𝑢𝑡 ), we further aim to

focus the explanation by quantifying the contribution of a set-of-

rows 𝑅 ⊂ 𝐷𝑖𝑛 to the interestingness of a column 𝐴, 𝐼𝐴 (𝑄). Hence,
we define a contribution function, as follows. Our definition of

contribution draws on the notion of intervention, first defined in

the context of causality [54] to measure the change in the outcome

when the input changes. This notion was adopted by the database

community for measuring the change in query results when some

of the rows are absent [47, 61, 79]. In particular, our notion of

contribution function is inspired by [79] and defined as follows.

Definition 3.3 (Contribution of a set-of-rows). For a given step𝑄 =

(𝐷𝑖𝑛, 𝑞, 𝑑𝑜𝑢𝑡 ), the amount that a set-of-rows 𝑅 ⊂ 𝐷𝑖𝑛 contributes to

the interestingness of column 𝐴 ∈ A(𝑑𝑜𝑢𝑡 ) is calculated by:

𝐶 (𝑅,𝐴,𝑄) = 𝐼𝐴 (𝐷𝑖𝑛, 𝑞, 𝑑𝑜𝑢𝑡 ) − 𝐼𝐴 (𝐷𝑖𝑛 − 𝑅,𝑞, 𝑑′𝑜𝑢𝑡 )

Namely, we remove the rows set𝑅 from the input dataframes𝐷𝑖𝑛 ,

employ again the operation 𝑞 which now results in a new output

dataframe 𝑑′𝑜𝑢𝑡 , and recalculate the interestingness score 𝐼𝐴 . Intu-

itively, the higher the decrease in the interestingness score caused

by removing 𝑅, the higher its contribution is to the interestingness

of the column 𝑑𝑜𝑢𝑡 [𝐴].

Example 3.4. Recall that Example 3.2 showed that the most

interesting column in the filter step (Figure 1a) is ‘decade’, ob-

taining a score of 0.56. Calculating, for example, the contribution

of the ‘decade’=“2010s”, we first omit from 𝑑𝑖𝑛 all rows where

‘decade’=“2010s”. We then employ the operation 𝑞, i.e., “filter by

‘popularity’ greater than 65” ) and recalculate the interestingness.

The resulted score is now 0.47, which means that the contribution

score of “2010s” is 𝐶 (𝑅
“2010s”

, 𝐴
decade

, 𝑄) = 0.086. This is a rela-

tively high contribution score, as the interestingness of the column

‘decade’ decreased by 16% when removing songs made in the 2010s.

Note that generally, the contribution of a set-of-rows may be

negative, if removing this set-of-rows reduces the value of the inter-

estingness function. For example, for group-by queries with diver-

sity as an interestingness function, the contribution function may

either be negative or positive. To see this, consider the dataframe

𝑑𝑖𝑛 = {(𝑥, 1), (𝑥, 2), (𝑦, 3)} and the group-by query that groups the

first attribute and sums the second. Here 𝑑𝑜𝑢𝑡 = {(𝑥, 3), (𝑦, 3)}
(diversity = 0), whereas if we remove (𝑥, 2) from 𝑑𝑖𝑛 and per-

form the same query, we will get 𝑑𝑜𝑢𝑡 = {(𝑥, 1), (𝑦, 3)} (diversity
> 0). Thus, the contribution of (𝑥, 2) is negative. However, if we
consider the dataframe 𝑑𝑖𝑛 = {(𝑥, 1), (𝑥, 1), (𝑦, 1)} with the same

query, we will get 𝑑𝑜𝑢𝑡 = {(𝑥, 2), (𝑦, 1)} (diversity > 0). If we re-

move one of the (𝑥, 1) tuples and evaluate the same query, we get

𝑑𝑜𝑢𝑡 = {(𝑥, 1), (𝑦, 1)} (diversity = 0). Thus, the contribution of

(𝑥, 1) is positive. As we describe below, we are interested in sets-of-

rows that obtain a significantly high, positive contribution score,

compared to other sets-of-rows. If there are no sets-of-rows with

a positive contribution, no explanation will be generated for the

exploration step (see Section 3.7).

3.4 Explanation Candidates

As mentioned above, fedex explains a given exploratory step by

identifying sets-of-rows in its input dataframes that contribute

to the interestingness score 𝐼𝐴 (𝑄), on column 𝐴 in the output

dataframe. An explanation-candidate is defined as follows:

Definition 3.5 (Explanation Candidate). For exploratory step 𝑄 =

(𝐷𝑖𝑛, 𝑞, 𝑑𝑜𝑢𝑡 ), an explanation-candidate 𝐸 is defined by 𝐸 B (𝑅,𝐴)
where 𝑅 ⊂ 𝐷𝑖𝑛 and 𝐴 ∈ A(𝑑𝑜𝑢𝑡 )

Example 3.6. Consider again the filter step depicted in Figure 1a

resulting in songs with popularity over 65. An example explanation-

candidate is (𝑅′𝑑𝑒𝑐𝑎𝑑𝑒′=2010𝑠′ , 𝐴′𝑑𝑒𝑐𝑎𝑑𝑒′ ), namely the rows from

𝑑𝑖𝑛 (i.e., the full songs dataframe) depicting songs released in the

2010s decade, and the ‘decade’ column in the output dataframe. To

understand how (𝑅′𝑑𝑒𝑐𝑎𝑑𝑒′=2010𝑠′ , 𝐴′𝑑𝑒𝑐𝑎𝑑𝑒′ ) explains the filter step,
recall that the interestingness score here measures the deviation

from 𝑑𝑖𝑛 to 𝑑𝑜𝑢𝑡 . As calculated in Example 3.4, the contribution

𝐶 (𝑅′𝑑𝑒𝑐𝑎𝑑𝑒′=2010𝑠′ , 𝐴′𝑑𝑒𝑐𝑎𝑑𝑒′ , 𝑄) is high, which means that songs

from 2010s explain this deviation. Indeed, as also illustrated in the

final explanation (figure 2a), songs (rows) from 2010s are highly more

frequent after the filter, than in the entire dataset.
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Naturally, not all explanation-candidates are useful. We next

explain how we restrict the set-of-rows to include only the ones

that are semantically related, then describe the quality metric of

the explanation-candidates and how fedex only selects the best

ones and return them as coherent captioned visualizations.

3.5 Partitioning the Input Dataframe

While, in theory, one could calculate the contribution of individual

rows, or, alternatively, do so for all sets-of-rows, fedex focuses

on the contribution of semantically related sets-of-rows. This both

allows for a faster computation (as is shown in the sequel) and

yields explanations that depict the “bigger picture”, allowing users

to obtain meaningful, high-level insights from each exploratory

step. The following example illustrates the latter point.

Example 3.7. Consider again the group-by results in Figure 1b.

Recall from Example 3.2 that the column ‘loudness’ obtains high

interestingness score, as it contains a diverse set of values. Had

we computed the contribution of, e.g., each single row in 𝑑𝑖𝑛 , we

would have seen that the top-2 contribution values are of ‘1991’ and

‘2007’, since they have the most extreme values (-11.07 and -7.49,

resp). Yet instead, if we group together years by their corresponding

decade, we now obtain that the highest contribution is made by the

decade ‘1990s’. This now yields a higher-level interesting pattern

indicating that songs released in the 1990s tend to be less loud than

in later decades. As detailed in the sequel, this observation will be

highlighted by the output explanation of fedex (See Figure 2b).

We next define the row-partition scheme and detail the specific

methods currently implemented in fedex.

Definition 3.8 (Row Partition). Given an input dataframe 𝑑𝑖𝑛 ∈
𝐷𝑖𝑛 , a row partition divides 𝑑𝑖𝑛 into 𝑛 + 1 disjointed sets-of-rows:

R = {𝑅1, 𝑅2, . . . , 𝑅𝑛, 𝑅} such that:

∀𝑅𝑖 , 𝑅 𝑗 ∈ R, 𝑅𝑖 ⊂ 𝑑𝑖𝑛 ∧𝑅 𝑗 ⊂ 𝑑𝑖𝑛 ∧
⋃
𝑅𝑖 ∈R

𝑅𝑖 ∪𝑅 = 𝑑𝑖𝑛 ∧𝑅𝑖 ∩𝑅 𝑗 = ∅

The special set-of-rows 𝑅 ∈ R (can be empty) is called an ignore-set,

as it cannot become an explanation-candidate, as detailed below.

fedex supports three types of row partition methods and utilizes

them when generating explanation (as described in Section 3.7).

Other partition methods are supported, as long as they comply with

definition 3.8. The partition methods in fedex are as follows:

Frequency-based partition. Given either a numeric or categorical

attribute 𝐴 we divide 𝑑𝑖𝑛 to 𝑛 sets-of-rows, corresponding to the

𝑛 most prevalent values in the column 𝑑𝑖𝑛 [𝐴]. We then assign the

rest of rows in the ignore set 𝑅.

Numeric-based partition. Given a numeric attribute 𝐴, we divide

the rows in 𝑑𝑖𝑛 according to their corresponding values in 𝑑𝑖𝑛 [𝐴] to
𝑛 sets-of-rows, using equal-frequency binning. Namely, each set-of-

rows in this partition correspond to an interval of values of 𝑑𝑖𝑛 [𝐴],
s.t. the number of values in each interval is equal. The ignore-set 𝑅

is empty in this case.

Many-to-one partition. This method partitions the rows by min-

ing many-to-one relationships between columns in 𝑑𝑖𝑛 . Given an

attribute 𝐴, we look for a different attribute 𝐵 s.t. each value in

𝑑𝑖𝑛 [𝐴] is mapped to a single value in 𝑑𝑖𝑛 [𝐵], yet there exist at least

two values in𝑑𝑖𝑛 [𝐵] mapped to different values of𝑑𝑖𝑛 [𝐴]. Formally,

for an attribute 𝐴 in 𝑑𝑖𝑛 we search for all columns 𝐵 such that both

of the following conditions hold:

(1) ∀𝑟𝑖 , 𝑟 𝑗 ∈ 𝑑𝑖𝑛, (𝑟𝑖 [𝐴] = 𝑟 𝑗 [𝐴]) → (𝑟𝑖 [𝐵] = 𝑟 𝑗 [𝐵])
(2) ∃𝑟𝑖 , 𝑟 𝑗 ∈ 𝑑𝑖𝑛, (𝑟𝑖 [𝐵] = 𝑟 𝑗 [𝐵]) ∧ (𝑟𝑖 [𝐴] ≠ 𝑟 𝑗 [𝐴])

Intuitively, these conditions ensure that the partition of values from

𝐴 according to column 𝐵 are consistent, i.e., every pair of equal

values is placed in the same set (Condition 1), and that the partition

according to 𝐵 will be strictly coarser compared to the partition

according to 𝐴 (Condition 2).

After mapping the values from 𝐴 to 𝐵 we split the set-of-rows

using the frequency-based partition (as defined above), over the col-

umn 𝐵. This partition is particularly useful for group-by dataframes.

Example 3.9. Reconsider the group-by output dataframe in Fig-

ure 1b, where each row represents a single year. Partitioning the

rows via the ‘year’ column could be done using the frequency-based

method, or many-to-one (as the column is categorical, numeric bin-

ning is not applicable). Using the frequency-based method, we can

partition the rows in the input dataframe (i.e., before applying the

group-by operation) according to the 𝑛 most frequent ‘year’ values

and placing the rest of the rows in the ignore-set 𝑅. In the many-to-

one partition, the column ‘decade’ has a many-to-one relationship

with ‘year’. This method has yielded a preferable explanation, par-

ticularly for the set-of-rows associated with ‘decade’=‘1990s’.

3.6 Quality of Explanation Candidates

Intuitively, an explanation-candidate 𝐸 = (𝑅,𝐴) is a good expla-

nation for the exploratory step 𝑄 if the contribution 𝐶 (𝑅,𝐴,𝑄)
to the interestingness of 𝐴 is significant, and the interestingness

score 𝐼𝐴 (𝑄) is itself high. We next explain how the significance

of contribution is calculated, and how fedex balances between

interestingness and contribution.

We evaluate the significance of contribution for a given set-of-

rows 𝑅 ∈ R as follows. Rather than considering the raw contribu-

tion score of a set-of-rows 𝑅, we compare the contribution of 𝑅 to

the contributions of the other sets-of-rows in R. We then define

the standardized contribution of a set-of-rows 𝑅 ∈ R by:

𝐶 (𝑅,𝐴) = 𝐶 (𝑅,𝐴,𝑄) − 𝜇R
𝑠R

Where 𝜇R and 𝑠R are the mean and standard deviation of the con-

tribution scores of all sets-of-rows in the partition R.
This quantifies the significance of the contribution of 𝑅, since the

higher the standardized contribution, the farther the contribution

of 𝑅 from the mean contribution of its fellow row sets.

Correspondingly, the quality of an explanation (𝑅,𝐴) is mea-

sured by using twometrics: (1) the standardized contribution𝐶 (𝑅,𝐴)
and (2) the interestingness of the column 𝐴, 𝐼𝐴 (𝑄).
Skyline of contribution & interestingness. We next define the

set of desired explanations based on contribution and interesting-

ness. Denote by 𝐸𝐶 (𝑄) the set of all explanation-candidates con-
sidered in fedex for a step 𝑄 is, formally:

𝐸𝐶 (𝑄) B
⋃
R

⋃
𝑅∈R

⋃
𝐴∈A(𝑑𝑜𝑢𝑡 )

{(𝑅,𝐴)}
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Algorithm 1: fedex Explanations Generation

Input: Exploratory step𝑄 = (𝐷𝑖𝑛, 𝑞,𝑑𝑜𝑢𝑡 )
Output: Explanations for𝑄

1 for 𝐴 ∈ A(𝑑𝑜𝑢𝑡 ) do
2 Calculate interestingness score 𝐼𝐴 (𝑄 )
3 SR ← ∅
4 foreach row-partition do

5 R ← row-partition(𝐷𝑖𝑛 )
6 SR ← SR ∪ {R}
7 𝐸𝐶 ← Empty Dictionary

8 foreach R ∈ SR, 𝐴 ∈ A(𝑑𝑜𝑢𝑡 ) do
9 foreach 𝑅 ∈ R do

10 Calculate contribution𝐶 (𝑅,𝐴,𝑄 )
11 if 𝐶 (𝑅,𝐴,𝑄 ) > 0 then

12 𝐸𝐶 [ (𝑅,𝐴) ] ←
(
𝐶 (𝑅,𝐴), 𝐼𝐴 (𝑄 )

)
13 𝐸𝑋 = SKYLINE

(𝑅,𝐴) ∈𝐸𝐶

(
𝐶 (𝑅,𝐴), 𝐼𝐴 (𝑄 )

)
14 foreach 𝐸 ∈ 𝐸𝑋 do

15 GenerateVisualExplanation(𝐸)

Given the set 𝐸𝐶 (𝑄) of all explanation-candidates, we look for

ones that obtain both a good contribution and a high interestingness

score. To balance the two metrics we use a skyline-operator [13]

calculation. Namely, we define the set 𝐸𝑋 of desired explanations

as a maximal subset of 𝐸𝐶 (𝑄) satisfying the following:

∀(𝑅,𝐴) ∈ 𝐸𝑋 . �(𝑅′, 𝐴′) ∈ 𝐸𝐶 (𝑄). (𝐼𝐴′ (𝑄) > 𝐼𝐴 (𝑄)∧
𝐶 (𝑅′, 𝐴′) > 𝐶 (𝑅,𝐴))

Example 3.10. Reconsider the group-by step, depicted in Fig-

ure 1b. Recall from Example 3.2 the interestingness of column

‘loudness’ is higher than of ‘danceability’. The set-of-rows with

the highest contribution is the one where ‘decade’=“1990s” (when

using the many-to-one partition), obtaining raw influence score

of 1.12, whereas the sets of rows associated with “2000s”, “2010s”,

“2020s” obtained contribution of −0.04,−0.35, and −0.055 (resp).

Therefore, “1990s” obtains the highest standardized contribution

of 1.69. This explanation-candidate is indeed a dominating one,

according to the skyline computation, and therefore returned to

the user by fedex. Note that the skyline outputs another dominat-

ing explanation, having a lower interestingness score, yet a higher

standardized contribution. This is ‘decade’=“2020” w.r.t. interest-

ingness 𝐼𝑑𝑎𝑛𝑐𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦 , which has an interestingness score of 0.04 (as

is shown in Example 3.2), and a standardized contribution of 1.7.

According to this explanation (visualization omitted), Songs made

in the 2020’s are relatively more “danceable” than older songs .

3.7 Explanations Generation Process

The explanations generation process for an exploratory step 𝑄

is detailed in Algorithm 1. It takes as input an exploratory step

𝑄 = (𝐷𝑖𝑛, 𝑞, 𝑑𝑜𝑢𝑡 ) and operates as follows.

Pre-processing: interestingness & row partitioning. First, de-

pending on the type of operation 𝑞 (filter, group-by, join) we cal-

culate the interestingness scores 𝐼𝐴 (𝑄) using the corresponding

function, for each attribute 𝐴 in the output dataframe 𝑑𝑜𝑢𝑡 (Lines

1–2 in the algorithm). Next, we use our row partition techniques

(Section 3.5) to split the input dataframes into multiple partitions

R1,R2, . . . , and unify all sets-of-rows into the set SR (Lines 3–6).

Forming explanation-candidates and calculating standard-

ized contribution. We initialize an empty dictionary 𝐸𝐶 (Line 7),

which will contain the quality scores for each explanation candidate.

Then, we iterate over all partitions and all output attributes (Line 8).

For each pair (partition, attribute), we iterate over every set-of-rows

in the partition (Line 9) and compute its contribution to 𝐴 (Line 10).

If the contribution is positive (Line 11), then both the standardized

contribution (w.r.t. the partition, as explained in Section 3.6), and

the interestingness score of 𝐴 are stored in 𝐸𝐶 [(𝑅,𝐴)] (Line 12).
Calculating the interestingness/contribution skyline. Now

that the dictionary 𝐸𝐶 contains for each explanation candidate

(𝑅,𝐴) its (standardized) contribution and interestingness score, we

employ the skyline operator (see Section 3.6) which outputs only

the dominating explanations, that are not inferior to any other

candidates in both contribution or interestingness (Line 13).

Note that to further limit the resulted explanations, one can use,

e.g., a weighted average between the interestingness score and

the standardized contribution. Namely, given user-defined weights

𝑊𝐼 and𝑊𝐶 , let the weighted score of an explanation candidate be

𝑆𝐶𝑂𝑅𝐸 (𝑅,𝐴) = 𝑊𝐼 ·𝐼𝐴 (𝑄 )+𝑊𝐶 ·𝐶 (𝑅,𝐴)
𝑊𝐼 +𝑊𝐶

. We can then use this score to

rank the explanations generated by the skyline operator (Line 13)

and keep the top 𝑘 ones.

Generating captioned visualizations for each resulted expla-

nation. For each dominating explanation (𝑅,𝐴), s.t. 𝑅 ∈ R we now

(Lines 14–15) generate a corresponding captioned visualization (as

illustrated in Figure 2). fedex produces a different visualization for

each type of interestingness measure: (1) for exceptionality-based

explanations, we highlight the deviation in column 𝐴, caused by

the filter/join operation. This is done, as illustrated in Figure 1a,

via a side-by-side bar plot, in which the left-hand side depicts the

mean 𝑑𝑖𝑛 [𝐴] value, for all sets-of-rows in the partition R, and the

right-hand side depicts the mean 𝑑𝑜𝑢𝑡 [𝐴]. The chosen set-of-rows

for the explanation, 𝑅, is colored in green. As for the caption, we

use a natural language template and plug-in the attribute name

𝐴, and the label of 𝑅 according to the partition method. The label

is set based on the partition approach (Section 3.5). If the chosen

partition is numeric-based, the end values of the interval are set

as the label. If the partition is many-to-one, the value in column 𝐵

will be the label. Otherwise, the partition will be frequency-based,

and the label is the value itself. We then describe the deviation of

𝑅 from 𝑑𝑖𝑛 [𝐴] to 𝑑𝑜𝑢𝑡 [𝐴] in percentages and multiplications, as

illustrated in Figure 2a. (2) Diversity-based explanations highlight

the extremity in terms of the aggregated 𝐴 values in 𝑑𝑜𝑢𝑡 [𝐴] ob-
tained by the rows in 𝑅, compared to the rest of the sets-of-rows in

the partition R. As illustrated in Figure 1b, we use a bar chart to

depict the mean aggregated values obtain by each set-of-rows in R,
where the mean value of the rows in 𝑅 is again colored in green.

To further emphasize the extremity of 𝑅, we also depict the mean

𝑑𝑜𝑢𝑡 [𝐴] value, using a horizontal red line. The caption is generated

in a similar manner to that of the exceptionality-based explanations,

but supports the visualization by emphasizing how far is the value

of 𝑅 𝑗 from the mean, in terms of standard deviations.

Sampling optimization. To reduce explanations generation times,

we employ a sampling approach to optimize Algorithm 1. Instead

of considering all rows in 𝑑𝑖𝑛 (Lines 1–2), we calculate the interest-

ingness scores over a sample of the rows, obtained using uniform
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sampling. All other parts of the algorithm stay intact, and, in partic-

ular, the contribution is still computed over all rows. In Section 4,

we show that with a relatively small sample size (5K), this approach

achieves good accuracy while substantially improving interactivity.

3.8 Customization & Extensions of fedex

We next detail several extensions for fedex.

General interestingness functions. While fedex utilizes es-

tablished interestingness measures shown useful in exploration

tasks [5, 49, 75, 76], fedex can take any interestingness function

as input, with no required properties (e.g., monotonicity or non-

negativity). Examples measures are compactness/coverage [16] for

group-by operations, and surprisingness [43], as well as learned-

based measures (inspired by [45]).

User-specified columns. Furthermore, to give expert users more

control, they can specify the columns that they are interested in.

Then, fedex will only compute the skyline explanations for the

chosen columns based on their interestingness and the contribution

of the different sets-of-rows to these columns. This is simply done by

projecting the input and output dataframes over the user-selected

set of attributes, before employing Algorithm 1.

For instance, to explain the filter step in our running example

(See Figure 1a) the user could potentially restrict fedex to, e.g., the

‘danceability’ and ‘loudness’ columns (rather than on all columns),

hence obtaining explanations regarding these columns only.

Custom partitioning of rows. Last, as mentioned above, our

framework can be further extended with a user-defined partitioning

scheme, as long as they comply with Definition 3.8. For instance,

users can add a custom partition for date/time columns and group

the tuples by month or years; partition a geo-location column by

city or state, etc. The new partitions are added to the existing ones,

and the system uses them all to generate explanations.

4 EXPERIMENTS

We evaluated the quality and performance of fedex on three real-

world datasets, and compared them to existing baselines. The results

show that the hybrid explanations generated by fedex and its

sampling optimization version, fedex-Sampling, are clearer and

more interesting than the ones generated by our baselines, and that

the sampling optimization employed in fedex allows to generate

explanations in interactive time while not significantly reducing

the accuracy of obtained explanations w.r.t. the skyline.

4.1 Setup, Datasets, Queries, and Baselines

Our experimental study includes 3 real-world datasets and 4 base-

lines that are based on expert knowledge and previous work.

Implementation. fedex is implemented in Python 3.8. It uses

Pandas [53] to store and manipulate the database and uses NumPy

[30] to compute the explanations and Matplotlib [33] to generate

the visualizations. We have made the source code available [71].

The experiments were run on Windows 10 laptop with 16GB RAM

and 1.9 GHz Quad-Core Intel Core i7 processor.

Datasets. We have used the following 3 datasets:

1. Spotify [20]: containing information about tracks (e.g., duration,

popularity, danceability) and artists (e.g., genres and popularity). It

comprises a single table of 174, 389 rows and 20 columns.

2. Credit Card Customers [19]: containing customer details such

as age, gender, education level, and credit card category. It has a

single table with 10, 127 rows and 21 columns.

3. Products and Sales [55]: consisting of two tables: a Products

table (9, 977 rows, 16 columns) with information about beverage

products (e.g., name, vendor, price), and a Sales table (3, 049, 913

rows and 17 columns) that contains a record of all the sales of

products in a given chain (e.g., store id, quantity, date). The join view

of the two tables has 3, 049, 913 rows. For our scalability experiments

(Section 4.3) we uniformly sampled additional 6, 950, 087 rows (i.e.,

duplicates) to get a view with exactly 10M rows.

Further note that the datasets all contain skewed columns. In

total, over 31 of the columns are highly skewed, and over 41 of

the columns are moderately skewed. In particular, Fisher-Pearson

standardizedmoment coefficient [14] was high formultiple columns

in each dataset. For example, the top-1 column had a measurement

of 10.16, 2.06, and 205.89 for the Spotify, Credit Card Customers,

and Products and Sales datasets, respectively.

Queries. We have composed 5 filter/join queries for each dataset,

and 5 group-by queries for each dataset. The tables containing

the join, filter, and group-by queries, along with their reference

numbers, can be found in Appendix A .

Baselines and optimized version. Our experiments included a

comparison of fedex to the following alternatives:

1. SeeDB [76]: The solution of Vartak et. al. (implemented in [58])

automatically generates visualizations that are meant to emphasize

trends in a given view stemming from a query over a source view.

2. Rath [72]: RATH (implemented in implementation is taken

from [59]) automatically generates the top-k insightful visualiza-

tions using a single score function for all operations that is both

applicable to different types of insights and fair across different

types of insights (for a detailed comparison see Section 2).

3. IO: The Interestingness Only baseline is based on previous work

[79] where the influence of an attribute is measured by checking

the difference in interestingness of an attribute in 𝑑𝑜𝑢𝑡 w.r.t. 𝐷𝑖𝑛 .

4. Expert: As part of our user study (Section 4.2), we have asked

three experts tomanually formulate their own explanations for each

of the three datasets, each represented in its own notebook. These

explanations consisted of a detailed textual description. The experts

had access to the query, the dataset, and the resulting dataframe.

5. fedex-Sampling: The optimized version of fedex, where uni-

form sampling of the rows is used to compute the interestingness.

After performing experiments to choose a reasonable sample size

(see the paragraph “Accuracy of fedex-Sampling” in Section 4.3),

we have concluded that a sample of 5K rows delivers good accuracy.

4.2 User Studies

We detail two user studies that were performed to evaluate the qual-

ity of the explanations generated by fedex and fedex-Sampling.

For our user studies, we have used separate notebooks for each

dataset and the appropriate queries. The maximal number of ex-

planations presented to users (the size of the skyline set) over all

queries in both studies was 2.
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(a) Results for the Credit Card dataset (b) Results for the Spotify dataset (c) Results for the Products dataset

Figure 3: User study results on the three datasets

Figure 4: Explanation generation time for the user study in

Figure 3

Figure 5: Interactive user study

Figure 6: User study results for baselines augmented with NL

explanations

Comparison to existing baselines. We have performed a user

study with the goal of evaluating the quality of the explanations

generated by fedex compared to existing baselines and expert-

generated explanations. that included 25 participants. The users

had different backgrounds; 17 of the users were non-experts with

minimal SQL knowledge and 8 were CS graduate students. The

study was based on three notebooks, one for each of the three

datasets. The notebooks also included details regarding the given

dataset and the goal of the exploration session (the notebooks can

be found in the fedex repository [71]). The Spotify notebook con-

tained the filter/join queries 6, 7 and the group-by queries 21, 22 (see

Appendix A); the Credit Card Customers notebook contained the fil-

ter/join queries 11, 12, 13 and group-by query 27 from Appendix A;

and the Product and Sales notebook contained the filter/join queries

1, 5 and group-by queries 16, 17, 18. The Spotify and Credit Card

notebooks were each shown to 9 users, and the notebook with the

Products and Sales session was shown to 10 users. Each notebook

also included the explanations generated by SeeDB, Rath, IO, Ex-

pert, and fedex (the explanations computed by fedex-Sampling

were identical to those computed by fedex, i.e. the skyline set

was identical). For the Expert baseline, we have asked 3 experts

to analyze the notebooks and generate an explanation for each

operation manually. Figure 4 shows the time it took the experts

to generate the explanations compared to the generation time of

fedex. Naturally, the explanation generation time of the experts

was substantially larger than for fedex.

For each user, we presented the query, the original input dataset

and the query output. Then, we showed the user up to five expla-

nations (the SeeDB baseline could not generate explanations for

group-by queries as it compares𝑑𝑖𝑛 and𝑑𝑜𝑢𝑡 , but in group-by opera-

tions the input and output columns are different). Users were asked

to grade the explanations on a scale of 1–7 w.r.t. coherency (is the

explanation easy to understand?), insight level (does the explanation

provide an interesting insight?), and usefulness in understanding

the operation (does the explanation assist in understanding the

EDA operation results?).

For all three datasests, we observed that users have generally

preferred the Expert explanations. The average score for these

explanations for coherency, interestingness level, and relevance

was 6.33, 5.5, 5.33 respectively across all three datasets. From the

automatically generated explanations, those generated by fedex

were clearly preferred. The average score of the explanations gen-

erated for the Spotify dataset across the different measures is 5.1,

whereas the average score of IO, SeeDB, and Rath for this dataset

is 3.8, 3, 2.8 respectively. For the Credit Card Customers dataset,

the average score for fedex across the different measures is 5.6,

compared to an average score of 4.4, 3.3, 2.9 for IO, SeeDB, and
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(a) Precision@k for fedex-Sampling (b) Kendall-Tau distance for fedex-Sampling (c) nDCG for fedex-Sampling

Figure 7: Accuracy results for fedex-Sampling averaged over the Spotify and Products datasets with all relevant filter and join

queries in Appendix A

(a) Precision@k for fedex-Sampling (b) Kendall-Tau distance for fedex-Sampling (c) nDCG for fedex-Sampling

Figure 8: Accuracy results for fedex-Sampling for the Products datasets with all relevant filter and join queries in Appendix A

(a) Credit Card Customers dataset (b) Spotify dataset (c) Products and Sales dataset

Figure 9: Runtime as a function of column number for all three datasets for fedex-Sampling and the baselines averaged over

the filter and join queries from Appendix A

(a) Credit Card Customers dataset (b) Spotify dataset (c) Products and Sales dataset

Figure 10: Runtime as a function of row number for all three datasets for fedex and fedex-Sampling averaged over the filter

and join queries from Appendix A
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Rath, respectively. Finally, for the Products and Sales dataset, the

average score of the explanations generated by fedex across the dif-

ferent measures is 5.3, whereas the average score of IO and SeeDB

explanations for this dataset are 3.2, 3.8, respectively. Rath timed

out for every query over this dataset (after more than 3 hours of

computation), and thus its explanations were excluded. It should be

noted that fedex generates hybrid explanations that include both

visualization and text, making them easily understandable. This

may explain the users’ preference for these explanations over the

explanations generated by some of the baselines. Interestingly, the

scores obtained by fedex were very close to these of Expert on the

Products and Sales Notebook. fedex showed such high scores for

this notebook due to the join operation; Expert did not explain this

join while fedex noticed a change in the distribution and pointed

that out to the user. fedex generated more insightful explanations

(an average score of 5.4 compared to an average of 5.1 for Expert)

and slightly more relevant to the task (average of 5.1 compared to 5

for Expert); in contrast, the Expert baseline got higher coherency

scores with an average of 6.3 compared to an average of 5.4 for

fedex.

Comparison to unassisted EDA. We have compared standard

unassisted EDA with EDA assisted by fedex/fedex-Sampling, us-

ing the Spotify and Credit Card datasets. The task for the Spotify

dataset was to find which songs are more popular and why; the

task for the Credit Card Customers dataset was to find out why

people leave the service and how can we anticipate it. The study

included 8 participants who were asked to identify as many insights

as possible that are related to the task, when presented with an

empty notebook. Then, an expert was asked to denote for each

user-generated insight, whether this insight is correct and directly

related to the task or not. For example, for the Spotify dataset,

“acoustic songs (with acousticness > 0.5) are usually less popular" is

a correct insight while “songs from the 90s are louder than other

decades" is an unrelated insight. We counted the number of insights

gathered by the participants over 10 minutes. The average number

of insights for the two datasets is shown in Figure 5. The average

numbers were 2.5 (9.5) with fedex-Sampling and 1 (2.5) without

it for the Credit Card (Spotify) dataset. The results clearly show

the benefit of using fedex and fedex-Sampling and indicate that

fedex is able to assist users in gaining insights about the EDA task.

Comparison to augmented baselines. We have further added

textual explanations to the SeeDB and Rath baselines (in addition

to their ‘organic’ visualizations) and performed an additional user

study in which the output of all baselines includes both a visual-

ization and a caption. In the study, four participants were asked to

analyze the Credit Card Customers dataset and its notebook from

the first user study (including the five relevant queries that can be

found in Appendix A). Since the quality of automatic captioning

methods may vary, we have asked an expert to manually devise

a textual description for the visualizations generated by SeeDB

and Rath. The results in Figure 6 indicate that even with experts-

generated textual explanations for the baselines, fedex is able to

generate explanations that are significantly more coherent, insight-

ful, and useful. In particular, the scores were 5.52 for fedex, 3.17

for SeeDB augmented with textual explanations, and 3.42 for Rath

augmented with textual explanations.

4.3 Simulated Experiments

We first measure the accuracy of the explanations generated by

fedex-Sampling. After establishing that fedex-Sampling is in-

distinguishable from fedex in terms of accuracy, we measure its

runtimes compared to the baselines when varying the parameters

of the database and further measure the trade-off between the num-

ber of sets-of-rows and accuracy. In the following experiments, the

number of sets-of-rows was set to either 5 or 10 (fedex tries to

divide the values into both 5 and 10 sets-of-rows and computes the

skylines for all options). For each measured point, we run fedex

and/or fedex-Sampling (depending on the experiment) three times

for each one of the relevant queries.

Accuracy of fedex-Sampling. In this set of experiments, we

have averaged over the join/filter queries 1-10 and group-by queries

16-25 from Appendix A, for the Products and Spotify datasets. Fig-

ure 7a depicts the precision@k [64] of fedex-Sampling w.r.t. the

output of fedex (𝑘 was set to 3 since in most cases the number

of explanations in the skyline set was ≤ 3), used as the ground

truth. The measurements were performed over the Spotify and

Products datasets, as the Credit Card dataset is too small. The av-

erage precision over the different queries is very high, reaching

over 93%, 96%, 97%, and 99% for sample sizes of 5K, 10K, 20K, and

50K, respectively. This suggests that a relatively small sample can

accurately predict the set of skyline explanations. Figure 7b shows

the Kandall-Tau distance [37] between the ground truth results

and the results obtained by fedex-Sampling, when considering

all explanations in the skyline. The distance gradually decreases

and falls from 74.8 at sample size 50 to 10.8 for sample size 50K.

In particular, for a 5K sample the distance is 21.6 – lower than the

mean value of 33.1 among all sample sizes. Figure 7c shows the

nDCG score [35] of fedex-Sampling. The starting point of the

score is already high (92.6%), and it further increases gradually with

the sample size where the most significant increase is observable as

we move from sample sizes of 50 to 200 (92% to 97%, respectively).

In particular, for a sample size of 5K, the nDCG score is 99.8%.

We have further measured the change in accuracy of fedex-

Sampling with a sample size of 5K for a varying number of rows

for the Products and Sales dataset, which is the largest dataset out

of the three. Our results are shown in Figure 8. All three subfigures

show that the accuracy remains high for all sets of rows w.r.t. all

three metrics. In particular, for 3M rows, the precision@k was 0.942,

the Kendall-Tau distance was 8.1, and the nDCG value was 0.9985.

Kendall-Tau has minor fluctuations since the different columns

have very close interestingness scores, and Kendall-Tau is sensitive

to this, as a slight change in interestingness can lead to a change

in the ranking of the explanations. In light of these results, in our

scalability experiments, we have examined fedex-Sampling with a

fixed sample size of 5K rows.

Last, while an inaccurate interestingness calculation by fedex-

Sampling may result in sub-optimal explanations, recall from Sec-

tion 4.2 that fedex-Sampling produced the exact same output as

fedex. In general, there are no guarantees that the skyline will be

the same for fedex and fedex-Sampling. To explain the reason

for the lack of change in the skyline in Section 4.2, recall that the

skyline set of explanations is determined via the following two
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Figure 11: Contribution score (see Section 3.5) for varying

number of sets-of-rows for query 1 over Products and Sales,

and query 7 over Spotify (see Appendix A for the queries)

steps: (1) computing interestingness and for the top-k most inter-

esting columns (2) computing the contribution for all sets of rows.

Note that Figure 7 measures only the accuracy for step (1), which

is where we see a small loss by the sampling. This loss was not

significant enough to affect the final skyline set in Section 4.2.

Runtime analysis for varying column number. In this set of

experiments, we have examined the runtime as a function of the

number of columns in the dataset. The experiment was run over

all three datasets, where we averaged over the join/filter queries

the 1-15 in Appendix A. We have set the number of rows to its

maximum size for each dataset and have gradually increased the

number of columns.We always included the attribute that the query

needs (e.g., 𝑋 ) and the attribute with the highest interestingness

score (e.g., 𝑌 ). Then, we perform a random permutation on the

attributes and add the columns in a fixed order (if the permutation

is 𝐴1, 𝐴2, . . . , 𝐴𝑚 , we first check 𝑋,𝑌,𝐴1, and then 𝑋,𝑌,𝐴1, 𝐴2 and

so on). Figure 9 depicts the execution time of fedex-Sampling

compared to the baselines SeeDB and Rath. Figure 9a shows the

runtime for an increasing number of columns for the Credit Card

dataset. For 20 columns, the runtime of fedex-Sampling was 0.23s,

whereas for SeeDB and Rath it was 0.54s and 0.52s, respectively.

In Figure 9b, at the maximum number of columns for the Spotify

dataset (20 columns), the runtime of fedex-Sampling was 2.27s,

while the runtime for SeeDB and Rath was 0.75s, 2.9s, respectively.

SeeDB performs better for this specific dataset because it contains

mostly numeric attributes, and SeeDB counts on both categorical

values for grouping and numeric attributes for aggregations. The

lack of categorical attributes reduces the number of possible views

and reduces the runtime. For the Products dataset (Figure 9c) with

33 columns, the runtime was 13.3s for fedex-Sampling and 25.1

for SeeDB. Rath was not able to run on 3M rows due to high

memory usage (taking more than 17GB, resulting in an ‘out of

memory’ error) and long processing times (average of 50% CPU

usage for more than 10 minutes), therefore omitted from the graph.

These results suggest that fedex-Sampling with a sample size of 5K

performs better than SeeDB and Rath on datasets with a moderate

to large schema size when interactive performance is desired.

Execution time analysis for varying row number. In this set

of experiments, we have computed average execution times sepa-

rately for the group-by queries and filter/join queries. Again, the

sample size of fedex-Sampling was set to 5K. Here, for Figure 10c,

we sampled additional rows to increase the size of the view to a

maximum of 10M.

Figure 10a shows that fedex-Sampling performs better than

SeeDB and Rath in most cases as the data size increases with a

relatively small increase in execution time as the number of rows

grows. For 10K rows, the execution time is 0.23s, as opposed to an

execution time of 0.63s, 0.81s for SeeDB and Rath, respectively. In

Figure 10b, for 174, 389 rows, the execution time of fedex, SeeDB,

and Rath were 1.81s, 0.7s, 6.4s, respectively. SeeDB slightly outper-

forms fedex-Sampling for this dataset for the same reason detailed

in the previous paragraph regarding Figure 9b. In Figure 10c, for

10M rows, the execution times of fedex-Sampling and SeeDB were

62.4s, 154.9s, respectively. Rath was not able to run on these data

sizes (as in the explanation for Figure 9, due to high memory usage

and large processing times), so it does not appear in the figure.

This experiment shows that fedex-Sampling performs better or

in a comparative manner with the examined baselines in terms of

runtime for large data sizes.

Accuracy for varying sets-of-rows sizes. Figure 11 shows the

contribution score w.r.t. the numbers of sets-of-rows (see Section

3.7) for queries 3 and 7 shown in Appendix A for the Products

and Sales and Spotify datasets, respectively. We have chosen two

specific queries to ensure that the column will remain constant

and that only the number of sets-of-rows will vary. There is no

clear trend in the results: the optimal number of sets-of-rows w.r.t.

contribution depends on the query and the values of the chosen

attribute. We note that a partition to large number of sets-of-rows

resulted in an overloaded and less clear visualization that includes

many ticks on the X-axis. Thus, for understandable explanations,

choosing a lower number of sets-of-rows appears to be a better

strategy (in the user study we set it to 5 or 10).

5 CONCLUSIONS AND FUTUREWORK

We have presented fedex, a system that provides coherent expla-

nations for data exploration steps. The resulted explanations assist

users in understanding what is interesting in the results of their

exploration steps and gather actionable insights. Our explanations

are based on a novel approach, that holistically examines an ex-

ploration step and calculates the contribution of sets-of-rows from

the input dataframe to the interestingness score of a column in the

output dataframe. Those sets-of-rows that significantly contribute

to highly interesting attributes are transformed to coherent expla-

nations in the form of visualization with a natural language caption.

We have performed an extensive evaluation of our approach that

shows its usefulness over real-world datasets and tasks. For future

work, we intend to study different ways of measuring the contribu-

tion of row sets, such as causal responsibility. Another intriguing

direction is to develop new measures that capture additional in-

terestingness facets, as well as to study dedicated optimization

techniques for interestingness calculations.
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A QUERIES FOR THE EXPERIMENTS

Table 2: Join and filter queries used in the experiments (used

with the exceptionality measure from Section 3.2)

Num. Dataset and Type Query

1 Products (J) SELECT * FROM products INNER JOIN sales ON

products.item=sales.item;

2 Products (J) SELECT * FROM counties INNER JOIN sales ON

counties.county=sales.county;

3 Products (J) SELECT * FROM counties INNER SELECT

* FROM stores INNER JOIN sales ON

stores.store=sales.store;

4 Products (F) SELECT * FROM products_sales WHERE

sales_liter_size ≤ 500;

5 Products (F) SELECT * FROM products_sales WHERE

sales_pack == 12;

6 Spotify (F) SELECT * FROM spotify WHERE popularity >

65;

7 Spotify (F) SELECT * FROM spotify WHERE year > 1990;

8 Spotify (F) SELECT * FROM spotify WHERE loudness > -12;

9 Spotify (F) SELECT * FROM spotify WHERE dura-

tion_minutes < 3;

10 Spotify (F) SELECT * FROM spotify WHERE tempo > 100;

11 Bank (F) SELECT * FROM Bank WHERE Attrition_Flag !=

"Existing Customer";

12 Bank (F) SELECT * FROM [SELECT * FROM BankWHERE

Attrition_Flag != ’Existing Customer’] WHERE

Total_Count_Change_Q4_vs_Q1 > 0.75;

13 Bank (F) SELECT * FROM Bank WHERE

Months_Inactive_Count_Last_Year > 2;

14 Bank (F) SELECT * FROM Bank WHERE Customer_Age <

30;

15 Bank (F) SELECT * FROM BankWHERE Income_Category

== “Less than $40K”;

Table 3: Group-by queries used in the experiments (used with

the diversity measure from Section 3.2)

Num. Dataset and Type Query

16 Products (GB) SELECT count(item) FROM products_sales

GROUP BY sales_vendor;

17 Products (GB) SELECT count(item) FROM products_sales

GROUP BY sales_county, sales_category_name;

18 Products (GB) SELECT count(item) FROM products_sales

GROUP BY products_sales_pack;

19 Products (GB) SELECT mean(sales_total), mean(sales_pack)

FROM products_sales GROUP BY

sales_bottle_quantity;

20 Products (GB) SELECT mean(products_bottle_size) FROM prod-

ucts_sales GROUP BY products_pack, prod-

ucts_inner_pack;

21 Spotify (GB) SELECT mean(popularity), max(popularity),

min(popularity) FROM spotify GROUP BY year;

22 Spotify (GB) SELECT mean(danceability), max(danceability),

mean(instrumentalness), max(instrumentalness),

mean(liveness) FROM spotify GROUP BY year;

23 Spotify (GB) SELECT mean(danceability), mean(popularity)

FROM spotify GROUP BY key;

24 Spotify (GB) SELECT max(duration_minutes),

mean(duration_minutes) FROM spotify GROUP

BY decade;

25 Spotify (GB) SELECT mean(loudness), mean(liveness),

mean(tempo) FROM spotify GROUP BY mode,

key;

26 Bank (GB) SELECT mean(Credit_Used),

mean(Total_Transitions_Amount) FROM Bank

GROUP BY Marital_Status, Income_Category;

27 Bank (GB) SELECT count FROM Bank GROUP BY Mari-

tal_Status, Gender, Education_Level;

28 Bank (GB) SELECT mean(Credit_Used),

mean(Total_Transitions_Amount) FROM

Bank GROUP BY Marital_Status;

29 Bank (GB) SELECT mean(Customer_Age) FROM Bank

GROUP BY Gender, Income_Category;

30 Bank (GB) SELECT count FROM Bank GROUP BY Regis-

tered_Products_Count, Attrition_Flag;
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