
Fast and Scalable Mining of Time Series Motifs
with Probabilistic Guarantees

Matteo Ceccarello

Free University of Bozen/Bolzano

Bolzano, Italy

mceccarello@unibz.it

Johann Gamper

Free University of Bozen/Bolzano

Bolzano, Italy

gamper@inf.unibz.it

ABSTRACT

Mining time series motifs is a fundamental, yet expensive task in

exploratory data analytics. In this paper, we therefore propose a fast

method to find the top-𝑘 motifs with probabilistic guarantees. Our

probabilistic approach is based on Locality Sensitive Hashing and

allows to prune most of the distance computations, leading to huge

speedups. We improve on a straightforward application of LSH to

time series data by developing a self-tuning algorithm that adapts to

the data distribution. Furthermore, we include several optimizations

to the algorithm, reducing redundant computations and leveraging

the structure of time series data to speed up LSH computations.

We prove the correctness of the algorithm and provide bounds

to the cost of the basic operations it performs. An experimental

evaluation shows that our algorithm is able to tackle time series

of one billion points on a single CPU-based machine, performing

orders of magnitude faster than the GPU-based state of the art.

PVLDB Reference Format:

Matteo Ceccarello and Johann Gamper. Fast and Scalable Mining of Time

Series Motifs with Probabilistic Guarantees. PVLDB, 15(13): 3841 - 3853,

2022.

doi:10.14778/3565838.3565840

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/Cecca/attimo.

1 INTRODUCTION

Finding structure in large time series is an important task in several

domains. In particular, finding repeated subsequences in long time

series, also known as motifs, is an important primitive in domains

as diverse as entomology [32], meteorology [28], nematology [10],

and seismology [12]. Furthermore, motif discovery is also used as a

preprocessing step in anomaly detection [8].

Given the presence of noise, subsequences are usually compared

by similarity rather than by exact equality. At its essence, motif

discovery entails finding 𝑘 pairs of subsequences of a given length

which are pairwise maximally similar, for a parameter 𝑘 specified

by the user. This problem lends itself to a straightforward solution:

iterate over all pairs of subsequences, keeping track of the closest

𝑘 pairs. However, for a time series of length 𝑛 and subsequence

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 13 ISSN 2150-8097.

doi:10.14778/3565838.3565840

length𝑤 , this naïve approach has a 𝑂 (𝑤 · 𝑛2) complexity, which is

clearly untenable for long time series.

We propose a self-tuning algorithm for motif discovery based

on Locality Sensitive Hashing that adapts to the data distribution.

Intuitively, we map each subsequence of the time series to hash

values, with the property that similar subsequences are assigned

the same hash value: in particular, the 𝑘 motif pairs are likely to

have the same hash value under this scheme. We can then restrict

distance computations to pairs of subsequences with the same hash

value, thus hopefully pruning away a lot of unneeded and expensive

computations.

One of the challenges in using LSH is the number of parameters

involved. Setting all the parameters appropriately affects the quality

of the solution and the efficiency of the computation. Unfortunately,

the best value for each parameter is data dependent. To mitigate

this issue, our algorithm takes themaximum allowed values for two
parameters, and automatically finds the configuration minimizing

distance computations that both respects the given constraints and

meets a user-provided failure probability.

Our approach is data-adaptive: the algorithm carries out a num-

ber of distance computations that depends on the separation be-

tween the motifs and the average subsequence pair. For a fixed time

series length, our algorithm finishes more quickly on datasets with

motifs that stand out. This is in contrast with state of the art ap-

proaches [48] that make the data-independence of their execution

time one of their strong points.

Our contributions are the following:

• Wepresent a novel self-tuning and data-adaptive LSH-based

algorithm for the discovery of the top-𝑘 motifs with a user

controlled failure probability.

• We introduce several optimizations that greatly improve the

performance of our approach, speeding up and reducing

the number of hash function evaluations, and removing

redundant distance computations.

• We prove the correctness and complexity of our algorithm.

• We provide an open source implementation of our algo-

rithm that scales to time series with billions of data points

on a single CPU machine.

• We carry out an extensive experimental evaluation, show-

ing that our CPU-based implementation can scale to large

time series better than the state-of-the art GPU-based im-

plementation.

Organization. After reviewing the related work (§2), we intro-

duce background concepts on time series and LSH (§3), giving an

example naïve application of LSH. Then, we describe our contri-

bution (§4), presenting several optimizations separately (§ 5) for

clarity. Finally, we evaluate our approach experimentally (§ 7).

3841

https://doi.org/10.14778/3565838.3565840
https://github.com/Cecca/attimo
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3565838.3565840
https://www.acm.org/publications/policies/artifact-review-and-badging-current

2 RELATEDWORK

A survey on motif discovery is given by Mueen [29], who identifies

two variants of the problem: similarity based and support based. In
the former a motif is defined as the pair of subsequences with the

smallest distance in a time series; in the latter a distance threshold

𝑅 is additionally considered, and motifs are defined as being balls of

radius 𝑅 containing the most subsequences. In this paper we adopt

the similarity based definition, that foregoes the need of parameter

𝑅, which is domain specific and difficult to set.

The motif discovery problem in time series has been introduced

in [38] along with the EMMA algorithm. Subsequences are orga-

nized in a hash table using their SAX [26] representation as keys:

all subsequences assigned to the same bucket are candidates for

being the motif. The algorithm also inspects neighboring buckets

(using the lower bound on the Euclidean distance provided by SAX).

While resorting to the SAX representation of time series allows to

prune some unnecessary distance computations, there is no upper

bound on the number of buckets that need to be evaluated.

Shortly after, a probabilistic algorithm has been proposed [15],

borrowing techniques from a seminal work in approximate match-

ing in DNA strings [11]. The algorithm is also based on the SAX

representation of subsequences to transform a time series into a

sequence of discrete symbols. The basic idea is similar to the EMMA

algorithm, but random characters from the SAX alphabet are used

as a key in the hash table. By repeating the procedure several times,

similar subsequences are likely to collide, thus allowing to discover

the motif. In contrast to our algorithm, this approach, which is

reminiscent of LSH, provides no formal guarantees on the quality

of the result and features a large number of parameters, which are

difficult to tune.

The above solutions change the representation of the subse-

quences to prune unnecessary distance computations. A different

strategy is investigated in [32], where the straightforward double-

nested loop algorithm is optimized by considering a sample of

reference subsequences, which are used to early reject candidate

pairs. While this heuristic works well, in the worst case it still re-

quires time𝑂 (𝑤 · 𝑛2). A parallel version of this algorithm has been

developed in [36].

For online settings, where new points are continuously appended

at the end of the time series, an algorithm to maintain information

about the top motif has been developed in [31] and later extended

to the top-𝑘 case [24].

The matrix profile [45] is a data structure that stores, for each
subsequence, the index and distance of its nearest neighbor. It pro-

vides a lot of information for several questions about time series,

including motifs: one just needs to look at the minimum distance

in the matrix profile to locate the top motif. Approaches based on

the matrix profile require time Ω(𝑛2), making them challenging

to apply to large scale data. An anytime version of the Matrix

Profile, named SCRIMP++ [46], provides empirically good approxi-

mations of the matrix profile (and hence of the motifs). One of the

key elements of this approach is the PreSCRIMP subroutine, which

computes an approximation to the matrix profile. While the ap-

proach proves to be fast and accurate in practice, it lacks theoretical

guarantees on the quality of the result. The most efficient computa-

tion of the matrix profile (and of motifs) is provided by Scamp [48],

which can employ clusters of GPUs to speed up the computation.

Scamp outperforms all previously proposed approaches, including

PreSCRIMP. Nonetheless, the algorithm is inherently Ω(𝑛2), thus
requiring a lot of computational resources to solve large problems.

Recently, a randomized exact approach has been proposed [25]

with linear running time in expectation. The approach is based

on building a set of grids with different widths to index the sub-

sequences of the time series. The grids are populated incremen-

tally, inserting subsequences one at a time, maintaining an ever-

decreasing guess on the distance of the motif. During insertion, the

partially-constructed grids are used to answer nearest-neighbor

queries. At the end of this procedure, the motif pair with the highest

similarity is returned. General ℓ𝑝 norms are supported, including

the z-normalized Euclidean distance, but the implementation and

experiments use the Chebyshev distance.

In recent years, most of the research on time series motifs has

shifted to the discovery of variable-length motifs [18, 19, 27, 30]

and multi-dimensional motifs [18], problems which are outside of

the scope of this paper, where we present substantial improvements

to the running time of the fixed-length motif discovery problem.

To summarize, compared to previous works, our approach pro-

vides better scalability than the state of the art Scamp and provides

theoretical guarantees. This is in contrast to approximation algo-

rithms such as PreSCRIMP and random projection [15], that do not

offer theoretical guarantees on the quality of the result.

Locality Sensitive Hashing (LSH for short) has been introduced

by Indyk and Motwani [23] as a general technique to address near-

est neighbor queries. For an in-depth survey we refer the interested

reader to [16, 44]. Particularly relevant for the approach presented

in this paper is the family of hash functions for the Euclidean dis-

tance presented in [17]. Note that in [17] LSH is applied to the

approximate 𝑅-near neighbor search problem. In Section 4 we shall

discuss how to employ LSH in an exact nearest neighbor search

setting. A family with better theoretical properties has been pre-

sented in [1], but it is less amenable to an efficient implementation

in the context of time series.

Using LSH correctly requires setting several parameters, many of

which are data dependent. The PUFFINN [5] algorithm represents

an approach that is able to automatically tune most parameters

depending on the data at hand for 𝑘-nearest neighbor queries. The

approach presented in this paper is inspired by PUFFINN, with

several notable differences. PUFFINN is implemented for cosine and

Jaccard similarity, whereas our approach works with the Euclidean

distance between subsequences. This has an important impact on

the implementation, since the LSH families for Euclidean distance

feature additional parameters that need to be automatically tuned.

Furthermore, our approach is fine-tuned to discover top-𝑘 pairs

within a dataset, whereas PUFFINN aims at answering arbitrary

nearest neighbor queries.

LSH has been applied to time series in the context of earthquake

detection [41]. Waveforms associated with earthquakes are rep-

resented by means of two-dimensional fingerprints derived from

their spectrogram. Similar fingerprints correspond to similar earth-

quakes. To improve the running time, fingerprints are processed

using MinHash [9]. Compared to the approach proposed in this

paper, [41] works in a different metric space and does not verify

distances of colliding fingerprints, relying on a threshold on the

3842

fraction of collisions with respect to the number of repetitions.

In [48], the authors comment on this line of work saying that "this
approach [. . .] produced false positive and false negative results. In
addition, LSH requires the careful selection of multiple dataset spe-
cific tuning parameters [. . .]". In the present work we address both

concerns, by providing an algorithm with guaranteed recall that is

able to self-tune to the data distribution.

There are LSH families for several popular distance measures,

including the cosine similarity [14] and the Fréchet distance [13].

For the sake of clarity, in this work we focus our attention on the

Euclidean distance [17].

3 PRELIMINARIES

3.1 Time series and motifs

A time series 𝑇 is an ordered collection of 𝑛 values in R. Given a

time series 𝑇 of length 𝑛 and a window length𝑤 , a subsequence is
a collection of 𝑤 contiguous values from 𝑇 . The set of all subse-

quences of length𝑤 of 𝑇 is denoted with 𝑇𝑤 . With 𝑇𝑤
𝑖

we denote

the subsequence of length𝑤 starting from the 𝑖-th point of𝑇 . When

clear from context, we omit the superscript𝑤 .

For any given pair of subsequences𝑚 ∈ 𝑇𝑤×𝑇𝑤 , we denote with
𝑑 (𝑚) the distance between the two subsequences. Two overlapping

subsequences are referred to as trivial match. The definition can

be adjusted to suit different needs (e.g., a trivial match could be

given by two subsequences with an overlap of at most𝑤/4) with
no changes in the algorithms. By extension, we say that two pairs

of subsequences overlap if any subsequence in one pair overlaps

with either subsequence in the other pair.

We define a total ordering over the pairs of subsequences: given

two pairs𝑚1 and𝑚2, we have𝑚1 < 𝑚2 if 𝑑 (𝑚1) < 𝑑 (𝑚2), breaking
ties in favor of the pair having the subsequence occurring earliest.

In this paper we focus on computing, for a given integer 𝑘 > 0,

the 𝑘 pairs of subsequences with the smallest distance, ignoring

trivial matches. Our definition of the problem is along the lines

of [24, 29, 32, 38].

Definition 3.1 (Top-𝑘 motifs). Given a time series 𝑇 and a length

𝑤 , the top-𝑘 motifs are the 𝑘 pairs of subsequences of length 𝑤

with smallest distance, such that no two subsequences in any pair

overlap with each other.

Observation 1. The matrix profile [45], which reports the nearest

neighbor of each subsequence, is often used to address the prob-

lem above: the first motif is identified as the pair at minimum

distance in the matrix profile, the second motif is the pair at the

next minimum not overlapping with the first pair, and so on. We

note that this procedure might miss some motifs defined as above.

This happens when a motif is composed of two subsequences whose

nearest neighbors are overlapping with a higher-ranked motif. In

this situation, the matrix profile does not contain the information

to identify such a pair. We will provide an example of such case in

our experimental section.

As a distance function between subsequences 𝑥,𝑦 ∈ 𝑇𝑤 we will

use the popular z-normalized Euclidean distance

𝑑 (𝑥,𝑦) =

⌜⃓⎷
𝑤−1∑︂
𝑖=0

(︃(︃
𝑥𝑖 − 𝜇𝑥
𝜎𝑥

)︃
−
(︃
𝑦𝑖 − 𝜇𝑦
𝜎𝑦

)︃)︃
2

The z-normalized Euclidean distance is equivalent to the Pearson

correlation coefficient 𝜌 . In particular, we have 𝜌 (𝑥,𝑦) = 1− 𝑑
2 (𝑥,𝑦)
2𝑤 ,

for positive correlation values [33, 39]. Therefore, minimizing the

z-normalized Euclidean distance is equivalent to maximizing the

Pearson correlation coefficient. All our arguments and algorithms

also work with the non-normalized Euclidean distance simply by

skipping the normalization step.

Example 3.2. Figure 1 reports the first 13 000 points of a classic
example in the motif discovery literature [29, 32]: a time series of

length 18 666 derived from an experiment modeling the behavior of

the Beet leafhopper insect. We highlight the top-3 motifs of length

𝑤 = 400 in blue, orange, and green.

3.2 Locality Sensitive Hashing

In this section, we give a brief overview of the LSH framework. We

refer the interested reader to [16, 44] for a more in-depth discussion.

Furthermore, we provide interactive online supplemental material
1

to provide more background.

Definition 3.3 (Locality Sensitive Hashing [23]). Let (𝑋, dist) be a
distance space andH be a family of functions ℎ : 𝑋 → 𝑅. We say

thatH is locality-sensitive if for any three 𝑥,𝑦, 𝑧 ∈ 𝑋 and a random

ℎ ∈ H we have that

dist(𝑥,𝑦) ≤ dist(𝑥, 𝑧) ⇒ Pr[ℎ(𝑥) = ℎ(𝑦)] ≥ Pr[ℎ(𝑥) = ℎ(𝑧)]

In other words, under a random hash function sampled fromH ,

vectors in 𝑋 similar to each other are more likely to hash to the

same value than vectors that are far away. We denote the event

of two vectors hashing to the same value with collision, and by

extension two vectors collide when they hash to the same value

under the same hash function.
An LSH scheme for the Euclidean distance was introduced by

Datar et al. [17]. For R𝑤 and a parameter 𝑟 ∈ R (the quantization
parameter), a hash function is constructed by sampling a random

vector 𝑎 ∈ R𝑤 and a random value 𝑏 ∈ [0, 𝑟]. The hash function is

then defined as

ℎ𝑎,𝑏 (𝑥) =
⌊︃
𝑎 · 𝑥 + 𝑏

𝑟

⌋︃
for 𝑥 ∈ R𝑤 (1)

where 𝑎 · 𝑥 is the dot product between 𝑎 and 𝑥 . The collision proba-

bility of two vectors at Euclidean distance 𝑑 is

𝑝 (𝑑) = 1 − 2 · 𝑛𝑜𝑟𝑚
(︂
− 𝑟
𝑑

)︂
− 2

√
2𝜋𝑟/𝑑

(︂
1 − 𝑒−(𝑟

2/2𝑑2)
)︂

(2)

where 𝑛𝑜𝑟𝑚 is the cumulative distribution function of the Standard

Normal distribution
2
[17]. By z-normalizing vectors before com-

puting the hash function, the LSH scheme above can also be applied

to the z-normalized Euclidean distance.

To modulate the collision probability between two vectors 𝑥 and

𝑦 in 𝑋 , usually the so-called powering technique is used: for an

integer 𝐾 ≥ 1, we sample pairs (𝑎1, 𝑏1), . . . , (𝑎𝐾 , 𝑏𝐾) as described
above and build a composite hash function

ℎ′ (𝑥) =
(︁
ℎ𝑎1,𝑏1

(𝑥), . . . , ℎ𝑎𝐾 ,𝑏𝐾 (𝑥)
)︁

1
https://cecca.github.io/attimo/VLDB-supplemental/

2
We remark that this LSH family samples from a Gaussian distribution because of its

2-stable properties, and is unrelated to the particular distribution of data.

3843

https://cecca.github.io/attimo/VLDB-supplemental/

Figure 1: Electric Penetration Graph time series of the insect Circulifer Tenellus. The top-3 motifs are

highlighted in blue, orange, and green, together with their z-normalized Euclidean distances. This

classic example of motifs has been associated [32] with different feeding behaviors of the insect.

Table 1: Summary of notation.

𝑇 time series

𝑇𝑤 set of subsequences of 𝑇 of length𝑤

𝑇𝑤
ℎ

subsequence of 𝑇 at index ℎ

𝑚 ∈ 𝑇𝑤 ×𝑇𝑤 pair of subsequences

Hℓ2 family of LSH functions on the Euclidean space

𝐾 number of LSH concatenations

𝐿 number of LSH repetitions

𝑖 index over 𝐾 concatenations

𝑗 index over 𝐿 repetitions

ℎ𝐾,𝑗 (𝑇𝑤𝑎) hash value of length 𝐾 for 𝑇𝑤𝑎 at repetition 𝑗

ℎ⃗𝑖, 𝑗 (𝑇𝑤𝑎) prefix of length 𝑖 of ℎ𝐾,𝑗 (𝑇𝑤𝑎)
𝑝 (𝑑 (𝑚)) collision probability of pair𝑚, at distance 𝑑 (𝑚)

by concatenating the outputs of the 𝐾 individual hash functions

into a tuple of length 𝐾 . The collision probability becomes then

(𝑝 (𝑑))𝐾 . Using larger values of 𝐾 lowers the probability that dis-

similar points collide, thus reducing the number of distance compu-

tations to be performed, but also lowers the probability that similar

points collide.

Repeating the above process 𝐿 times with a new set of 𝐾 hash

functions being sampled in each repetition allows to balance the

effect of using a large value of 𝐾 . In fact, a pair of subsequences

at distance 𝑑 will collide in at least one of the 𝐿 repetitions with

probability

1 −
(︂
1 − 𝑝 (𝑑)𝐾

)︂𝐿
. (3)

3.3 A naïve application of LSH to time series

Before presenting our adaptive algorithm, we will show a straight-

forward way of applying LSH to time series data to find the top-k

motifs of length𝑤 .

First, we need to set three parameters: the quantization width 𝑟 ,

the hash length 𝐾 , and the number of repetitions 𝐿. Then, we per-

form 𝐿 iterations. In each iteration 𝑗 , we slide a window of length𝑤

over the entire time series, thus enumerating all its subsequences.

For each subsequence 𝑇𝑎 , we compute its hash value ℎ𝐾,𝑗 (𝑇𝑎) of
length 𝐾 and use it as a key in a dictionary, with the subsequence

itself being the associated value. Next, we compute the pair-wise

distances between all the subsequences that collide on the same

hash key, keeping track of the 𝑘 subsequences with smallest dis-

tance. After 𝐿 iterations, the algorithm returns the top-𝑘 motifs

found.

In the above algorithm we assume that there is a sufficient

number of collisions to find at least 𝑘 motifs avoiding non-trivial

matches. In fact, setting the three parameters changes the probabil-

ity of any pair to collide, and thus the number of pair-wise distances

that need to be computed. They also have a more fundamental

consequence on the correctness of the output. An inappropriate

parameter setting might make it too unlikely for some of the top-𝑘

pairs to collide, implying a non-negligible probability of not report-

ing the true top-𝑘 motifs. Note that under such conditions 𝑘 pairs

can still be returned. Since pairs with a larger distance than the

true top-𝑘 have a non-zero collision probability, it might happen

by chance that false positive pairs collide, while some of the true

top-𝑘 do not.

Example 3.4. Consider the algorithm above running on the time

series in Figure 1 with 𝑤 = 400 and 𝑟 = 20. The task is to find

the top-3 motifs, with the third motif being at distance 11.8. Set-

ting 𝐾 = 6 concatenations and 𝐿 = 10 repetitions leads to the

evaluation, in expectation, of approximately 880 000 distances (i.e.,

𝐿 · ∑︁𝑚∈𝑇𝑤×𝑇𝑤 𝑝 (𝑑 (𝑚)𝐾), by the linearity of expectation), with

a probability of finding the true third motif of about ≈ 0.24 (by

Eq. (3)). Increasing 𝐾 to 12 reduces the expected distance compu-

tations to only 1 900, but now the probability that the third motif

is among the top-3 pairs is only 0.007. Increasing the number of

repetitions to 𝐿 = 200 would raise this probability to 0.14, which

is still rather small. Therefore, one might set 𝐾 = 6 and 𝐿 = 200,

which makes the probability of finding the third motif ≈ 0.99, at

the expense of computing 17 million distances (about 10% of all

possible pairwise distances between subsequences).

We stress two issues about the above example. (1) We are able

to evaluate the probability of finding the correct set of top-3 motifs

only because we already know their distances (see Equation (3)).

Therefore, controlling the failure probability requires the knowl-

edge of the answer to the problem. We will address this issue with a

self-tuning algorithm in the next section. (2) Most of the distances

computed across repetitions are duplicates, since close pairs will

3844

collide in most repetitions; we will address this, along with other

efficiency issues, in Section 5.

4 ADAPTIVE ALGORITHM

In this section, we present a self-tuning algorithm, termed Attimo,

to find the top-𝑘 motifs in a time series with error probability 𝛿 (cf.

Algorithm 1). To circumvent the issues highlighted in the previous

section, we adopt an approach reminiscent of PUFFINN [5] and

LSH Forest [7]: we set maximum allowed 𝐾 and 𝐿, and then the

algorithm will automatically select appropriate values in the speci-

fied range using information about the data distribution gathered

during the execution. As for the quantization width parameter 𝑟
(Eq. (1)), the algorithm automatically derives a reasonable value in

the preprocessing phase, as we shall see.

4.1 High level structure

Let 𝛿 be a user defined failure probability. Similarly to the naïve

algorithm, we run 𝐿 repetitions with hash functions of length 𝐾 ,

while maintaining a collection of the 𝑘 pairs at smallest distance

found so far in a priority queue sorted by increasing distance (Lines

5–13). Differently from the naïve algorithm, at the end of each

repetition 𝑗 we check whether the probability of having missed a

pair at distance smaller than the 𝑘-th pair in the queue is smaller

than 𝛿 . If this is the case, the algorithm terminates and returns the

top-𝑘 pairs. If the algorithm does not terminate after 𝐿 repetitions,

the probability of collision using hashes of length 𝐾 was too small

for the dataset at hand. Therefore, we repeat the above procedure,

maintaining the top-𝑘 queue built so far and considering hashes

of length 𝐾−1. The process continues, using hash values of length

𝐾−2, 𝐾−3, . . . , until the probability of missing a pair in the true

top-𝑘 becomes smaller than 𝛿 . Eventually in the worst case, if even

with hashes of length 1 the algorithm is unable to meet the failure

probability, all pairs are considered as candidates, and therefore we

can use any all-to-all exact algorithm to find the solution. Note that

in the above procedure the hash values are computed only once for

length 𝐾 ; for the hash values of length 𝐾−1 to 1 we consider the

corresponding prefixes.

Within the allowed constraints on the parameter 𝐾 and 𝐿, our

algorithm thus selects themost selective (i.e. minimizing the number

of distance computations) configuration that meets the required

failure probability, based on the knowledge gained about the dis-

tance distribution of pairs gained in the process. Therefore, our

algorithm is self tuning.

Example 4.1. Consider again the setup of Example 3.4, this time

using 𝐿 = 9, 𝐾 = 4, and failure probability 𝛿 = 0.1. Figure 2

depicts the arrangement of 8 subsequences and three repetitions.

The algorithm starts by considering hash values of length 4. In the

first repetition there is only one collision between a and b. Hence,
the queue of top-𝑘 candidates becomes TOP = ⟨(a, b)⟩. In the

second repetition, again only a and b collide. In the third iteration

there is no collision, and lets assume that there are no new collisions

in the remaining six repetitions.

Since TOP contains only one motif, the algorithm starts again

from the first repetition, but now considering only the hash prefixes

of length 3. In the first repetition, we see two new collisions, yielding

TOP = ⟨(a, b), (c, d), (g, f)⟩, in increasing order of distance.

Algorithm 1: Attimo

Input: Time series𝑇 , window length 𝑤, number of motifs 𝑘 ,

failure probability 𝛿 , maximum number of repetitions 𝐿,

maximum hash length 𝐾 .

Output: The top-𝑘 motifs, with probability 1 − 𝛿
// Initialization and index construction

1 Estimate the parameter 𝑟

2 for 𝑗 ← 1, . . . , 𝐿 do

3 for𝑇𝑎 ∈ 𝑇𝑤 do

4 Precompute ℎ𝐾,𝑗 (𝑇𝑎)

// Iterate over prefixes until top-𝑘 pairs are found

with failure probability < 𝛿

5 TOP← empty priority queue

6 for 𝑖 ← 𝐾,𝐾 − 1, . . . , 1 do

7 for 𝑗 ← 1, . . . , 𝐿 do

8 foreach (𝑇𝑎,𝑇𝑏) ∈ 𝑇𝑤 × 𝑇𝑤 : ℎ⃗𝑖,𝑗 (𝑇𝑎) = ℎ⃗𝑖,𝑗 (𝑇𝑏) do
9 TOP.insert ((𝑇𝑎,𝑇𝑏))

10 if |TOP | > 𝑘 then

11 TOP.pop()

12 if |TOP | = 𝑘 ∧ Stop (TOP.max(), 𝑖, 𝑗) then
13 return TOP

14 return true top-𝑘 by checking all pairs

15 Function Stop(d, i, j) is
16 if 𝑖 = 𝐾 then return

(︁
1 − 𝑝 (𝑑)𝐾

)︁ 𝑗 ≤ 𝛿
17 else return

(︁
1 − 𝑝 (𝑑)𝑖

)︁ 𝑗 · (︁1 − 𝑝 (𝑑)𝑖+1)︁𝐿− 𝑗 ≤ 𝛿

The queue now contains 𝑘 = 3 items. The distance between g and f
is ≈ 29.1. As we will argue in Lemma 4.3, the probability of having

missed a pair at a smaller distance at this point of the execution

is ≈ 0.93 > 𝛿 . Therefore, the algorithm continues with the second

repetition. A new collision between f and e is found, which are

going to replace (g, f) in the queue, since they are at distance

≈ 11.8.

The queue now contains the true top-3 motifs, but the algorithm

has no way of knowing it. The probability of not having found a

pair at distance ≤ 11.8 yet in the second repetition, for prefixes of

length 3, is in fact ≈ 0.35. Hence, the algorithm repeats the above

process, with the queue remaining unchanged, since it contains

the top-𝑘 motifs already. When the 4-th repetition using hashes

of length 2 is performed, the failure probability is ≈ 0.08 < 𝛿 , and

thus the algorithm stops.

Observe in the above example that some pairs, such as (a, b),
collide in almost all repetitions for all prefix lengths, by virtue of

their small distance. Computing the distance between such subse-

quences is wasted work, and we will discuss in Section 5 how to

avoid such duplicate computations.

4.2 Details of the algorithm

Setting the quantization width (Line 1). Recall that the quanti-
zation width 𝑟 (see Eq. (1)) is the parameter of hash functions that

controls how the projection of subsequences on the real line is

3845

Repetition 1 Repetition 2 Repetition 3

Figure 2: Three LSH repetitions with 𝐾 = 4 for eight subsequences of the time series of Figure 1, including the top-3 motifs.

discretized into hash values. While the precise setting of this pa-

rameter does not affect the correctness of the algorithm, it may

help with improving the performance. Specifically, the lower the

value, the smaller the collision probability. Therefore, it plays a

role similar to 𝐾 . For a fixed 𝐾 , a value too small will result in no

collisions for long prefix lengths, thus wasting some of the hash

computations. Conversely, a value too large will result in too many

collisions already in the first iteration of the algorithm, when the

full hashes are considered.

To set a reasonable value of 𝑟 that strikes a good tradeoff between

the two aforementioned extreme scenarios, we adopt the following

simple heuristic. We set 𝑟 = 1 in Eq.(1) and perform a single LSH

repetition with hash values of length 𝐾 . If there are no collisions,

then we double 𝑟 and repeat the process until we find at least one

collision. We then use the resulting value of 𝑟 in the rest of the

algorithm.

Index data structure (Line 2). For each repetitions 𝑗 ≤ 𝐿, each
subsequence 𝑇𝑎 will be associated to the corresponding hash value

ℎ𝐾,𝑗 (𝑇𝑎). Later, the algorithm will need to access all the subse-

quences colliding on prefixes of these hash values. To efficiently

support this access pattern, a possibility is to store all the hash

values of a single repetition in a trie of height 𝐾 , where the leaves

contain the starting indices of subsequences with a given LSH hash

value. However, one of the disadvantages of tries is that, being

pointer-based data structures, they are not cache-efficient. There-

fore, instead of building explicitly tries, we store the hash values

in flat arrays, one per repetition, which are then sorted lexico-

graphically. Given this ordering, for a given prefix length 𝑖 , all the

subsequences sharing the same prefix will be adjacent to one an-

other. Therefore, the enumeration of colliding pairs at line 8 in

Algorithm 1 can be implemented by considering slices of the array

of hashes where all elements have the same prefix.

Example 4.2. In Figure 2 (left) hashes are sorted lexicographically
from top to bottom. At prefix length 2, the slices of the array of

hashes containing colliding pairs are [𝑎, 𝑏], [𝑓 , 𝑔, 𝑒], [ℎ], [𝑐, 𝑑], from
top to bottom.

Candidates data structure (Line 5). The data structure that stores
the candidate motif pairs needs to support three operations: re-

turning the maximum distance (TOP.max()), removing the pair

at the maximum distance (TOP.pop()), and inserting a new pair

(TOP.insert()). All of these operations are handled by standard

priority queues, but in our setting we have the additional complica-

tion of trivial matches, which need to be ignored.

A simple implementation of this data structure to hold candi-

date pairs, supporting linear-time insertions and ignoring trivial

matches is as follows. We maintain an array TOP of size 𝑘 +1, where

all entries are initially undefined. Retrieving the 𝑘-th element is

a simple array lookup, and removing the last element is simply

setting to undefined the last element which was not undefined.

To insert a pair𝑚, we first scan the array TOP until the position 𝑖
such that 𝑑 (TOP[i]) < 𝑑 (𝑚) ≤ 𝑑 (TOP[i+1]). If during this scan

we encounter a pair overlapping with 𝑚, then 𝑚 is not inserted.

Otherwise, we insert𝑚 at 𝑖 , and remove from the rest of the array

(i.e. from 𝑖 + 1 onwards) any pair overlapping with𝑚. An insertion

might make the TOP queue grow too large: if this is the case, we

remove the 𝑘 + 1 element, which might be the one we just inserted.

Observation 2. Algorithm 1 is data adaptive because its performance

is determined by how pairwise distances are distributed. In fact,

the number of iterations carried out by the algorithm depends

on the collision probability of the top-𝑘 motif pairs, which is a

function of their distance. Furthermore, if many subsequence pairs

are at a distance similar to the top-𝑘 motifs, the algorithm will have

to compute many distances to distinguish the true top-𝑘 motifs.

Conversely, it will complete swiftly on an easier time series where

the top motifs are markedly different from the other pairs.

As we shall see in Section 6, this intuition is formalized by the

inclusion of the data-dependent collision probabilities in the ex-

pressions of the complexity.

4.3 Correctness of the algorithm

The lemma below states the failure probability of pairs in Algo-

rithm 1, which will then be used as a stopping condition in the

algorithm itself.

Lemma 4.3. In the above construction, the probability of a pair at
distance 𝑑 not colliding in any of the repetitions considered so far, at
prefix length 𝑖 and repetition 𝑗 , is⎧⎪⎪⎪⎨⎪⎪⎪⎩

(︂
1 − 𝑝 (𝑑)𝑖

)︂ 𝑗
·
(︂
1 − 𝑝 (𝑑)𝑖+1

)︂𝐿− 𝑗
if 𝑖 < 𝐾(︂

1 − 𝑝 (𝑑)𝐾
)︂ 𝑗

otherwise

Proof. In general, for a hash of length 𝑖 , the probability of a

pair at distance 𝑑 to collide is 𝑝 (𝑑)𝑖 . Therefore, the probability

3846

of never colliding over 𝑗 independent repetitions is
(︁
1 − 𝑝 (𝑑)𝑖

)︁ 𝑗
.

The statement follows directly for the case 𝑖 = 𝐾 , in any of the 𝑗

repetitions. For the case 𝑖 < 𝐾 , consider that we have performed 𝑗

repetitions with hashes of length 𝑖 , but also 𝐿 − 𝑗 repetitions with
hashes of length 𝑖 + 1. The statement follows by multiplying the

probabilities of never colliding in 𝑗 repetitions with hashes of length

𝑖 and never colliding in 𝐿 − 𝑗 repetitions with hashes of length 𝑖 + 1,

which are independent. □

We now prove two lemmas corresponding to two different ways

of employing our algorithm. In Lemma 4.4 we allow each returned

motif to fail independently of the others. In this setting, the expected

fraction of successful motifs corresponds to the expected recall

of the algorithm. In Lemma 4.5, we set the algorithm so that all
returned motifs are correct, an event that happens with a controlled

probability.

Lemma 4.4. Algorithm 1 finds the true top-𝑘 motifs, each with
probability at least 1 − 𝛿 .

Proof. If the algorithm reaches line 14, then it returns all true

motifs with probability 1, since all the pairs of subsequences will

be evaluated.

Consider now the case that the stopping condition is met at

iteration 𝑖′ and 𝑗 ′ of the two nested loops, and let𝑚1, . . . ,𝑚𝑘 be

the motifs returned by the algorithm, sorted by increasing distance.

By the monotonicity of the collision probabilities, we have that the

failure probability of 𝑚ℎ for ℎ ∈ [1, 𝑘] is upper bounded by the

failure probability of𝑚𝑘 . Such probability is given by Lemma 4.3,

and the stopping condition ensures that it is ≤ 𝛿 . This holds for all
returned pairs independently, and the statement follows. □

Given that each motif fails independently with probability 1 − 𝛿 ,
we have that the expected fraction of failing motifs is 1−𝛿 . In other

words, Attimo has an expected recall of 1 − 𝛿 .

Lemma 4.5. When invoked with failure probability 𝛿 ′ = 𝛿/𝑘 ,
Algorithm 1 finds all true top-𝑘 motifs with probability at least 1 − 𝛿 .

Proof. By Lemma 4.4 we have that each pair fails independently

with probability ≤ 𝛿 ′ = 𝛿/𝑘 . The statement follows by applying a

union bound on the 𝑘 pairs being returned. □

5 OPTIMIZATIONS

In this section, we describe several optimizations that we incorpo-

rate into Algorithm 1 in order to reduce the running time, mainly

by addressing the two most expensive operations of the algorithm:

computing hash functions and distances between subsequences.

5.1 Speeding up LSH function evaluations

Evaluating LSH functions can be a costly operation, typically requir-

ing time at least proportional to the size of the representation of the

items at hand. In particular, for time series subsequences with the

(z-normalized) Euclidean distance, evaluating the LSH functions

described in Section 3.2 requires time linear in the subsequence

length 𝑤 , leading to an overall computation time of 𝑂 (𝑤𝐾𝐿) to
build the LSH index. Clearly this is undesirable, since it can hamper

the extraction of long motifs.

[-1, 3] [0, 2] [1, 1]

[1, 4] [1, -1, 4, 3] [1, 0, 4, 2] [1, 1, 4, 1]
[-2, 0] [-2, -1, 0, 3] [-2, 0, 0, 2] [-2, 1, 0, 1]
[0, 1] [0, -1, 1, 3] [0, 0, 1, 2] [0, 1, 1, 1]

Figure 3: Application of tensoring to build, for 𝐿 = 9 rep-

etitions, hash values of length 𝐾 = 4 out of 𝐾
√
𝐿 = 12 hash

values.

To address this problem we combine two techniques. First, we

reduce the number of hash functions to be evaluated using a tech-

nique known as tensoring [16]. Then, we decouple the complexity

of hash function evaluations from the length of the subsequences

by leveraging the fact that subsequences overlap.

5.1.1 Tensoring. We use a variant of the tensoring technique intro-

duced in [16], which allows to reduce the number of hash function

evaluations from 𝐾 · 𝐿 to 𝐾 ·
√
𝐿. This technique is also used in

PUFFINN [5]: we provide a different statement of the failure prob-

ability. Furthermore, in our instantiation we extend it to support

detection of redundant collisions, as we will see later on.

For simplicity of exposition, assume that 𝐾 is even and that 𝐿

is a perfect square. Consider a LSH familyH , and letHℓ andH𝑟
be two collections of

√
𝐿 hash functions, each sampled fromH𝐾/2

.

We define the collection

ℎ𝐾,𝑗 = (ℎ 𝐾
2
,ℓ
, ℎ 𝐾

2
,𝑟
) ∈ Hℓ ×H𝑟 where

{︄
ℓ = 𝑗 ÷

√
𝐿

𝑟 = 𝑗 mod

√
𝐿

(4)

for 1 ≤ 𝑗 ≤ 𝐿. For a subsequence𝑇𝑎 , the hash value ℎ𝐾,𝑗 is obtained

by interleaving values from ℎ 𝐾
2
,ℓ
(𝑇𝑎) and ℎ 𝐾

2
,𝑟
(𝑇𝑎). Therefore we

have 𝐿 repetitions of hash functions of length 𝐾 using only 𝐾 ·
√
𝐿

hash function evaluations.

Example 5.1. Figure 3 illustrates the tensoring technique for com-

puting the hash values of subsequence a (other subsequences are
associated with similar tables) in our running example in Figure 2.

For instance, the first row in the tensor data structure computes

the hash values for subsequence a reported in Figure 2.

For 𝐿 = 9 and 𝐾 = 4 we can build all the required hash values

using just 12 hash function evaluations instead of 36. Long hash

values are built by interleaving shorter ones, using all possible

combinations.

In a typical configuration used in our experimental evaluation

with𝐾 = 32 and 𝐿 = 200, we perform 453 hash function evaluations

per subsequence instead of 6 400, i.e. only ≈ 7%.

Employing this tensoring technique changes the failure prob-

ability of our algorithm. Intuitively, since we no longer have in-

dependence between repetitions, a failure in one of the tensored

repetitions has a broader impact, since it will make

√
𝐿 repetitions

fail (i.e. a full column or row in Figure 3). As a consequence, the num-

ber of iterations required to meet the stopping condition increases.

The following lemma upper bounds the failure probability, and

replaces the expression of the stopping condition in Algorithm 1.

For space reasons, we defer the proof to the full version of the paper,

hinting here at the high level idea.

3847

Lemma 5.2. With the tensoring approach, the probability that a
pair at distance 𝑑 has not collided in any of the repetitions considered
so far, at prefix length 𝑖 and repetition 𝑗 , is upper bounded by

𝐹𝑐 (𝑖, 𝑗) · 𝐹𝑝 (𝑖, 𝑗)

where

𝐹𝑐 (𝑖, 𝑗) = 1 − 𝑆𝑝
(︃⌊︃
𝑖

2

⌋︃
, 𝑗 ÷
√
𝐿

)︃
· 𝑆𝑝

(︃⌈︃
𝑖

2

⌉︃
, 𝑗 mod

√
𝐿

)︃
𝐹𝑝 (𝑖, 𝑗) = 1 − 𝑆𝑝

(︃⌊︃
𝑖 + 1

2

⌋︃
,
√
𝐿 − 𝑗 ÷

√
𝐿

)︃
· 𝑆𝑝

(︃⌈︃
𝑖 + 1

2

⌉︃
,
√
𝐿 − 𝑗 mod

√
𝐿

)︃
𝑆𝑝 (𝑖′, 𝑗 ′) = 1 −

(︂
1 − 𝑝 (𝑑)𝑖′

)︂ 𝑗 ′
.

Proof. Recall that with tensoring we have two collectionsHℓ
andH𝑟 of

√
𝐿 hash functions each. We deem with left and right the

repetitions fromHℓ , andH𝑟 , respectively. Similarly to Lemma 4.3,

the probability of failing at repetition 𝑗 ∈ [1, 𝐿] and prefix length

𝑖 is the probability of failing both in all the repetitions up to 𝑗 at

prefix length 𝑖 and all the repetitions from 𝑗 to 𝐿 at prefix length

𝑖 + 1. Using tensoring we no longer have independence between all

repetitions. Therefore, we will focus on two subsets of independent

repetitions: the ones given by the interleaving of the hash values

from the first 𝑗 ÷
√
𝐿 repetitions on the left (i.e. using hash functions

fromHℓ) and 𝑗 mod

√
𝐿 on the right (hash functions fromH𝑟), and

the ones given by hash values built from the last

√
𝐿 − 𝑗 mod

√
𝐿

repetitions on the left and the

√
𝐿 − 𝑗 mod

√
𝐿 on the right.

With 𝑆𝑝 (𝑖′, 𝑗 ′) we denote the probability of having at least one

collision 𝑗 ′ independent repetitions with hashes of length 𝑖′. In the

lemma statement, 𝐹𝑐 denotes the probability of failing in the first

set of repetitions, at the current prefix length, whereas 𝐹𝑝 is the

probability of failing at the previous prefix length (i.e. 𝑖 + 1). These

two failure events are independent, since the corresponding hash

values are obtained from disjoint subsets of repetitions in the left

and right sets of tensored repetitions. Therefore, the probability

of their intersection is the product of their probabilities, and the

statement follows. □

5.1.2 Leveraging subsequences structure. One of the main differ-

ences with general metric spaces is that consecutive subsequences

from the same time series overlap with each other. Observe that

evaluating a hash function as defined in Equation (1) involves a

dot product between a subsequence and a random vector 𝑣 . If we

were to consider each subsequence of length 𝑤 in isolation, this

operation alone would have an overall complexity of Θ(𝑤 · |𝑇𝑤 |),
where |𝑇𝑤 | is the number of subsequences. By using the Cyclic

Convolution Theorem, instead, we can compute the dot product of 𝑣

with all subsequences in𝑇𝑤 in time𝑂 (𝑛 log𝑛). The idea, which has

also been successfully leveraged for distance computations (see [34]

and subsequent works), is to compute the Fourier Transform of the

input time series 𝑇 and of the reversed vector 𝑣 , padded with zeros

so to have the same length as 𝑇 . Then, the inverse Discrete Fourier

Transform of the element-wise product of the two transformed

vectors holds in position 𝑖 the dot product 𝑣 ·𝑇𝑤
𝑖
. Hence, for a LSH

function defined by the vector 𝑎, the random offset 𝑏, and the width

parameter 𝑟 , we can compute all hash values in one go as follows:

𝑧 = 𝐷𝐹𝑇 −1

𝑛

(︁
𝐷𝐹𝑇𝑛 (𝑇) ⊙ 𝐷𝐹𝑇𝑛 ((𝑎𝑤 , 𝑎𝑤−1, . . . , 𝑎1) |0𝑛−𝑤)

)︁
(5)

𝑖 = 3 𝑖 = 2

Figure 4: Ranges being used to detect collisions within repe-

tition 0 of Figure 2.

ℎ(𝑇𝑤𝑖) =
⌊︃
𝑧𝑖 + 𝑏
𝑟

⌋︃
(6)

where ⊙ is the element-wise product, 𝑧 is the sliding dot prod-

uct, 𝑛 = |𝑇 |, 𝐷𝐹𝑇𝑛 is the Discrete Fourier Transform of a vector

of length 𝑛, and |0𝑛−𝑤 denotes padding a vector with 𝑛 − 𝑤 ze-

ros. Equation (5) takes time 𝑂 (𝑛 log𝑛) (for the 𝐷𝐹𝑇 computation),

whereas Equation (6) is a constant time operation for each 𝑖 , and

thus takes time 𝑂 (𝑛) overall.

5.2 Reducing the number of distance

computations

The fundamental property of LSH that close subsequences collide

with high probability implies that we can expect to have a lot

of duplicate collisions across repetitions. Furthermore, since we

consider variable length prefixes, pairs colliding on longer prefixes

will obviously collide on shorter prefixes in the same repetition.

Both these facts lead to a lot of potential wasted work, where we

compute the distance of the same pair several times.

A very simple solution to this issue is to maintain a flag for each

pair, to be set when a distance is first computed. The quadratic

space requirement makes this approach not applicable.

5.2.1 Duplicate collisions within the same repetition. To detect du-

plicates within the same repetition and across prefix lengths (i.e. to

prevent pairs colliding on long prefixes to be considered again when

evaluating shorter prefixes) we leverage the fact that we maintain

the hash values for one repetition in a lexicographically sorted

array. For repetition 𝑗 and for every subsequence 𝑇𝑎 we maintain

a pair of indices tracking the range of the array of hash values

with which 𝑇𝑎 has collided for longer prefixes. When evaluating

the collisions for𝑇𝑎 at prefix length 𝑖 < 𝐾 , the subsequences falling

within said range are ignored altogether. When the prefix length is

decreased to 𝑖 − 1, the pair of indices for 𝑇𝑎 is updated to the range

that contained 𝑇𝑎 at 𝑖 .

Example 5.3. In Figure 2, consider the subsequences f and g in
the first repetition. Once the algorithm reaches prefix length 𝑖 = 3,

the pair of indices is set to [2, 3], as shown in Figure 4, left. In the

next iteration with prefix length 𝑖 = 2, the subsequences f and g
will not be compared again, and they will only be compared with

subsequences outside the range [2, 3], i.e., only with subsequence e.
The pair of indices for the subsequences f, g, and e is then updated

to [2, 4], as shown in Figure 4, right. As a consequence, for 𝑖 = 1

these three subsequences will will only be compared to a and b.

3848

5.2.2 Duplicate collisions across repetitions. To detect duplicate

collisions across repetitions, we will exploit the tensoring data

structure that we are already using to speed up LSH function eval-

uations, similarly to [4]. Tensoring allows to compactly store in-

formation about all hash values (and their prefixes) associated to

a subsequence in all repetitions. The following lemma, which we

adapt from [4] ensures that we can use this information to check

for duplicates using only 𝑂

(︂
|𝑇𝑤 |𝐾

√
𝐿

)︂
space overall, instead of

quadratic.

Lemma 5.4. Let 𝑇𝑤𝑝 and 𝑇𝑤𝑞 be two subsequences colliding at repe-

titions 𝑗 on prefixes of length 𝑖 . Then, we can decide in time𝑂
(︂
𝐾
√
𝐿

)︂
if there exist a repetition 𝑗 ′ < 𝑗 where they collided as well, using

space 𝑂
(︂
|𝑇𝑤 | 𝐾

√
𝐿

)︂
overall.

Proof. For each subsequence we are storing 𝐾
√
𝐿 hash values,

and thus the space requirement follows. Let 𝑗 ∈ [0, 𝐿) be a repetition
in which the subsequences𝑇𝑤𝑝 and𝑇𝑤𝑞 collide on the prefix of length

𝑖 . Let ℓ = 𝑗 ÷
√
𝐿 and 𝑟 = 𝑗 mod

√
𝐿, and consider the definition of

tensored LSH function of Equation (4). If there exist values 0 ≤ ℓ′ <
ℓ and 0 ≤ 𝑟 ′ < 𝑟 such that 𝑇𝑤𝑝 and 𝑇𝑤𝑞 collide under (ℎ𝑖,ℓ ′ , ℎ𝑖,𝑟 ′), or
it exists 0 ≤ 𝑏′ < 𝑏 such that 𝑇𝑤𝑝 and 𝑇𝑤𝑞 collide under (ℎ𝑖,ℓ , ℎ𝑖,𝑟 ′),
then the collision at the 𝑗-th repetition is a duplicate. Since we are

storing the hash values associated to each subsequence and since

ℓ, 𝑟 <
√
𝐿, evaluating the above conditions requires time 𝑂 (𝐾/2)

for each hash value, yielding an overall time of 𝑂

(︂
𝐾
√
𝐿

)︂
. □

6 COMPLEXITY

For clarity of exposition, we study the different contributions to the

running time of Algorithm 1 separately. In particular, we consider

the time to build the index, the number of candidate pairs that are

evaluated for removing duplicates, and the number of distances

that are computed after duplicates are removed.

Theorem 6.1. The index construction at line 4 of Algorithm 1

takes time 𝑂
(︂
𝐾 ·
√
𝐿 · 𝑛 log𝑛

)︂
.

Proof. For each subsequence we need to compute 𝐾
√
𝐿 hash

values, thanks to tensoring. For a fixed hash function out of the

𝐾
√
𝐿, we can compute all the dot products in𝑂 (𝑛 log𝑛) time, using

the cyclical convolution theorem. The theorem follows. □

Theorem 6.2. Let 𝑚𝑘 be the top-𝑘 motif, and let 𝑖′ ≤ 𝐾 and
𝑗 ′ ≤ 𝐿, respectively, be the first prefix length and repetition such that
the stopping condition is met. Algorithm 1 considers

𝑗 ′
∑︂

𝑚∈𝑇𝑤×𝑇𝑤
𝑝 (𝑑 (𝑚))𝑖

′
+ (𝐿 − 𝑗 ′)

∑︂
𝑚∈𝑇𝑤×𝑇𝑤

𝑝 (𝑑 (𝑚))𝑖
′+1

candidate pairs, in expectation.

Proof. Recall that for any of the 𝐿 repetitions, the expected

number of collisions at prefix length 𝑖 is
∑︁
(𝑥,𝑦) ∈𝑇𝑤×𝑇𝑤 𝑝 (𝑑 (𝑚𝑘))𝑖 .

Furthermore, for any given repetition a pair colliding at prefix

length 𝑖 will not be considered again at any prefix length < 𝑖 .

Therefore, the collisions of all prefixes ≥ 𝑖 can be accounted for

once at prefix length 𝑖 . Now, partition the repetitions in two groups:

the first 𝑗 ′ repetitions are evaluated until prefixes of length 𝑖′ to

confirm the top-𝑘 motif; the last 𝐿 − 𝑗 ′ repetitions consider prefixes
of 𝑖′ + 1. The theorem follows by the linearity of expectation over

the expected number of collisions in these two groups. □

Theorem 6.3. With the optimizations presented in Section 5, Al-
gorithm 1 evaluates(︃

|𝑇𝑤 |
2

)︃
−

∑︂
𝑚∈𝑇𝑤×𝑇𝑤

(︂
1 − 𝑝 (𝑑 (𝑚))𝑖

′)︂ 𝑗 ′
distances in expectation, where 𝑖′ and 𝑗 ′ are the first prefix length and
number of repetitions meeting the stopping condition, respectively.

Proof. Since we detect duplicate collisions both across repeti-

tions and prefix lengths, each pair’s distance is computed at most

once. Therefore, at prefix length 𝑖′ we compute (once) the distances

of all the pairs colliding in at least one repetition. Given that the

probability of a pair at distance 𝑑 to collide in at least one out of

𝑗 ′ repetitions at prefix length 𝑖′ is 1 − (1 − 𝑝 (𝑑)𝑖′) 𝑗 ′ , the theorem
follows by the linearity of expectation. □

Observe that in the above statement the number of distance

computations is upper bounded by the total number of pairs in the

set of subsequences. The second term accounts for the pairs that do
not collide in any repetition: the larger the value of 𝑗 ′, the smaller

this number, simply because with more repetitions there are more

chances of collision; the larger the value of 𝑖′, the larger the number

of non-colliding pairs, since for longer prefixes collisions are less

likely.

Example 6.4. To make the above two theorems more concrete,

consider again our running example time series, and suppose that

the algorithm stops at prefix length 𝑖′ = 6 at repetition 𝑗 ′ = 165.

The number of pairs that are considered, including duplicates is

≈ 16 million (Theorem 6.2), the number of distance computations

actually carried out is ≈ 13 million, in expectation (Theorem 6.3).

The total number of pairs of subsequences is in the order of 167

millions, therefore we are computing only about 7% of the possible

distances. As we shall see in the experimental section, on larger

time series the computational savings are even more substantial.

7 EXPERIMENTS

This experimental evaluation aims at answering the following ques-

tions:

• How does our proposed approach compare with the state

of the art in terms of running time?

• How does the number of repetitions influence the perfor-

mance of our algorithm?

• What is the influence of the number of returned motifs on

the running time?

• How do the algorithms scale with respect to the input size?

• What is the actual recall of the algorithm?

Baselines. We compare our solution to Scamp [48], which is

the state of the art implementation of the matrix profile approach.

Scamp has been independently [47, 48] found to be faster than previ-

ous algorithms for motif discovery, including [15, 26, 31, 32]. Along

with it we consider PreSCRIMP [46], which provides an empirically

good approximation to the matrix profile and hence, the motifs,

albeit with no theoretical guarantees. Furthermore, we consider as

3849

Table 2: Information about the benchmark datasets.

dataset n window 𝑅𝐶1 𝑅𝐶10

freezer 7 430 755 5 000 23.79 7.95

ASTRO 1 151 349 100 11.04 8.63

GAP 2 049 279 600 11.08 9.17

Whales 308 941 605 140 33.69 21.66

ECG 7 871 870 1 000 146.31 109.06

Seismic 1 000 000 000 100 2 658 166.60 274.44

HumanY 26 415 045 18 000 1 574.28 581.03

a baseline for the top-1 case the LL algorithm recently introduced

in [25]. Finally, we include the random projection algorithm RProj
3

of [15] based on [11].

Experimental setup. We run our experiments on two machines.

The first machine is equipped with a Intel(R) Xeon(R) CPU E5-2667

v3 clocked at 3.20GHz, with 94GB of RAM. To run the Scamp GPU-

based implementation in a favorable setup, we also use a Nvidia

Tesla V100 PCIe with 32GB of memory.

Software implementation. Our implementation of the algorithm

is freely available at https://github.com/Cecca/attimo, and features

all the optimizations described above. Furthermore, in our imple-

mentation we report each motif as soon as it meets the stopping

condition, rather than waiting for the 𝑘-th pair to report the en-

tire solution. In the following, we refer to our implementation as

Attimo, which stands for Adaptive Timeseries Motifs.

Datasets. We consider the following datasets in our experimental

evaluation. ECG is an electrocardiogram from a stress recognition

study in automobile drivers [21]. ASTRO is a dataset of celestial

objects [42]. GAP is a time series of the global active electric power

in a household in France over a period of 47 months, sampled every

minute [22]. HumanY is the human Y chromosome transformed

into a time series using the approach of [40] and made available

by [19]. Similarity between subsequences of this time series suggest

similarity in the original DNA subsequences Freezer records the
power usage of a freezer home appliance over the course of two

years [35]. Whales is derived from the signal of an underwater

microphone [37] by considering the energy in the frequency band

between 360 and 370 Hz. Motifs in this dataset correspond to whales

vocalizations. We provide the preprocessing scripts in our code

repository. Seismic is the largest dataset in our study, comprising

1 billion measurements at 20Hz of a seismometer at VCAB station

of the Parkfield High Resolution Seismic Network [6, 43]. To the

best of our knowledge, this is the largest dataset used to date for

the motif discovery problem [48].

Table 2 reports statistics about the datasets, including the motif

length we considered. To measure the difficulty of a dataset for

LSH to solve, we adapt the definition of relative contrast [20] to our
setting: for a given pair of subsequences at distance 𝑑 , the relative

contrast of the pair is 𝑑¯/𝑑 , where 𝑑¯ is the average pairwise distance

3
For this algorithm, we test all combinations of the following parameters: size of the

SAX alphabet ∈ [3, 6], number of characters for the projections ∈ [3, 6]; the PAA
window length is fixed to 1/10 of the motif length, and the number of repetitions to 10.

between any two non-overlapping subsequences in the time series.

In the context of𝑘-nearest neighbor queries, thismeasurewas found

to be a good predictor of the difficulty of answering a query [2, 3].

Intuitively, it shows how much the distance between the motif

subsequences differs from the other distances in the dataset. Smaller

values correspond to a smaller difference: in such cases the LSH

approach will have a harder time identifying the motif pair. In

Table 2 the columns 𝑅𝐶1 and 𝑅𝐶10 report the relative contrast of

the first and 10-th motif pairs, respectively. Given this measure, we

can expect that finding the 10-th top motif in freezerwill be much

harder than in HumanY, and that finding the top motif in freezer
will be comparatively easier than finding the 10-th. Furthermore,

Seismic features a top motif that truly stands out, given its very

high relative contrast.

Default parameter values. Unless otherwise stated, we set the
failure probability parameter 𝛿 = 0.01 under the stricter stopping

condition of Lemma 4.5. The maximum hash length is 𝐾 = 32 in

all experiments, and the default number of repetitions is 𝐿 = 200,

except for Whales and Seismic for which we set 𝐿 = 100 and

𝐿 = 16, due to their size. The parameter 𝑟 , instead, is automatically

estimated by the software.

7.1 Finding the top motif

In the first set of experiments, we report on the time to return the

top-1 motif, as shown in Table 3. Numbers in parentheses report

estimated performance metrics for algorithms that scale predictably

with the input size.

We note that, on all datasets, Attimo is consistently faster than

Scamp on the CPU (up to two orders of magnitude). When run on

the GPU, Scamp sees improved running times, beating Attimo on

the smaller datasets. In particular, on the billion-scale Seismic
dataset Attimo finds the top motif in around 12 minutes, compared

to one month (estimated) to compute the full matrix profile using

Scamp. On this same dataset, the original Scamp paper [48] reports

a running time of one day using a cluster of 5 GPUs, making our al-

gorithm very competitive even in a scenario where it uses much less

resources. The better performance of Attimo on large datasets is

mainly due to the reduced number of distance computations it per-

forms: it is just a very small fraction of the total number of distances

between subsequences. For instance, on Whales Attimo computes

around 746 thousands distances, compared to 4.77 · 10
16

computed

by Scamp, on Seismic just 26 thousands instead of 5.02 · 10
17
. This

also highlights the data adaptive nature of Attimo discussed in

Observation 2: Attimo runs faster on Seismic than on Whales,
despite the former being three times larger. The reason is that

Seismic is comparatively easier, since it has a higher relative con-

trast. Thus, Attimo is able to exploit this feature of the data to

compute fewer distances. The speedup of Attimo compared to

Scamp is not directly proportional to the reduction in the number

of distances computed because Scamp is very efficient at computing

distances using the GPU, and Attimo requires to build the LSH

index, so it performs more work than just computing distances.

Still, filtering out unneeded computations by means of LSH proves

beneficial, and these results suggest that, if one is interested only in

the top motif(s), then our approach provides an efficient solution.

3850

https://github.com/Cecca/attimo

Table 3: Time and memory to find the top motif. Numbers in parentheses are estimates.

Time (s) Memory (Gb)

dataset Attimo Scamp-gpu Scamp PreSCRIMP LL RProj Attimo Scamp-gpu Scamp PreSCRIMP LL RProj

ASTRO 19.1 9.4 87.1 88.6 6.2 650.9 0.7 5.8 3.3 3.0 0.4 69.1

GAP 50.3 20.4 264.4 47.6 85.8 649.4 1.1 5.9 3.8 3.7 0.7 89.7

freezer 57.9 180.9 3 444.1 87.6 1 313.9 2 430.8 4.0 6.4 6.8 7.8 2.8 157.4

ECG 64.3 196.6 3 733.0 411.1 2 124.6 - 3.9 6.5 7.0 8.1 23.0 -

HumanY 131.4 2 201.6 (11.6 h) 483.2 - - 14.4 8.5 (17.6) 22.9 - -

Whales 1 424.5 (2.9 days) (70.4 days) (51.4 days) - - 103.7 (38.1) (177.7) (237.1) - -

Seismic 729.5 (32.1 days) (2.1 years) (2.1 years) - - 129.1 (110.6) (569.5) (762.7) - -

PreSCRIMP is slower than Attimo in all cases. We remark that

its running time depends on the window size, which explains why

it has very different running times on datasets of comparable size,

like freezer and ECG.
As for LL, we note that the running times vary a lot in comparison

with both Attimo and Scamp: in some cases LL is comparable with

Attimo, in some others it is slower than Scamp despite providing

less information. For datasets larger than 8 million points, LL times

out after two hours. We are unable to provide runtime estimates,

since the implementation does not seem to scale regularly with the

input size.

RProj is also unable to scale to larger time series, mainly due to

the cost of storing the large sparse collision matrix. Table 3 reports

the result for the configuration of RProj finding the best motif.

Considering the quality of the returned solutions, we have that

Scamp is an exact algorithm for the top-1 motif, and PreSCRIMP

is an approximate algorithm with no theoretical approximation

guarantee. In practice in this set of experiments it always found the

correct top motif. The random projection algorithm RProj, in the

best configuration for each dataset could not find the correct motif,

returning pairs of points with a distance between 2 and 9 times

larger the one of the true top motif. This can be improved by in-

creasing the number of repetitions at the expense of proportionally

larger running times and increased memory usage.

Recall that we set Attimo with a failure probability of 𝛿 = 0.01,

implying that with probability 0.99 the returned pair is correct. In

practice our algorithm always returned the exact top motif.

7.2 Finding more than one motif

Finding the top motif might provide too little information to the

data analyst, and the 𝑅𝐶10 values reported in Table 2 suggest that

in some cases finding the top 10 motifs can be considerably harder.

Figure 5 reports the time required by Attimo to report the top

10 motifs using 400 repetitions (100 repetitions for Whales and 16

for Seismic). The datasets are arranged, from top to bottom, by

increasing size. The orange bar marks the index construction time

and the black bar the time to find the motifs for Attimo. Each

tick on the black bar marks the time when one or more motifs are

found; if less than 10 ticks are visible it means that multiple motifs

are discovered at the same time. The thin gray line reports the

runtime for Scamp running on the GPU. For some datasets such

line is omitted for reasons of scale, and we only report the time.

First, note that motifs are not discovered at regular intervals.

Rather, motifs at larger distances might require considering shorter

Figure 5: Time that Attimo employs to find the top-10motifs

in each time series.

hash prefixes to be confirmed, hence they require more time to

be reported since more distance computations are needed. This is

explained by the fact that lower rank motifs are much closer to

the bulk of the distribution of distances of subsequences pairs, and

therefore are more difficult for LSH to separate from other pairs.

As for the running times, we note that Scamp running on the

GPU is faster than Attimo on the two smallest datasets we consider,

i.e. ASTRO and GAP. On themost difficult dataset under consideration

(in terms of 𝑅𝐶10), freezer, Attimo finds the first 4 motifs faster

than Scamp. Motifs from the 5-th onwards are instead found first by

Scamp. This is an instance of our earlier observation: such motifs

are closer to themajority of the other subsequences, and hencemore

difficult to separate. At the same time, this might also mean that

such motifs are not very significant: notice that the 10-th motif pair

is 3 times farther away than the top motif. Since Attimo discovers

motifs by increasing distance, the user has the chance of stopping

the computation early if such situation occurs.

3851

Figure 6: Running time for different numbers of repetitions.

We remark that in accordance with Lemma 4.5 the algorithm

stops when the failure probability of all pairs to be returned is

≤ 𝛿/𝑘 = 0.001 (which explains the slightly different running times

between Table 3 and Figure 5 for finding the top motif). This im-

plies that we find all top-10 pairs with probability at least 0.99.

However, the analysis is fairly conservative. As a result, in practice

our algorithm always returned the exact top motifs.

On the other hand, as we discussed in Observation 1, in some

cases Scamp might not identify the true top-𝑘 motifs. In our experi-

ments this happens on the freezer dataset, where the 8-th motif

found by Scamp is formed by subsequences 5 169 982 and 6 429 402,

at distance 11.4624. By contrast, the 8-th motif found by Attimo is

between subsequences 3 815 625 and 5 170 040, at distance 11.3378.

The nearest neighbors of both these sequences overlap with se-

quences participating in higher-ranked motifs, thus preventing

Scamp to consider them. Nonetheless, these two subsequences are

at distance smaller than the 8-th motif found by Scamp, and should

be part of the top-10 motifs.

7.3 Influence of the number of repetitions on

the running time

In this set of experiments we investigate the influence of 𝐿 on the

running time for finding the top-10 motifs. The tradeoff in play

here is the following. Allowing for a larger number of repetitions

allows to stop the exploration at longer hash prefixes, where LSH

is more selective and therefore able to prune away more distance

computations. The price to pay is a longer preprocessing time, a

higher memory usage, and more repetitions to be explored. How-

ever, remember that thanks to our use of the tensoring technique

the preprocessing time is proportional to

√
𝐿 rather than 𝐿. We

exclude Seismic from this evaluation, since due to its size it fills

the memory of our system with 𝐿 = 16 repetitions.

Figure 6 reports our findings. The datasets can be divided in two

groups. Those with high 𝑅𝐶10 values (bottom three in the plot) per-

form best with few repetitions (≈ 100), whereas those with low𝑅𝐶10

values (top three in the plot) see their best performance with more

repetitions, around 400 or 800. In other words, datasets in which

Figure 7: Scalability vs. input size (log scale both axes).

the motifs are less distinguished from the average subsequence pair

benefit from investing more repetitions.

7.4 Scalability

In Figure 7 we report on a scalability experiment on the Seismic
dataset. Given that Attimo’s running time depends on the relative

contrast, and that different prefixes of the same time series might

have different relative contrasts, we build synthetic datasets to test

the scalability of the algorithms. In particular, we consider random

walks of increasing size where we inject as a motif two instances of

a sine wave of length 100 with added random Gaussian noise, using

the variance to control the relative contrast of the motif. Using this

construction, we set up an easy and a difficult dataset with relative

contrasts 100 and 20, respectively. As expected, the running time

of Scamp depends only on the input size and scales quadratically.

Attimo’s running time, on the other hand is essentially linear for

a fixed relative contrast. For a fixed input size, the running time

increases as the relative contrast decreases. This is expected since

more distance computations need to be carried out.

Therefore our algorithm exhibits a much better scalability with

respect to the size of the input, allowing it to tackle large time series

using considerably fewer computational resources.

8 CONCLUSIONS

In contexts where objects with extremal properties are sought,

such as motif discovery, being adaptive to the data distribution

allows toweed outmany unnecessary computations. Our LSH based

algorithm is able to adapt to the data distribution so to compute

only a small fraction of all possible distances, thus enabling large

speedups on large time series compared to the state of the art.

Our approach guarantees that the output is correct with a user-

defined probability: given that our analysis is conservative, in prac-

tice our implementation always found the exact top-𝑘 motifs.

ACKNOWLEDGMENTS

Partially funded by the European Fund for Regional Development

(EFRE 2014-2020) and the Autonomous Province of Bozen-Bolzano

(EFRE1164).

3852

REFERENCES

[1] Alexandr Andoni and Piotr Indyk. 2006. Near-Optimal Hashing Algorithms for

Approximate Nearest Neighbor in High Dimensions. In FOCS. IEEE Computer

Society, 459–468.

[2] Martin Aumüller and Matteo Ceccarello. 2019. The Role of Local Intrinsic Di-

mensionality in Benchmarking Nearest Neighbor Search. In SISAP (Lecture Notes
in Computer Science, Vol. 11807). Springer, 113–127.

[3] Martin Aumüller and Matteo Ceccarello. 2021. The role of local dimensionality

measures in benchmarking nearest neighbor search. Inf. Syst. 101 (2021), 101807.
[4] Martin Aumüller and Matteo Ceccarello. 2022. Implementing Distributed Sim-

ilarity Joins using Locality Sensitive Hashing. In EDBT. OpenProceedings.org,
1–13.

[5] Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Michael Vesterli. 2019.

PUFFINN: Parameterless and Universally Fast FInding of Nearest Neighbors.

In ESA (LIPIcs, Vol. 144). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

10:1–10:16.

[6] William H Bakun and Allan G Lindh. 1985. The Parkfield, California, earthquake

prediction experiment. Science 229, 4714 (1985), 619–624.
[7] Mayank Bawa, Tyson Condie, and Prasanna Ganesan. 2005. LSH forest: self-

tuning indexes for similarity search. In WWW. ACM, 651–660.

[8] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed

Meftah, and Emmanuel Remy. 2021. Unsupervised and scalable subsequence

anomaly detection in large data series. VLDB J. 30, 6 (2021), 909–931.
[9] Andrei Z. Broder. 1997. On the resemblance and containment of documents. In

SEQUENCES. IEEE, 21–29.
[10] André EX Brown, Eviatar I Yemini, Laura J Grundy, Tadas Jucikas, and William R

Schafer. 2013. A dictionary of behavioral motifs reveals clusters of genes affect-

ing Caenorhabditis elegans locomotion. Proceedings of the National Academy of
Sciences 110, 2 (2013), 791–796.

[11] Jeremy Buhler and Martin Tompa. 2001. Finding motifs using random projec-

tions. In Proceedings of the fifth annual international conference on Computational
biology. 69–76.

[12] Carmelo Cassisi, Marco Aliotta, Andrea Cannata, Placido Montalto, Domenico

Patanè, Alfredo Pulvirenti, and Letizia Spampinato. 2013. Motif discovery on

seismic amplitude time series: The case study of mt etna 2011 eruptive activity.

Pure and Applied Geophysics 170, 4 (2013), 529–545.
[13] Matteo Ceccarello, Anne Driemel, and Francesco Silvestri. 2019. FRESH: Fréchet

Similarity with Hashing. InWADS (Lecture Notes in Computer Science, Vol. 11646).
Springer, 254–268.

[14] Moses Charikar. 2002. Similarity estimation techniques from rounding algo-

rithms. In STOC. ACM, 380–388.

[15] Bill Yuan-chi Chiu, Eamonn J. Keogh, and Stefano Lonardi. 2003. Probabilistic

discovery of time series motifs. In KDD. ACM, 493–498.

[16] Tobias Christiani. 2019. Fast Locality-Sensitive Hashing Frameworks for Ap-

proximate Near Neighbor Search. In SISAP (Lecture Notes in Computer Science,
Vol. 11807). Springer, 3–17.

[17] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. 2004.

Locality-sensitive hashing scheme based on p-stable distributions. In SCG. ACM,

253–262.

[18] Yifeng Gao and Jessica Lin. 2019. Discovering Subdimensional Motifs of Different

Lengths in Large-Scale Multivariate Time Series. In ICDM. IEEE, 220–229.

[19] Yifeng Gao and Jessica Lin. 2019. HIME: discovering variable-length motifs in

large-scale time series. Knowl. Inf. Syst. 61, 1 (2019), 513–542.
[20] Junfeng He, Sanjiv Kumar, and Shih-Fu Chang. 2012. On the Difficulty of Nearest

Neighbor Search. In ICML. icml.cc / Omnipress.

[21] J.A. Healey and R.W. Picard. 2005. Detecting stress during real-world driving

tasks using physiological sensors. IEEE Transactions on Intelligent Transportation
Systems 6, 2 (2005), 156–166. https://doi.org/10.1109/TITS.2005.848368

[22] Hebrail, Georges and Berard, Alice. 2022. Individual household electric power

consumption Data Set. Accessed: 2022-05-30. https://archive.ics.uci.edu/ml/

datasets/individual+household+electric+power+consumption. https://archive.

ics.uci.edu/ml/datasets/individual+household+electric+power+consumption

[23] Piotr Indyk and RajeevMotwani. 1998. Approximate Nearest Neighbors: Towards

Removing the Curse of Dimensionality. In STOC. ACM, 604–613.

[24] Hoang Thanh Lam, Toon Calders, and Ninh Pham. 2011. Online Discovery of

Top-k Similar Motifs in Time Series Data. In SDM. SIAM / Omnipress, 1004–1015.

[25] Xiaosheng Li and Jessica Lin. 2019. Linear Time Motif Discovery in Time Series.

In SDM. SIAM, 136–144.

[26] Jessica Lin, Eamonn J. Keogh, Li Wei, and Stefano Lonardi. 2007. Experiencing

SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov.
15, 2 (2007), 107–144.

[27] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. 2018.

VALMOD: A Suite for Easy and Exact Detection of Variable Length Motifs in

Data Series. In SIGMOD Conference. ACM, 1757–1760.

[28] AmyMcGovern, Derek H. Rosendahl, Rodger A. Brown, and Kelvin Droegemeier.

2011. Identifying predictive multi-dimensional time series motifs: an application

to severe weather prediction. Data Min. Knowl. Discov. 22, 1-2 (2011), 232–258.
[29] Abdullah Mueen. 2014. Time series motif discovery: dimensions and appli-

cations. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 4, 2 (2014), 152–159.

https://doi.org/10.1002/widm.1119

[30] Abdullah Mueen and Nikan Chavoshi. 2015. Enumeration of time series motifs

of all lengths. Knowl. Inf. Syst. 45, 1 (2015), 105–132.
[31] Abdullah Mueen and Eamonn J. Keogh. 2010. Online discovery and maintenance

of time series motifs. In KDD. ACM, 1089–1098.

[32] Abdullah Mueen, Eamonn J. Keogh, Qiang Zhu, Sydney Cash, and M. Brandon

Westover. 2009. Exact Discovery of Time Series Motifs. In SDM. SIAM, 473–484.

[33] Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast approximate correlation

for massive time-series data. In SIGMOD Conference. ACM, 171–182.

[34] Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy

Viswanathan, Chetan Gupta, and Eamonn Keogh. 2017. The Fastest Similar-

ity Search Algorithm for Time Series Subsequences under Euclidean Distance.

http://www.cs.unm.edu/ mueen/FastestSimilaritySearch.html.

[35] David Murray, Jing Liao, Lina Stankovic, Vladimir Stankovic, Richard Hauxwell-

Baldwin, Charlie Wilson, Michael Coleman, Tom Kane, and Steven Firth. 2015.

A data management platform for personalised real-time energy feedback. In

Proceedings of the 8-th international conference on energy efficiency in domestic
appliances and lighting. IET, 1–15.

[36] Ankur Narang and Souvik Bhattacherjee. 2010. Parallel Exact Time Series Motif

Discovery. In Euro-Par (2) (Lecture Notes in Computer Science, Vol. 6272). Springer,
304–315.

[37] NOAA National Centers for Environmental Information. 2022. NOAA Pacific

Islands Fisheries Science Center. 2021. Pacific Islands Passive Acoustic Network

(PIPAN) 10kHz Data. Accessed: 2022-05-30. https://doi.org/10.25921/Z787-9Y54.

https://doi.org/10.25921/Z787-9Y54

[38] Pranav Patel, Eamonn J. Keogh, Jessica Lin, and Stefano Lonardi. 2002. Mining

Motifs in Massive Time Series Databases. In ICDM. IEEE Computer Society,

370–377.

[39] Davood Rafiei. 1999. On Similarity-Based Queries for Time Series Data. In ICDE.
IEEE Computer Society, 410–417.

[40] Thanawin Rakthanmanon, Bilson J. L. Campana, Abdullah Mueen, Gustavo E.

A. P. A. Batista, M. Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn J.

Keogh. 2012. Searching and mining trillions of time series subsequences under

dynamic time warping. In KDD. ACM, 262–270.

[41] Kexin Rong, Clara E. Yoon, Karianne J. Bergen, Hashem Elezabi, Peter Bailis,

Philip Alexander Levis, and Gregory C. Beroza. 2018. Locality-Sensitive Hashing

for Earthquake Detection: A Case Study Scaling Data-Driven Science. Proc. VLDB
Endow. 11, 11 (2018), 1674–1687. https://doi.org/10.14778/3236187.3236214

[42] S Soldi, Volker Beckmann, WH Baumgartner, Gabriele Ponti, Chris R Shrader, P

Lubiński, HA Krimm, F Mattana, and Jack Tueller. 2014. Long-term variability

of agn at hard x-rays. Astronomy & Astrophysics 563 (2014), A57.
[43] UC Berkeley Seismological Laboratory. Dataset. 2014. High Resolution Seismic

Network. https://doi.org/doi:10.7932/HRSN

[44] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. 2014. Hashing

for Similarity Search: A Survey. CoRR abs/1408.2927 (2014). arXiv:1408.2927

http://arxiv.org/abs/1408.2927

[45] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei Ding,

Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn J. Keogh.

2016. Matrix Profile I: All Pairs Similarity Joins for Time Series: A Unifying View

That Includes Motifs, Discords and Shapelets. In ICDM. IEEE Computer Society,

1317–1322.

[46] Yan Zhu, Chin-Chia Michael Yeh, Zachary Zimmerman, Kaveh Kamgar, and

Eamonn J. Keogh. 2018. Matrix Profile XI: SCRIMP++: Time Series Motif Dis-

covery at Interactive Speeds. In IEEE International Conference on Data Mining,
ICDM 2018, Singapore, November 17-20, 2018. IEEE Computer Society, 837–846.

https://doi.org/10.1109/ICDM.2018.00099

[47] Yan Zhu, Zachary Zimmerman, Nader Shakibay Senobari, Chin-Chia Michael

Yeh, Gareth J. Funning, Abdullah Mueen, Philip Brisk, and Eamonn J. Keogh.

2016. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the

One Hundred Million Barrier for Time Series Motifs and Joins. In ICDM. IEEE

Computer Society, 739–748.

[48] Zachary Zimmerman, Kaveh Kamgar, Nader Shakibay Senobari, Brian Crites,

Gareth J. Funning, Philip Brisk, and Eamonn J. Keogh. 2019. Matrix Profile XIV:

Scaling Time Series Motif Discovery with GPUs to Break a Quintillion Pairwise

Comparisons a Day and Beyond. In SoCC. ACM, 74–86.

3853

https://doi.org/10.1109/TITS.2005.848368
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://archive.ics.uci.edu/ml/datasets/individual+household+electric+power+consumption
https://doi.org/10.1002/widm.1119
https://doi.org/10.25921/Z787-9Y54
https://doi.org/10.25921/Z787-9Y54
https://doi.org/10.14778/3236187.3236214
https://doi.org/doi:10.7932/HRSN
http://arxiv.org/abs/1408.2927
https://doi.org/10.1109/ICDM.2018.00099

